
 
 

 

 
Abstract—Indexing technology is one of the kernel technologies 

in database management systems, especially for large datasets. 
XML (eXtensible Markup Language) has been successfully 
adopted as a universal data exchange format, particularly in the 
WWW environment. It is an important and basic task to 
efficiently implement XPath axes on XML documents. Using 
R*-tree, T. Grust proposed an interesting method to support all 
XPath axes. In this method, all of the nodes of an XML document 
are mapped to a point set in a five-dimensional space. T. Grust 
clarified the fact that each of the XPath axes can be implemented 
by a range query in the abovementioned five-dimensional space. 
Thus, R*-tree (one of the popular multidimensional indices) was 
used to improve the query performance for XPath axes. However, 
according to our investigations, most of the range queries for the 
XPath axes are partially-dimensional range queries. If the 
existing multidimensional indices are used for such range queries, 
a great deal of information that is irrelevant to the queries must 
also be read from disk. Based on this observation, a new 
multidimensional index structure, called Adaptive R*-tree 
(AR*-tree), is proposed herein to support the XPath axes more 
efficiently.  
 

Index Terms—databases, multidimensional range queries, 
multidimensional index, XML data. 
 

I. INTRODUCTION 

XML has been successfully adopted as a universal data 
exchange format, particularly in the World Wide Web, the 
problem of managing and querying XML documents poses 
challenges to database researchers. Although XML documents 
may have rather complex internal structures, they share the 
same data type underlying the XML paradigm: the ordered tree. 
Tree nodes represent document elements, attributes, or text 
data, while edges represent the element-subelement (or 
parent-child, ancestor-descendant) relationship.  

For the purpose of retrieving such tree-shaped data, several 
XML query languages have been proposed in the literature. 
Examples include XPath [2] and XQuery [3]. XQuery is being 
standardized as a major XML query language, and the main 
building block of XQuery is XPath, which addresses part of 
XML documents for retrieval [16]. For example, 
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"paragraph//section" is used to find all sections that are 
contained in each paragraph. Here, the double slash "//" 
represents the ancestor-descendant relationship. A single slash 
"/" in an XPath represents a parent-child relationship, for 
example "section/figure". 

In line with the tree-centric nature of XML, XPath provides 
operators to describe path traversals in a tree-shaped document. 
Path traversals evaluate a collection of subtrees (forests), which 
may then, recursively, be subject to further traversal. Starting 
from a context node, an XPath query traverses its input 
document using a number of location steps. For each step, an 
axis describes which document nodes (and the subtrees below 
these nodes) form the intermediate result forest for this step. 
The XPath specification [2] lists a family of 13 axes (among 
these the children and descendant-or-self axes, which may be 
more widely known by their abbreviations / and //, 
respectively). 

Generally, XPath expressions specify a tree traversal via two 
parameters: (1) a context node (not necessarily for the root) 
which is the starting point of the traversal, (2) and a sequence 
of location steps syntactically separated by /, evaluated from 
left to right. Given a context node, a step's axis (only one step 
of a regular XPath expression) establishes a subset of document 
nodes. This set of nodes, or forest, provides the context nodes 
for the next step, which is in turn evaluated for each node of the 
forest. The results are combined and sorted in document order. 
To illustrate the semantics of the XPath axes, Fig. 1 depicts the 
result forests for three steps along different axes taken from 
context node e (note that the preceding axis does not include 
the ancestors of the context node). Table Ⅰ lists all XPath axes.  

It is an important and basic task to efficiently implement 
XPath axes on XML documents. In work [1], the R*-tree has 
been successfully applied to implementing XPath axes and all 
of the XPath axes are support. In this work, each node of an 
XML document is labeled with a five-dimensional tuple. All of 
the nodes of the XML document are mapped to a point set in a 
five-dimensional space. Importantly, each of the XPath axes 
can be implemented by a range query on the above 
five-dimensional space. Thus, the R*-tree is helpful for 
improving the query performance of the range queries for 
XPath axes. This method has been proven efficient in [1]. 
However, according to our investigations, most of the range 
queries for the XPath axes are partially-dimensional range 
queries (i.e., the number of query dimensions in each of the 
range queries is less than five, although the R*-tree is built in a 
five-dimensional space). If the existing multidimensional 
indices (such as the R*-tree, which is used in [1]) are used for 
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such range queries, then a great deal of information that is 
irrelevant to the queries also has to be read from disk, which 
heavily degrades the query performance. Based on this 
observation, in the present study, a new multidimensional 
index structure, called Adaptive R*-tree (AR*-tree), is 
proposed in order to support XPath axes more efficiently. The 
discussions and experiments with various datasets indicate that 
the Adaptive R*-tree is better suited to XML documents, 
especially large documents. 

In the remainder of the present paper, Section 2 presents a 
number of related studies, and observations are presented in 
Section 3. Section 4 presents the proposed method, a new index 
structure for XPath axes, including its structure and a search 
algorithm. The experimental results are presented in Section 5, 
and Section 6 presents a further discussion. Section 7 
concludes the present paper and describes future research. 

 
 
 
 
 
 
 
 
 
 

 
Ancestor nodes of e                              Preceding nodes of e 

 
 
 
 
 
 
 
 
 
 
 
 

                              
Descendant nodes of e 

 
Fig. 1  Example of XPath axes (circled nodes are result elements). 

 

II. RELATED STUDIES 

The concept of regular path expressions dominates this field 
of research [4, 5, 6, 7, and 18]. One study [4] presented an 
index over the prefix-encoding of the paths in an XML 
document tree (in a prefix-encoding, each leaf l of the 
document tree is prefixed by the sequence of element tags 
encountered during a path traversal from the document root to 
l). Since tag sequences share common prefixes in such a 
scheme, a variant of the Patricia-tree is used to support lookups. 
Clearly, the index structure is tailored to respond to path 
queries that originate in the document root. Paths that do not 
have the root as the context node need multiple index lookups 

or require a post-processing phase (as does a restoration of the 
document order in the result forest). In [4], refined paths are 
proposed to remedy this drawback. Refined paths, however, 
have to be preselected before the index loading time. 

Table Ⅰ All XPath axes. 
Axis Result 
child Direct element child nodes of the context 

node 
descendant All descendant nodes of the context node
descendant-or-self Like descendant, plus the context node 
parent Direct parent node of the context node 
ancestor All ancestor nodes of the context node 
ancestor-or-self Like ancestor, plus the context node 
following Nodes following the context node in 

document order 
preceding Nodes preceding the context node in 

document order 
following-sibling Like following, same parent as the 

context node 
preceding-sibling Like preceding, same parent as the 

context node 
attribute Attribute nodes of the context node 
self Context node itself 
namespace Namespace nodes of the context node 
 
The T-index structure, proposed by Milo and Suciu in [6], 

maintains (approximate) equivalence classes of document 
nodes, which are indistinguishable with respect to a given path 
template. In general, a T-index does not represent the entire 
document tree, but rather only those document parts relevant to 
a specific path template. The more permissive and the larger 
the path template, the larger the resulting index size is. This 
allows space to be traded for generality. However, a specific 
T-index supports only those path traversals matching its path 
template (as reported in [6], an effective applicability test for a 
T-index is known for a restricted class of queries only).  

There is other related work that is not directly targeted at the 
construction of index structures for XML. In [8], the authors 
discuss relational support for containment queries. In particular, 
the multi-predicate merge join (MPMGJN) presented in [8] 
would provide an almost perfect infrastructure for the XPath 
accelerator. MPMGJN supports multiple equality and 
inequality tests. The authors report an order of magnitude 
speed-up in comparison to standard join algorithms. 

Another study [1] (and its extended version [18]) 
successfully adopted a multidimensional index structure in 
processing XML queries. In this previous study, an XPath 
accelerator was proposed that can completely live inside a 
relational database system, i.e., the structure is a relational 
storage structure in the sense of [10]. The implementation of 
the proposal in [1] benefits from advanced index technology, 
namely, the R-tree, which has by now found its way into 
mainstream relational database systems. The approach in [1] 
was developed with a close eye on the XPath semantics and it is 
able to support all XPath axes. 

The main contributions of [1] are that (1) this study proposed 
a five-dimensional descriptor (labeling schema) for each node 
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of the XML document, (2) this study clarified that, using this 
labeling schema, each of the 13 XPath axes can be mapped to a 
range query in the five-dimensional descriptor-space, and (3) 
the range queries for XPath axes were implemented using the 
R*-tree. 

In this paper, based on the abovementioned previous study 
[1], we will (1) present our observations on the range queries of 
XPath axes, and (2) according to the features of these range 
queries, present a new index structure (in place of the R*-tree) 
to further improve the query performance of XPath axes. Since 
the present study is based on [1], the key concept of [1] is 
described below. 

A.  Labeling schema and mapping XPath axes to range 
queries 

Each node v of an XML document is represented by the 
following five-dimensional descriptor: 

 
desc(v)=<pre(v), post(v), par(v), att(v), name(v)>, 
 
where pre(v) and post(v) are the preorder and postorder of v, 

respectively. par(v) is the preorder of the parent node of v. 
att(v) is a Boolean value indicating whether v is an attribute 
node. Finally, name(v) is the name of v. In this way, all of the 
nodes in an XML document can be mapped to a set of points in 
the five-dimensional descriptor space (or labeling space). 

 
 

 
 
 
 
 
 
 
 

 
Fig. 2  Four XPath axes in two-dimensional space. 

 
As others have noted [5, 8, 11], pre(v) and post(v) can be 

used to efficiently characterize the descendants v' of v. We have 
that 

 
  v' is a descendant of v 
                 pre(v')>pre(v)  post(v') < post(v)                    (1) 
 
In the same way, we have that 
 
v' is a ancestor of v 
                 pre(v')<pre(v)  post(v')>post(v)                      (2) 
v' is a preceding node of v 
                 pre(v') < pre(v)  post(v') < post(v)                  (3) 
v' is a following node of v 
                 pre(v') > pre(v)  post(v') > post(v)                  (4) 

 

 
According to the above four equations, we can see that the 

four XPath axes of descendant, ancestor, preceding, and 
following can be mapped to range queries in the 
two-dimensional space of preorder/postorder, which is shown 
in Fig. 2. With the help of the other items in the 
five-dimensional descriptor, the other XPath axes can also be 
mapped to range queries. Table Ⅱ presents the ranges of all the 
XPath axes. As in [1], the two axes of self and namespace are 
omitted because they are so simple. 

Table Ⅱ  XPath axes and their ranges in descriptor space 
(v is the context node). 

XPath 
Axes 

ranges in descriptor-space 
pre post par att name

child   pre(v) F * 
descendant (pre(v),) [0, post(v))  F * 
descendant
-or-self 

[pre(v),] [0, post(v)]  F * 

parent 
[par(v), 
par(v)] 

   * 

ancestor [0, pre(v)) (post(v), )   * 
ancestor-or
-self 

[0, pre(v)] [post(v), )   * 

following (pre(v),) (post(v), )  F * 
preceding [0, pre(v)) [0, post(v))  F * 
following-s
ibling 

(pre(v),) (post(v), ) par(v) F * 

preceding-
sibling 

[0, pre(v)) [0, post(v)) par(v) F * 

attribute   pre(v) T * 

 

B. Implementation of range queries using R*-tree 

Since all of the XPath axes can be mapped to range queries 
in the five-dimensional descriptor-space, the R*-tree (used in 
[1]) seems helpful for improving the range query performance. 
Since we will propose a new structure to further improve the 
range query performance, the R*-tree is briefly reviewed here. 

The R*-tree [12] is a hierarchy of nested multidimensional 
MBRs. Each non-leaf node of the R*-tree contains an array of 
entries, each of which consists of a pointer and an MBR. The 
pointer refers to one child node of this node and the MBR is the 
minimum bounding rectangle of the child node referred to by 
the pointer. Each leaf node of the R*-tree contains an array of 
entries, each of which consists of an object identifier and the 
object itself (for point-object datasets) or its MBR (for 
extended object datasets). In the present paper, the object and 
tuple are used interchangeably. In the R*-tree, the root node 
corresponds to the entire index space and each of the other 
nodes represents a sub-space (i.e., the MBR of all of the objects 
contained in this region) of the space formed by its parent node. 
Note that, each MBR in the R*-tree nodes is denoted by two 
points. One is the lowest vertex with the minimum coordinate 
in each axis and the other is the upper-most vertex with the 
maximum coordinate in each axis. When the R*-tree is used for 
a range query, all of the nodes intersecting the query range are 
accessed and their entries must be checked.  

v 
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ancestor following 
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III. OBSERVATIONS 

From the abovementioned Table Ⅱ, we can observe that 
most of the query ranges of XPath axes use only partial items of 
the five-dimensional descriptor. For example, the child axis 
uses only par and att and the parent axis uses only pre. In the 
present paper, the range queries that use only some (rather than 
all) of the dimensions of the entire space are called 
partially-dimensional range queries (denoted as PD range 
queries). In contrast, the range queries that use all dimensions 
of the entire space are called all-dimensional range queries 
(denoted as AD range queries). 

Note that all of the existing multidimensional indices are 
designed to evaluate AD range queries because all of the 
objects are clustered in the leaf nodes according to their 
information in all index dimensions and every node contains 
the information of its entries in all of the index dimensions. 
Actually, they can also evaluate PD range queries as follows. 
Using one n-dimensional index in the entire n-dimensional 
index space, one PD range query using d (d < n) query 
dimensions can be evaluated by simply extending the query 
range in each of the (n-d) irrelevant index dimensions to the 
entire data range.  

However, a disadvantage of using all-dimensional indices 
for PD range queries is that each node of the index contains 
n-dimensional information, but only d-dimensional 
information is necessary for a PD range query using only d (d < 
n) dimensions. This means that a great deal of unnecessary 
information, i.e., the information in the irrelevant dimensions, 
also has to be read from disk, which degrades the query 
performance. In other words, the irrelevant information in the 
index nodes decreases the capacity (fanout) of each node. 
Directing against this disadvantage and considering that most 
of the query ranges of XPath axes are PD range queries, a new 
index structure for indexing XML data is proposed in the 
present paper.  

IV. NEW STRUCTURE: THE AR*-TREE 

According to the features of the range queries for XPath axes, 
the Adaptive R*-tree (denoted as AR*-tree) is proposed in 
order to improve the performance of such range queries.  

A. Structure 

The key concept of the AR*-tree is to divide each of the 
n-dimensional R*-tree nodes into n one-dimensional nodes 
(these n one-dimensional nodes form a node-group), each of 
which holds the information in one dimension, while each node 
of the R*-tree holds the information in all of the index 
dimensions. The general structure of the AR*-tree is depicted 
in Fig. 3.  

Whereas each entry in R*-tree nodes includes the MBR 
information in all of the dimensions, each entry in the nodes of 
the AR*-tree includes only one-dimensional information. In 
each node-group, each set of entries having the same index 
(location) and distributed in different nodes forms an entry of 
node-group, which corresponds to a complete MBR. Each 
entry of each node in one node-group corresponds to an edge of 

the MBR, whereas each of the entries in the index nodes of the 
R*-tree corresponds to a complete MBR. 

Fig. 4 shows the structure of the AR*-tree node-group. All of 
the entries with the same index in the n nodes of this 
node-group form a complete n-dimensional MBR in the index 
space. Whereas each entry in the R*-tree nodes includes MBR 
information in all of the dimensions, each entry in the nodes of 
the AR*-tree includes only one-dimensional information. The 
term entry of node-group is used hereinafter, which refers to 
the set of entries having the same index distributed in all of the 
different nodes of one node-group. One entry of each index 
node-group corresponds to a complete MBR in the index space. 
In Fig. 4, all of the entries in an ellipse form a complete entry of 
the node-group, which is a complete MBR in the entire index 
space. 

 

 
 

 
 

 
 

Fig. 4  Structure of AR*-tree node-group. 
 

Fig. 5 is an example of entries in a node-group of the 
AR*-tree in a two-dimensional index space. In this example, 
each complete MBR is divided into two parts, which are 
separately contained in two nodes of one node-group. For 
example, Xentryi and Yentryi in Fig. 5 correspond to the two 
edges of MBRi paralleling the X-axis and the Y-axis, 
respectively. That is, Xentryi + Yentryi = MBRi. 

The question then arises as to whether the total number of 
nodes in the AR*-tree becomes n times that in the R*-tree, 
because each node of the R*-tree has been divided into n nodes. 
However, this is not the case. The maximum number of entries 
in each node of the AR*-tree is up to approximately n times 
that in the R*-tree because the dimensionality of each node in 
the AR*-tree becomes 1. The structure of the AR*-tree 
guarantees that it can be applied to PD range queries with any 
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Fig. 3  General structure of AR*-tree.
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combinations of the query dimensions and that only the 
relevant one-dimensional nodes are visited. 

The main advantage of the AR*-tree over the R*-tree 
(all-dimensional index) is that, for PD range queries, only the 
relevant nodes of the accessed node-groups need be visited, 
and the other nodes, even though they are in the same 
node-groups, can be skipped. That is, the information in the 
irrelevant dimensions (the dimensions that are not used in the 
present query) need not be read from disk. However, in the 
R*-tree, the information in all of the index dimensions is 
contained in each R*-tree node, but only information in the 
query dimensions are necessary for PD range queries, which 
means that a great deal of irrelevant information has to be 
loaded from disk, and this degrades the search performance, 
especially for large datasets.  

 

 
Fig. 5  Example in a two-dimensional space. 

 

B. Algorithms of the AR*-tree 

The insert algorithm of the AR*-tree is a naive extensions of 
the counterparts of the R*-tree. After the new tuple reaches the 
leaf node-group, it is divided and stored in different nodes of 
the leaf node-group according to dimension. If a node-group 
must be split, then all of its nodes must be split at the same time 
and the split may be up propagated. After a delete operation, if 
the node-group under-flowed, then all of its nodes should be 
deleted at the same time and all of its entries are reinserted to 
the AR*-tree. That is, all of the nodes in each node-group must 
be born simultaneously and die simultaneously. 

A range query algorithm for the AR*-tree, which can be used 
for AD range queries and PD range queries, is shown in Table 
Ⅲ. 

 
Table Ⅲ  Algorithm for range queries on the AR*-tree. 

Procedure RangeQuery (rect, node-group)  
Input:    rect:  query range 

node-group:  initial node-group of the query 
Output:  result:  all the tuples in rect 
Begin 
For each entry e in node-group Do 

If e INTERSECT rect in all query dimensions Then 
If node-group is not at leaf Then 

RangeQuery (rect, e.child);   
//e.child means the child node-group of e 

Else result e 
EndFor 
End 

Note that 
1)  An entry in a node-group includes all of the parts with the 

same index in the different nodes of this node-group, i.e., all of 
the parts in one ellipse in Fig. 4. 

2) When an entry is checked to determine whether it 
intersects the query range or not, only the nodes in the query 
dimensions are accessed and the other nodes in the current 
node-group are skipped. EVEN, not all of the nodes in the 
query dimensions need to be checked, because the 
investigation of the current entry can be stopped if the entry is 
found not to intersect the query range in the current query 
dimension.  

Starting with the root node-group, each entry of the current 
node-group must be checked to determine whether its MBR 
intersects the query range or not. If its MBR intersects the 
query range and the current node-group is not at the leaf level, 
then this algorithm is invoked recursively with the 
corresponding child node-group. Note that, when each entry of 
the current node-group is checked, (1) not all of the nodes in 
the current node-group have to be accessed (such irrelevant 
nodes are skipped), and (2) in each of the visited node-groups, 
not all of the nodes in the relevant dimensions (query 
dimensions) must be visited. That is, after the current entry is 
found not to intersect the query range in the 
present-investigating dimension, further checks are not 
necessary. An example is shown in Fig. 6. 

 

 
Fig. 6  Example of a four-dimensional AR*-tree node-group. 

 
In the example in Fig. 6, three dimensions, d1, d3, and d4 of 

the four index dimensions are used in the present query, and the 
node group shown in Fig. 6 is visited. Each of the entries (an 
MBR) in this node-group is investigated edge by edge to decide 
whether it intersects the query range. Since all of the 
investigations of the entries stopped before the investigation of 
the node d4, the node d4 can be skipped, although d4 is one of 
the query dimensions.  

The example in Fig. 6 also indicates that, even for AD range 
queries, the AR*-tree probably has better query performance 
than the R*-tree. Although, intuitively, it may seem that all of 
the nodes in the visited node-groups have to be accessed for 
AD range queries, this is not true. Another example in a 
three-dimensional index space is shown in Fig. 7. 

In Fig. 7, clearly, the current query is an AD range query. 
Since the MBR of the current node-group intersects the query 
range, the entries (the dotted cuboids) of this node-group 
should be investigated. Since all of these entries do not 
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intersect the query range in the X-Y plane, the Z-axis need not 
be checked. That is, the node corresponding to the Z-axis in this 
node-group can be skipped, and the information in the Z-axis in 
this node-group need not be read from disk. Note that, if the 
X-Z plane is checked first, the node corresponding to the 
Y-axis can be skipped. More importantly, for the 
higher-dimensional spaces, since the MBRs (entries) in each 
node-group become increasingly sparse, it generally becomes 
possible to skip more nodes in the visited node-groups. This 
means that, in the visited node-groups, the information in one 
or more dimensions may not need to be read from secondary 
storage, even for AD range queries. In contrast, for the R*-tree, 
the information corresponding to all of the dimensions in the 
visited nodes must be read from disk. Thus, even for AD range 
queries, the AR*-tree probably has better query performance 
than the R*-tree.  
 

  
 

Fig. 7  Example of AD range queries in a three-dimensional space. 
 

C. Discussion on Search Performance 

In this section, under the assumption of uniformity, the 
performance of the AR*-tree for PD range queries is examined 
mathematically by comparing the performance of the AR*-tree 
with that of the R*-tree. That is, the tuples (objects) are 
assumed to be distributed uniformly in the index space. The 
number of accessed leaf nodes is estimated and compared since 
it is an important factor with regard to query performance [13], 
particularly for large datasets. The symbols used in this section 
are described in Table Ⅳ. 

In the case of the R*-tree, the average number of leaf-node 
accesses (i.e., the number of leaf nodes intersecting the query 
range), Rl, can be given by 

 

.
l

N
S

q
S

l
R 

 
 

If the AR*-tree is used, the average number of leaf node 
groups intersecting the query range, ARg, can be given as  

 

gN
S

qS

gAR  . 

 
Since the node sizes of the R*-tree and the AR*-tree are the 

same (one node one page), the maximum number of entries in 
each leaf node of the AR*-tree is roughly n times that in each 

leaf node of the R*-tree. This is easy to understand considering 
that the dimensionality of each leaf node in the R*-tree is n 
times that in the AR*-tree. That is, only one-dimensional 
information of each entry is contained in each node of the 
AR*-tree, while n-dimensional information of each entry is 
required in every node of the R*-tree. In addition, considering 
that the clustering algorithms (insert algorithms) of the R*-tree 
and the AR*-tree are the same, we have 

 

ngM
rM

lN

gN 1
 . 

Table Ⅳ  Symbols and their descriptions. 
n Dimensionality of the entire index space 
d Number of query dimensions 
S Volume of the entire index space 
Sq Volume of the extended query range of the PD range 

query 
Mr Maximum number (capacity) of entries in each leaf node 

of the R*-tree (see [3]) 
Mg Maximum number (capacity) of entries in each leaf 

node-group of the AR*-tree 
Nl Number of leaf nodes in the case of the R*-tree 
Ng Number of leaf node-groups in the AR*-tree 

 The extended query range of one PD range query refers to the 
n-dimensional range obtained by extending the d-dimensional 
given query range in the way that the query ranges in the 
unused (n-d) dimensions are regarded as their entire data 
ranges. 
 

In each accessed node-group, at most d nodes are visited for 
each d-dimensional PD range query. Thus, the number of leaf 
nodes (not the node-groups) that must be visited, ARl , can be 
given by 
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The last equation indicates that, for PD range queries with d 

< n, the number of accessed leaf nodes in the case of the 
AR*-tree is less than that in the case of the R*-tree. If d = n, 
then the number of accessed leaf nodes may be approximately 
the same and it is also possible that ARl < Rl. More importantly, 
for a fixed n, the lower the number of query dimensions, d, the 
bigger the advantage of the AR*-tree compared to the R*-tree.  
This equation can be explained as follows. Since the capacity 
of each leaf node-group in the AR*-tree is roughly n times that 
of each leaf node in the R*-tree, the number of accessed leaf 
node-groups in the AR*-tree is approximately 1/n times that of 
the accessed leaf nodes in the R*-tree. However, in each of the 
accessed leaf node-groups of the AR*-tree, at most, d nodes 
must be visited.  That is, although this query is relevant to d 
dimensions, the investigation of the current entry may stop 
midway if this entry does not intersect the query range in the 
current dimension.   

Y 

query range 

Space (MBR) corresponding to the current 
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Note that the above equations are only rough estimations.  

V. EXPERIMENTS 

A. Experiment Process 

The procedure of the experiments performed in the present 
study is shown in Fig. 8. 

XML documents. The XML documents used in the 
experiments are generated by XMLgen [17], an easily 
accessible XML generator, which is developed for the Xmark 
benchmark project [14]. Using XMLgen, the three documents 
shown in Table Ⅴ were generated and used. In this table, 
XMLgen factor was given as a size factor to control document 
sizes. 

 

 
Fig. 8  Experimental procedure. 

 

 Table Ⅴ  XML documents used in the experiments. 
 
 
 
 
 
 
 
 

Reader. Based on Libxml2 [15] which is an XML C parser 
and toolkit, we built a loader to obtain one accel table 
(described in the next paragraph) for each XML document, 
which is used to build the indices. Since the XML documents 
have a total of 77 different node names, all of the possible node 
names are encoded from 0 to 76 in order to be handled by the 
indices. 

Accel table. Each tuple of the accel table is the 
five-dimensional descriptor of one node of an XML document. 
As mentioned above, all of the node names are encoded from 0 
to 76. The accel table is directly used to build the R*-tree and 
the AR*-tree. 

Building indices. An R*-tree and an AR*-tree are 
constructed for the accel table of each XML document. The 
node size is set to 4,096 bytes.  

Performance test. We assume that the multidimensional 
index is disk-resident, which is reasonable for large datasets. 
Thus, the query performance is tested in terms of the number of 
node accesses. Except for the three XPath axes of self, attribute, 
and namespace (they are too simple, and the performance 

difference between the R*-tree and the AR*-tree could not be 
shown clearly), the query performance of all of the other 10 
XPath axes are tested using the R*-tree and the AR*-tree, 
respectively. By comparing the query performance of the 
XPath axes on the R*-tree and the AR*-tree, we will determine 
whether the R*-tree or the AR*-tree is better suited to XPath 
axes. 

B. Experimental results 

The experimental results are shown in Tables Ⅵ~Ⅷ. The 
context nodes for different XML documents are chosen 
independently. That is, the same XPath axis may be tested with 
different context nodes for different data documents. For the 
sake of comparison, all of the tests on the R*-tree and the 
AR*-tree for the same XML documents used the same context 
nodes.  

From the experimental results, we can obtain the following 
observation. Except for the XPath axes of ancestors (including 
ancestor-or-self) and preceding-sibling, for which the 
advantage of the AR*-tree is not shown very clearly, the 
AR*-tree clearly performs better than the R*-tree for the other 
seven XPath axes. As mentioned in Section 1, the query 
performance of XPath axes is very important, because the main 
building block of XQuery is Xpath, and XPath expressions 
consist of a sequence of XPath axis operations, which are 
evaluated from left to right. Moreover, each step of an XPath 
expression (one XPath axis operation) often obtains a great 
number of intermediate results, which means that the 
evaluation of one XPath expression may require a great number 
of XPath axis operations. Thus, any improvement in the query 
performance of XPath axes will be significant.  

Table Ⅵ  Experiment results. 
Documents 
size(MB) 

parent ancestor descenden following

5.5
R* 10.3 13.3 749.0 1420.0

AR* 4.4 12.9 582.1 1095.2

11.1
R* 11.6 17.8 1507.2 2700.3
AR* 6.4 14.5 1163.0 2072.2

22.4
R* 13.5 19.3 2995.6 5705.6
AR* 7.0 15.4 2304.6 4375.1

113.8
R* 25.7 31.7 6236.3 9678.5
AR* 13.0 23.3 4556.9 7612.6

 

Table Ⅶ   Experiment results. 
Documents size 
(MB) 

preceding following-sibling child 

5.5
R* 1186.2 485.1 484.2
AR* 973.4 338.3 116.0

11.1
R* 1641.3 493.2 1200.4
AR* 1321.0 353.0 230.5

22.4
R* 2972.0 1030.5 1848.3
AR* 2323.6 680.4 439.4

113.8
R* 5346.7 3100.2 3996.2
AR* 4952.1 1932.1 1509.1

Document 
size [MB] 

Number of nodes XMLgen 
factor 

5.5 103,135 0.05
11.1 206,130 0.10
22.4 413,108 0.20

113.8 1,666,316 1.00

accel tables 

R*-tree 

XML  
documents 

Reader 

Performance 
 test 

 

AR*-tree 
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Table Ⅷ  Experiment results. 
Document 
size (MB) 

preceding-sibling
descendent-

or-self 
ancestor-or-

self 

5.5 
R* 22.6 749.0 13.3
AR* 21.1 582.1 12.9

11.1 
R* 17.8 1507.2 17.8
AR* 17.7 1163.0 14.5

22.4 
R* 21.9 2995.6 13.3
AR* 18.0 2304.6 12.4

113.8 
R* 32.3 5693.3 29.2
AR* 25.6 4973.1 19.4

 

VI. HOW ABOUT MULTI-BTREE? 

Another naive approach to handling PD range queries is 
based on the B-tree, herein referred to as multi-Btree. In this 
approach, one B-tree (or a variant thereof) is constructed in 
each index dimension, using the projections of the objects 
(tuples for relational data). For PD range queries, the 
corresponding B-trees are used individually and their results 
are intersected to obtain the final query result. In total, n B-trees 
should be constructed in advance for an n-dimensional index 
space. 

 

 
Fig. 9  A PD range query using the multi-Btree. 

 
Fig. 9 is an example of a two-dimensional PD range query 

evaluated using the multi-Btree, where the two dimensions (d1 
and d2) are used as query dimensions. In this case, the two 
B-trees constructed on d1 and d2 are used.  

In Fig. 9, the thick shadow region is the given query range. 
Two range queries are first evaluated on the two corresponding 
B-trees. All of the objects located in the vertical shadow region 
and the horizontal shadow region are reported as intermediate 
results, R1 and R2, respectively, and then the final result of this 
PD range query is given by R1  R2. 

The main advantages of the AR*-tree over the multi-Btree 
are as follows. 

(1) When an entry of a node-group is checked to determine 
whether it intersects the query range, the AR*-tree can make a 
decision according to the information in all of the query 
dimensions, i.e., mutual reference is possible. As a result, 
regions A, B, C, and D in Fig. 5 can be skipped. However, 
mutual reference is impossible in queries using the multi-Btree 
because each B-tree contains only one-dimensional 
information and these B-trees are used independently. That is, 
during searching on each B-tree, the algorithm cannot realize 
the query ranges in the other query dimensions. Thus, a number 
of unnecessary investigations are thus performed, and a great 

deal of irrelevant information is read from disk. 
(2) In the AR*-tree, only one index is needed, while multiple 

B-trees are necessary in the multi-Btree. The management and 
updating of such B-trees incur additional costs. 

(3) In the multi-Btree, too many intermediate results may be 
reported and the intersection operation on the intermediate 
results may be very time-consuming. Consider a dataset having 
1,000,000 data points uniformly distributed in a 
six-dimensional space. Assume that the given PD range query 
has four query dimensions and that the query range in each of 
the four query dimensions is 1/10 of the entire data domain in 
each respective dimension. In this case, the final result has only 
106/104 = 100 objects. However, the query result on each B-tree 
has 105 objects and the total number of intermediate results is 
4*105.  

Thus, the multi-Btree cannot be efficiently used for 
multidimensional range queries. The performance of 
multi-dimensional range queries using the multi-Btree has been 
discussed and investigated in our previous study [19].  

 

VII.  CONCLUSION 

The query performance of XPath axes is very important 
because they are the main building blocks of XQuery. The 
evaluation of one XPath expression may require a great number 
of XPath axis operations because, often, each step of an XPath 
expression (one XPath axis operation) obtains a great number 
of intermediate results. Thus, any improvement in the query 
performance of XPath axes will be significant. Multi- 
dimensional indices have been successfully introduced to the 
field of querying on XML data. The existing methods apply 
all-dimensional indices (such as the R*-tree in [1]). In the 
present paper, a new multidimensional index structure, called 
AR*-tree, was proposed and discussed. Discussion and 
experiments using various XML documents showed that the 
proposed method has a clear performance advantage for XPath 
axes, as compared with the R*-tree, a well known and popular 
multi-dimensional index structure. In the future, the 
performance of the AR*-tree for XPath axes will be examined 
using various types of XML documents. 
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