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Single Frame Image Recovery for Super
Resolution with Parameter Estimation of Pearson
Type VIl Density

Sakinah Ali Pitchay

Abstract—Image recovery of super resolution aims to re- Random Fields represent a common choice for its
cover a single high resolution image from one or more low computational tractability. The Huber-MRF is prominent

resolution frames. It is an ill-posed problem when the solution - gince it s more robust but still convex and works in [6],
does not exist or it is unique. Thus, we introduce the prior

based on Pearson type VII density integrated with a Markov [7], [8] are considered .to be the state of the art aPp“?aCh-
Random Field (MRF) model. We devise two different versions, They employ Huber prior, however the threshold is fixed
one that acts on the pixel level and another one that acts on in [6], [8].

the entire image. Here we present our parameter estimation

and evaluate our approach using qualitative measurement in In our recent work [3], we study and compare the state
both compressive measurement and classical super resolution. '

Our estimation is theoretically simple and easy to implement. of th.e a_rt of Image priors in conv_entlonal super resolution
application using manual selection from several search

Index Terms—single frame super resolution, Pearson type space. We extend our work by estimating the hyper-

VI, MRF model, compressive measurement parameters of Pearson prior using held out estimation
and cross validation. This includes other image priors as
|, INTRODUCTION well. Besides that, we test our estimation parameter in

MAGE Ut ks t ‘ both transformation (i) compressive measurement and (ii)
recovery Super Tesoiution Seeks 10 generate g .. super resolution. Indeed, the ground truth image

f5 not accessible and the successful works in random

unaget.?]. 'lrhe I|fm |tat|c|)nt_s O.f tlr]ed_cath:]ur|nr?_ft§ourcet ?ﬂeﬂroperty [10] inspired us to cope with it. We exploit the
alow the oss of resolution inciuding fhe shifting, rota IcmCompressive measurement using real image.

blur and down-sampling. Moreover, the capturing process
instigates additive noise that causes it is not sufficiently to

sample the scene adequately. Often the observed frar{) %ion of Pearson type VI formulated as Markov
are deficient or noisy, which makes this problem ill-pose, andom Field (MRF) in super resolution approach

and possibly under-determined too. Thus, extra knowledgg_ The comparisons with the existing image priors are

1S vital tg acquire an adequate solution and known ncentrating on compressive matrices transformation. Due
image prior. of curiosity, we formulated and examined the multivariate

. _ . of Pearson type VII and compare it with the state of the

. Usmg.probab|l|st|c mod.e.l based frar.newo.rk,.thlg extrgrt approach using the classical super resolution technique.
mforma}non may 'be spec'med as a prior distripution hhis density is formerly used as robust density estimation

the salient statistics that images are known to have. T e[l] as alternative to the t-mixtures and in stock market
two main criterions are apparently contrary one anom%odelling 2].

local smoothness and the existence of edges. To solve this
particular problem, an investigation on a density function The remainder of the paper is organised as follow. In

that has thg gtyhy to recover the 'mage which allows f%ection II, we describe the problem formally including how
greater "‘?‘”"’Fb"'t.y by.havmg Igrger ta|I§ than the standatig estimate the high resolution image. Section Il presents
normal distribution ("e'GaU.SS'an)' This dens@y must bﬁ:‘]e image prior that we investigate for this experiment. The
robust or has the heavy t.a'l property so that.|t would earson type VIl based MRF is described in Section IV.
abledtp cope W'th.thg outluzr: Hence the requirement of @xample results on automated estimation with comparsions
goodimage prior 1S demanding. to other image priors are presents in Section V. It depicts

. . .the experimental setting and its discussion. Finally, conclu-
The former prior models have been proposed in ttg(? P 9 y

. . o : ons and future work are discussed in Section VI.
literature, yet with no substantiation. Gaussian Markov

Previously, we proposed a robust density, the univariate
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formalism, which is well suited for its principled naturedone simultaneously with inferring. In this case we talk
ard its flexibility. Firstly, we need to construct a modebbout the 'blind’ super-resolution problem. A special case
of how the (unknown) high resolution image might havef this, whenW consists of blurring only, is often termed
given rise to the (observed) low resolution images. Thias ’blind deblurring’ or 'blind deconvolution’. Several
is often referred to as théorward modelor observation authors have tackled this problem with success.
model This model serves as a formal abstraction of the
real physical process: the high-resolution image is the|n this work, we will consider the transformation matrix
‘cause’, the low resolution images are the ’effects’. Sincg” as being known, since the focus of our study is
we observe the 'effects’ but want to find out the 'causeanother aspect, namely the image prior, as it will become
we then need to invert this model. This isbackward clear in the next section. However, inspired from new
operation, often termed asference research in signal processing [11] that tries to exploit
the good properties of certain random matrices in signal
As already mentioned, this is easier said than done fagquisition, we take oud¥ as a random matrix with

several reasons: (a) we may need to infer more pixghtries drawn i.i.d. from a standard Gaussian and then fixed.
intensities than we have observed ones in the first place;

(b) noise on the low resolution images degrades their\yhile the conventional transformation, W is a product of
information content. Hence, the forward model and the d%ﬁjrring and down-sampling matrix of size [WN], usually
alone is always insufficient. Fortunately, there is a prigfi.conditioned matrix that models a linear blur operation
knowledge about the statistics of natural images that we cgRq the down-sampling by row and column operator. This
exploit. Thereforg the second part of the. overall model foown—sampIing operator made the problem harder where
super-resolution is a model of a (generic) high-resolutifyy we have less pixels to observe and wish to recover
image, encoded as ior. with a higher resolution image.

A. Model Formulation

The high resolution image oV = r x ¢ pixel intensities B. The Joint Model
will be vectorised and denoted as This image suffers
a quite complicated transformation into a low-resolution Overall model is the joint model of the observatiogps
frame includes blur and down-sampled. We adopt a lineafd the unknowng. That is, Pr(y, z). To assemble this
model to express this transformation which, although ftom the previously presented components, we first rewrite
is not completely accurate, it has worked well in manthe observation model given in Section Il in the form of
previous studies on super-resolution [5], [6], [8]. Denoting probability distribution of the observations given the
the k-th low resolution frame by, in a vectorised form, ground truthz. That is, Pr(y|z). Using these, we have
and the linear transform that takesinto y, by W, we joint probability
can write the forward model as the following:
Vo= Wiz 410 " Pr(y.z) = Priy|z)Pr(z) ®
where n,, represents an additive noise, assumed to Rghere the first term is the observation model and the second
Gaussian with zero-mean ang® variance. HavingK term is the image prior model. Hence we have for the first
low resolution framesy,, k = 1,...,K, we wish to term in (3):
obtain the high resolution image To simplify notation,
we will stack all the KX available low resolution frames 1 T
into a single column vectoy, and denote the length of £ 7(¥l2) eXp{_ﬁ(y -Wz) (y - WZ)} (4)
this vector by M. Thus, M is the total number of low
resolution pixels observed, in other words, if theh low This is also called the modikelihood, because it expresses
resolution frame had/;, pixels, thenM = M; +---Mk. how likely it is that a givenz produced the observeg
through the transformatio™’. The second term of (3)
Similarly, we will also stack the transformation matricesyill be instantiated with either one of the image priors
into a single matrixW. This will then haveM x N discussed in Section lll. To achieve our goal, we need to
elements. Finally, the noise components will also be stackgglert’ the causality described by our model, to infer the
into an M-dimensional column vectay. Then, the obser- |atent variables from the observed variablesAgain, this
vation model in a vectorised form may be written as:  encodes knowledge about high resolution images in general,
?) without any reference to the actual observed images
Recall that our task is to infer or estimate the high resolution
In this model, the unknown variable of interest 2s image from its low resolution versions. To achieve this, now
The transformation matriXd is usually parameterised,that we have formalised the problem, we need to 'invert’
and as such, it is considered to be known up to a fetwe causality described by our model, to infer the latent
parameters. Estimating these parametersof may be variablesz from the observed variablag.

y=Wz+n
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C. Inverting the model to estimate more evident. We will make use of the following notation,
We can invert the causality encoded in a probabilistirt?Iklng the log of eq. (4):
model by the use of Bayes’ rule. I(z) := —logPr(y|z)+ const. (10)
1
Pr(y|z)Pr(z - — (y- Ty —
Prizly) = ZL200) () 52y - Wz (y-Wz)  (11)
Pr(y)

This is called theposterior probability of z given the !ll- PRIORIMAGE MODEL: MARKOV RANDOM FIELDS

observed datgy. Eq. (5) says that, the probability thatis The main characteristic of any natural image is a local
the hidden image that gave rise to what we observedyj.e.smoothness. That is, the intensities of neighbouring pixels
is proportional to the likelihood that this fits the datay tend to be very similar. A MRF is a joint distribution over
and the probability that this bunch &f intensity values, i.e. all the pixels on the image that captures spatial dependen-
the vectorz, actually 'looks like’ a valid image. Note thatcies of pixel intensities. A first-order MRF assumes that,
the latter is desperately needed in underdetermined systefas,any pixel, its intensity depends on the intensities of
since there are infinitely many vectotsthat fit the data. its closest cardinal neighbours but does not depend on any
other pixel of the image. Here we will adopt the 1-st order

. o ~_ MRF that conditions each pixel of intensity on its four

D. Maximum A Posteriori Inference through Optimisation.grdinal neighbours in the following way. For any one pixel
To obtain the most probable estimatezothat conforms 2; we define:

to our model and data, we need to maximise (5) as a 0. N _ ey
function of z. Observe that, the denominatd?y(y) does Prizlz—) = PT(%'Z"”f'ghb@) (12)
not depend orx. Hence, the maximum value of the fraction Pr(z; — - Z z;)  (13)
(5) occurs for exactly the samefor which the maximum 4 j€4neight(s)
of the numerator does. That is, the most probable estim
is given by:

%ﬁere the notatiorz_; means all the pixels excluding the
i-th, and the set of four cardinal neighbours nf was
Pr(y|z)Pr(z) denoted as 4neiglih. This is a univariate probability
Py 6 distribution.

N>

= argmax
= argmax Pr(y|z)Pr(z) @) ) )
z Consequently, for the whole image df pixels, the MRF

Further, this maximisation is also equivalent to maximisingEPresents the joint probability over all the pixels on the
the logarithm in the right hand side, since the logarithiin@ge — & multivariate probability distribution.

is @ monotonic increasing function. We can also turn the N
maximisation into minimisation, by flipping the signs, as Pr(z) « HPr(zi|z4neighb@) (14)
in the following equivalent rewriting: i=1
N
N . 1
Z =arg mzln{—log[Pr(y|z)] — log[Pr(2)]} (8) = HPr(zl- 1 Z | zj)  (15)
i=1 j€4neigh(z)

In words, the most probable high resolution image is thlehe notation &’ means "orobortional to'. i.e. there is a
one for which the negative log of the joint probability N prop o

model takes its minimum value. Thus, our problem is nO\CI%/IVISIOn by a constant that makes the probability density

. Co T ._Integrate to one. This constant may depend on various
Ivabl rforming this minimisation. The expression : L .
solvable by perfo g this satio © eXpressio arameters of the actual instantiation of the building block

to be minimised, i.e. the negative log of the joint probabilit i . . :
model may be interpreted as an error objective, and sh TPb?b'“ty densities, but it does npt depend enSince
In this work we only need to estimate, therefore we

be denoted as: . . .
can ignore the expression of the normalising constant
Obj(z) = —log[Pr(y|z)] — log[Pr(z)] (9) throughout.

The most probable estimate is the that has highest This form of MRF has been previously employed with
probability in the model. Equivalently the one that achievesiccess in e.g. [5], [6]. Alternatives include the so-called
the lowest error. Since our model has had two factotstal variation model, employed e.g. in e.g. [8],which is
(the likelihood or observation model, and the image priorpased on image gradients, also quite simple. In [7], an
consequently our error-objective also has two terms: tle&perimental comparison of these two alternatives suggests
misfit to observed data, and 'penalty’ for violating thehese have comparable performance, the former being
smoothness and/or other characteristics encoded in #lightly superior though.

prior. By plugging in the functional forms for the obser-

vation model and for the various possible priors into (9), The simplicity of (15) is also intuitively appealing.
we now give the specific form of this objective functiorOne can think of the difference between a pixel
below, so the interpretation of the individual error terms igitensity and the average intensity of its neighbours, i.e.
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cameraman
. : panda bear

4500 F

% = 1 X jcaneignog) 2i» @S afeature Considering that we
want to encode the general smoothness property of images,
it is easy to see that this feature is very useful: Whenever
this difference is small in absolute value, we have a smooth ~ =seop |
neighbourhood. Whenever it is large in absolute value, we | ]
have a discontinuity. Hence, to express smoothness, we 1500
just need to instantiate the probability distribution over = ]
this feature, i.e. the uni-variate densities in the product
(15), Pr(zi — § 2 jcaneighng) 2j)» With symmetricdensities
around zero, which give (high probability to small values.

The Gaussian is a good example. In the same time, to | 1 e
allow for a few discontinuities, we need to use heavy tail soof | ]
densities, such as the Huber or the Pearson type VII density. .

-0.2 0 0.2 0.4 -0.1 0 0.1 0.2

Diz Dlz

4000 -

count
count

2000
1000

1500

To simplify notation and it is conveniently to create
the symmetricN x N matrix D to encode the above
neighbourhood structure, with entries:

ladybug chamomile flower

1 if i — j: 7
di;j =4 —1/4 ifiandjare neighbouts
0 otherwise

2000

2000 -

1500

count
count

1500 -

Then we may write thé-th feature in a vector form, with
the aid of thei-th row of this matrix (denoted);) as the 100l ]
following: ooy

500

N 1 L
Zi—% Z z; = Zdijzj (16)
j=1 l

j€4neighb()

02 0 02 04 06 -02 0 0.2
= Diz (17) DiZ Dz

Again, this is Fhel-th neighbourhood feature of the I,mageFig. 1. Examples of histograms of the distribution of neighbood
and there are = 1,..., N such features on aw-pixel featuresD,z,i = 1,---, N from natural images.
image.

The studies of data visualisation of the neighbour-hood
features D;z) from several natural images are presentdphear. A generic variable in the definition of this function
in a histogram. We now turn to instantiate the functionalill be instantiated later as a neighbourhood-featlrg:
form of the probability densities that describe the shape within the image prior use.
the likely values of these features. Figure 1 shows a few
examples of observed histograms of these features, from H(u|d) = {
natural images. The probability densities that we employ

in our image priors should ideally have similar shapes.  The Huber-MRF prior is then defined in (22) whexds
similar to a variance parameter.

u?,  if |u| <4

26|ul — 62, otherwise. (20)

A. Gaussian-MRF

N
1
The Gaussian MRF is the most widely used image prior Pr(z) o []exp {_ﬁH(DiZw)} (21)
density. It has the following form: i=1
N
N 1
1 ) = exp {—— > H(Diz|5)} (22)
Pr(z) « Z1:[1exp{—ﬁ(Diz) } (18) 2\ P
N
1 -
- {__ (Diz)g} 19) IV. PEARSONTYPE VII-MRF
22 I A. The univariate Pearson Type VII-MRF

where \ is the variance parameter. The PearsotMRF made of univariate building blocks: A
zero mean univariate Pearson prior, is defined as:

B. Huber-MRF

N
-(3%)
The Huber density is defined with the aid of the Huber Pr(z) O‘H {(Diz)* + A} (23)
function. It takes a threshold parametgrspecifying the =1
value at which it diverts from being quadratic to beingvherer and\ control the shape of the distribution.
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B. The multivariate Pearson Type VII-MRF Previously in paper [4], we applied the compressive

A zero mean multivariate Pearson-MRF density in Batrix of W to find out how well is the proposed image
generic N-dimensional vector d;z, has the following Prior based MRF in comparison with the state of the art

form: image priors, and hyper-parameters is manually tuned to
() acquire the optimum mean square error for all methods. We
N ) 2 then observe how good the new approach of our automated
Pr(z) o Z(Diz) +A (24) parameter estimation for univariate Pearson type VII and
=1

other prior as well in under-determined problem.

C. Discussion on the two versions of Pearson-MRF

The version devised in Section IV-A may be regarded aBs'
having independent Pearson-priors on each neighbourhoodlhe performance of the image recovery of high
feature. Of course, we ought to point out that théesolution is depending on how good selection value of
neighbourhood features are not independent in realiffyper-parameters in image prior. Bad estimation can lead

However, since each pixel only depends on four others,!@ produce a bad recovery. Since we are assessing the
may be a reasonable approximation. performance for bothv and A, the recovery algorithm

is assuming knowing the true noise variang& From

The version gave in section IV-B, in turn, does notheé observation in [3] using the constructed blur and
allow such independence interpretation. Conversely, tfi§wn-sampling matrix W, we found practical range Jof
can has the advantage that the spatial dependencies are2fgt. We made use this good range in our automated
broken up, but more reliably accounted for. However, on tigstimation to reduce the cost computation.
downside, the heavy tail behaviour is more advantageous
to have on the pixel level, i.e., on the distribution of Recap, our parameter selection ferand A are found
neighbourhood features. Indeed, it is the distribution &fom the lowest mean square error from a several possible
neighbourhood features the one in which the edges frgiarch space. Therefore, we overcome this issue by
the image creates outliers. In turn, the multivariate Pearsdiplementing hold out estimation and cross validation.
MREF is a density on images. Hence, its heavy tail behavioblpld out and cross validation is a statistical method of
would be well suited to account for outlying or atypicafvaluating and comparing learning algorithms by dividing
images. Including both of these versions in our comparis@gta into two partitions: (i) one used to learn or train a
will therefore uncover to us which of these pros or con®odel and the remainder used to validate the model [9].

are more important for recovering quality high resolutioivalidation is done by estimating its minimum error of the
images. mean squared error on how likely is the observed gata,

with the modelWz.

Parameter Estimation Algorithm and Results

V. EXPERIMENTS AND DISCUSSION ]
For compressive measurements, we develop hold out

estimation in terms of reducing cost computation to recover

We present two set of a single frame image SUP@ie best solution. It is due of the variable itself that requires
resolution experiments llustrating the performance Gfiore computation to be done. Hence, it is sufficient to
the hyper-parameters for testing the Pearson prior. Weopose this method for random transformation. On the
compare the state of the art image priors such as Gaussigher hand, we implement k-folds cross validation for the
and Huber. The LR image is blurred by the unifrong|assical transformation because the structured is sparse
blur matrix of size 3x3, down-sampled by factor 4 andnd this made the algorithm faster to be executed. To
contaminated by standard deviation of Gaussian noise @fuce variability, five rounds of cross-validation are
0.001, 0.01, 0.05 and 0.1. All images are in size [100x108krformed using different folds, and the validation results
and the pixel intensities are scaled to interval [-0.5, 0.5}ye averaged over the rounds.
The initial guess is initialized with Gaussian-MRF with
o?/A set to 1 and was used as a starting point for the | kfold cross validation technique, the data set is
recovery algorithm in previous work [3]. randomly partitioned intd groups. The learning algorithm

is then trainedk times, using all the training set data point

In this paper, we address the issue of parameter selectjgg&ept those in thé'" group.Both form of the algorithms
in [3] and improved it by estimating’ and A. For this are described as follow in Algorithm 1 and 2. Indeed, in
automated estimation, we initialised with a product ahe approach described, the algorithm is less expensive and
the inverse transformation matrix and the low resolutiopyore precise search space is tested. Figure 2 presents the
We employed a conjugate gradient type methaghich yariation performance using proposed Algorithm 1. Then
requires the gradient vector of the objectives. followed by Algorithm 2 which applied 5-folds for classical

transformation. The performance of 3-dimensional among

IWwe made use of the efficient implementation available fronf A and MSE are illustrated in Figure 3 and 4.

http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/

A. Experimental Setting

(Advance online publication: 10 February 2011)
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Algorithm 1 : Hold out estimation

Algorithm 2 : k-fold cross validation for estimating and

1: Goal: To find optimal~ and A\ by training a model A
using the training data set and finding the minimum?: Goal: To find optimal» and A by training a model
error is found from the validation data set. using the training data set and finding the minimum
2: Inputs: training data, validation data, number kf error is found from the 5-folds cross validation.
groups,r and \ range, variance> 2: Inputs: training data, validation data, number kf
3: Outputs: optimal v, optimal A, optimal error(MSE) groups,v and A range, variance>
4: Randomize and divide data set into two groups: 5% fo3: Outputs: optimal v, optimal A, optimal error
validation and the remainder is used for training set. 4 Randomize and divide data set irkegroups.
5: for i =1 to length(v) do 5: for k =110 k — groups do
6: for j =1 to length(\) do 6:  validate = find(group==k)
7: Minimise with respect t@ using training set. 7. training = find(groupk)
8: Compute performance (error): mean((y(validate)-8:  for i =1 to length(v) do
w(validate)*z(training)J) 9: for j =1 to length()) do
o: Record the performance matrix error. 10: Minimize with respec to z using training set.
10: end for 11 Compute the performance found
11: end for using the k-th set: mean((y(validate)-
12: Find v and \ that belong with the minimum error. w(validate)*z(training)j)
13: Minimise with respect taz using the whole data set 12: Record the performance matrix error.

together with optimal, and \. 13: end for
14:  end for
15:  Report the mean error over dltest sets.
] ) 16: end for
To compare the performance fairly, this hold out;. gingy and) that belongs to the minimum 5-folds error
edimation is applied to all method image priors in this g e.

experiment. Here we test two different set of images ang,
size to find out the effectiveness of Pearson prior in those
two cases. In general, it is well known that no best image
prior can bests fit on every data. Nevertheless, these results

in Figure 3 do demonstrate that our method is competitive

with the state of the art on that type of data when othérr“thI ”T‘Z‘-?Je and t::e quposed Alggrltrllm Z.hThe S|gn|f|canc|:a

image priors are estimated automatically too. result indicates that this proposed algorithm perform we
without gaining access the true image when evaluating

Note that the loops need not completely converge. It EQio?/?arrforonf1i:cirlT:gcjﬂtli:(;?\atsli:rllgulgee;rgisf ntes ;c/f:le tl)r;:fde

sufficient to increase and not neccesaraily minimise t y P 9 yp

o L RF.

objective at each combination. Nevertheless, we observed

the final minimisation is converge faster by letting more

iterations once the algorithm used the optimal value o

v and \. Next, we estimate paramete usikgolds cross

validation as described in Algorithm 2 for the conventional

and complicated transformation matrix W.

: Minimize with respect toz using the whole data set
based on the optimal and \ found.

x10°

Classical W: [2601,10000]

= = =u—-PearsonVIl MRF

—— m-PearsonVIl MRF
Huber MRF

—— Gaussian MRF

4.6

4.5

&
IS

>
w

Our proposed algorithm for classical transformation
illustrates the performance result over 5-folds cros: § 2
validation in Figure 4. All the competing image priors 3 41
used this automated estimation and the comparison is :E A
find out how good is the Pearson prior when the paramet¢ &
estimation is no longer choose by the best manual selectic >
as presented work in [3]. These results are presented 2 :s
Figure 5 and we can see that the univariate Pearson ty)
VII based MRF can achieve state-of-the-art performanc
and give a competitive solution to Huber-MRF across the
four levels of noise.

[9]

ss validation

3.7

I L L L L 4
0.05 0.06 0.07 0.08 0.09 0.1

[9)

P
=" L I L
0.01 0.02 0.03 0.04

Fig. 5. Comparative MSE performance for under-determinesteny
We also observe how does this automated hypewsing cameraman image varying four level of noise. The best value

; : hyper-parameters for every image prior found using 5-folds cross
parameter estimation of our Pearson type VI based MF\\;/Eidation (cv) technique. The error bars are over 10 independent trials.

prior compare to these manual selections best results. FigH&grson prior maintain its good performance for every level of noise in
6 shows the best manual results with reference to the grousiths of mean square error (MSE).

(Advance online publication: 10 February 2011)



TAENG International Journal of Computer Science, 38:1, [JCS 38 1 07

v=0.1010, A=0.0010,error=7.94709 v=0.1510, A=0.0010,error=11.11751

20
19
18
17

16

error
error

15
14
13
12

11

(@) ’ A (b) ’ A

v=0.8010, A=0.0010, error=16.82572 v=0.9510, A=0.0010, error=29.82117

error
error

(©) ’ A (d)

Fig. 2. 3-dimensional plot varying, A ard its mean squared error with variance: (a) 0.005, (b) 0.01, (c) 0.05 and (d) 0.1 using random transformation

for data generation using cameraman image. Smaller noise shows a stable performance while higher noise performed inconsistently. However, both
optimal values are found in a smaller range. We see the error performance is increasing rapidly iwisearched from range 1 and its reaching the

stability performance.

5 Compressive W[4000,5600] 10” Compressive W[3000,10000]

T T T T
- @ -u-PearsonViIl - @ - u—PearsonVIl

asf : U |
—=— m-PearsonV| 15 —=—m-PearsonV|

Huber Huber
ar —p— Gaussian Il “I’ —p— Gaussian

131 *

1.2f

4 e
—@

L

(b)

Fig. 3. Comparative MSE performance for under-determinedesydor two different images and size (a)synthetic data, (b) real data varying four

level of noise using the best values of hyper-parameter for every image prior found using held out estimation. Once repetition shows that Pearson
prior is superior in higher noise(right), however it is vice versa for W[3000,10000]. For lower noise, Pearson prior achieves its best performance when
having less observation data in (b).
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v=0.0010,lambda=0.9510,err=0.00049 v=0.0010,lambda=0.9510,err=0.00049

error
5-folds error

(@) ’ 4y (b)

Fig. 4. Example of mean error over dltest sets (left) and mean and standard deviation over 5-folds repetition (right) for variance, 0.005 using
transformation matrix of blur and down-sampled version.

x10° True image Initial guess Recovered
T T T

;
—— manual selection v and A
—s— 5-folds cross validation

B True image Initial guess Recovered

MSE

)

4k : B =)

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Fig. 7. Example image recovery of 'cameraman’ (10000 pixeaisinf

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 . L\ .
o blurred and down-sampled to 2601 pixels and additive noise writh=

le-3

Fig. 6. Comparing the MSE performance of the fully automatear$te
type VII based MRF apparoch with the best MSE found by manual
selection of the hyper-parameters in previous work [3]. The error bafer parameter estimation is conceptually simple, automated

are over 10 independent trials where additive noise and the transformat ; ; ;
W was blurred and down-sampled. Note that the number of observation gﬁd easy to |mplement. The recovered image 1S always

manual selection is differ from automated estimation. W size for manug@Pnsistent although it has several local optima and we
selection previously used is [2500,10000] while the automated estimatiasses two set of images. Our motivation for Pearson-MRF
using 5-folds cross validation has [2601,10000]. Despite of having legs: ;
number of measurements, our proposed estimation still perform better th\%?ﬁor.ha.s b?en the.hea.Vy tail property of the Pearson type
the one with manual tuning with one of the parameter is fixed. -distribution, which indeed seems to be a good way
of preserving the edges too while imposing smoothness.
Future work is aimed towards recovering several images
from multiple scenes for under-determined system too.
VI. CONCLUSION

Compressive measurement and classical super resolution ACKNOWLEDGMENT
has been considered from a probabilistic model base . .

. P . dThe author would like to express her gratitude to School
framework. We tested this on both synthetic data anq . . . L2 .
: . . of Computer Science, University of Birmingham, United
real data in under-determined system. In this paper we . P -
. . . ngdom and Universiti Sains Islam Malaysia (USIM) for

formulated two versions of Pearson-MRF image priors, ar% e support and facilities provided
conducted a comparative experimental study between thesé P P ’
and state of the art methods of image prior from a single
noisy version of low resolution image. We demonstrate
that our proposed prior, univariate Pearson Type VII-MRF
is competitive with Huber-MRF in terms of qualitative
measurement mean square error. Our proposed algorithm
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