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Abstract-- In this paper a new method based on a particle 
swarm optimization (PSO) algorithm for tuning the weighing 
functions parameters to design an H  controller is presented. 

The PSO algorithm is used to minimize the infinity norm of the 
transfer function of the nominal closed loop system to obtain 
the optimal parameters of the weighting functions. This 
method is applied to a typical industrial pneumatic servo 
actuator with system uncertainty and wide range of load 
variation to illustrate the design procedure of the proposed 
method. It is shown that the proposed method can simplify the 
design procedure of H  control to obtain optimal robust 

controller for pneumatic servo actuator system.   
 
Index Terms—Robust control, PSO, H  control, Pneumatic 

actuator, parametric uncertainty. 
 
 

I. INTRODUCTION 

H  is one of the best known techniques available 

nowadays for robust control. It is a method in control theory 
for optimal controller design. Basically, it is an optimization 
method that takes into consideration a strong definition of 
the mathematical way to express the ability to include both 
classical and robust control concepts within a single design 
framework. It is known that H  control is an effective 

method for attenuating disturbances and noise that appear in 
the system. It is one of the best techniques in linear control 
system. The “H” stands for Hardy space.  “Infinity” means 
that it is designed to accomplish minimax restrictions in the 
frequency domain. The H  norm of a dynamic system is 

the maximum amplification that the system can make to the 
energy of the input signal [1, 2].  
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One of the most important parts and a key step in the 
design of the H  controller is the selection of weighting 

functions and weighting gains for specific design problems. 
This is not an easy procedure and often needs many 
iterations as well as fine-tuning. Furthermore, it is hard to 
find a general formula for the weighting functions that will 
work in every case. Therefore, to obtain a good control 
design it is necessary to use suitable selected and tuned 
weighting functions [3]. 
  

In this paper, a method for the position control design of a 
pneumatic servo actuator system-using H  controller is 

presented. The PSO algorithm is used to find the optimal 
values of the parameters of the weighting functions that lead 
to obtain the optimal H  controller by minimizing the 

infinity norm of the transfer function matrix of the nominal 
closed loop system. The PSO method is used because of its 
simplicity and ease of implementation. The structured 
(parametric) uncertainty is considered in the design. 
 

II. Particle Swarm Optimization Algorithm (PSO) 

PSO is one of a powerful optimization method with high 
efficiency in comparison to other methods. It is a stochastic 
Evolutionary Computation technique based on the 
movement and intelligence of swarms. The PSO mechanism 
is initialized with a population of random solutions and 
searches for optima by updating generations. A swarm 
consists of N particles that are moving around in a D 
dimensional search space. Each particle keeps track of its 
coordinates in the space of the problem, which are 
associated with the best solution (best fitness) it has 
achieved so far. The best particle in the population is 
denoted by (global best), while the best position that has 
been visited by the current particle is denoted by (local 
best). The global best individual connects all members of 
the population to one another. That is, each particle is 
influenced by every best performance of any member in the 
entire population. The local best individual is seen as the 
ability for particles to remember past personal success. The 
particle swarm optimization concept involves, at each time 
step, changing the velocity of each particle towards its 
global best and local best locations. The particles are 
manipulated according to the following equations of motion 
[4,5, 6, 7]: 
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where k
iv  is the particle velocity, k

ix  is the current particle 

position, w  is the inertia weight, b
ix  and g

ix  are the best 

value and the global best value, rand is a random function 
between 0 and 1, 1c  and 2c  are learning factors. 

The PSO requires only a few lines of computer code to 
realize PSO algorithm. Also it is a simple concept, easy to 
implement, and computationally efficient algorithm [8, 9]. 
  

III. PNEUMATIC SERVO ACTUATOR MODEL 

Consider the pneumatic servo actuator system given in 
[10, 11]. This system is widely used in industrial 
applications because it is cheap, clean, lightweight, easy to 
maintain and it provides a high degree of compliance. On 
the other hand, it is difficult to achieve precise position for 
such systems because of the friction forces and the 
nonlinearity due to the compressibility of the air. Further, 
the variation in thermodynamic conditions causes an 
uncertainty in a number of model’s parameters. Therefore, it 
is a need to apply the robust control techniques to control 
such as systems. Fig. 1 shows the schematic diagram of the 
pneumatic servo actuator. The source of power used in this 
type of actuator is compressed air supplied to the jet pipe, 
and distributed between the two ways pneumatic cylinder as 
the jet pipe turns [12, 13]. The valve and actuator 
characteristics can be linearized about the operating point 
(nominal point) to yield the following fourth order linear 
model of the open loop system: 

)()()()()( sFsGsUsGsy ddpP                 (3) 

where 


















)
)(2

()()1(

2

)(
2

2

o

pas

o

ip

o

as
v

o

ps

p

MV

fALRT

MV

PA
s

MV

LRT

M

f
sss

MV

ART
K

sG





                                                                                                             

                                                                                            (4) 
and 


















)
)(2

()()1(

1

)(
2

2

o

pas

o

ip

o

as
v

d

MV

fALRT

MV

PA
s

MV

LRT

M

f
sss

MsG




                                                                                          

                                                                                            (5) 
                   
where py  is the piston displacement, u  is the valve input 

voltage, dF  is the disturbing load, K is the valve constant, 

pA  is the piston area, oV  is the air volume, v  is the valve 

time constant, R  is the gas constant,   is the specific heat 

ratio, sT  is the temperature, f  is the viscous friction 

coefficient. The nominal values of system parameters and 
their variation range are given in Table 1.  

The coefficient aL  is typically very small compared to 

other terms of the system and has a very small effect on the 
system performance. In particular, when under chocked flow 
conditions, aL =0. The maximum mass flow rate occurs 

under chocked flow conditions and the unchecked flow rate 

is bounded by the chocked flow rate. Also, since the 
dynamics of the control valve are much faster than the 
required response of the servo actuator, the relationship 
between control signal and valve can be approximated by a 
proportional gain as mentioned in [14, 15]. Fig. 2 shows the 
block diagram of the pneumatic servo actuator system. 

The frequency characteristic of the pneumatic actuator 
with all parameters uncertainty is shown in Fig. 3. These 
characteristics show that the system bandwidth decreases 
when the load increases, until the system becomes slower. 
Also the phase margin decreases when the load increases 
and this makes the system to oscillate and be unstable 
system.   

 
IV. H  CONTROLLER DESIGN WITH PARAMETRIC 

UNCERTAINTY 
The pneumatic servo actuator system can be represented 

as shown in Fig. 4. The parameters a, b and c can be 
assumed to be: 
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The three physical parameters a, b and c are unknown 

exactly, therefore, they can be assumed to be within the 
range of the system parameters in Table I, That is:  
 

)1( aa paa  , )1( bb pbb   and )1( cc pcc                                                                      

                                                                                        (7) 
 

where 5100664.0 a and 4101327.0   for small and 
wide ranges of load variation, respectively, 

4101295.0 b  and 01585.0c are the nominal values 

of a, b and c. ba pp ,  and cp  and ba  ,  and c  represent 

the possible perturbations on these parameters. In this work 
we let 99999991.0ap  and 999246.0  for the two ranges 

of load variation, respectively, 64.0bp , 174.0cp  and 

1,,1  cba  . Note that this represents up to 

99.999991% and 99.9246% uncertainty in the parameter a, 
64% uncertainty in the parameter b and 17.4% uncertainty 
in the parameter c. 

The three constant blocks in Fig. 4 have been replaced by 
block diagrams in terms of aapa ,, , etc., in a unified 

approach. The quantity )
1

(
a

 can be represented as an upper 

linear fractional transformation (LFT) in a  as: 
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Similarly, the parameters b and c can be represented as an 
upper LFT in b , and c  as: 
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Table I. The nominal system model parameters and their range 
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Fig. 3. Frequency response characteristics of the 
system with parameters uncertainty and wide range 

of load variation. 

Fig. 4. Block diagram of pneumatic servo actuator 
system with its main parameters 
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Fig. 5 shows the representation of uncertain parameters as 
LFTs. The relationship between the input signals, w the 
output signals, z can be expressed as [1]: 
 

wNNNNNFz u ])1([),( 12
1

112122
        (14) 

 
where N may represent aM  or bM  or cM  and   may 

represent a  or b  or c . The inputs and outputs of ba  ,  

and c  are denoted as cba yyy ,,  and cba uuu ,, , 

respectively, as shown in Fig. 6.  
 

The equations relating all inputs to corresponding outputs 
around the uncertain parameters can be obtained as: 
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where 
 

aaa yu  , bbb yu  , ccc yu                 (18) 

 
The system state space representation can be expressed as: 
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As a result, the following equations can be obtained: 
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The equations governing the pneumatic servo actuator 
system dynamic behaviour can be obtained as: 
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and  
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Let pG  denotes the input/output dynamics of the pneumatic 

system, which takes into account the uncertainty of 
parameters. pG  has four inputs ( uuuu cba ,,, ), four outputs 

( pcba yyyy ,,, ) and three states ( 321 ,, xxx ). 

The state space representation of pG  is [2]: 
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Fig. 6. Block diagram of the pneumatic system with 
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It is clear that the system matrix pG  has no uncertain 

parameters and depends only on cba pppcba ,,,,,  and on 

the original system parameters. The uncertain behaviour of 
the original system can be described by the upper LFT 
representation as: 
 

uGFy pup ),(                          (29) 

with diagonal uncertainty matrix   as shown in Fig. 7, 
where   is the unknown matrix, which is called the 
uncertainty matrix with fixed structure (structured 
uncertainty). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Bilinear Transform and Weighting Functions Selection 

Since the proposed system has jw-axis pole, the H  

controller, if it is reliably computed, would have a 
marginally stable closed loop pole at the corresponding jw-
axis location. This problem leads to singularities in the 
equations that determine the state space realization of H  

control law. Therefore, a simple bilinear transform has been 
found to be extremely useful when used with robust control 
synthesis. This transformation can be formulated as a jw-
axis pole shifting transformation [16]: 
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where 01 bp  and selected to be 0.1, 2bp  is selected to be 

infinity. This is equivalent to simply shifting the jw-axis by 

1bp  units to the left. The H  controller was obtained for 

the shifted system then it was shifted back to the right with 
the same units. 

The design requirements and objectives for pneumatic 
servo actuator system in this work is to find a linear, output 
feedback control )()()( sysKsu p , which ensures that the 

closed loop system will be internally stable. Also, the 
required closed loop system performance should be 
achieved for the nominal plant pG .  

To obtain a good control design, it is necessary to select 
suitable weighting functions. The performance and control 
weighting functions formulas that have been used in this 
work are [16]: 
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where   is the d.c. gain of the function which controls the 

disturbance rejection,   is the high frequency gain which 
controls the response peak overshoot, cw  is the function 

crossover frequency, 1  and 2  are the damping ratios of 

crossover frequency, bcw  is the controller bandwidth, uM  

is the magnitude of KS , and   is a small value.  
 

B. CONTROLLER DESIGN 
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Where dF  is the input disturbance signal, up ee ,  are the 

weighted error and control signals. Fig. 8 shows the standard 
feedback diagram of the system with weights. The 
generalized plant P is expressed by: 
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where u is the control signal. 

The lower linear fractional transformation of the 
generalized plant P and controller )(sK  can be described 

by: 
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KPF

du

dp
l ),(                         (34) 

The objective of H  control is to find the controller K(s) 

that internally stabilizes the system such that )(sTzw  is 

minimized [3]. Where zwT is the transfer function of the 

system from input w to output z and can be expressed as: 
 

     zwT =










KSGW

SGW

du

dp                     (35) 

The H  control minimizes the cost function in equation 

(35) using  -iteration [17] to find the stabilizing controller 

such that zwT . To find the optimal value of  , the 

PSO algorithm was used to tune the parameters of the 
selected weighting functions. The weighting functions have 
a significant effect on the overall design of H  control 

technique. 
The optimal value of   is the infimum overall   such 

that the H  control conditions are satisfied. A suboptimal 

H  controller was obtained using the following Matlab 

command: 

>> ),,,,,(inf],,[ maxmin tolnnPsynhTK uysuboptimalzw          

                                                                                    (36) 

where yn  and un  are the dimensions of py  and u, min  

and max  are the lower and upper bound for optimal  , and 

tol is the tolerance to the optimal value. 
The fitness function used in PSO algorithm is the 

performance criteria stated in equation (35). The algorithm 
obtains the minimum value of the infinity norm of the 
performance criteria from the search space that minimizes 
the objective function in equation (35). The following 
parameters have been used for carrying out the QFT 
controller design using PSO: 

i) The members of each individual in the PSO 
algorithm are  ,  , cw , 1 ,  2 , bcw , uM . 

ii) Population size equal to 100. 
iii) Inertia weight factor 2h . 

iv) 21 c  and 22 c . 

v) Maximum iteration is set to 100. 
The PSO steps for obtaining the optimal parameters of the 
proposed controller can be summarized as: 

1. Define the system model, )(sG p . 

2. Define the structure of up WW ,  according to 

equations (31) and (32). 
3. Initialize the individuals of the population 

randomly in the search space. 
4. For each initial of the population (vector of the 

parameters to be optimised), determine the fitness 
function in equation (35). 

5. Compare each value of equation (35) with its 
personal best ix . The best value among the ix  is 

denoted as g
ix . 

6. Update the velocity of each individual according to 
(2). 

7. Update the position of each individual according to 
(1). 

8. If the number of iterations reaches the maximum, 
then go to step 9, otherwise, go to step 4. 

9. The latest g
ix  is the optimal parameters of the 

weighting functions. 
The proposed PSO algorithm for obtaining the optimal 

values of the weighting functions parameters is described by 
the flowchart shown in Fig. 9. The overall block diagram of 
the system with PSO tuning algorithm is shown in Fig. 10. 

The interval for   iteration was selected between 0.1 and 

10. The obtained controllers for the two cases of load 
variation range, respectively, are:  
 

6523

52

10222.310422.27035

10203.36.598797.2
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


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                                                                                          (38) 
The optimal weighting functions parameters obtained with 

8559.0  using PSO algorithm are shown in Table II. 

 

V. RESULTS AND DISCUSSION 

Fig. 11 shows the singular values of the closed loop 
system with the controller )(sK . As is seen, the maximum 

value of the closed loop system is less than one, that is, the 

condition “ 1)1( 1 


KGW pp ” has been satisfied. This 

can be checked by computing the sensitivity function of the 
closed loop system and comparing it with the inverse of the 
performance weighting function as shown in Fig. 12. It is 
clear that the sensitivity function lies below the inverse of 

pW , which means that the performance criterion was 

satisfied. Fig. 13 shows the frequency response of the open 
loop uncertain system with the controller. From this plot, it 
can be seen that the minimum gain and phase margins that 
have been satisfied for the system with small and wide 
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ranges of load variation are 14.1 dB, 6.60  and 12.6 dB, 
9.55 , respectively. This means that the system is stable 

with all parameters uncertainty, that is, the robust stability 
has been satisfied. The time response characteristics of the 
closed loop nominal and uncertain systems are shown in 
Figs. 14 and 15, respectively. From these figures it can be 
seen that the time response specifications that have been 
achieved for the two cases of load variation range are: rise 
time=0.239 s, settling time (2%)=0.498 s, maximum 
overshoot=10% for the case of small range of load variation 
and rise time=0.573 s, settling time (2%)=1.18 s, maximum 
overshoot =11% for the case of wide range of load variation. 

The time response characteristic of the system subjected 
to disturbance is shown in Fig. 16.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It shows that the disturbance attenuation specifications 
have been met. For practical requirements, it is required that 
the control signal be small to avoid the problem of 
saturation. Fig. 17 shows the frequency characteristics of the 
control signal where a small magnitude maximum value has 
been obtained. However, for discretizing the system and the 
obtained controllers, the Zero-Order-Hold and Bilinear 
Transformation methods were used, respectively. With a 
sampling time, 02.0sT  s, the following discrete 

controllers for small and wide ranges of load variation were 
obtained, respectively: 
 

)5036.0371.1)(9187.0(

)706.0433.1)(1(004131.0
)(
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                                                                                          (40) 
Fig. 18 shows the discrete time response specifications of 
the controlled system. 

Fig. 9. Flowchart for tuning the weighting functions 
using PSO 

Fig. 10. Block diagram of the overall controlled system 

Table II. Optimal parameters of weighting functions 
 

Parameter Small range of 
load variation 

Wide range of 
load variation 

 90.5 60.5 

 0.01 0.01 

cw  5 4.93 

1  1.38 0.38 

2  8.12 8.1242 

bcw  10.7 1.7 

uM  1 1.00112 

K(s) Gp(s) 

Gd(s)  
 

dy  +   

       
       - 

pe

 
 

ue        
      

   Fd                        
                 
       - 
  +                    

               
              

PSO 
Tuning 

Algorithm

Wu(s) 

Wp(s) 

py

Start 

Initialize randomly the 
swarm  

(position x and velocity v) 

Initialize 
iteration, k 

Initialize swarm size, i 

Update position 
equation (2) 

Set the weighting 
functions then find the 

controller 

Evaluate the 
objective function 

equation (35) 

criteria 
satisfied

Set the best local 

swarm 
size 

Set the best 
global 

Update velocity 
equation (1)  

1

3 

                                       
                                               
                                               

                                      No 
 

 
                    Yes 

iteration 

The optimal values 
in global best 

End 

 
                     
                      k >          No       
                                                
                                     
 
 
                            Yes 

 
                
               
             i >         No       
                             
                                  
 
       
                      Yes

1 2

3

2

Define the system model, 

pG  

Define the structure of 

up W,W  according to 

equations (31) and (32) 

Construct the 
overall system 

Find K(s) by H  

optimization algorithm 
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Fig. 13. Frequency response characteristics of the 
uncertain controlled system a) in case of small range 

of load variation b) in case of wide range of load 
variation 

Fig. 12. Frequency characteristics of sensitivity 
function S and the inverse of the weighting function  
a) in case of small range of load variation b) in case 

of wide range of load variation 

(a) 

(b) 

Fig. 11. The largest singular Value of the closed loop 
controlled system  

a) in case of small range of load variation b) in case of 
wide range of load variation 

Fig. 14. Closed loop time response characteristics of 
the controlled system in case of small range of load 

variation a) nominal plant b) uncertain plant 
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Fig. 16. Time response characteristics of the closed 
Loop controlled system subjected to disturbance   

a) in case of small range of load variation b) in case of 
wide range of load variation 

Fig. 18. Discrete closed loop time response 
characteristics of the controlled system a) in 

case of small range of load variation b) in case 
of wide range of load variation 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
) 

Frequency (rad/s) 

10
-2

10
0

10
2

10
4

-100

-90

-80

-70

-60

-50

-40

-30

-20

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

M
ag

ni
tu

de
 (

dB
) 

Frequency (rad/s) 

(a) 

(b) 
Fig. 17. Frequency response characteristics of the 

control signal  
a) in case of small range of load variation b) in case 

of wide range of load variation 
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Fig. 15. Closed loop time response characteristics 
of the controlled system in case of wide range of load 

variation with structured uncertainty      a) nominal 
plant b) uncertain plant 
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VI. CONCLUSION 
In this paper, an H  controller was designed to assure 

robust stability and robust performance of the uncertain 
pneumatic servo actuator system with small and wide ranges 
of load variation. The H  controller was designed using 

structured (parametric) uncertainty to achieve robust 
stability and performance of the system. The two cases of 
load variation range have been considered in the design.  

Suitable formulas for performance and control weighting 
functions have been selected for controller design 
requirements. The particle swarm optimization algorithm 
(PSO) was used to tune the performance and control 
weighting functions by minimizing the infinity norm of the 
transfer function matrix of the nominal closed loop system. 
The use of the PSO method simplified the design procedure 
to obtain the optimal robust controller, which achieves the 
position control of the pneumatic servo actuator system.  

Further, it can be concluded that the H  optimal control 

is a powerful technique to design a robust control for the 
pneumatic servo actuator system with structured uncertainty 
and disturbances.  
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