

Application-Specific Networks-on-Chips Design

Majid Janidarmian1, Atena Roshan Fekr2, Vahhab Samadi Bokharaei3

Abstract— Mapping algorithm, which is an important phase

of an NoC design tries to map most frequent and most critical
communications in such a way that minimize the physical distance
between the source and destination nodes. The objective of this
paper is to achieve an application-specific NoC design that
minimizes the communication cost and improves the fault tolerant
properties. First, a heuristic mapping algorithm that produces a
set of different mappings in a reasonable time is presented.
Although this mapping does not explore the design space
thoroughly, it considers a part of design space, which in general
minimizes the communication costs of solutions while yielding
optimum communication costs in some cases. Comparison of the
communication cost results makes it obvious that final solutions
found by our proposed approach outperform the results of other
methods, which proposed in literature. Then, the used routing
algorithm and the concept, vulnerability index, which is
considered as a criterion for estimating the fault-tolerance of
mapped application, are presented in details. Lower
communication cost leads to an NoC with better metrics such as
energy consumption and latency; and reducing the vulnerability
index optimizes fault tolerant properties of NoC. In order to yield
a mapping which considers trade-offs between these two
parameters, a linear function is defined and introduced. It is also
observed that more flexibility to prioritize solutions within the
design space is possible by adjusting a set of if-then rules in fuzzy
logic.

Keywords: Application-Specific Network on Chip, Mapping,

Routing, Fault-Tolerance, Vulnerability Index, Robustness Index

I. INTRODUCTION

A network-on-chip (NoC) is an on-chip communication
infrastructure that implements multi-hop and predominantly

packet-switched communication. Through pipelined packet

transmission. NoCs permit a more efficient utilization of

communication resources than traditional on-chip buses.

Regular NoC structures reduce VLSI layout complexity

compared to custom routed wires [1]. The mapping of real

applications on distributed NoC-based architecture is still an

open issue [2] which decides which core should be linked to

which router. Mapping an application to on-chip network is

the first and the most important step in the design flow as it

will dominate the overall performance and cost [3]. Efficient
routing of messages within the network is essential in order to

fully exploit the power of the computing resources and achieve

good performance for applications running on them. Routing

schemes with the ability to tolerate the faults are important in

the massively parallel multiprocessors networks [4]. The

Routing algorithms are classified as deterministic or adaptive.

 In deterministic routing the path from the source to the

destination is completely determine by the source and the

destination addresses. In adaptive routing multiple paths from

the source to the destination are possible. Thus, generally, it

provides packets with a better chance to avoid hot spot or

faulty

faulty regions in the network as compared to deterministic

routing [5]. Although the deterministic routing algorithms are

simple and have less complexity in hardware design, they are
not able to efficiently consume bandwidth of links. Since

reliability and fault-tolerance of network are two important

issues in scaling of NoCs, the adaptive algorithms are the

recommended solution. These algorithms can tolerate the

network failures better than deterministic algorithms by using

multiple paths.

 Different network links, connecting routers to other routers

or modules, may have different bandwidths set during the

design process to meet the QoS requirements [6]. The Links

exceeding threshold bandwidth in network should be avoided

in order to maximize the system performance [8]. Routing and
mapping algorithms play important roles to achieve this goal.

The main purpose of this article is to present a new mapping

model that optimizes the results in accordance to

communication costs and fault-tolerance considerations. In this

work, we consider NoCs with 2D mesh topologies which offer

many desirable properties including better parallelism and

scalability, low cross-section bandwidth and fixed degree of

nodes [7]. It is worth noting that the approach proposed in this

paper is not topology-dependent and could be implemented on

any other topologies, either.
This paper is an extension of [9] and the rest of this paper is

organized as follows. In section 2 we discuss related research
work. Section 3 is composed of five subsections. The proposed
mapping algorithm, Citrine, and related formulation and results
are presented in 3.1. The used routing algorithm is described in
3.2. Vulnerability index is defined in 3.3 as a criterion to
evaluate fault-tolerance. 3.4 introduces a total cost function and
experimental results and design space exploration. Finally in
3.5 the fuzzy logic solution and also the results of it are done in
this subsection. The conclusion is drawn in the last section. The
graphs which used as the case studies in section 3.1 are shown
in appendix I.

II. RELATED WORK

Several approaches have been proposed in literature in the
context of topological mapping in NoCs. The current
researches mostly focus on mapping techniques for NoC
platform with two dimension mesh topology. The NMAP
method that runs mapping with regard to bandwidth constraints
and minimizing communication delay is selected as the
criterion in most projects, and is highly efficient as far as
communication cost is considered [10]. In [3] a binomial
mapping method is introduced. The latter comes along with an
optimal algorithm aiming at minimizing total traffic on
network, the number of hops, and hardware costs. The Branch-
and-Bound algorithm, presented in [11] has been able to map
IP cores on tiled-based NoC architecture, and it has tried to
minimize total energy consumption, and to overcome
bandwidth constraints. The proposed mapping algorithm in
[12] is basically a genetic algorithm, which takes the
advantages of the chaotic systems by using them instead of

1
CE Department, Science and Research Branch of Islamic Azad University,

Tehran, Iran, jani@srbiau.ac.ir.
2
ECE Department, McGill University, Montreal, Quebec, Canada,

atena.roshanfekr@mail.mcgill.ca
3
ECE Department, Shahid Beheshti University, Tehran, Iran,

v.samadi@sbu.ac.ir

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

random process in the GA. Chain-Mapping [13] is an algorithm
for mapping cores onto a mesh-based Network-on-Chip
architecture that its main aim is to produce chains of connected
cores in order to introduce a new method to prioritize IP cores.
Onyx is a heuristic method for mapping the cores onto a tile-
based NoC architecture. Onyx defines four movements to
assign priorities to the tiles on a lozenge-shaped path and
obtains better communication cost compared with previous
mapping algorithms [14]. Also, the mapping of clusters onto
the physical topology of processors has been studied in the
field of parallel processing. In [15], PMAP, a two phase
mapping algorithm for placing clusters onto processors is
presented. It is clear to understand that all mapping algorithms
try to minimize hop count between related cores as much as
possible. This way results in better communication cost, energy
consumption, latency and other performance metrics [14].

III. THE PROPOSED METHODOLOGY

The objective of this study is to achieve an application-
specific NoC design that minimizes the communication cost
and improves the fault tolerant properties. This section is
consisted of four subsections; the first subsection presents a
heuristic mapping algorithm that produces a set of different
mappings in a reasonable time. Although this mapping does not
explore the design space thoroughly, it considers a part of
design space, which in general minimizes the communication
costs of solutions while yielding optimum communication
costs in some cases. The second subsection deals with routing
algorithm used in this paper. Furthermore, the new concept,
vulnerability index, which is considered as a criterion for
estimating the fault-tolerance of mapped application, is
presented in details in the third subsection. In order to yield a
mapping which considers trade-offs between communication
cost and fault-tolerance, a total cost function and fuzzy logic
are defined and introduced at the last two subsections.

A. Citrine: Mapping Algorithm

To formulate mapping problem in a more formal way, we
need to first introduce the following two concepts borrowed
from [14]:

Definition 1: The core graph is a directional graph 𝐺(𝑉, 𝐸),
whose each vertex 𝑣𝑖 ∈ 𝑉 shows a core, and a directional
edge 𝑒𝑖,𝑗 ∈ 𝐸 illustrates connection between 𝑣𝑖 and 𝑣𝑗 . The

weight of 𝑒𝑖,𝑗 that is shown as 𝑐𝑜𝑚𝑚𝑖 ,𝑗 , represents the

bandwidth requirement of the communication from 𝑣𝑖 to 𝑣𝑗 .

We display an IP core along with a router connected to it by
Resource Network Interface (RNI) as a tile.

Definition 2: The NoC architecture graph is a directional
graph 𝐴(𝑇, 𝐿), whose each vertex 𝑡𝑖 ∈ 𝑇 represents a tile in the
NoC architecture, and its directional edge that is shown by
𝑙𝑖,𝑗 ∈ 𝐿 shows a physical link from 𝑡𝑖 to 𝑡𝑗 . The routing path

from 𝑡𝑖 to 𝑡𝑗 is denoted by 𝑟𝑖 ,𝑗 and 𝐿(𝑟𝑖 ,𝑗) is the set of links that

make up the path 𝑟𝑖,𝑗 .

In core graph each edge is treated as a flow of single
commodity, represented as 𝑐𝑘 and its value which indicates the
require bandwidth for each edge is displayed with 𝑣𝑙(𝑐𝑘). The
set of all commodities represented as 𝐶 is achieved as follow:

𝐶 =
𝑐𝑘 : 𝑣𝑙 𝑐𝑘 = 𝑐𝑜𝑚𝑚𝑖 ,𝑗 , 𝑘 = 1,2, … 𝐸 , ∀𝑒𝑖,𝑗 ∈ 𝐸,

𝑤𝑖𝑡ℎ 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑘 = 𝑚𝑎𝑝(𝑣𝑖), 𝑑𝑒𝑠𝑡 𝑐𝑘 = 𝑚𝑎𝑝(𝑣𝑗)

The core graph mapping 𝐺(𝑉, 𝐸) on NoC architecture
graph 𝐴(𝑇, 𝐿) is defined by a one to one mapping function.

𝑚𝑎𝑝 ∶ 𝑉 → 𝑇, 𝑠. 𝑡. 𝑚𝑎𝑝 𝑣𝑖 = 𝑡𝑗 , ∀ 𝑣𝑖 ∈ 𝑉, ∃𝑡𝑗 ∈ 𝑇, 𝑉 ≤ 𝑇

Figure 1. (a) Candidate tiles for mapping the first core (b) concept of

lozenge-shape path

The proposed algorithm in [11], searches the optimal
solution by alternating branch and bound steps, but it consumes
a long run time due to large searching space. By increasing the
number of cores, this method becomes unusable as the run time
increases significantly. Onyx [14] is one of the best algorithms
in mapping of cores onto mesh-based NoC architecture in
terms of communication costs. Onyx defines four movements
to assign priority to the tiles on a lozenge-shape path and
obtains minimum hop count among the directly connected
cores in the core graph. The disadvantage of the Onyx
algorithm is the priority assignment process, which skips many
valuable solutions and generates multiple identical mappings in
some cases.

Hence, a new mapping algorithm ―Citrine1‖ is proposed by
combination of [11] and [14] to better explore design space and
using lozenge-shape path to improve run time. In this study,
although proposed mapping algorithm is not limited by a
specific topology, the mesh topology is selected as a platform
for mapping cores due to its flexibility, scalability, and easiness
of implementation. Citrine uses Onyx to retrieve the order of
cores which should be mapped and branch-tree tries to search
different permutation among those defined by lozenge shaped
rule of Onyx. Citrine is composed of two steps:

Step1: Mapping of 1st core

A core with the highest priority for mapping is determined
by the ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐺 𝑉, 𝐸 function. First, the
function finds 𝑐𝑜𝑚𝑚𝑖,𝑗 such that it has the highest value,

followed by selecting the core with higher 𝑅𝑎𝑛𝑘𝑖𝑛𝑔(𝐶𝑖) as the
first core between the source and destination of that
communication.

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐶𝑖 = 𝑐𝑜𝑚𝑚𝑖 ,𝑗 + 𝑐𝑜𝑚𝑚𝑗 ,𝑖 ∀𝑗 =1,2,⋯, 𝑉

𝑖≠𝑗



After selecting the first core, 𝑖

𝑛

2

𝑖=1
 , different tiles can be

selected as the candidates for the location of first core in a
𝑛 × 𝑛 mesh. Due to the symmetry of the 2D mesh networks,
other tiles are just mirrors of these candidate tiles. The first
core should be mapped onto one of the candidate locations and
finally the most appropriate location will be determined. As
presented by Fig. 1-a Citrine has selected candidate tiles for
mapping the first core like Onyx. Each candidate position will
be used as a root for a branch-tree.

1
 The Stone of Success

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

Figure 2. (a) VOPD Core Graph (b) Branch-Tree of VOPD core graph in Citrine (c) Mapping of the smaple branch-tree

Step2: Branch the tree

After mapping of the first core in one of the candidate tiles,
unmapped cores are selected for mapping upon Onyx priority
order. Onyx priority order defines that for mapping the next

core, a core with the largest 𝑐𝑜𝑚𝑚𝑝,𝑐 + 𝑐𝑜𝑚𝑚𝑐,𝑝 should be

selected, in which 𝑣𝑝 is a mapped core and 𝑣𝑐 is the next core

to be mapped for all possible values of 𝑐 and 𝑝. In other words,
a core is selected for mapping which is not mapped yet and
requires the largest bandwidth to communicate with one of the
mapped cores among others. As the 𝑣𝑐 is selected by its
relation to the 𝑣𝑝 , the 𝑣𝑝 is called the parent and 𝑣𝑐 as the child.

After selecting a child to be mapped, different permutations
should be searched for the child. The search will be carried out
using the idea of lozenge-shape path of Onyx presented in Fig.
1-b. The searching algorithm is such that a child should be
mapped with the nearest possible tiles to the parent. This rule
defines that if 𝑑 is the minimum possible distance between a

child, 𝑣𝑐 , and its parent, 𝑣𝑝 , then all available tiles with

distance 𝑑 from the parent, 𝑣𝑝 , should be considered as

possible permutations for the child, 𝑣𝑐 . It is worth noting that
the available tiles are those, which are not occupied by a
previously mapped tile. Citrine continues the procedure of
selecting the next core to map and finds all possible
permutations until completing the mappings. Fig. 2 shows in
detail mapping of a real core graph, VOPD, for the first three
cores.

1) Experimental results of Citrine
VOPD and MPEG-4 real core graphs are used to compare

Citrine algorithm with other algorithms. The results of Citrine
are compared with BMAP[3], results of NMAP, Partial
Branch-and-Bound, GMAP, PMAP mentioned in [10],
CGMAP[12], CHMAP[13] and Onyx[14].

Communication cost is the main criteria for comparing
these algorithms and is calculated according to the following
equation:

𝑐𝑜𝑚𝑚𝑐𝑜𝑠𝑡 = 𝑣𝑙 𝑐𝑘 × ℎ𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 𝑠𝑟𝑐 𝑐𝑘 , 𝑑𝑠𝑡 𝑐𝑘

 𝐸

𝑘=1



where 𝑠𝑟𝑐 𝑐𝑘 is source and 𝑑𝑠𝑡 𝑐𝑘 is destination of 𝑐𝑘 .

In Fig.3 and Fig. 4 the minimum communication cost for
all algorithms are presented. Communication costs of PMAP
and GMAP are exceeding the upper bounds in charts so they

Figure 3. Communication cost of different mapping algorithms on VOPD
core graph

Figure 4. Communication cost of different mapping algorithms on MPEG-4
core graph

Communication costs of PMAP and GMAP are exceeding
the upper bounds in charts so they are not shown completely in
these figures. As illustrated in these figures, Citrine mapping
algorithm and Onyx show the minimum communication cost.
Lower communication cost is the result of smaller hop count
between related cores. Reducing the hop counts is one of the
most significant approaches for decreasing energy consumption
and other performance metrics like latency [14]. As illustrated
in Fig.3 and Fig. 4, Onyx and Citrine show similar best results
in VOPD and MPEG-4 core graphs.

In order to better estimate Citrine abilities, much more

complicated graphs are applied to the Citrine and the Onyx.

The results of applying the Citrine and the Onyx as well as the

perfect results are listed in Table 1. For NUG12, NUG15,

NUG16b, NUG21,NUG24 and NUG25 [16] the Citrine shows

4.53%, 3.90%, 1.37%, 2.47%, 6.18% and 5.68% improvements

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

over Onyx, respectively. Figure 5 illustrates the results which

demonstrated in Table 1.

TABLE I. COMPARISON OF THE COMMUNICATION COST OF CITRINE

AND ONYX VS. PERFECT RESULTS

Case

 Study

Perfect

Results

CITRINE ONYX

NUG12 578 590 618

NUG15 1150 1182 1230

NUG16b 1244 1290 1308

NUG21 2438 2526 2590

NUG24 3488 3608 3846

NUG25 3744 3912 4148

B. Routing

This section focuses on the routing algorithm used in the

proposed application-specific NoCs resulted after mapping
procedure, as explained in the previous section. Following the

mapping of cores onto a given topology, the routing algorithm

significantly affects the overall performance of a Network-on-

Chip. The deterministic routing algorithms are widely used in

application-specific NoCs due to their simplicity and low area

overhead in the router design. On the other hand, the adaptive

routing algorithms usually result in a better performance and

link utilization than deterministic routing algorithm. Another

advantage of using the adaptive routing algorithm is the fault-

tolerant NoCs by providing multiple alternative paths through

network.

Figure 5. Communcation cost of Citrine, Onyx and perfect answers for

NUG12, NUG15, NUG16b, NUG21, NUG24, NUG25

One of the best algorithms customized for routing in
application-specific NoCs was presented by [5] which uses a
highly adaptive deadlock-free routing algorithm. This routing
algorithm takes into account the communication bandwidth
requirements among core pairs which are mapped on different
network nodes. The algorithm splits the communication, 𝑐𝑘 ,
over multiple paths provided by routing function, between the
source, 𝑆 , and the destination, 𝐷 , as shown in Fig.6. The
routing function presented in [5] uses fully adaptive minimal
routing. In general, every routing algorithm should include
deadlock freedom feature. Nevertheless, more considerations

are required when implementing the fully adaptive routing
algorithms. The adaptive routing algorithm is prone to
deadlocks, so channel dependency graphs (CDG) concept is
used in [5] to avoid any possible deadlocks. The CDG is a
directed graph with the network channels as the vertices and
the direct dependencies between the two channels as the edges.

Figure 6. Splitting of bandwidth based on fully adpative minimal routing for

a communication from node S to node D at 60 Mb/s

A dependency exists between the links 𝑙𝑖 ,𝑗 and 𝑙𝑗 ,𝑘

whenever there is a path to route packets from 𝑣𝑖 to 𝑣𝑘 through
𝑣𝑗 which uses those links. An extension to CDG as a sub

graph is the concept of application specific channel
dependency graph (ASCDG) introduced in [17]. The ASCDG
is a sub graph of the CDG and an edge in CDG between
channels, 𝑙𝑖,𝑗 and 𝑙𝑗 ,𝑘 is removed if there was no application-

specific dependency between 𝑙𝑖,𝑗 and 𝑙𝑗 ,𝑘 . Deadlock is not

inevitable when there are any cycles through ASCDG graph. A
cycle in the ASCDG is a succession of application specific
direct dependencies, 𝐷 = {𝑑1 , 𝑑2 , ⋯ , 𝑑𝑛 } , where 𝑑 ∈ 𝐷 is a
pair (𝑙𝑖 ,𝑗 , 𝑙𝑗 ,𝑘) with 𝑙𝑖 ,𝑗 , 𝑙𝑗 ,𝑘 ∈ 𝐿. The challenge is how to select

the most appropriate dependencies to be removed from
ASCDG graph to break the cycle, 𝐷 . By removing a
dependency, all of the corresponding paths to that dependency
will be removed. Using this method guarantees that routing
algorithm is deadlock free still with high levels of adaptivity.
Palesi et al. also presented a technique to break cycles in the
ASCDG which is bandwidth aware. As soon as a path is
removed, the fraction portion of the bandwidth that passes
through it must be redistributed over the remaining paths. The
idea is to remove the dependency, 𝑑, such that the overhead of
bandwidth that should be allocated to the remaining paths is
minimized. The condition for removing the edge from the
ASCDG is to minimize the cost 𝑑 , as:

cost 𝑑 =
𝑣𝑙 𝑐𝑘 × 𝑃𝑇2(𝑐𝑘 , 𝑑)

 𝜌(𝑐𝑘) × (𝜌 𝑐𝑘 − 𝑃𝑇2 𝑐𝑘 , 𝑑)
𝑐𝑘∈𝐶

where, 𝑣𝑙 𝑐𝑘 represents bandwidth requirements for

communication, 𝑐𝑘 ,𝜌 𝑐𝑘 denotes the set of minimal paths

admitted by the routing function for 𝑐𝑘 , and 𝑃𝑇2 𝑐𝑘 , 𝑑 is the
path through dependency set that is the set of paths of 𝑐𝑘 which

use the dependency 𝑑.

Due to its inherent application-specific nature and high
adaptivity provided by algorithm proposed by [5], this
algorithm is used for routing of application-specific NoCs,
which previously mapped by Citrine in section 3.1. Fault-
tolerant properties are also considered in the proposed

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

methodology to include the advantage of adaptivity in routing
algorithms. Next section deals with fault-tolerance by
introducing the concept of vulnerability index.

C. Vulnerability Index

As the number of transistors on chip increases, the problem
associate with deep sub-micron will become more pronounced.
Moreover, the router and link failures will be more probable.
Therefore, the NoCs need to be designed with high level of
built-in fault tolerance [18]. Vulnerability index is considered
as a criterion for estimating fault-tolerant properties of NoCs.
By reducing the vulnerability index, the NoC design will
become more fault-tolerant. The vulnerability index has the
inverse relation to the robustness index introduced in [19] and
definitions and formulations of robustness index are also
extracted from the same reference. So first we define the
robustness index and then definition of vulnerability index is
proposed.

The robustness index, 𝑅𝐼, is based on the extension of the
concept of path diversity [20]. For a given
communication, 𝑐𝑘 ∈ 𝐶, an NoC architecture graph, 𝐴(𝑇, 𝐿), a
mapping function, M, and a routing function, R, [19] defined
the robustness index for communication 𝑐𝑘 , 𝑅𝐼(𝑐𝑘) , as the
average number of routing paths available for communication,
𝑐𝑘 , if a link belonging to the set of links used by

communication 𝑐𝑘 is faulty. Formally,

𝑅𝐼 𝑐𝑘 =
1

 𝐿(𝑐𝑘)
 𝜌 𝑐𝑘 \𝜌(𝑐𝑘 , 𝑙𝑖,𝑗)

𝑙𝑖 ,𝑗∈𝐿

 where, 𝜌 𝑐𝑘 is the set of paths provided by R for

communication, 𝑐𝑘 , 𝜌(𝑐𝑘 , 𝑙𝑖 ,𝑗) is the set of paths provided by

R for communication, 𝑐𝑘 ,that uses link 𝑙𝑖 ,𝑗 , and 𝐿(𝑐𝑘) is the

set of links belonging to paths in 𝜌(𝑐𝑘).

Figure 7. Routing paths provided by two different routing functions for the
communicating pair (source, destination)

Suppose that there are two routing functions, 𝐴 and 𝐵 ,
which routing function 𝐴 selects path 1 and 𝑝𝑎𝑡ℎ2 and routing
function 𝐵 selects 𝑝𝑎𝑡ℎ2 and 𝑝𝑎𝑡ℎ3 to route packets between
source and destination as shown in Fig. 7 . The routing
function 𝐴 selects two disjoint paths such that the presence of a
faulty link in one path dose not compromise communication
from source to destination since another path is fault-free.
However, when the routing function 𝐵 is used as shown in
Fig. 7, the communication will not occur. As the alternative
paths share the link, 𝑙1,3, any fault in the link, 𝑙1,3, makes the

communication from ―source‖ to ―destination‖ impossible.

Consequently, the NoC which uses routing function 𝐴, 𝑁𝑂𝐶1,
is more robust than the NoC which uses routing function 𝐵, let
call it 𝑁𝑂𝐶2 . Such situation is reflected by the robustness
index. The robustness index for the above two cases are:

 𝑅𝐼 𝑁𝑂𝐶1 (source → destination) =
1+1+1+1+1+1

6
= 1 ,

𝑅𝐼 𝑁𝑂𝐶2 (source → destination) =
0+1+1+1+1

5
= 0.8 .

The 𝑁𝑂𝐶1using 𝑝𝑎𝑡ℎ1 and 𝑝𝑎𝑡ℎ2 is more robust than the
𝑁𝑂𝐶2 using 𝑝𝑎𝑡ℎ2 and 𝑝𝑎𝑡ℎ3 for communication from

“𝑠𝑜𝑢𝑟𝑐𝑒” to “𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛” as 𝑅𝐼 𝑁𝑂𝐶1 > 𝑅𝐼 𝑁𝑂𝐶2 .

The global robustness index, which characterizes the
network, is calculated using the weighted sum of the robustness
index of each communication. For a communication, 𝑐𝑘 , the

weight of 𝑅𝐼(𝑐𝑘) is the degree of adaptivity [21] of 𝑐𝑘 . The
degree of adaptivity of a communication, 𝑐𝑘 , is the ratio of the
number of allowed minimal paths to the total number of
possible minimal paths between the source node and the
destination node associated to 𝑐𝑘 . Thus, given a core
graph 𝐺(𝑉, 𝐸) , NoC architecture graph 𝐴(𝑇, 𝐿) , a mapping
function M, and a routing function R, the robustness index is
defined as:

𝑅𝐼 𝑁𝑂𝐶 = 𝛼 𝑐𝑘 𝑅𝐼 𝑁𝑂𝐶 (𝑐𝑘)

𝑐𝑘∈𝐶

where 𝛼 𝑐𝑘 indicates the degree of adaptivity of

communication 𝑐𝑘 .

So after defining 𝑅𝐼 𝑁𝑂𝐶 , the Vulnerability index,

𝑉𝐼 𝑁𝑂𝐶 , defined as:

𝑉𝐼 𝑁𝑂𝐶 =
1

𝜀 + 𝑅𝐼 𝑁𝑂𝐶

where 𝜀 is a constant to be defined. Note that 𝑅𝐼 𝑁𝑂𝐶 is
always equal or greater than zero, therefore the maximum

possible value of 𝑉𝐼 𝑁𝑂𝐶 is equal to
1

𝜀
 which happens in case

𝑅𝐼 𝑁𝑂𝐶 is equal to zero. In this paper 𝜀 was set to 0.01. If we

want to set an upper bound for 𝑉𝐼 𝑁𝑂𝐶 , let call it
𝑉𝐼_𝑈𝑝𝑝𝑒𝑟_𝐵𝑜𝑢𝑛𝑑, 𝜀 will be calculated as follow:

𝜀 =
1

𝑉𝐼_𝑈𝑝𝑝𝑒𝑟_𝐵𝑜𝑢𝑛𝑑

Following section deals with a cost function that its
objective is to find a mapping such that the sum of weighted
communication cost and vulnerability index are to be
minimized under previously mentioned routing algorithm.

D. Total cost function

As previously mentioned, lower communication cost leads
to an NoC with better metrics such as energy consumption and
latency. Another introduced metric was vulnerability index
which is used as a measurable criterion for fault tolerant
properties. A cost function is to be introduced in order to
minimize the sum of weighted communication cost and the
vulnerability index.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

Given a core graph 𝐺(𝑉, 𝐸) , NoC architecture
graph 𝐴(𝑇, 𝐿), and a routing function R, a mapping function,
𝑀 , is introduced from 𝐺 𝑉, 𝐸 → 𝐴(𝑇, 𝐿) to minimize the
following:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
 1 − 𝛼

𝛽
× 𝑐𝑜𝑚𝑚𝑐𝑜𝑠𝑡 +

𝛼

𝛾
× 𝑉𝐼 𝑁𝑂𝐶 

where, 𝑐𝑜𝑚𝑚𝑐𝑜𝑠𝑡 is the communication cost and 𝑉𝐼 𝑁𝑂𝐶
is the vulnerability index of NoC after applying mapping
function.

The constants 𝛽 and 𝛾 are used to normalize the 𝑐𝑜𝑚𝑚𝑐𝑜𝑠𝑡

and 𝑉𝐼 𝑁𝑂𝐶 . In this study the maximum value of

communication cost and vulnerability index are used

for 𝛽 and 𝛾, respectively. 𝛼 is a weighting coefficient meant to
balance the communication cost and vulnerability index. It

was set to 0.8 and 0.7 for core graphs VOPD and MPEG-4

respectively.

1) Experimental Results
In order to better investigate the capabilities of Citrine

mapping algorithm and for better understanding of total cost

function, we have done some experiments. As mentioned

before, one of the advantages of Citrine over other algorithms

is its diversity of solutions which have near to optimum

communication costs. Although Citrine explores a wide range

of solutions, its runtime for examined real core graphs, VOPD
and MPEG-4, was a fraction of a second.

We have run Citrine for core graphs VOPD and MPEG-4 to
evaluate the generated mappings by using total cost function.

Citrine generates 6420 and 2808 different mappings for
MPEG-4 and VOPD, respectively. Some mappings have the
same communication cost and vulnerability index values. So
by dismissing the duplicate items, the unique values for
MPEG-4 and VOPD were extracted among whole results.
Results of running Citrine for MPEG-4 and VOPD core graphs
and evaluating the values in our 2D design space, i.e.
communication cost and vulnerability index shown in Fig. 8
and Fig. 9, respectively for extracted set of results.

Figure 8. Citrine mappings of MPEG-4 core graph

Figure 9. Citrine mappings of VOPD core graph

Although the communication costs for most of mappings
are spread in a range near to optimal, there are wide ranges of
total cost for mappings due to different vulnerability index
values, as it can be seen in some extreme points in design space
which have small communication cost but having large total
cost and vulnerability indices. Notice that Citrine does not take
vulnerability index into account while generating mapping but
by providing a large design space, we can achieve different
total costs which is one of the good points about Citrine.

For better analyzing the correlation of different parameters
in our design space, Fig. 10 to Fig. 13 are shown for results of
VOPD core graph.

Figure 10. Commnication Cost vs. Total Cost Function

Figure 11. Commnication Cost vs. Total Cost Function – detailed

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

Figure 12. Total Cost Function vs. Vulnerability Index

Figure 13. Communication Cost vs. Vulnerability

Fig. 10 considers communication cost vs. total cost. It is
observed that increasing communication cost leads to greater
values of total cost in most cases but this is not true for all. For
better understanding, a set of results which highlighted in red
box are shown in Fig. 11. Although the best communication
cost for VOPD is 4119, this mapping has not the best total cost.
It is worth noting that weighting coefficient 𝛼 = 0.8 which
means that we only left a minor effect for communication cost
in total cost function.

Fig. 12 illustrates total cost vs. vulnerability index.
Description of this figure is like two former described figures,
Fig. 10 and Fig. 11.

At last, Fig. 13 depicts communication cost vs.
vulnerability index without noticing total cost function. As you
can see, the power of Citrine is to generated different mappings
with diverse set of features, e.g. mappings with same
communication costs but different vulnerability indices and
vice versa.

E. Fuzzy Logic Solution

Over the past few decades, fuzzy logic has been used in a wide

range of problem domains and provides an alternative way of

thinking, which allows to model complex systems using a

higher level of abstraction originating from the user

knowledge and experience [22]. In this section, fuzzy logic is

used to find an appropriate application-specific network on

chip configuration according to designer‘s demands. In the

proposed fuzzy system, the Mamdani‘s fuzzy interface is used

and if-then rules are presented in Fig. 15(e). As it can be seen,

these rules are flexible and easy to use, which are the key

benefits of the fuzzy logic. Fig.15 (a) to Fig.15 (d) show the
total design cost surfaces of fuzzy logic and linear function,

which highlight advantages of fuzzy logic. As it was shown in

the results, in this step we have evaluated our fuzzy logic

design by considering two parameters Robustness Index and

Communication cost. It is observed that the designer has more

flexibility to prioritize solutions within the design space by

adjusting a set of if-then rules.

(a)

(b)

(c)

(d)

(e)

Figure15. , (a)3D demonstration of fuzzy logic of VOPD mappings (b) 3D

demonstration of linear function of VOPD mappings (c) 2D demonstration of

fuzzy logic of VOPD mappings (d)2D demonstration of linear function of

VOPD mappings, (e) If-Then rules of fuzzy logic using ―and‖ operator.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

IV. CONCLUSION

Considering the importance of mapping algorithm as one of
three aspects of NoC design, in this paper, a novel mapping
algorithm was proposed, called Citrine. It was able to obtain
the best communication cost among a number of efficient
mapping algorithms. Vulnerability index was also introduced
and defined as a criterion for evaluating routing fault tolerance.
The most appropriate mapping is selected by total cost function
using either a linear or fuzzy logic cost function. The function
can be customized by a designer, considering the impact of two
key parameters, i.e., communication cost and vulnerability
index.

REFRENCES

[1] W. J. Dally and B. Towles, ―Route packets, not wires: On-chip

interconnection networks‖, in Proceedings of the 38th Design
Automation Conference (DAC), 2001.

[2] F. CLERMIDY, R. LEMAIRE, Y. THONNART, P. VIVET, ―A

COMMUNICATION AND CONFIGURATION CONTROLLER FOR NOC BASED

RECONFIGURABLE DATA FLOW ARCHITECTURE,‖ NOCS 2009. 3RD

ACM/IEEE INTERNATIONAL SYMPOSIUM ON , PP153-162, 12 JUNE 2009.

[3] W. Shen, C. Chao, Y. Lien, A. Wu,‖ A NEW BINOMIAL MAPPING
AND OPTIMIZATION ALGORITHM FOR REDUCED-

COMPLEXITY MESH-BASED ON-CHIP NETWORK,‖, Networks-
on-Chip, NOCS 2007, pp.317 – 322, 7-9 May 2007.

[4] J. Chen, D. Xu, L. Xie, ―A Positive-first and Negative-first Fault-
tolerant routing schemes for concave and convex faults,‖ Future

Computer and Communication (ICFCC), 2010 2nd International
Conference on, May 2010, pp. V1-53 - V1-58.

[5] M. Palesi, G. Longo, S. Signorino, R. Holsmark, S. Kumar, V. Catania,

―Design of Bandwidth Aware and Congestion Avoiding Efficient
Routing Algorithms for Networks-on-Chip Platforms‖, Networks-on-

Chip, NoCS 2008. Second ACM/IEEE International Symposium on, pp.
97 – 106, April 2008.

[6] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny,

―Efficient Link Capacity and QoS Design for Network-on-Chip,‖
Design, Automation and Test in Europe, 2006. DATE '06. Proceedings,

pp.1-6, 24 July 2006.

[7] JERGER N.E., PEH L.S., LIPASTI M.H.: ‗Virtual circuit tree
multicasting: a case for on-chip hardware multicast support‘. Proc. Int.

Conf. Computer Architecture, China, 2008, pp. 229–240

[8] Chen-Ling Chou, R. Marculescu, ― Contention-aware Application
Mapping for Network-on-Chip Communication Architectures‖,

Computer Design, ICCD , IEEE International Conference on ,pp. 164 –
169, Oct. 2008.

[9] M. Janidarmian, A. Khademzadeh, A. Roshan Fekr, V. Samadi

Bokharaei,‖ Citrine: A Methodology for Application-Specific Network-
on-Chips Design,‖ Lecture Notes in Engineering and Computer Science:

Proceedings of The World Congress on Engineering and Computer
Science 2010, WCECS 2010, 20-22 October, 2010, San Francisco, USA,

pp. 196-202.

[10] S.Murali, V.De Micheli, ―bandwidth constrained mapping of cores onto

NoC architectures‖, Design, Automation and Test in Europe Conference
and Exhibition, Proceedings, Vol.2,pp. 896- 901, Feb. 2004.

[11] Hu Jingcao, R. Marculescu, ―Energy aware mapping for tile-based NoC
architectures under performance constraints‖, Design Automation

Conference, Proceedings of the ASP-DAC 2003. Asia and South
Pacific,pp. 233- 239, Jan. 2003.

[12] Fahime Moein-darbari, Ahmad Khademzade and Golnar Gharooni-fard,

―CGMAP: a new approach to Network-on-Chip mapping problem‖,
IEICE Electron. Express, Vol. 6, No. 1, pp.27-34, (2009) .

[13] Misagh Tavanpour, Ahmad Khademzadeh and Majid Janidarmian,

―Chain-Mapping for mesh based Network-on-Chip architecture‖, IEICE
Electron. Express, Vol. 6, No. 22, pp.1535-1541, (2009) .

[14] M. Janidarmian, A. Khademzadeh, M. Tavanpour, ―Onyx: A new

heuristic bandwidth-constrained mapping of cores onto tile based
Network on Chip‖, IEICE Electron. Express, Vol. 6, No. 1, pp.1-7,

January 2009.

[15] N. Koziris et al.,‖ An efficient Algorithm for the physical mapping of
clustered Task Graphs onto Multiprocessor Architectures ,‖ Proceedings

of 8th EuroPDP, pp.406-413, Jan.2000.

[16] http://www.seas.upenn.edu/qaplib/inst.html

[17] M. Palesi, R.Holsmark, S.Kumar, ―a methodology for design of

application specific deadlock-free routing algorithms for NoC systems‖,
Hardware/Software Codesign and System Synthesis, CODES+ISSS '06.

Proceedings of the 4th International Conference,pp. 142-147, Oct. 2006.

[18] M. Ali, M. Welzl, S. Hessler, S. Hellebrand, ―A Fault tolerant
mechanism for handling Permanent and Transient Failures in a Network

on Chip,‖ Information Technology, 2007. ITNG '07. Fourth
International Conference on, p.p. 1027-1032, 2007

[19] Rafael Tornero, Valentino Sterrantino, Maurizio Palesi ,Juan M.

Orduna,‖ A Multi-objective Strategy for Concurrent Mapping and
Routing in Networks on Chip‖ Proceedings of the 2009 IEEE

International Symposium on Parallel&Distributed Processing‖,pp. 1-
8 ,2009.

[20] W. J. Dally and B. Towles, Principle and Practice of Interconnection

Network. San Francisco, CA : Morgan Kaufmann, 2004

[21] C. J. Glass L. M. Ni, ―The turn model for adaptive routing,‖ Journal of
the Association for Computing Machinery, vol. 41, no. 5, pp. 874-902,

Sep. 1994.

[22] I.Nedeljkovic, ―IMAGE CLASSIFICATION BASED ON FUZZY
LOGIC‖, The International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, Vol. 34, Part XXX, 2004.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066987
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066987
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(wein-tsung%20shen%3cin%3eau)&valnm=Wein-Tsung+Shen&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20chih-hao%20chao%3cin%3eau)&valnm=Chih-Hao+Chao&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20yu-kuang%20lien%3cin%3eau)&valnm=Yu-Kuang+Lien&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20an-yeu%20wu%3cin%3eau)&valnm=An-Yeu+Wu&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/xpl/RecentCon.jsp?punumber=4208981
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/xpl/RecentCon.jsp?punumber=4208981
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487607
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487607
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487607
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487607
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(palesi%20%20m.%3cin%3eau)&valnm=Palesi%2C+M.&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20signorino%20%20s.%3cin%3eau)&valnm=Signorino%2C+S.&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20catania%20%20v.%3cin%3eau)&valnm=Catania%2C+V.&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20catania%20%20v.%3cin%3eau)&valnm=Catania%2C+V.&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(%20catania%20%20v.%3cin%3eau)&valnm=Catania%2C+V.&history=yes
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11014
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/search/searchresult.jsp?disp=cit&queryText=(chen-ling%20chou%3cin%3eau)&valnm=Chen-Ling+Chou&history=yes
http://0-ieeexplore.ieee.org.bianca.penlib.du.edu/xpl/RecentCon.jsp?punumber=4740204
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8504
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8504
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8504
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8504
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4278477
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4278477
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4151644
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4151644
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4151644

I. APENDIX

1) Graphs used in experiments of Ruby in 3.1

Nug12:

0 5 2 4 1 0 0 6 2 1 1 1

5 0 3 0 2 2 2 0 4 5 0 0

2 3 0 0 0 0 0 5 5 2 2 2

4 0 0 0 5 2 2 10 0 0 5 5

1 2 0 5 0 10 0 0 0 5 1 1

0 2 0 2 10 0 5 1 1 5 4 0

0 2 0 2 0 5 0 10 5 2 3 3

6 0 5 10 0 1 10 0 0 0 5 0

2 4 5 0 0 1 5 0 0 0 10 10

1 5 2 0 5 5 2 0 0 0 5 0

1 0 2 5 1 4 3 5 10 5 0 2

1 0 2 5 1 0 3 0 10 0 2 0

Nug15:
 0 10 0 5 1 0 1 2 2 2 2 0 4 0 0

10 0 1 3 2 2 2 3 2 0 2 0 10 5 0

 0 1 0 10 2 0 2 5 4 5 2 2 5 5 5

 5 3 10 0 1 1 5 0 0 2 1 0 2 5 0

 1 2 2 1 0 3 5 5 5 1 0 3 0 5 5

 0 2 0 1 3 0 2 2 1 5 0 0 2 5 10

 1 2 2 5 5 2 0 6 0 1 5 5 5 1 0

 2 3 5 0 5 2 6 0 5 2 10 0 5 0 0

 2 2 4 0 5 1 0 5 0 0 10 5 10 0 2

 2 0 5 2 1 5 1 2 0 0 0 4 0 0 5

 2 2 2 1 0 0 5 10 10 0 0 5 0 5 0

 0 0 2 0 3 0 5 0 5 4 5 0 3 3 0

 4 10 5 2 0 2 5 5 10 0 0 3 0 10 2

 0 5 5 5 5 5 1 0 0 0 5 3 10 0 4

 0 0 5 0 5 10 0 0 2 5 0 0 2 4 0

 Nug16b:
 0 0 5 0 2 10 3 1 5 5 0 0 4 4 0 0

 0 0 3 10 1 5 1 2 2 5 0 10 3 0 5 10

 5 3 0 2 5 2 4 4 0 0 0 5 0 0 5 0

 0 10 2 0 0 5 2 1 10 2 2 0 1 5 2 5

 2 1 5 0 0 5 2 1 0 0 10 0 0 1 0 1

10 5 2 5 5 0 0 0 5 10 2 2 1 2 1 0

 3 1 4 2 2 0 0 1 10 10 2 0 2 5 2 2

 1 2 4 1 1 0 1 0 0 3 5 5 5 0 0 0

 5 2 0 10 0 5 10 0 0 5 2 5 10 0 2 2

 5 5 0 2 0 10 10 3 5 0 2 10 0 1 1 2

 0 0 0 2 10 2 2 5 2 2 0 2 1 0 0 0

 0 10 5 0 0 2 0 5 5 10 2 0 5 1 5 5

 4 3 0 1 0 1 2 5 10 0 1 5 0 0 0 2

 4 0 0 5 1 2 5 0 0 1 0 1 0 0 5 2

 0 5 5 2 0 1 2 0 2 1 0 5 0 5 0 1

 0 10 0 5 1 0 2 0 2 2 0 5 2 2 1 0

Nug21:
0 3 2 0 0 2 10 5 0 5 2 5 0 0 2 0 5 6 3 0 1

3 0 4 0 10 4 0 0 2 2 1 0 5 0 0 0 0 2 0 1 6

2 4 0 3 4 0 5 5 5 1 4 1 0 4 0 4 0 6 3 2 5

0 0 3 0 0 0 0 2 2 0 6 0 2 5 2 5 1 1 1 1 2

0 10 4 0 0 5 2 0 0 0 0 2 0 0 0 0 2 1 0 0 2

2 4 0 0 5 0 1 2 2 1 4 10 10 2 5 5 0 5 0 0 0

 10 0 5 0 2 1 0 10 10 5 10 10 6 0 0 10 2 1 10 1 5

5 0 5 2 0 2 10 0 1 3 5 0 0 0 2 4 5 2 10 6 0

0 2 5 2 0 2 10 1 0 10 2 1 5 2 0 3 0 2 0 0 4

5 2 1 0 0 1 5 3 10 0 5 5 6 0 1 5 5 0 5 2 3

2 1 4 6 0 4 10 5 2 5 0 0 0 1 2 1 0 2 0 0 0

5 0 1 0 2 10 10 0 1 5 0 0 5 5 2 0 0 0 0 2 0

0 5 0 2 0 10 6 0 5 6 0 5 0 2 0 4 2 2 1 0 6

0 0 4 5 0 2 0 0 2 0 1 5 2 0 2 1 0 5 3 10 0

2 0 0 2 0 5 0 2 0 1 2 2 0 2 0 4 5 1 0 1 0

0 0 4 5 0 5 10 4 3 5 1 0 4 1 4 0 0 3 0 2 2

5 0 0 1 2 0 2 5 0 5 0 0 2 0 5 0 0 2 2 0 0

6 2 6 1 1 5 1 2 2 0 2 0 2 5 1 3 2 0 5 1 2

3 0 3 1 0 0 10 10 0 5 0 0 1 3 0 0 2 5 0 0 5

0 1 2 1 0 0 1 6 0 2 0 2 0 10 1 2 0 1 0 0 5

1 6 5 2 2 0 5 0 4 3 0 0 6 0 0 2 0 2 5 5 0

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

Nug24:

0 3 2 0 0 2 10 5 0 5 2 5 0 0 2 0 5 6 3 0 1 10 0 10

3 0 4 0 10 4 0 0 2 2 1 0 5 0 0 0 0 2 0 1 6 1 0 1

2 4 0 3 4 0 5 5 5 1 4 1 0 4 0 4 0 6 3 2 5 5 2 1

0 0 3 0 0 0 0 2 2 0 6 0 2 5 2 5 1 1 1 1 2 2 4 0

0 10 4 0 0 5 2 0 0 0 0 2 0 0 0 0 2 1 0 0 2 0 5 1

2 4 0 0 5 0 1 2 2 1 4 10 10 2 5 5 0 5 0 0 0 10 0 0

 10 0 5 0 2 1 0 10 10 5 10 10 6 0 0 10 2 1 10 1 5 5 2 3

5 0 5 2 0 2 10 0 1 3 5 0 0 0 2 4 5 2 10 6 0 5 5 2

0 2 5 2 0 2 10 1 0 10 2 1 5 2 0 3 0 2 0 0 4 0 5 2

5 2 1 0 0 1 5 3 10 0 5 5 6 0 1 5 5 0 5 2 3 5 0 5

2 1 4 6 0 4 10 5 2 5 0 0 0 1 2 1 0 2 0 0 0 6 6 0

5 0 1 0 2 10 10 0 1 5 0 0 5 5 2 0 0 0 0 2 0 4 5 10

0 5 0 2 0 10 6 0 5 6 0 5 0 2 0 4 2 2 1 0 6 2 1 5

0 0 4 5 0 2 0 0 2 0 1 5 2 0 2 1 0 5 3 10 0 0 4 2

2 0 0 2 0 5 0 2 0 1 2 2 0 2 0 4 5 1 0 1 0 5 0 2

0 0 4 5 0 5 10 4 3 5 1 0 4 1 4 0 0 3 0 2 2 0 2 0

5 0 0 1 2 0 2 5 0 5 0 0 2 0 5 0 0 2 2 0 0 0 6 5

6 2 6 1 1 5 1 2 2 0 2 0 2 5 1 3 2 0 5 1 2 10 10 4

3 0 3 1 0 0 10 10 0 5 0 0 1 3 0 0 2 5 0 0 5 5 1 0

0 1 2 1 0 0 1 6 0 2 0 2 0 10 1 2 0 1 0 0 5 2 1 3

1 6 5 2 2 0 5 0 4 3 0 0 6 0 0 2 0 2 5 5 0 4 0 1

 10 1 5 2 0 10 5 5 0 5 6 4 2 0 5 0 0 10 5 2 4 0 5 0

0 0 2 4 5 0 2 5 5 0 6 5 1 4 0 2 6 10 1 1 0 5 0 0

 10 1 1 0 1 0 3 2 2 5 0 10 5 2 2 0 5 4 0 3 1 0 0 0

Nug25:
0 3 2 0 0 10 5 0 5 2 0 0 2 0 5 3 0 1 10 0 2 1 1 1 0

3 0 4 0 10 0 0 2 2 1 5 0 0 0 0 0 1 6 1 0 2 2 5 1 10

2 4 0 3 4 5 5 5 1 4 0 4 0 4 0 3 2 5 5 2 0 0 3 1 0

0 0 3 0 0 0 2 2 0 6 2 5 2 5 1 1 1 2 2 4 2 0 2 2 5

0 10 4 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 0 5 0 2 1 0 2

 10 0 5 0 2 0 10 10 5 10 6 0 0 10 2 10 1 5 5 2 5 0 2 0 1

5 0 5 2 0 10 0 1 3 5 0 0 2 4 5 10 6 0 5 5 5 0 5 5 0

0 2 5 2 0 10 1 0 10 2 5 2 0 3 0 0 0 4 0 5 0 5 2 2 5

5 2 1 0 0 5 3 10 0 5 6 0 1 5 5 5 2 3 5 0 2 10 10 1 5

2 1 4 6 0 10 5 2 5 0 0 1 2 1 0 0 0 0 6 6 4 5 3 2 2

0 5 0 2 0 6 0 5 6 0 0 2 0 4 2 1 0 6 2 1 5 0 0 1 5

0 0 4 5 0 0 0 2 0 1 2 0 2 1 0 3 10 0 0 4 0 0 4 2 5

2 0 0 2 0 0 2 0 1 2 0 2 0 4 5 0 1 0 5 0 0 0 5 1 1

0 0 4 5 0 10 4 3 5 1 4 1 4 0 0 0 2 2 0 2 5 0 5 2 5

5 0 0 1 2 2 5 0 5 0 2 0 5 0 0 2 0 0 0 6 3 5 0 0 5

3 0 3 1 0 10 10 0 5 0 1 3 0 0 2 0 0 5 5 1 5 2 1 2 10

0 1 2 1 0 1 6 0 2 0 0 10 1 2 0 0 0 5 2 1 1 5 6 5 5

1 6 5 2 2 5 0 4 3 0 6 0 0 2 0 5 5 0 4 0 0 0 0 5 0

 10 1 5 2 0 5 5 0 5 6 2 0 5 0 0 5 2 4 0 5 4 4 5 0 2

0 0 2 4 5 2 5 5 0 6 1 4 0 2 6 1 1 0 5 0 4 4 1 0 2

2 2 0 2 0 5 5 0 2 4 5 0 0 5 3 5 1 0 4 4 0 1 0 10 1

1 2 0 0 2 0 0 5 10 5 0 0 0 0 5 2 5 0 4 4 1 0 0 0 0

1 5 3 2 1 2 5 2 10 3 0 4 5 5 0 1 6 0 5 1 0 0 0 0 0

1 1 1 2 0 0 5 2 1 2 1 2 1 2 0 2 5 5 0 0 10 0 0 0 2

0 10 0 5 2 1 0 5 5 2 5 5 1 5 5 10 5 0 2 2 1 0 0 2 0

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_02

(Advance online publication: 10 February 2011)

__

