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Abstract—Orthogonal frequency division multiplexing
(OFDM) is superior in spectral efficiency and is widely used
in today’s digital communication. One of the drawbacks of
OFDM is that the peak-to-average power ratio (PAPR) of the
transmitted signal tends to be high. In order to overcome this
problem, peak power reduction methods based on tone injection
have been proposed. The peak power reduction problem solved
with tone injection is a combinatorial problem. In this paper,
we apply genetic algorithm (GA) to the reduction method
based on tone injection. In order to reduce to the computation
time, the proposed GA method utilizes a fitness table. For the
fitness table, two types of implementation are presented. The
effectiveness of the GA method is demonstrated by numerical
simulations in terms of PAPR, bit error rate (BER) and power
spectral density (PSD). Further, the numerical simulation
shows that the proposed GA method is superior in terms of
computation time compared to conventional GA and random
search. Especially, it is shown that the hash-based fitness table
is most effective for the acceleration of GA.

Index Terms—OFDM, PAPR, tone injection, genetic algo-
rithm, tree-structured table, hash table.

I. INTRODUCTION

RECENT advance in digital signal processing technology
demands faster wireless communication. Orthogonal

frequency division multiplexing (OFDM) [1] is superior in
spectral efficiency and is widely used in today’s digital com-
munication. One of the drawbacks of OFDM is that the peak-
to-average power ratio (PAPR) of the transmitted signal tends
to be high. In order to overcome this problem, various peak
power reduction methods have been proposed[2], [3], [4], [5],
[6], [7]. Tone injection is an effective technique to overcome
the PAPR problem[6], [7]. The peak power reduction prob-
lem solved with tone injection is a combinatorial problem. In
[6], a greedy searching algorithm has been proposed. Its main
drawback is to easily get a stack shallow local minimum. In
[7], the solution space is reasonably reduced by introducing
some constraints into the tone injection technique, and a
peak power reduction method based on neural network (NN).
However, the reduction performance is high.

In this paper, we apply genetic algorithm (GA) to the
reduction method based on tone injection. In order to reduce
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Fig. 1. Flow of OFDM from a Transmitting End to a Receiving End

to the computation time, the proposed GA method utilizes
a fitness table. In [13], we have proposed a tree-structured
fitness table. As a new contribution of this paper, we imple-
ment the fitness table by using a hash table. The effectiveness
of the GA method is demonstrated by numerical simulations
in terms of PAPR, bit error rate (BER) and power spectral
density (PSD). We also investigate effective fitness functions
and crossover operators. It is shown that a uniform crossover
operation is most effective. Further, it is shown that our GA
method is superior in terms of computation time compared to
conventional GA and random search. Especially, it is shown
that the hash-based fitness table is most effective for the
acceleration of GA.

II. OFDM AND TONE INJECTION

A. OFDM

OFDM uses multiple subcarriers that are orthogonal to
each other. Let T be the OFDM symbol time. The subcarriers
are spaced 1/T Hz apart from each other. The flow of OFDM
from a transmitting end to a receiving end is shown in Fig.1.

At the transmitter side, a bit sequence bL−1, bL−2, · · · ,
b0 to be transmitted is converted into a sequence of complex
symbols X0, X1, · · · , XN−1 by mapper. In this conversion,
each M -bit subsequence in L-bit sequence is mapped to a
complex number according to the used digital modulation
scheme such as phase-shift keying (PSK) and quadrature
amplitude modulation (QAM). When using M -QAM, Xn

represents log2 M -bit subsequence bL−m·n−1, bL−m·n−2,
· · · , bL−m·n−M , where L = M log2 M and m = log2 M .
Samples of OFDM signal Y0, Y1, · · · , YN−1 are generated
by IDFT (Inverse Discrete Fourier Transform) as follows:

Yn =
1

N

N−1∑
k=0

Xke
j 2π

N nk. (1)

The IDFT operation can be performed by IFFT (Inverse Fast
Fourier Transformation) in O(N logN) steps. The samples
are converted to an analog signal, and then the signal is
amplified and is fed to the transmission channel.

The demodulation process is performed in reverse order of
transmitter’s operations. From the received OFDM signal, N
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Fig. 2. Symbol Relocation of Tone Injection for 16-QAM and ρ = 1

samples Ỹ0, Ỹ1, · · · , ỸN−1 are extracted with T/N sampling
interval. Symbols X̃0, X̃1, · · · , X̃N−1 are restored by DFT
(Discrete Fourier Transform) as follows:

X̃n =
N−1∑
k=0

Ỹke
−j 2π

N nk. (2)

The restored symbol sequence X̃0, X̃1, · · · , X̃N−1 is con-
verted to a bit sequence b̃L−1, b̃L−2, · · · , b̃0. If X̃n = Xn

for all n ∈ {0, 1, · · · , N − 1}, the receiver retrieves the
transmitted bit sequence bL−1, bL−2, · · · , b0 with no error,
that is, for all l ∈ {0, 1, · · · , L− 1}, b̃l = bl.

The OFDM signal often has a very high peak power com-
pared to its average power, because the signal is produced as
a synthetic signal of a number of subcarriers. The degree of
the peak power is evaluated by peak-to-average power ratio
(PAPR) defined as follows:

PAPR =
max0≤k<N |Yk|2

E {|Yn|2}
, (3)

where E{|Yn|2} is the average power of the OFDM signal.

B. Tone Injection

Tone injection suppresses the peak power by relocating
some complex symbols from their original position to other
position[6], [7]. Assume that the used digital modulation
scheme is M -QAM with an

√
M ×

√
M constellation grid,

and the minimum distance between constellation points is
d. The original position of a complex symbol, which will
be referred as original symbol, is located at a grid point of
the
√
M ×

√
M grid, and the destination of relocation is

located outside of the grid. In Fig.2, the original symbols
for 16-QAM are shown as 16 black circles. Let the original
position of a complex symbol representing a bit sequence
bn = (bL−1, bL−2, · · · , b0) be Xn. In [6], the set of complex
symbols X̂n representing bn is given by the following
equation:

X̂n = Xn + pnD + jqnD, (4)

where D = ρdM , ρ ≥ 1 and pn and qn are any integer
numbers. For pn = qn = 0, X̂n is the original symbol
Xn. For pn 6= 0 and/or qn 6= 0, X̂n is a relocated symbol,
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Fig. 3. The Used Constellation Map of 64-QAM

which is located outside of the
√
M×
√
M grid. In Fig.2, the

relocated symbols from Xn = −d
2 +j 3d

2 for ρ = 1, |pn| ≤ 1
and |qn| ≤ 1 are shown as 9 white circles.

The PAPR reduction task based on tone injection is to
determine pn and qn, for all n, so as to minimize PAPR.
That is, the task is a combinatorial optimization problem.
However, the number of solutions are enormous even if
the range of pn and qn are limited. Therefore, A greedy
algorithm proposed in [6] is as follows:
(Step 1) Find the complex symbol Xn or X̂n that most
contributes to the peak power.
(Step 2) Find the most effective pn and qn for PAPR reduc-
tion by evaluating all the combinations. Move the symbol
Xn or X̂n according to the found pn and qn.
(Step 3) Repeat steps 1 and 2 until obtaining a sufficient
PAPR reduction.

The following drawbacks of this method have been
noted[6], [7]: (1) any average power increases results in a re-
duction in SNR margin, (2) unnecessary power increases can
lead to higher secondary peaks, and (3) the greedy searching
algorithm tends to get a stack shallow local minimum, which
will result in a poor PAPR reduction performance.

In [7], two constraints, which are effective to relax the
above drawbacks (1) and (2), have been introduced in peak
power reduction based on tone injection. The constraints
are as follows: (a) movable symbols are limited to the
symbols located along the outer circumference of the original
constellation, and (b) for a movable symbol the destination
of relocation is limited to one place, which is an almost
symmetrical position of the original position with respect to
the origin. The constraints (a) and (b) will reduce the peak
powers of subcarriers compared with the one without the
constraints, because the magnitude of any complex symbol
with the constraints is not larger than the one without
the constraints. Further, the constraint (a) is validated by
the observation that the outer circumferential symbols will
contribute more to the peak power than the inner symbols.
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In this paper, we also introduce the above constraints and
use the constellation map of 64-QAM as shown in Fig.3. In
Fig.3, the original symbols are shown as 64 black circles and
the relocated symbols are shown as 28 white circles. In the
figure, the black circle with a number m ∈ {0, 1, · · · , 63}
is the original symbol X(m), and the white circle with a
number m′ is the replacement of the original symbol X(m).

Although the above constraints reduce the solution spaces,
the number of solutions is still enormousness. Assuming that
N symbols to be transmitted randomly occur, the average
number of solutions is 2

7
16N , which is approximately 5.2×

1033 and 2.7 × 1067 for N = 256 and 512, respectively.
As a solution against the drawback (3), we will present a
searching algorithm based on GA in the next section.

III. PROPOSED METHOD

We apply genetic algorithm (GA) to the peak power
reduction method based on tone injection. The GA, which is
a search heuristic based on the process of natural evolution,
can find a good solution for optimization problems by
evolving the population of solutions with genetic operators
such as selection, mutation and crossover[8]. GAs have
been employed for solving many combinatorial optimization
problems in various fields[9], [10], [11], [12], and it has
been shown that GAs can find a near-optimal solution in
a much shorter time compared to the conventional methods
such as random search and exhaustive one, especially in large
solution spaces. The proposed method uses GA to find an
effective combination of symbols to be moved for PAPR
reduction.

A. Genetic Representation

In GA, a solution is coded as a string, called chromosome.
Let A = {X(0), X(1), · · · , X(M−1)} be the set of all the
original complex symbols. Let M be the set of the movable
original complex symbols. That is, for Fig.3, M = {X(0),
X(1), X(2), X(4), X(5), X(8), X(10), X(16), X(17), X(18),
X(20), X(21), X(24), X(26), X(32), X(33), X(34) X(36),
X(37), X(40), X(42), X(48), X(49), X(50), X(52), X(53),
X(56), X(58)}.

Let X = (X0, X1, · · · , XN−1) be the vector of original
complex symbols to be transmitted. Let S = {Xn ∈
M|0 ≤ n ≤ N − 1} and S = |S| be the set of movable
symbols in X and the size of S, respectively. Let n(s)
be the function of integer s ∈ {1, 2, · · · , S} such that
|{Xi ∈M|0 ≤ i ≤ n(s)}| = s and Xn(s) ∈ M. That is,
the function n(s) returns the s-th smallest index number n
of Xn among {Xn ∈M|0 ≤ n ≤ N − 1}.

A solution (chromosome) for X is coded as an S-
dimensional binary vector

l = (l1, l2, · · · , lS), (5)

where ls ∈ {0, 1}, and ls = 1 and ls = 0 mean that the
symbol Xn(s) is moved and is not moved, respectively. Fig.4
shows an example of the chromosome coding. Note that the
length of a chromosome depends on X . When the symbols
to be transmitted randomly occur, the average length is 7

16N .

Fig. 4. An Example of Chromosome for N = 8 and S = 3

B. Fitness Function

When PAPR by Eq.(3) is used as evaluation function, a
smaller PAPR value means a better solution. In order that
a better solution has a larger evaluation value, we use the
following evaluation function as GA’s fitness function:

f =

(
1

PAPR

)α

, (6)

where PAPR is calculated by Eq.(3) and α > 0 is a constant
value that controls the degree of convergence. A larger α
makes the convergence faster. An effective value for α is
given by simulation in the next section.

C. Mutation and Crossover Operators

The used mutation operator operates on each locus of
chromosomes. Given a chromosome l = (l1, l2, · · · , lS),
each locus l ∈ {l1, l2, · · · , lS} is updated as follows:

l←−
{

(l + 1) mod 2 with probability Pm

l with probability 1− Pm.
(7)

Another approach is to perform the mutation for each chro-
mosome. However, according to our preliminary simulation,
this approach is not good.

We consider four types of crossover operator: one-point,
two-point, three-point and uniform. For every types, the
crossover points are randomly selected.

D. Fitness Table

The evaluation of a solution involves IFFT operation,
which requires O(N logN) steps. In order to reduce the
computation time, the proposed algorithm utilizes a fitness
table. Once a solution is evaluated, its fitness value is
registered in the table. When thereafter the same solution
appears, its fitness value is obtained by referring to the
table instead of by calculation. We present two types of
implementation of the fitness table: tree-structured[13] and
hash-based ones.

1) Tree-Structured Table: If the search time is much
smaller than the one of IFFT, a significant reduction of the
computation time will be achieved. The fitness table also
should be efficient in terms of memory. Therefore, in the
first type of implementation of the fitness table, we use a
binary tree[13]. The binary tree is as follows: (1) the height
is S, (2) an edge between levels s − 1 and s (1 ≤ s ≤ S)
is associated with ls, (3) for each node at level s − 1, the
left and right edges are associated with ls = 0 and ls = 1,
respectively, (4) the existence of the path corresponding to a
solution l = (l1, l2, · · · , lS) means that the fitness value of l
is already registered, and (5) the fitness value of a solution l
is memorized in the leaf node of the path corresponding to
l. An example of the tree-structured table is shown in Fig.5.
Since the search and the registration of the fitness value of
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Fig. 5. An Example of the Tree-Structured Fitness Table for S = 3 (the
Bold Lines Show the Path of the Solution l)

a solution l trace from the root node to the corresponding
leaf node, they completes in at most S steps. As mentioned
before, the average of S is 7

16N . Therefore, the search and
the registration of a fitness value completes in O(N) steps.

2) Hash-Based Table: The second implementation of the
fitness table uses a hash table. The hash table would be more
effective than the tree-structured one in terms of search and
insertion time. Because searching or inserting an item in a
hash table can be done in O(1) steps if the table is well
designed.

Fig.6 shows an example of the proposed hash-based
fitness table for S = 3 and B = 4, where B is the
number of buckets. In the hash table, a solution l =
(l1, l2, · · · , lS) is mapped to h(l1, l2, · · · , llog2 B)-th bucket,
where h(l1, · · · , llog2 B) is the hash function as follows:

h(l1, · · · , llog2 B) =

log2 B∑
i=1

2i−1li. (8)

The fitness value of l is stored with (S− log2 B)-bit number
(llog2 B+1, · · · , lS) in the list of h(l1, · · · , llog2 B)-th bucket.
Note that if r different solutions stored in the hash table
take a same hash value h(l1, · · · , llog2 B), the length of the
list corresponding to h(l1, · · · , llog2 B)-th bucket is r.

The access time to the target bucket is always O(1),
because the bucket is an element in an array and the address
of the target bucket is given by the subsequence of the bits in
l. The search and insertion time on the list is proportional to
the length of the list. However, if the number of buckets B
is sufficiently large, i.e. O(S), the total search and insertion
time is O(1).

E. The Algorithm

The algorithm of the proposed GA is shown below. The
fitness table used in Step 3 is implemented by a tree-
structured or hash-based table described in subsection III-D.
Algorithm
Step 1: Set the current generation g ← 1. Set the best fitness
fbest ← 0.

Fig. 6. An Example of the Hash-Based Fitness Table for S = 3 and B = 4
(fa, fb and fc are the Fitness Values for la, lb and lc, Respectively)

Step 2: Randomly generate K individuals l1, l2, · · · , lK in
the form of Eq.(5).
Step 3: For each k ∈ {1, 2, · · · ,K}, search for the fitness fk
in the fitness table. If fk is not found, calculate fk according
to Eq.(6), and register fk into the fitness table.

Let fmax = maxk∈{1,2,··· ,K} fk. Let kmax ∈
{1, 2, · · · ,K} such that fkmax = fmax. If fmax > fbest,
then fbest ← fmax and lbest ← lkmax .
Step 4: If g > G, then go to Step 10.
Step 5: For each k ∈ {1, 2, · · · ,K}, calculate the selection
probability

Pk =
fk∑

i∈{1,2,··· ,K} fi
.

Draw K samples l′1, l′2, · · · , l′K with replacement from l1,
l2, · · · , lK with probabilities P1, P2, · · · , PK .
Step 6: For each pair l′2k+1 and l′2k+2 (0 ≤ k ≤ K

2 − 1),
perform the crossover operation with probability Pc.
Step 7: For each locus ls in l′1, l′2 · · · l′K , perform the
mutation operation with probability Pm.
Step 8: Copy l′1, l′2, · · · , l′K to l1, l2, · · · , lK , respectively.
Step 9: g ← g + 1 and go to Step 3.
Step 10: Return lbest as the final solution. �

In GA, as the generation progresses, the large portion
of the population converges to particular solutions. This
property will make it possible for Step 3 to reduce the
computation time.

In Step 6, one of the four types of crossover operator is
used. The best type will be shown in the next section.

IV. NUMERICAL SIMULATIONS

The simulations assume an AWGN (Additive White Gaus-
sian Noise) channel, where a white noise with SNR 20dB is
added to the signal from the amplifier. The used nonlinear
power amplifier model has the following input-output char-
acteristic.

F [ρ] =
ρ

(1 + ρ6)1/6
, (9)

where F [ρ] is the gain of the amplifier and ρ is the ratio of
the mean input amplitude to the saturation amplitude.
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The number of subcarriers is N = 128, the population size
is K = 30, the maximum generation number is G = 50, and
the probabilities for crossover and mutation are Pc = 0.9
and Pm = 0.01, respectively. Each result is calculated from
100000 trials.

A. PAPR Reduction Performance

At first, for each crossover operator type, the effective
value of parameter α in the fitness function is investigated
in terms of PAPR. From the results, for 1-point, 2-point,
3-point and uniform crossovers, the best values for α are
α = 7, α = 7, α = 8 and α = 8, respectively.

The results with the best α are summarized in Fig.7.
PAPR0 at the horizontal axis is the upper limit of the linear
amplification range, and Pr(PAPR>PAPR0) at the vertical
axis is the probability that PAPR exceeds the limit PAPR0.
This figure shows a tendency that the PAPR reduction perfor-
mance improves with the number of crossover points and the
uniform crossover operator provides the best performance.
Therefore, in the following, the proposed method assumes
to use uniform crossover and α = 8.

Next, the proposed method is compared with a con-
ventional method based on neural network (NN)[7] and a
random search. The result is shown in Fig.8. In the figure,
“NN”, “Random” and “Proposed” are the method based on
NN (NN method), a random search and the proposed method,
respectively. All the methods use the same constellation map
shown in Fig.3. The random search randomly generates 1500
solutions and returns the best solution as the final solution.
According to the result, the proposed method achieves the
best performance among them.

B. Bit Error Rate Performance

The proposed GA method is compared with the conven-
tional NN method and the random search in terms of bit
error rate (BER).

BER =
(Total number of error bits)

(Total number of transmitted bits)
(10)

The result is shown in Fig.9, where IBO (Input Back-Off)
defines the degree of nonlinearity of an amplifier and is given
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Fig. 9. BER Performance

by the following equation.

IBO =
(Saturation amplitude)
(Mean input power)

(11)

In Fig.9, “Original” is the case of no PAPR reduction. The
result shows that the proposed method achieves the best BER
performance.

C. Power Spectrum Density

The proposed GA method is compared with the conven-
tional NN method and the random search in terms of power
spectral density (PSD) of OFDM signal passing through a
nonlinear amplifier. The result is shown in Fig.10. In the
figure, “amp+” indicates that the OFDM signal is passed
through a nonlinear amplifier with IOB 5.0dB, and “linear
amp” indicates that the OFDM signal is passed through a
linear amplifier and tone injection is not applied. The PSD
should be minimized when the normalized frequency is more
than 1.0. Therefore, the proposed GA is most effective among
all the methods.

D. Computation Time

We measure the computation time for random search,
conventional GA and two types of the proposed GA. The
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TABLE I
THE COMPUTATION TIME IN CPU TIME (MSEC)

Random GA
search Without table Tree Hash

35.2 36.2 23.0 21.4

conventional GA does not use the fitness table and calculates
the fitness for all the individuals. The proposed GA method
uses a tree-structured or hash-based fitness table. The com-
putation time is calculated in terms of CPU time. The result
is shown in table I. According to the result, the hash-based
fitness table is more effective than the tree-structured one.
The result also show that our proposed method achieve about
1/3 reduction in the computation time. The total number
of unique individuals occurring through all the generations
of GA is approximately 1000. Since the total number of
individuals through all the generations is 1500, the amount
of reduction in the computation time is proportional to the
amount of the duplicated individuals.

V. CONCLUSIONS

In this paper, we applied GA to the peak power reduction
method based on tone injection. The proposed GA method
utilized a fitness table to reduce the computation time. For
the fitness table, two types of implementation were presented.
We tested four types of crossover operators: one-point,
two-point, three-point and uniform crossovers. The result
showed that the PAPR reduction performance improves with
the number of crossover points and the uniform crossover
operator provides the best performance. The GA method was
compared with the conventional NN method and a random
search in terms of PAPR, BER and PSD. The result showed
that the GA method is superior compared to the conventional
NN method and the random search. Further, our GA method
using fitness table was compared with random search and
conventional GA in terms of the computation time. The result
showed that our GA method is faster than conventional GA
and that the hash-based fitness table is more effective than
the tree-structured one.

REFERENCES

[1] Weinstein, S., Ebert, P., “Data Transmission by Frequency-Division
Multiplexing Using the Discrete Fourier Transform,” IEEE Trans. on
Communication Technology, Vol.19, Issue 5, pp.628-634, 1971.

[2] Li, X., Cimini, L.J., Jr., “Effects of Clipping and Filtering on the
Performance of OFDM,” IEEE Communications Letters, Vol.2, No.5,
pp. 131-133, 1998.

[3] Armstrong, J., “New OFDM Peak-to-Average Power Reduction
Scheme,” Proc. of IEEE Vehicular Technology Conference, pp. 756-
760, 2001.

[4] Jones, A.E., Wilkinson, T.A., Barton, S.K., “Block Coding Scheme
for Reduction of Peak to Mean Envelope Power Ratio of Multicarrier
Transmission Scheme,” Electronics Letters, Vol.30, No.25, pp.2098-
2099, 1994.

[5] Cimini, L.J., Jr., Solenberger, N.R., “Peak-to-Average Power Ratio
Reduction of an OFDM Signal Partial Transmit Sequences,” IEEE
Communications Letters, Vol.4, No.3, pp. 86-88, 2000.

[6] Tellado, J., Cioffi, J., “Peak Power Reduction for Multicarrier Transmis-
sion,” Proc. of IEEE Communication Theory Mini-Conference, GLOBE-
COM ’98, pp.219-224, 1998.

[7] Ohta, M., Ueda, Y., Yamashita, K., “PAPR Reduction of OFDM
Signal by Neural Networks without Side Information and its FPGA
Implementation,” IEEJ Trans. on Electronics, Information and Systems
(in Japanese), Vol.126, No.11, pp. 1296-1303, 2006.

[8] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Kluwer Academic Publishers, 2002.

[9] Kitabi, A., Jenkins, W.K., “Use of the Genetic Algorithm to Improve Bit
Error Rates in CDMA Wireless Communication Systems,” Conference
Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and
Computers, Vol.2, pp.1540-1544, 2001.

[10] Thamvichai, R., Bose, T., Haupt, R.L., “Design of 2-D Multiplierless
IIR Filters Using the Genetic Algorithm,” IEEE Trans. on Circuit and
Systems-I: Fundamental and Applications, Vol.49, No.6, pp.878–882,
2002.

[11] Li, Y., Ang, K.H., Chong, G.C.Y., Feng, W., Tan, K.C., Kashiwagi, H.,
“CAutoCSD-Evolutionary Search and Optimisation Enabled Computer
Automated Control System Design,” International Journal of Automa-
tion and Computing, Vol.1, No.1, pp.76-88, 2004.

[12] Gondro, C., Kinghorn, B.P., “A Simple Genetic Algorithm for Multiple
Sequence Alignment,” Genetics and Molecular Research, Vol.6, No.4,
pp. 964-982, 2007.

[13] Shigei, N., Miyajima, H., Ozono, K., “Time-Efficient Genetic Al-
gorithm for Peak Power Reduction of OFDM Signal,” Lecture Notes
in Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2010, WCECS 2010,
20-22 October, 2010, San Francisco, USA, pp. 186-191.

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_04

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 




