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Abstract—Fetal Electrocardiography (FECG) is a traditional
method to measure fetal heart conduction signals during gesta-
tion. It can allow determination of fetal heart rate (FHR) along
with amplitudes and timing of the FECG components, as these
are indices for fetal health. FECG recording is problematic
in the clinic due to the several interferences that corrupt
the signal. It is recorded using simple electrodes placed on
the mother’s abdomen and is a part of this abdominal ECG.
This abdominal ECG also contains several interferences. First
the omnipresent maternal ECG (MECG) is a huge source of
interference. Other possible noise sources are respiration and
muscle activity along with thermal/electronic noise and noise
from electrode-skin contact. The problem becomes all the more
difficult and complicated for twin fetuses that could have FECG
signals of similar morphology, amplitudes and heart rates. We
are interested in extracting twin FECG signals from abdominal
ECG using Independent Component Analysis (ICA) techniques,
a way of Blind Source Separation (BSS). Twin fetuses require
close monitoring of their heart health to track for congenital
heart problems. These are especially important with identical
twins complicated with twin-twin transfusion syndrome. In this
paper, we work with the Fast-ICA technique and propose and
test two types of data-centric contrast functions (Poly-L and
AbsPow). These are obtained when the underlying data pdf is
modeled as an exponential power distribution. We test this with
3 types of abdominal data sets - simulated, in-vivo (clinical)
and ICA bench-marks with added Gaussian and muscle noise.
We also compare performance across the standard fixed-point
contrast functions in Fast-ICA using a normalized metric. We
clearly show that Poly-L and AbsPow perform superior to the
standard-ICA data-based Pearson method and works on par
and in some cases better than standard ICA polynomial schemes
like Pow3. When estimation was done over data acquisition
time, it was clear that adequate data (10-30 mins) was needed
for good performance. Performance metrics for data-centric
contrast functions with order 3-4 (Poly-3 and AbsPow) had
the best performance for certain cases with little increase in
complexity. This supports further testing with a large database
of twin gestation data with heart defects.

Index Terms—Fast-ICA, ECG, Twins, Contrast Functions

I. INTRODUCTION

It is generally accepted that current methods of intra-
uterine monitoring does not facilitate a comprehensive as-
sessment of fetal well being [1]. One major indicator of fetal
status is its cardiac function, to detect conditions like cardiac
hypertrophy, arrhythmias and congenital heart defects [1].
Fetal cardiac monitoring becomes critical and complicated
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especially for identical twin gestations, as cardiac functional
defects increases with such pregnancies [2]. Furthermore,
this is more relevant nowadays, due to the frequent use of
assisted reproductive technologies (like IVF) - that result in
twins 40% of the time (both identical and non-identical).
A 9-15 fold increase in cardiac function defects has been
documented for identical twin pregnancies, and those com-
plicated by twin-twin transfusion syndrome (TTTS) [2], over
singleton pregnancies. In TTTS for instance, both fetuses
are at risk for heart failure, and this condition requires
simultaneous monitoring of the cardiac traces of both fetuses,
to highlight signs of cardiac overload and dysfunction to
optimize time of delivery [3].

Fetal cardiovascular status is diagnosed using ultrasound
echocardiography. Ultrasound between 16 and 22 weeks
gestation identifies 25-60% of major heart defects, but does
not provide adequate information regarding the fetal cardiac
conduction system [4]. Furthermore, ultrasound techniques
require a trained technician/physician, frequent repositioning
of the transducer and cannot be done in a home environment
- something beneficial for problem pregnancies [5]. Fetal
Electrocardiography (FECG) can be an attractive candidate to
measure heart conduction signals and is obtained by means
of ordinary electrodes placed on the mother’s abdomen. It
comprises of the standard ECG components (P, QRS and T
waves). FECG could allow determination of the fetal heart
rate (FHR) and other morphologic features of the recorded
signal. Relative amplitudes and timing of the FECG waves
(such as R-R interval, P/R, Q/R, S/R and T/QRS ratios)
are indices for fetal health [1]. The R-R interval gives
information of FHR and is useful to determine conditions
like tachycardia (FHR>180bpm) or brachycardia (FHR<110
bpm) commonly seen with cardiac defects [6]. Fetal hypoxia
could also be detected when P-R and R-R intervals are
modified along with the depression of the ST segment [7].

FECG recording seems very attractive but its use in clinics
have been limited due to the lack of clinical technology
to display the signal. This is because FECG is a part of
the abdominal ECG that also contains several interferences.
Potential measurements on the mothers skin contain contribu-
tions from several bioelectric phenomena (maternal and fetal
heart activity), potential distributions generated by respiration
and stomach activity, and are affected by various kinds
of noise (thermal noise, noise from electrode-skin contact,
electronic noise, power-line interference) [8], [9]. Therefore,
a highly sophisticated signal processing method is needed for
FECG extraction and enhancement. The problem becomes all
the more difficult in the case of twin fetuses that could have
FECG signals of similar morphology, amplitudes and heart
rates [3].

For singleton pregnancies, several signal separation algo-
rithms have been proposed in the literature for separating
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FECG from abdominal ECG [7]. Classical filtering methods
and adaptive techniques like the least means square (LMS)
adaptive filtering technique [10], IIR adaptive filtering [11],
singular value decomposition techniques [12] and wavelet
transform [13] based methods are examples that have been
proposed. More recently, blind source separation (BSS) tech-
niques [8], [14] have also been designed. The main advantage
of BSS techniques is that they do not require any a priori
knowledge about the signals (contrary to filtering methods).
For example, Gupta et. al. [9] did a comparative study
of 4-channel adaptive MECG-FECG cancellers and BSS
methods and found BSS methods to be superior for extraction
and enhancement of fetal ECG. BSS methods use principal
component analysis (PCA), singular value decomposition
(SVD) or independent component analysis (ICA) techniques.
Independent component analysis (ICA), uses higher order
statistics to decompose the signal into statistical independent
components. Using this framework, Ye et. al. [15] developed
an adaptive ICA algorithm to separate mixtures of sub-
gaussian, super-gaussian, and nearly gaussian signals. They
tested their algorithm on singleton abdominal ECG signals
and reported superior performance when compared to the
standard ICA schemes.

Only a few studies have been reported for twin gestations
using ICA. For example, Lathauwer et. al. [8] used online
abdominal data of twins to develop the concept of MECG
and FECG subspaces. Taylor et. al. [16] is probably the
only comprehensive clinical study on both single and twin
gestations with the aim of documenting the duration of fetal
cardiac time intervals in uncomplicated pregnancies. The
focus was purely on the clinical aspects and they use a
clinically patented signal processing technique that was based
on the ICA. They test this on a population of 250 singleton
and 58 twin pregnancies between 15 to 41 weeks of gestation.
For singleton pregnancies, the main outcome was duration
of FECG time intervals as a function of gestational age. P-R
and QRS intervals were the only parameters that increased
significantly with gestational age. For singletons, a signal
separation success rate of 85% (213/250) was reported that
was significantly poorer between 27-36 weeks gestation. In
twins and triplets, separate FECGs were obtained in 78% of
the signals. Studies reported by Comani et. al. and Burghoff
et. al. [3], [17] measured and separated twin magnetocardio-
graphy data (an bio-magnetic approach to measuring fetal
cardiac conduction) for diagnosis. Burghoff et. al. applied
the ICA algorithm-TDSEP to 9 magnetocardiograph data-
sets of twin pregnancies acquired between the 28th and 38th
week of pregnancy. The results showed that the maternal
and fetal components could be separated not only from each
other but also from sources of noise and artifacts. This study
demonstrates the use of magnetic signals beyond 27th week
gestation where bioelectric FECG begins to fail.

In additional to separating FECG from singleton or twin
pregnancies, standard ICA algorithms like INFOMAX [18],
the JADE, the FastICA and the MERMAID [19], [20]
have been applied to ECG for various other purposes like
artifact and noise removal and analysis of the autonomic
control of the heart [7]. In the ICA domain itself, several
estimation methods have been proposed. The two methods
most widely used in practice are the fixed-point algorithm
and the maximum likelihood stochastic gradient algorithm

[20]. In fixed point algorithms, the criterion function includes
a fixed non-linearity and there is an implicit assumption
about the model for source (maternal or fetal) distributions.
In maximum likelihood estimation, source distributions are
modeled explicitly using large parametric families of distri-
butions with free parameters to estimate, like the Pearson
system [21].

The objective of this work is to investigate the Fast-
ICA algorithm using fixed point schemes and compare these
with our two newly developed data-centric alternatives -
polynomial-based and exponential-based contrast functions
in the context of twin FECG extraction from in-vivo ab-
dominal ECG channel data. This work improves upon our
previous work [22] that used only polynomial schemes with
simulated data. In this work, the data is initially simulated
with different types of interference for feasibility testing, but
the focus is on processing the in-vivo data available online
with these new techniques. We reconstruct the twin FECG
signals and analyze the errors using a normalized metric.

Notations: In this paper, we adopt the following notations.
The lower case letter denotes a scalar, the boldface lower case
letter denotes a vector, boldface upper case letter denotes a
matrix. The symbol R+ denotes the positive real numbers.
The derivative of the function f(y) is denoted as f ′(y). The
xT denotes the transpose of the vector x. The E{y} denotes
the expected value of the random variable y. The log denotes
the natural logarithm function.

II. INDEPENDENT COMPONENT ANALYSIS

Imagine the abdominal ECG recordings of a pregnant
woman carrying twins are denoted as x1(t), x2(t) and x3(t),
where xi, i = 1 . . . 3 are the amplitudes and t is the
time index. It is common to model these abdominal ECG
recordings as a weighted sum of the twin fetal and maternal
signals, which we denote by s1(t), s2(t), and s3(t) [7]. This
linear relationship could be expressed as

x1(t) = a11s1(t) + a12s2(t) + a13s3(t) (1)
x2(t) = a21s1(t) + a22s2(t) + a23s3(t) (2)
x3(t) = a31s1(t) + a32s2(t) + a33s3(t) (3)

In the above set of equations (1-3), if the mixing co-
efficients are known, we can find the source estimates
ŝ1(t), ŝ2(t), ŝ3(t) by either using least squares or by simply
inverting the linear system. However, in our context neither
mixing coefficients nor the source signals are known. A blind
source separation method, ICA (Independent Component
Analysis) [20] uses the assumption of statistical indepen-
dence among source signals to estimate the source signals
and the mixing coefficients. It does not require the knowl-
edge of mixing coefficients and the statistical independence
assumption is not unrealistic in the case of separation of
maternal and fetal ECG signals.

It is usually more convenient to use vector-matrix relations
instead of linear equations (1-3). In general terms, N linearly
mixed sources can be represented in the vector form as

x(t) = As(t), (4)

where s(t) = [s1(t)s2(t) . . . sN (t)]T ∈ RN denotes the
N source signals, x(t) = [x1(t)x2(t) . . . xM (t)]T ∈ RM

denotes the observation vector, and A ∈ RM×N is formed

IAENG International Journal of Computer Science, 38:1, IJCS_38_1_05

(Advance online publication: 10 February 2011)

 
______________________________________________________________________________________ 



from coefficients aij , i = 1 . . .M, j = 1 . . . N . In our set-
up, the sources could include not only the fetal and maternal
signals but also various noise components such as white
Gaussian noise and electromyogram (EMG) noise from the
abdominal muscle. In ICA, it is assumed that the observed
signals are at least as many as the sources (M ≥ N ).

ICA methods try to determine the de-mixing matrix W,
which is the inverse of A, so that the rows of ŝ(t) =
Wx(t) becomes statistically independent. There are various
measures of statistical independence in literature such as
mutual information and non-gaussianity [20]. In this work,
we focus on ICA algorithms using maximization of non-
gaussianity. The relation between non-gaussianity and inde-
pendence could be explained easily using the central limit
theorem (CLT) [23]. According to the CLT, the distribution of
a sum of independent random variables tends to a Gaussian
distribution under certain assumptions. This implies that the
sum tends to be “more” Gaussian than the original random
variables. Notice that multiplication with W (inverse of
mixing matrix A) is also a linear operation. Consider a single
row of ŝ(t) = Wx(t), e.g.

ŝi(t) = wTx(t) = wTAs(t) = zT s(t), (5)

where w is the ith row of W, and z = wTA. Eqn. 5
tells that each source estimate can be represented as linear
combination of the original sources. Since original sources
are assumed to be independent, if we find a w so that
ŝi(t) is “least” Gaussian, then our estimate is closest to the
original source. Hence, in the ICA context, independence is
equivalent to non-gaussianity.

In the literature, two different measures of non-gaussianity
are kurtosis and negentropy [20]. The kurtosis of a random
variable y is defined as

K(y) = E{y4} − 3(E{y2})2 (6)

For a zero-mean Gaussian random variable, the kurtosis is
known to be zero. If the kurtosis is away from zero, the
random variable could be considered to be non-Gaussian. In
theory, kurtosis is the optimized criterion for ICA, however,
in practice since the value is estimated from the measured
samples (since underlying a probability density function
(pdf), is unknown), ICA based on kurtosis could be sensitive
to outliers [20], [24].

On the other hand, the negentropy for a random variable
y is defined as

J(y) = H(ygauss)−H(y), (7)

where H(y) =
∫
f(y) log f(y)dy denotes the information

theoretic differential entropy, and ygauss is a Gaussian ran-
dom variable with the same covariance as y. Since a Gaussian
random variable has the largest entropy among all the random
variables with the same variance, the negentropy is always
nonnegative. The larger the negentropy, the closer the random
variable gets to be non-Gaussian. Similar to kurtosis, the
main issue with negentropy calculations is the fact that
the distribution of the random variable y is needed in the
calculation. Instead, we can use approximation of negentropy
[20]. The classical method of approximating negentropy
using higher-order moments [20] will give

J(y) ≈ 1

12
E{y3}2 + 1

48
K(y)2 (8)

TABLE I
FAST-ICA ALGORITHM

1. Make the data zero-mean (centering)
2. Whiten the data
3. Choose and initial random vector w. The vector w denotes one

column of the estimated inverse matrix W.
4. Fixed-point iteration:

w← E{zg(wT z)} − E{g′(wT z)}w
where z is the whitened & centered data, and g() is the derivative
of the contrast function G(), and g′() is its second derivative.

5. Normalization: w← w/∥w∥
6. Check convergence, if not go to step-4.

Similar to kurtosis, this form of approximation is not a robust
measure for nongaussianity. Instead, we can use another
approximation of negentropy [20], Eqn. 9,

J(y) ≈ [E{G(y)} − E{G(ν)}]2 (9)

for a non-quadratic function G, and zero-mean, unit variance
Gaussian random variable ν. The nonlinear function G is
known as contrast function. Ideally, if the source distribution
f(y) is known, then G(y) = −logf(y) = −

∫ f ′(y)
f(y) dy would

be the optimal choice for the contrast function.
We have discussed the ICA method as an optimization

problem in which the objective function negentropy (Eqn.
7) or its approximations (Eqn. 9) are maximized. In the
literature, there are works which have used other objec-
tive functions such as the likelihood [25] or the mutual
information [26], [27] for source separation purposes. The
performance of the ICA method depends on the choice of
objective function. On the other hand, another component
of ICA method is the algorithm used for implementation of
the optimization problem, which determines the speed of the
ICA method. Gradient based optimization algorithms such
as Newton’s method or stochastic gradient descent lead to
slow convergence rate. In this work, we focus on the fast-
ICA algorithm [19] which is faster than the gradient based
methods. The details are given below.

A. Fast-ICA Algorithm
Fast-ICA is a fixed point algorithm that maximizes an

approximation of negentropy for non-gaussianity. The details
of the fast-ICA algorithm are shown in Table II-A. The main
iteration step in the algorithm is

w← E{zg(wT z)} − E{g′(wT z)}w.

Here the vector w denotes one column of the estimated
inverse matrix W (inverse of the mixing matrix A). The
vector z is the whitened & centered data, g() is the derivative
of the contrast function G(), and g′() is its second derivative.
Commonly used contrast functions with Fast-ICA algorithm
are below listed as:

• Skew: g(y) = y2

• Pow3: g(y) = y3

• Gauss: g(y) = y exp(−y2/2)
• Tanh: g(y) = tanh(y)

Main advantages of the fast-ICA algorithm are its speed
(superior to gradient-based schemes), user-friendliness (does
not require the probability distribution or selection of certain
parameters), and its flexibility for performance optimization
(done via choice of the contrast function G(y) or equivalently
g(y) = G′(y)).
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B. Practical Contrast Functions

Practically, for any non-quadratic contrast function G, the
negentropy approximation in Eqn. 9 is valid and ICA will
separate the sources. However, if one needs to optimize the
performance, choice of contrast function becomes important.
In general, the selection of the contrast function depends
on the data and the application. For example, if the data
seems to have outliers, one should choose contrast functions
that are more robust. On the other hand, speed/complexity
of algorithm could be another concern.

If we choose G(y) = y4 (for symmetric distribution of y)
in Eqn. 9, we obtain the kurtosis-based approximation, Eqn.
8 which also might suffer from robustness. In particular, by
choosing G that does not grow too fast, one can obtain more
robust estimators. The following choices of G have proved
to be useful and robust contrast functions [20]:

G(y) =
1

a1
log cosh a1y, (Tanh)

G(y) = − exp(−y2/2), (Gauss)

where 1 ≤ a1 ≤ 2 is some suitable constant.
In the literature, optimization of contrast function for dif-

ferent data sets is a recent popular topic. In [28], the authors
use G(y) = log(1+y2/2), g(y) = G′(y) = y/(1+y2/2) for
image extraction. The proposed function has similar statisti-
cal behavior as Tanh, but runs faster (lower computational
complexity) and results in better quality image extraction for
supergaussian sources. In [29], the authors use a modified
Gaussian function G(y) = exp(−y2/(2K2)) where K is
a parameter that measures the spread of the distribution.
The modified Gaussian function outperforms both Tanh and
Gauss methods with the selection of K through experiments.
In [30], the authors use

g(y) = G′(y) =
x− a

b0 + b1x+ b2x2
(Pearson) (10)

as the derivative of the contrast function. Here the parameters
a, b0, b1, b2 are found using the method of moments. It is
worth mentioning that the Pearson system uses some statis-
tical properties of the data to calculate constants a, b0, b1, b2
in the contrast function.

It is known that any non-quadratic function G can be
used to perform ICA [20, Theorem 8.1]. In particular, by
choosing a G that does not grow too fast, one can obtain
robust estimators to outliers. In Fig. 1, we plot the behavior
of each contrast function around zero. However, assuming the
data does not contain any outliers, the choice of the contrast
function is highly dependent on the data if one wants to
optimize the performance.

In the next section, we describe new methods that uses
certain characteristics of the ECG signal to derive data-
centric contrast functions.

C. Empirical density based Fast-ICA for ECG

In this section, we propose a new way of obtaining
the contrast function using an estimate of the underlying
probability density function (pdf) of the sources (maternal
and twin fetal). This way, certain properties of the source
signals can be incorporated into the Fast-ICA algorithm. It
is important to note that the mother ECG, the twin fetal
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Fig. 1. The behavior of contrast functions around zero. Pearson is plotted
for parameters a = 0, b0 = b1 = b2 = 1 and AbsPow is plotted for α = 3.

ECG, and the noise signals have different morphological
and temporal characteristics, and utilizing the same contrast
function could result in suboptimal solutions. Our goal is
to incorporate the differences in the source signals into the
Fast-ICA by utilizing different contrast functions that are
functions of the empirical pdf.

We follow the following steps in order to obtain contrast
functions that are data centric.

1) Generate template source signal: More details are
provided in the next section.

2) Obtain the empirical pdf : Among the various ways
of obtaining pdf estimates, we choose 3 techniques -
scaling the histogram of the observed data, the kernel
density estimation (kde), which is a non-parametric
method, and parametric density estimation for expo-
nential power family distributions

3) Obtain the contrast function: we set the contrast func-
tion as the score function: G(y) = − log(fe(y)), where
fe(y) is the empirical pdf for the selected source. Note
that if the pdf estimation was perfect, then this would
be the optimal choice for the contrast function.

In the Fast-ICA algorithm, the first and the second derivatives
of the contrast function G(y) are needed. To obtain these
from the pdf, we propose to fit a polynomial to G(y) and
then take the first and second derivatives analytically. This is
so-called Poly-L scheme. In this case of polynomial fit with
a fixed order, the contrast function would be

G(y) = −log(fe(y)) ≈
L+1∑
i=0

aiy
i (11)

g(y) = G′(y) =

L∑
i=0

ai+1(i+ 1)yi−1 (PolyL) (12)

The coefficient a0 could be selected to be zero for simplicity.
The polynomial order could also be optimized for different
sources. Note that the standard Fast-ICA offers polynomial
based contrast functions skew and pow3 but with unoptimized
coefficients.

In the scenario, where we utilize parametric density es-
timation for exponential power family distributions, that is
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p(y) = c1exp(−c2|y|α), the contrast function reduces to

G(y) = −log(c1) + c2|y|α. (AbsPow) (13)

We call this contrast function AbsPow due to its similarity to
standard Pow3 contrast function. This method is not totally
un-explored. In [19], it was suggested that the exponent α
should be chosen to be less than 2 for robustness. In [31],
authors use this in another context: separation of electro-
gastrogram signal from artifacts such as gaussian noise. In
this case, the parameters c1, c2 and α were obtained using
a quasi-Newton method. The contrast functions proposed in
both works [19], [31] are suboptimal in this context of ECG
signal extraction.

As a novel contribution, we have experimentally optimized
AbsPow contrast function for twin-ECG signal extraction.
We concluded that the parameters c1 = 1, c2 = 1, α = 3
performs quite well. Hence, we adapt G(y) = |y|3 as our
AbsPow contrast function in the simulation section.

D. Data Sets

We explore our data-centric techniques and compare with
other Fast-ICA schemes using a combination of simulated
data using the techniques described by [32], real in-vivo data
from an online database (DaISy, [33]) and a standard ICA
database (ABio7, [34]), a bench-mark of ICALAB.

1. Simulated Data: We generate all the simulated ECG
source signals (maternal and twin fetal) based on a dynamical
model presented in [32]. The dynamical model is based on
three coupled ordinary differential equations which is capable
of generating realistic synthetic electrocardiogram (ECG)
signals. The operator can specify the mean and standard
deviation of the heart rate along with the morphology of the
PQRST cycle. The model generates a trajectory in a three-
dimensional (3-D) statespace with coordinates (x,y,z). Each
revolution on this circle corresponds to one RR-interval or
heartbeat. Distinct points on the ECG, such as the P, Q, R, S,
and T are described by events corresponding to negative and
positive attractors/repellors in that direction. These events
are placed at fixed angles along the unit circle given by θi.
The resultant ECG signal is synthesized by solving a set of
differential equations shown below:

ẋ = αx− ωy; ẏ = αy + ωx

ż = −
∑

iϵ(PQRST )

ai∆θiexp

(
−∆θi

2

2bi
2

)
− (z − z0), (14)

where α = 1 −
√
(x2 + y2), ∆θi = (θ − θi)mod2π,

θ = atan2(x, y), z0 = Asin(2πf2t) and f2 is the respiratory
frequency.

Visual analysis of a section of typical ECG from a normal
subject was used to suggest suitable times, and, therefore,
angles (θi) and values of ai and bi for the PQRST points.
Some further fine-tuning was done to these parameters to
find suitable values for ai, bi and ∆θi, for each segment to
represent more realistic maternal and fetal ECG signals with
amplitudes, timing and frequency content close to clinically
reported signals. Table II lists the values used into the ECG
model and Table III shows the range of ECG amplitudes and
timing values used in this paper. These values fall within the
range reported by Shepovalnikov et. al. [35] and [16] for
in-vivo maternal and twin fetal ECGs.

TABLE II
PARAMETERS INPUT INTO THE ECG MODEL

MECG P Q R S T
time (s) -0.202 -0.044 0 0.044 0.216

ai;bi 0.3;0.19 0.3;0.1 28;0.08 -7;0.1 0.5;0.29

θi(deg) -80.47 -16.94 0 16.94 84.71

FECG1;2 P Q R S T
time (s) -0.084;-0.088 -0.02;-0.024 0;0 0.02;0.024 0.056;0.076

ai 0.04;0.04 -3;-2 3.5;3 -4;-5 0.1;0.2

bi 0.5;0.4 0.3;0.32 0.3;0.33 0.2;0.22 0.5;0.4

θi(deg) -103.5;-116.31 -31.5;-42.46 0;0 31.5;42.46 72;95.08

TABLE III
DURATIONS AND AMPLITUDES OF MECG AND FECG

MECG P −Q Q− T R−R S − T QRS
(sec) 0.158 0.26 0.83 0.172 0.088

FECG1;FECG2 P −Q Q− T R−R S − T QRS
(sec) 0.064;0.064 0.076;0.1 0.4;0.39 0.036;0.09 0.04;0.048

MECG P Q R S T
(mV) 0.521 0.15 2.102 -0.266 0.804

FECG1;FECG2 P Q R S T
(mV) 0.135;0.133 0.053;0.077 0.242;0.231 0.089;0.058 0.142;0.141

Fig 2 shows an example of the maternal and twin fetal
ECG data generated using the ECG dynamical model [32]
and parameters in Table II. The figure shows that the 2
ECG signals are different in terms of their morphological
and temporal behavior as described in Taylor et. al. [16] and
Shepovalnikov et. al. [35]. Note that the FECG waveform
is significantly smaller in amplitude when compared to the
MECG waveform. We also show a normalized pdf estimated
using standard histograms and the KDE method for long
length (10-15 minutes) MECG and FECG simulated data.
The length of the data matrix is chosen such that the
pdf shape converges. This pdf will be used for the design
of the data-centric methods we have described. We also
estimated the power spectral density using the standard
Welch technique and calculated the center of gravity of the
spectrums. Values obtained for MECG, FECG1 and FECG2
were 9.27Hz, 20.22Hz and 17.59Hz. These values closely
agree with those reported in [35].

2. Real In-vivo Data: We first used the DaISy database
[33] that comprises of cutaneous potential recordings of
a woman with a singleton pregnancy with 8 channels of
data available. Channels 1-5 are abdominal channels and
channels 6-8 are thoracic channels. The electrocardiogram
measurements are recorded over 10 s, and sampled at 250
Hz. Twin pregnancy data is not available on any source
online and requires a separate clinical study to obtain it. We
still use this singleton pregnancy data and add on another
simulated fetal data set and then test our new approaches.
This technique of adding on data to the online data set
has been reported in [8] due to the unavailability of twin
data. To do this properly - first we separated the mother and
single fetus from the DaISy data-set after base-line correction
using an independent ICA technique (not the FAST-ICA
tools) such as the JADE-ICA [20]. Jade-ICA algorithm, like
other ICA methods, relies on statistical independence of the
sources. JADE has been used in the context of separating
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Fig. 2. Simulated maternal and twin fetal ECG signals using parameters
and values from Table II and III along with pdfs and power spectral densities
of the signals

fetal data from singleton pregnancies [20]. One we separate
the signals, we then simulate a second FECG with similar
heart rate (±10 bpm) and morphology using the techniques
discussed in the above simulated data section. The ability to
reconstruct this added fetal signal is then tested among the
different techniques. Fig 3 shows the original in-vivo data
from the online database. Fig 4 shows the separated MECG
and FECG1 data using JADE-ICA along with the simulated
FECG2 data and noises used for the simulations.
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Fig. 3. Original DaISy database abdominal channels for a singleton
pregnancy.

3. ICA database - ABio7: The ABio7 data-set is a
benchmark in ICALAB [34] and consists of 7 channels. Each
signal had 5000 samples, 250 Hz sampling rate with zero
means and unit variances. Three signals s1, s5, and s6 are
sub-Gaussian, two signals s4 and s7 are super-Gaussian, and
the others s2 and s3 were Gaussian noise. The data is shown
in Fig 5.

E. Simulation Studies

Several studies were conducted on the 3 data-sets de-
scribed above to compare the performance of data-centric
Poly-L and AbsPow schemes to other Fast-ICA implementa-
tions. For simulated data, when 5 sources were used (MECG,
2 FECGs and 2 noise sources), a 5-by-5 randomly generated
mixing matrix was used to give a set of linearly mixed
vectors of the sources. The same procedure was used for
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Fig. 4. Separated MECG and FECG1 data from the DaISy used JADE-ICA,
simulated FECG2 data, Gaussian and EMG noise used for simulations.
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in-vivo maternal data with added simulated fetal ECGs. For
the DaISy dataset, baseline wander was first removed using
a bi-directional low pass filter from [36] prior to mixing.
For all cases, 100 simulations were run and PI metric was
averaged over all trials.

We then quantitatively compared the reconstruction per-
formance using a metric called the performance index or
the PI-metric. Since ICA methods cannot exactly determine
the scaling (the energy) of the sources, and their orders, the
Amari distance [20] is useful for performance comparison.
The Amari distance (or the PI metric) is defined as follows:
Let eij be the (i,j) th element of the matrix E = WA. Then
the PI metric is -

PI=
1

n

n∑
i=1

{(
n∑

k=1

|eik|
maxj |eij |

− 1

)
+

(
n∑

k=1

|eki|
maxj |eji|

− 1

)}
.

(15)
We explored the variation of the PI metric, that measures

reconstruction quality, over the data-centric and standard ICA
schemes. We do this over time, to see the dependence of the
quality on acquisition time, and also over fetal heart rate
changes. Below is a list of the simulations we run and report
in this paper.
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1) PI metric over data acquisition time for simulated
data (MECG=72 bpm, FECG1=150 bpm, FECG2=147
bpm) corrupted with Gaussian noise (zero mean, unit
variance) and electromyographic (EMG) artifact. Gaus-
sian noise is chosen to simulate the collection of
the numerous sources of noise all added up together
including electrode noise, environmental noise, elec-
tronics, etc. The EMG signal arises from the mother’s
abdominal muscle movements (collected from phys-
ionet online signal archives [37]).

2) PI metric for fixed time (400 s) for simulated data
(MECG=72 bpm, FECG1=150 bpm) but varying
FECG2 between 143 and 157 bpm again corrupted
with Gaussian noise and electromyographic (EMG)
artifact.

3) PI metric over time and over fetal heart rate changes
for all schemes for real in-vivo MECG and simulated
FECGs.

4) PI metric for the DaISy database across all schemes
and over FECG2 heart rates.

5) PI metric for various schemes in their ability to extract
sub-gaussian, gaussian and super-gaussian signals from
the ABIO7 dataset [34].

III. RESULTS AND DISCUSSION

The first simulation we ran was on simulated data to
compare all the ICA schemes. In Fig 6, we first notice a
decrease in the PI metric over data acquisition time indicating
that long-time data should be acquired and used for ICA
estimation. Another interesting observation we made, was
the clustering in the performance of Poly-3, AbsPow and the
standard ICA Pow3. Of these three, Poly-3 and AbsPow was
newly proposed by us in this paper. This indicates that the
new techniques perform on-par or sometimes better than the
standard Pow3. Interestingly, a reason why their performance
could be similar is that they all stem from exponential power
family data distributions of similar orders. To illustrate this
point, Poly-3 is the contrast function when the source pdf is
modeled as f(y) ∝ exp(

∑4
i=0 aiy

i), AbsPow is obtained
when pdf is modeled as f(y) ∝ exp(|y|3) and Pow3 is
obtained when source pdf is modeled as f(y) ∝ exp(y4).
Other fixed-point schemes like Gauss and Tanh do not use
the data in their estimation but seem to perform on-par with
the data-centric schemes. The performance of the data-centric
schemes show improvement with in-vivo MECG data, seen
in Fig 7. In this case we use abdominal MECG from the
online physionet database [37] and combine simulated twin
FECG using the description in Sec. II-D. Both AbsPow and
Poly-3 show best performance compared to all other schemes
for maximum acquisition time of 2000s. In particular, in
both examples it was significantly better than the already
established data-centric scheme - Pearson which is known to
superior in modeling distributions that are close to Gaussian,
but fails otherwise 1. The improvement in performance could
be due to the fact that exponential power distributions of
order 3−4, models real ECG data more effectively. In these

1In [30], it is suggested that the Pearson contrast function is replaced with
Tanh if the kurtosis of the data greatly differs of the kurtosis of Gaussian
distribution. For fair comparison with Tanh, we did not implement this
suggestion.

results, the standard deviations of the PI metric was relatively
constant over acquisition time.
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Fig. 6. PI metric over time for the data-centric schemes (Poly-L) and
AbsPow compared with standard Fast-ICA schemes for simulated data with
added Gaussian noise and EMG artifact.
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We also investigated the role of heart rate difference
between the 2 fetal signals on the performance of the ICA
over different schemes, shown in Fig 8. As expected, the
performance is significantly worse when the heart rates are
identical - as the ICA scheme does not recognize the signals
being separate. This is in-spite of the signals having different
amplitudes. We see the same type of clustering in our newly
designed exponential power family based contrast functions
(AbsPow, Poly-3) with standard Pow3. The performance of
AbsPow improves over the rest of the schemes when in-vivo
MECG data was used, as seen in Fig 9, again indicating that
real ECG data is better modeled with an exponential power
distribution - f(y) ∝ exp(|y|3). The performance metric
for variation over heart rate for all schemes shifts upwards
when FECG heart rates are higher (around 180 bpm) [22].
This has implications when trying to separate twin data that
experience tachycardia (high heart rates). This indicates that
such ICA schemes may need to re-optimized for not only
the data but also features like the heart rate.
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Fig. 9. PI metric for the data-centric schemes (Poly-L) and AbsPow
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The same heart rate difference test was then applied to
the in-vivo DaISy database. This database has data from a
singleton pregnancy and the raw channel data is shown in
Fig 3. The raw channel data was separated using JADE-ICA
first to isolate the sources of MECG and one FECG. Another
FECG was added on in this with similar morphology and
heart rates. The source data for DaISy is given in Fig 4. We
see different trends for this data-set as shown in Fig 11. We
do not see any variation over heart rate difference. Reasons
being: first, given that the FECG2 was simulated and FECG1
was real in-vivo data, they cannot be absolutely identical,
even though we tried to make them as close as possible. ICA
is really sensitive to even minute changes and can separate
all the signals effectively even when the 2 signals have the
same heart rate. The AbsPow performed the best among the
exponential power distributions but was slightly worse than
the standard Gauss and Tanh functions. Poly-3 was not too far
behind in its performance when compared to AbsPow. This
change in performance could be due to the mix of simulated
and real fetal data. Its performance could improve if real twin

data was used. The reconstructed signals for this database are
shown in Fig 10 which clearly demonstrates the similarity
to the actual source signals used (Fig 4). In this case, the
standard deviation of the PI metric was relatively constant
over acquisition time for all ICA schemes except Pearson
and Poly-5 - both showed higher variability.

When we added Gaussian noise and EMG artifact to this
data-set, the performance of all the schemes degraded except
Pearson and Poly-4 (see Fig. 12). AbsPow got significantly
worse but Poly-3 was still able to separate the signals out
quite well. Pow3 performance was robust to noise. The
standard non-data centric schemes performed better in this
case because of the high noise. Noise in the data will
significantly effect the modeling of the data-pdf causing the
data-centric methods to perform worse than the standard
fixed-point schemes that do not use the data directly.
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Fig. 10. Reconstruction of the DaISy source signals using data-centric
AbsPow.
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Fig. 11. PI metric for the data-centric schemes (Poly-L) and AbsPow
compared with standard Fast-ICA schemes for in-vivo DaISy data-base with
varying FECG2 heart rate and no noise added.

The last test was on the ICALAB bench-mark database
ABio7. This is a difficult data-set to separate effectively as
the set contains sub-, super- and purely gaussian signals.
Among the exponential-based contrast methods, our data-
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TABLE IV
MEAN PI METRIC FOR RECONSTRUCTING ABIO7 DATASET

ICA Contrast Function PI metric
Gauss 0.73
Skew 1.75
Tanh 0.77
Pow3 0.98
Poly-4 1.30
Poly-3 1.08
Poly-2 1.81
Poly-5 1.49

Pearson 2.51
AbsPow 0.87

centric AbsPow performed really well almost on-par with
the Gauss contrast function. The other Poly-L methods were
worse in their performance (Table IV). The reconstruction of
the ABio7 data-set using AbsPow is also shown in Fig 13,
which shows a clean reconstruction.
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Fig. 13. Reconstruction of the ABio7 data-set using AbsPow

We also finally compared the computation speed of these
algorithms for 1 trial, independent of fitting of the pdf
functions and Table V shows the times in milli-seconds.

TABLE V
ALGORITHM SEPARATION TIME FOR ALL ICA SCHEMES

ICA Contrast Function Computation Time (ms)
Gauss 88
Skew 57
Tanh 90

POW3 133
Poly-4 520
Poly-3 325
Poly-2 207
Poly-5 725
Pearson 197
AbsPow 137

The data-centric schemes are slightly more intensive in
computation time as expected but AbsPow shows the least
burden in this comparison.

IV. CONCLUSIONS

In this study, we investigated Fast-ICA algorithm to extract
simulated twin FECG from abdominal ECG channel data
under different types of interference for purposes of twin fetal
health assessment. The performance of Fast-ICA algorithm
is shown to improve via choice of contrast functions which
is highly data dependent. We explored various contrast
functions including the standard ones such as tanh, gauss,
skew, pow3, and well-known pearson contrast function.
Furthermore, we proposed new polynomial based contrast
functions, poly-L, in which the coefficients of the polynomial
are obtained from the empirical pdf of the data and abspow
in which the order is selected experimentally. Our approach
is based on modifying certain parameters of the contrast
function using extracted features of the data.

We show a variety of simulations including simulated data
sets, real in-vivo data from DaISy dataset, and ABio7 from
ICALAB. We quantify reconstruction performance using a PI
metric that is scale and order independent. In the case of ECG
signal extraction, new data-centric contrast functions (Poly-
3 and AbsPow) are shown to be superior to the data based
Pearson method and works on par and in some cases better
than standard ICA polynomial schemes like Skew, Pow3. PI
metrics for contrast functions with order 3−4 (Poly-3, Pow3,
AbsPow with α = 3, offered in many cases, the lowest or
best performance contrary to the fact that contrast functions
which grow faster than |y| are unrobust and, hence leads
to low performance. This supports the need for data-centric
contrast functions if one wants to optimize the performance
of Fast-ICA. On the other hand, robust contrast functions
tanh and gauss perform considerably better than pearson in
both ECG extraction and for the general data set Abio7. We
have also showed that the performance gain of the proposed
polynomial-based schemes do increase the complexity, but
not considerably.

Overall, this work does not only propose new techniques,
but also provides an in depth comparison among the existing
Fast-ICA techniques in the literature for ECG signal in the
context for twin pregnancy data.
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