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Abstract—Nowadays, mining of the musical ensemble at-
tracts the interests in several aspects since the importance
of archiving traditional musical performance is emphasized.
However, there are very few of them which take into account
the Indonesian traditional instrument called Gamelan. While
western music perceives that good music is composed by
stable tones, the eastern music such as gamelan has freely
imposed tones in terms of resonance and tone color. Explo-
ration of the gamelan music is very rare, so its development
is far lagged to western music. The in-depth development of
gamelan music is needed to bring back the greatness of this
music like the one its era ((17th−18th century). This research
initiates gamelan sound extraction for music transcription as
part of traditional music analysis.

In this research we introduce a new method to generate
music transcription for gamelan. The spectral density model
is built to extract the sound of an instrument among the
others by using Adaptive Cross Correlation (ACC). The
experiment demonstrates 16% note error rate for gamelan
performance.

Index Terms—Time and frequency model, saron extrac-
tion, adaptive cross-correlation, automatic transcription.

I. INTRODUCTION

There are some differences between western music and
eastern music. Casey [1] provides an overview of the
advances of audio-based feature extraction and classifi-
cation methods applied to western music. In the present
paper, we address the difficulties of handling eastern
traditional music such as Gamelan. The main problem
with ethnic music is that it does not always correspond to
the western concepts that underlie the currently available
content-based methods [2]. While western music perceives
that good music is composed by stable tones, regulated
frequency, fixed amplitude, the eastern music such as
gamelan has freely imposed tone in terms of resonance,
tone color and amplitude or frequency [3]. Fewer and
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Fig. 1. The saron group from several gamelan sets.

fewer people cares about the traditional music, so that
its development is increasingly lagged to that of western
music. Gamelan still gets the stigma of being the art of
traditional music and stuck in the notion of preservation
of traditional arts. Therefore, gamelan sound in-depth
analysis is needed.

Gamelan is one of Indonesia’s traditional music which
its repetitive playing pattern is increasingly accepted by
international composers. Many world-class musicians have
already accepted eastern music concepts such as Bella
Bartok (Hungarian, 1923), Colin Mc Phee (U.S. 1930),
Backet Wheeler (U.S. 1960), Claude Achille Debussy
(French composer, 1910) [4].

Gamelan is constructed from about fifteen groups of
different instruments. Figure 1 shows saron group from
several gamelan sets. This instrument consists of only an
octave. Its pitched tone is pentatonic or heptatonic. Each
blade represents a gamelan notation. The other octave is
belonged by the other instrument. The instruments in a
gamelan set are played simultaneously, like the ones in an
ensemble. Gamelan notations are very simple, they consist
of 1, 2, 3, 5 and 6. Figure 2 shows a sample of gamelan
notations.

Gamelan is manually constructed by hand. Construc-
tors tune the instrument with their own sense based on
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Fig. 2. Sample of gamelan notation belongs to Mangkunegaran Palace,
17th century.

TABLE I
SARON FUNDAMENTAL FREQUENCY FROM SEVERAL GAMELAN SETS.

(c) Gamelan Fundamental Frequency (Hz)
saron set set set set

notation 1 2 3 4 Min Max
1 528 528 504 539 504 539
2 610 610 574 610 574 610
3 703 703 688 703 688 703
5 797 792 792 799 792 799
6 915 922 909 926 909 926
1’ 1056 1056 1008 1078 1008 1078
2’ 1220 1220 1148 1220 1148 1220

experience. As a result, fluctuation of frequency inside the
signal is not set correctly. The fundamental frequency of
gamelan instrument is slightly different from one gamelan
to the other gamelan. Table I shows saron fundamental
frequencies from several gamelan sets. Each notation has
varying frequency range.

Gamelan is played by striking the blades, so that sound
is basically impulsive [5]. Figure 3 shows the spectrum
of gamelan which varies very much due to the hardness
and the style of stroke although it still has the same
fundamental frequency.

Transcription is transforming an acoustic signal into a
symbolic representation[6]. In other words, transcription
of music is defined to be the act of listening to a music
recording and writing down the musical notation for the
sounds[7].

Many algorithms extracted an instrument sound from
the music performance using STFT. Barbancho et.al.[8]
used STFT and sliding windows to determine onset and
time duration of the signal. Rodger J McNab et.al. [9]
in their papers shifted slightly the threshold to determine
fundamental frequency. Extraction was carried out base
on amplitude and fundamental frequency. A median filter
was applied to the detection function to define a dynamic
threshold function, and a note onset was detected when-
ever. JP Bello et.al. [10] reported that for the synthesis
process on each frame, they used the harmonic combs of
estimated notes to isolate the relevant signal components.
They also created a database of an instrument sound for
diverse frequencies and filled the gaps of the database by
synthesizing an instrument sound for particular fundamen-

Fig. 3. The difference spectrum of the signal due to differences in
hammer stroke strength.

tal frequencies. In normalization process, the short time
Fourier transformation (STFT) was used by Barbancho
et.al. [8] and Rodger J McNab et.al. [9] to obtain the
fundamental frequency as well as time-frequency charac-
teristics. The frequency and amplitude information were
normalized according to the estimated fundamental fre-
quency. Previous researchers [8], [9], [10] analyzed MIDI
music or fabricated music instruments which are well
tuned and have well uniform signal envelopes.

The target of this paper is to analyze the acoustic
music such as gamelan. The complexity of the playing
style causes conventional automatic transcription is hardly
adopted. In this paper, the model of spectral density was
built for generating simulated saron sounds. These sounds
were used as sound reference on Adaptive cross correlation
(ACC)[11] to generate estimated saron waveforms (ex-
tracted sounds). The automatic transcription is established
by using the extracted sounds. Saron was chosen as the
target group of gamelan extraction due to the use of saron
notation as the basic notation for other instruments.

The remainder of the paper is organized as follows.
Section II first briefly reviews the previous works, most
related to our approach, which is short-time Fourier trans-
form (STFT). Section III describes Adaptive cross cor-
relation (ACC), an advanced cross-correlation algorithm
that utilizes variable window’s length and pitch shifting
methods, that is used to reduce the errors associated
with conventional music transcription. In this section we
describe also the spectral density model which is con-
structed for generating simulated saron sounds. Section
IV describes the performance evaluation. We show and
investigate various types of gamelan playing, such as
single synthetic gamelan, semi synthetic and gamelan
ensemble. For performance evaluation, the conventional
and our proposed methods are evaluated with our test data.
Section V concludes the paper.

II. CONVENTIONAL METHODS

The musical transcription can be done with many meth-
ods. The previous work, which is mostly related to our
approach is STFT. Each note signal has been extracted
from gamelan ensemble recording.

Other researchers such as Barbancho et.al., Rodger J
McNab et.al. used STFT and sliding windows to determine
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the onset and time duration of the signal. We had to make
some modifications on STFT for acoustic music sounds.
Modified STFT was applied for comparison with our
proposed method Adaptive Cross Correlation (ACC)[12]
[13]. Both methods, the STFT and the ACC, are evaluated
by using the same data, the sound of gamelan.

III. PROPOSED METHOD

In this paper, the model of spectral density was built
for generating simulated saron sounds. These sounds were
used as sound reference on Adaptive cross correlation
(ACC) to generate estimated saron waveforms. Adaptive
cross correlation (ACC) is an advanced cross-correlation
algorithm that utilizes various window’s length and pitch
shifting method which are used to reduce the errors as-
sociated with conventional music transcription. The ACC
algorithm is described in Fig. 4. The simulated saron sound
was applied as a reference signal on the cross correlation
process to form the magnitude of cross power spectrum
density.

Original gamelan sounds, x, were yielded by striking
the instrument with a hammer which was guided by the
original gamelan note, or. Signal x was compared with
the simulated saron sound, y, using the cross correlation
to form the cross spectrum density [14] [15]. Estimated
notes, es, were obtained from the cross spectrum density
by the fundamental frequency of each musical note and
were evaluated using note error rate, ner [16] [17]. Ner
was generated by the note insertion, note substitution and
note deletion. Simulated saron sounds were produced by
pitch-shifting method based on phase-vocoder theory [18].
Figure 5 shows three sides of tone database. The left-
hand side is the real database obtained from observation. It
leaves us with a database of a few detected notes and many

Fig. 4. Sound Extraction Based on Spectral Density Model using
Adaptive Cross Correlation.

Fig. 5. Gaps in the database were filled by pitch-shifting the estimated
notes.

gaps. The middle-hand side illustrates the pitch shifting
process where pre-recorded sound was brought to Saron6
frequency as the reference and take the average of the
spectrum of all shifted pre-recorded sounds. At the end,
the average spectrum was shifted back to all possible saron
frequencies to fill the gaps in the database on the right side.

Simulated saron sounds were organized in the database
according to their fundamental frequency f 0. The resulting
database was incomplete, i.e. did not contain waveforms
for all notes in the f0 range. To do pitch shifting, we
constructed a saron time-frequency model.

A. Time-Frequency Model based on the Spectral Density

To analyze gamelan performance, simulated saron
sounds are important for sound extraction. To construct
the simulated saron sound, we need a saron time fre-
quency model. The model was constructed from several
single strokes of saron sounds, called saron pre-recorded
sounds. The sounds are converted to time-frequency do-
main using STFT. The process continues by registering
the pre-recorded sounds as training data. Each label of
pre-recorded sound contains notation name, instrument
number, pre-recorded sound number b, and its fundamental
frequency estimation. We evaluate how to convert time
domain signal x(n) to frequency domain X(f) using
STFT which is described in Eq.(1)[8] [9],

STFT (x(n)) ≡ X(t, f)

=
N−1∑

n=0

x(n)w(n − t)e−i2πf/fs
n
N

(1)
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where f is frequency, fs is sampling frequency, t
is time index, w is window, n is sampling index, N
is total sampling. Due to gamelan characteristics, each
power density spectrum from the gamelan notes may
vary. Estimated fundamental frequency was obtained by
the maximum argument of the absolute value of the
spectrum as described in Eq.(2). Each pre-recorded sound
has instrument name, note number c, pre-recorded sound
number b and estimated fundamental frequency f 0,

f0b(t) = arg
max(f0(cb))max

f=min(f0(cb))
(|Xb(t, f)|) + min(cb) (2)

and magnitude of fundamental frequency, X(f 0b(t)), can
be described at Eg.(3),

X(f0b(t)) =
max(f0(cb))

max
f=min(f0(cb))

(|Xb(t, f)|) (3)

where f0b is the fundamental frequency of pre-recorded
sound b, c is note number, b is pre-recorded sound number.
See Table I. Maximum argument is the set of values
of f for which Xb(t, f) has the largest value. f is
located between the minimum min(f0(cb)) and maximum
max(f0(cb)) value of fundamental frequency in each
notation c. Normalized power density, XNb, is obtained by
absolute Xb(t, f) divided by X(f0b(t)) which is described
in Eq.(4),

XNb(t, f) =
|Xb(t, f)|
X(f0b(t))

(4)

In order to build the time frequency model, we used 450
pre-recorded sounds of saron instrument which consisted
of several combinations of hammer stroke strength, and
several combinations of hammer stroke areas. A standard
tone was selected for the pre-recorded sounds Saron6, the
sixth note of saron instrument. It was chosen as the stan-
dard tone for normalization [5]. In our previous research
[19], we evaluated a fundamental frequency relationship
among gamelan notes. The slendro gamelan scale used in
the Javanese gamelan has five equally-tempered pitches.
The model is made by shifting all fundamental frequen-
cies of pre-recorded sounds to the Saron6 fundamental
frequency [17]. The pitch shifting Δf06 was calculated
using Eq.(5), where f0b is the fundamental frequency of a
pre-recorded signal and f06 is the fundamental frequency
of ideal Saron6 as the reference tone. Based on the pitch
shifting Δfb, all frequency components were shifted by
same Δfb and the shifted signal should be added by Δfb

zero paddings. Note: ideal Saron6 fundamental frequency
f06 was obtained from the average of the sixth notation
fundamental frequency of saron instrument from several
gamelan sets,

Δfb(t) = f0b(t)− f06(t) (5)

where b is pre-recorded sound number, f0b is fundamen-
tal frequency of pre-recorded sound b and f 06 is the

fundamental frequency of Saron6. The model was made
by shifting all fundamental frequencies of pre-recorded
sounds to the Saron6 fundamental frequency [19]. The
non-harmonic components are shifted by Δf b which is
shown in Eq.(6),

X̂Nb(t, f) = XNb(t, f + Δfb(t)) (6)

where X̂Nb(t, f) is normalized shifted magnitude of pre-
recorded b. The Pitch shifting algorithm is shown in
Algorithm 1.

——————————————————————–
Algorithm 1: Pitch shifting.
——————————————————————–

1) b← 1; b is pre-recorded sound index
2) f0b is fundamental frequency of b
3) f ← 1; f is frequency index
4) Shifted the power spectrum density by Δfb using

Eq.(6)
5) f ← f + 1
6) repeat 4) until f ≤ F
7) b← b + 1; next pre-recorded sound

——————————————————————–
The time frequency model A(k, f) was determined by

averaging the power density X̂Nb(k, f) for all of pre-
recorded signals as shown in Eq. (7). In order to construct
the time frequency model A(k, f), we need to determine
the average power density spectrum of each frequency
index,

A(t, f) =
∑S

b=1 X̂Nb(t, f)
S

(7)

where S is total pre-recorded sounds.
The time frequency model is a discrete time frequency

model Eq.(11). The time frequency model can be seen
at Fig.6. The model is interpolated by using exponential
curve fitting in Eq.(8) for filling the time interval gaps.
Two parameters were added, α as amplitude and β as
exponential parameters. Eq.(17),

Fig. 6. Saron Time-frequency model.
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A(t, f) = α(f)eβ(f)t

log(A(t, f)) = log(α(f)eβ(f)t)
= log(α(f)) + log(eβ(f)t)
= log(α(f)) + β(f)t

(8)

If

A′(t, f) = log(A(t, f))

α
′
(f) = log(α(f))

A′(t, f) = α
′
(f) + β(f)t

(9)

Linear regression coefficient [20] shows that estimate
parameter α̂(f) and β̂(f) is calculated using Eq.(10) and
Eq.(11),

β̂(f) =
K

∑K
k=1 kA(k, f)

K
∑K

k=1 k2 − (
∑K

k=1 k)2

−
∑K

k=1 k
∑K

k=1 A(k, f)

K
∑K

k=1 k2 − (
∑K

k=1 k)2

(10)

α̂
′
(f) =

∑K
k=1 A(k, f)− β̂(f)

∑K
k=1 k

K
(11)

from Eq.(11)
α

′
(f) = log(α(f))

α̂(f) = eα̂
′
(f) (12)

Based on the time frequency model at Fig. 6, each
frequency has its envelope A(k, f),

Â(t, f) = α̂(f)eβ̂(f)t (13)

where Â(t, f) is estimated of envelope time frequency
model.

Table II shows the value of α(f) and β(f) for estimated
of envelope time frequency model Â(t, f). The refined
time frequency model can be seen at Fig.7.

The simulated saron sounds were synthesized saron
sounds which were organized in the database according
to their f0. The resulting database is expanded by gener-
ating previously unavailable synthetic sounds using time-
frequency model. The completeness of the database varies
depending on the sound and on the parameter set the
modified sounds are generated using Eq.(14),

x̂(t, f0) =
F∑

Δf=f+1

cos(2π(f0 + Δf)t/fs)Â(t, f0 + Δf)

(14)
We generate simulated saron sounds from f0 = 1,2,3 ....

F Hz.

TABLE II
PARAMETERS FOR ESTIMATION ENVELOPE TIME FREQUENCY MODEL

Â(k, f).

Frequency (Hz) α β
: : :

f0-4 0,2115 -0,5491
f0-3 0,2766 -0,5472
f0-2 0,4003 -0,5345
f0-1 0,7422 -0,5150
f0 1,1012 -0,5233

f0+1 0,8715 -0,5775
f0+2 0,5161 -0,6018
f0+3 0,3381 -0,5935
f0+4 0,2610 -0,5979

: : :

Fig. 7. Refined saron time-frequency model is interpolated by expo-
nential curve fitting.

B. Saron sound extraction for Automatic Transcription
using Template

To transcribe the gamelan music, saron sound wave-
forms were extracted from gamelan ensemble using adap-
tive cross-correlation is describe in Eq.(15). Simulated
saron sounds were used as the template for cross-
correlation to extract the saron sound. Figure 8 illustrates
the estimation process of saron note generating. Original
gamelan waveform is generated by striking gamelan in-
strument using original gamelan note.

r(t, n, f) =
1
J

J−1∑

m=0

x(t, m + n)x̂(m, f) (15)

where n is lag, J is the window’s length of the x and
x̂ . If f is frequency scanning from 1 to F Hz, r(n, f)
becomes the magnitude of cross power spectral density of
observed sound x(k). The estimated saron waveforms are
extracted from gamelan ensemble using range fundamental
frequency of each saron note, c,

p(t, c) =
max(f0(c))

max
f=min(f0(c))

(|r(t, n, f)|) (16)

where c= 1,2,3,5 and 6 are gamelan notes, p is estimate
of saron waveform based on the template. It is necessary
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Fig. 8. Estimated saron note generating.

to eliminate the noise using threshold. In gamelan perfor-
mance, each note may have different magnitude, so each
note may have its own threshold. The simplest way to
segment notes is to set a threshold 20%. These values
were achived through experiment. The candidate of the
notes are obtained by determining the peak of each sound.
Each note candidate has its note number, the magnitude
of cross power density and the onset.

All note candidates were sorted by the onset. More than
one note candidate, Saron1 and Saron1’, were evaluated at
the same time interval, 10 ms areas, to determine the note.
The real note was determined by the highest magnitude
among all sorted note candidates. Unfortunately, gamelan
had a lot of instrument groups. Besides saron group,
gamelan had fifteen groups. Both, saron and bonang, had
the same fundamental frequency but they had different

Fig. 9. Estimated Saron wafeforms for c= 1, 3, 5 and 1’.

Fig. 10. Estimated saron waveform influenced by bonang waveform.

timbre so bonang sounds influence the saron sounds.
They were detected as pulses which is shown in Fig.10.
Pulses were generated from other instrument like bonang.
To eliminate the pulse, the length of the sound J in
Eq.(15) was varied. Adaptive cross-correlation is applied
by varying the frequency f and the window’s length J .

IV. PERFORMANCE EVALUATION

A. The Gamelan Songs for Testing

We generated three types of gamelan sound for testing:

1) Full synthetic. The gamelan sounds were generated
by the computer. The ensemble were played by using
computer with gamelan note direction.

2) Semi synthetic. Each gamelan note was recorded
and the ensemble were played using computer with
gamelan note direction.

3) Full acoustic. Gamelan ensemble was played by
the players and was recorded. It was recordings
of gamelan ensemble performances which was con-
sisted of nine simultaneously played instruments. It
was 90 seconds of duration and it contained 129
original notes.

B. Automatic Transcription

In order to show the effectiveness of template matching
for automatic transcription, various types of playing, such
as single synthetic gamelan, mixture of three synthetic
gamelan, single semi synthetic, mixture of three semi
synthetic and gamelan ensemble were investigated. As the
basic automatic transcription, the cross-correlation method
was used. To evaluate the estimated generated notes, we
used the Note Error Rate [16] [17]. Recognition of error
rates were often reported at Eq.(17),
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Fig. 11. Note error rate ner against various windows lengths for STFT
and ACC methods.

TABLE III
PERFORMANCE OF SARON EXTRACTION FOR GAMELAN

TRANSCRIPTION BY CONVENTIONAL METHOD STFT AND ADAPTIVE

CROSS-CORRELATION (ACC) WITH MATCHING TEMPLATE.

Test Type Total Total 8192 ACC
notations instruments STFT

Full synthetic 30 3 0% 0%
Semi synthetic 30 1 4% 3%
Semi synthetic 30 3 5% 4%
Full acoustic 30 2 6% 4%
Full acoustic 30 2 8% 6%
Full acoustic 129 9 18% 16%

ner =
deletion + insertion + substitution

totaltruesentence
(17)

To evaluate sound extraction using STFT [8], [9], [10],
the sampling frequency was 48000 Hz. The fastest game-
lan beat time was 250 ms or 12000 samplings. In STFT,
we had to decide how frequent it was to perform DFT
computations on the sound. For evaluating the perfor-
mance, we varied window’s length. The result is shown
in Fig.11. The smallest ner occurred at 8192 window’s
length. The overall results, 8192 STFT was compared with
our proposed method ACC. Table III shows the results as
the ratio of ner.

The experiment results showed that instrument numbers
did not affect the performance of instrument extraction.
Two instruments, saron and bonang, were played simul-
taneously, the performance was not always better than
five instruments. Saron and bonang have the same f0, so
bonang influences the saron sounds.

V. CONCLUSION

In this study the Adaptive Cross Correlation (ACC)
method proposed for automatic notation of Saron instru-
ment. The performance test demonstrates the proposed
method provided 2 - 4 % improvement for analyze the
acoustic music such as gamelan comparing to conventional
method such as STFT.

The complexity of the playing style causes conventional
automatic transcription is hardly adopted. These results

show the effectiveness of template matching for picked
up specified instrument and for automatic tanscription.
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