


Abstract—Indexing technology is one of the kernel technologies

in database management systems, especially for large datasets.
XML (eXtensible Markup Language) has been successfully
adopted as a universal data exchange format, particularly in the
WWW environment. It is an important and basic task to
efficiently implement XPath axes on XML documents. Using
R*-tree, T. Grust proposed an interesting method to support all
XPath axes. In this method, all of the nodes of an XML document
are mapped to a point set in a five-dimensional space. T. Grust
clarified the fact that each of the XPath axes can be implemented
by a range query in the abovementioned five-dimensional space.
Thus, R*-tree (one of the popular multidimensional indices) was
used to improve the query performance for XPath axes. However,
according to our investigations, most of the range queries for the
XPath axes are partially-dimensional range queries. If the
existing multidimensional indices are used for such range queries,
a great deal of information that is irrelevant to the queries must
also be read from disk. Based on this observation, a new
multidimensional index structure, called Adaptive R*-tree
(AR*-tree), is proposed herein to support the XPath axes more
efficiently.

Index Terms—databases, multidimensional range queries,
multidimensional index, XML data.

I. INTRODUCTION

XML has been successfully adopted as a universal data
exchange format, particularly in the World Wide Web, the
problem of managing and querying XML documents poses
challenges to database researchers. Although XML documents
may have rather complex internal structures, they share the
same data type underlying the XML paradigm: the ordered tree.
Tree nodes represent document elements, attributes, or text
data, while edges represent the element-subelement (or
parent-child, ancestor-descendant) relationship.

For the purpose of retrieving such tree-shaped data, several
XML query languages have been proposed in the literature.
Examples include XPath [2] and XQuery [3]. XQuery is being
standardized as a major XML query language, and the main
building block of XQuery is XPath, which addresses part of
XML documents for retrieval [16]. For example,

 Manuscript received June 10, 2009.
 Yaokai Feng is with Graduate School of Information Science and Electrical
Engineering, Kyushu University, Japan. Phone/Fax: +81-92-8023574.
Email: fengyk@ait.kyushu-u.ac.jp
 Akifumi Makinouchi is with Department of Information Network
Engineering, Kurume Institute of Technology, Japan.
Email: akifumi@cc.kurume-it.ac.jp

"paragraph//section" is used to find all sections that are
contained in each paragraph. Here, the double slash "//"
represents the ancestor-descendant relationship. A single slash
"/" in an XPath represents a parent-child relationship, for
example "section/figure".

In line with the tree-centric nature of XML, XPath provides
operators to describe path traversals in a tree-shaped document.
Path traversals evaluate a collection of subtrees (forests), which
may then, recursively, be subject to further traversal. Starting
from a context node, an XPath query traverses its input
document using a number of location steps. For each step, an
axis describes which document nodes (and the subtrees below
these nodes) form the intermediate result forest for this step.
The XPath specification [2] lists a family of 13 axes (among
these the children and descendant-or-self axes, which may be
more widely known by their abbreviations / and //,
respectively).

Generally, XPath expressions specify a tree traversal via two
parameters: (1) a context node (not necessarily for the root)
which is the starting point of the traversal, (2) and a sequence
of location steps syntactically separated by /, evaluated from
left to right. Given a context node, a step's axis (only one step
of a regular XPath expression) establishes a subset of document
nodes. This set of nodes, or forest, provides the context nodes
for the next step, which is in turn evaluated for each node of the
forest. The results are combined and sorted in document order.
To illustrate the semantics of the XPath axes, Fig. 1 depicts the
result forests for three steps along different axes taken from
context node e (note that the preceding axis does not include
the ancestors of the context node). Table Ⅰ lists all XPath axes.

It is an important and basic task to efficiently implement
XPath axes on XML documents. In work [1], the R*-tree has
been successfully applied to implementing XPath axes and all
of the XPath axes are support. In this work, each node of an
XML document is labeled with a five-dimensional tuple. All of
the nodes of the XML document are mapped to a point set in a
five-dimensional space. Importantly, each of the XPath axes
can be implemented by a range query on the above
five-dimensional space. Thus, the R*-tree is helpful for
improving the query performance of the range queries for
XPath axes. This method has been proven efficient in [1].
However, according to our investigations, most of the range
queries for the XPath axes are partially-dimensional range
queries (i.e., the number of query dimensions in each of the
range queries is less than five, although the R*-tree is built in a
five-dimensional space). If the existing multidimensional
indices (such as the R*-tree, which is used in [1]) are used for

Yaokai Feng, and Akifumi Makinouchi

A New Structure for Accelerating XPath
Location Steps

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

such range queries, then a great deal of information that is
irrelevant to the queries also has to be read from disk, which
heavily degrades the query performance. Based on this
observation, in the present study, a new multidimensional
index structure, called Adaptive R*-tree (AR*-tree), is
proposed in order to support XPath axes more efficiently. The
discussions and experiments with various datasets indicate that
the Adaptive R*-tree is better suited to XML documents,
especially large documents.

In the remainder of the present paper, Section 2 presents a
number of related studies, and observations are presented in
Section 3. Section 4 presents the proposed method, a new index
structure for XPath axes, including its structure and a search
algorithm. The experimental results are presented in Section 5,
and Section 6 presents a further discussion. Section 7
concludes the present paper and describes future research.

Ancestor nodes of e Preceding nodes of e

Descendant nodes of e

Fig. 1 Example of XPath axes (circled nodes are result elements).

II. RELATED STUDIES

The concept of regular path expressions dominates this field
of research [4, 5, 6, 7, and 18]. One study [4] presented an
index over the prefix-encoding of the paths in an XML
document tree (in a prefix-encoding, each leaf l of the
document tree is prefixed by the sequence of element tags
encountered during a path traversal from the document root to
l). Since tag sequences share common prefixes in such a
scheme, a variant of the Patricia-tree is used to support lookups.
Clearly, the index structure is tailored to respond to path
queries that originate in the document root. Paths that do not
have the root as the context node need multiple index lookups

or require a post-processing phase (as does a restoration of the
document order in the result forest). In [4], refined paths are
proposed to remedy this drawback. Refined paths, however,
have to be preselected before the index loading time.

Table Ⅰ All XPath axes.
Axis Result
child Direct element child nodes of the context

node
descendant All descendant nodes of the context node
descendant-or-self Like descendant, plus the context node
parent Direct parent node of the context node
ancestor All ancestor nodes of the context node
ancestor-or-self Like ancestor, plus the context node
following Nodes following the context node in

document order
preceding Nodes preceding the context node in

document order
following-sibling Like following, same parent as the

context node
preceding-sibling Like preceding, same parent as the

context node
attribute Attribute nodes of the context node
self Context node itself
namespace Namespace nodes of the context node

The T-index structure, proposed by Milo and Suciu in [6],

maintains (approximate) equivalence classes of document
nodes, which are indistinguishable with respect to a given path
template. In general, a T-index does not represent the entire
document tree, but rather only those document parts relevant to
a specific path template. The more permissive and the larger
the path template, the larger the resulting index size is. This
allows space to be traded for generality. However, a specific
T-index supports only those path traversals matching its path
template (as reported in [6], an effective applicability test for a
T-index is known for a restricted class of queries only).

There is other related work that is not directly targeted at the
construction of index structures for XML. In [8], the authors
discuss relational support for containment queries. In particular,
the multi-predicate merge join (MPMGJN) presented in [8]
would provide an almost perfect infrastructure for the XPath
accelerator. MPMGJN supports multiple equality and
inequality tests. The authors report an order of magnitude
speed-up in comparison to standard join algorithms.

Another study [1] (and its extended version [18])
successfully adopted a multidimensional index structure in
processing XML queries. In this previous study, an XPath
accelerator was proposed that can completely live inside a
relational database system, i.e., the structure is a relational
storage structure in the sense of [10]. The implementation of
the proposal in [1] benefits from advanced index technology,
namely, the R-tree, which has by now found its way into
mainstream relational database systems. The approach in [1]
was developed with a close eye on the XPath semantics and it is
able to support all XPath axes.

The main contributions of [1] are that (1) this study proposed
a five-dimensional descriptor (labeling schema) for each node

g f

a

b

c

d

e

h

context node

gf

e

h

context node

b

a

c

b

e

context node

a

g f

h

b

c

d

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

of the XML document, (2) this study clarified that, using this
labeling schema, each of the 13 XPath axes can be mapped to a
range query in the five-dimensional descriptor-space, and (3)
the range queries for XPath axes were implemented using the
R*-tree.

In this paper, based on the abovementioned previous study
[1], we will (1) present our observations on the range queries of
XPath axes, and (2) according to the features of these range
queries, present a new index structure (in place of the R*-tree)
to further improve the query performance of XPath axes. Since
the present study is based on [1], the key concept of [1] is
described below.

A. Labeling schema and mapping XPath axes to range
queries

Each node v of an XML document is represented by the
following five-dimensional descriptor:

desc(v)=<pre(v), post(v), par(v), att(v), name(v)>,

where pre(v) and post(v) are the preorder and postorder of v,

respectively. par(v) is the preorder of the parent node of v.
att(v) is a Boolean value indicating whether v is an attribute
node. Finally, name(v) is the name of v. In this way, all of the
nodes in an XML document can be mapped to a set of points in
the five-dimensional descriptor space (or labeling space).

Fig. 2 Four XPath axes in two-dimensional space.

As others have noted [5, 8, 11], pre(v) and post(v) can be

used to efficiently characterize the descendants v' of v. We have
that

 v' is a descendant of v
  pre(v')>pre(v)  post(v') < post(v) (1)

In the same way, we have that

v' is a ancestor of v
 pre(v')<pre(v)  post(v')>post(v) (2)
v' is a preceding node of v
  pre(v') < pre(v)  post(v') < post(v) (3)
v' is a following node of v
  pre(v') > pre(v)  post(v') > post(v) (4)

According to the above four equations, we can see that the

four XPath axes of descendant, ancestor, preceding, and
following can be mapped to range queries in the
two-dimensional space of preorder/postorder, which is shown
in Fig. 2. With the help of the other items in the
five-dimensional descriptor, the other XPath axes can also be
mapped to range queries. Table Ⅱ presents the ranges of all the
XPath axes. As in [1], the two axes of self and namespace are
omitted because they are so simple.

Table Ⅱ XPath axes and their ranges in descriptor space
(v is the context node).

XPath
Axes

ranges in descriptor-space
pre post par att name

child pre(v) F *
descendant (pre(v),) [0, post(v)) F *
descendant
-or-self

[pre(v),] [0, post(v)] F *

parent
[par(v),
par(v)]

 *

ancestor [0, pre(v)) (post(v), ) *
ancestor-or
-self

[0, pre(v)] [post(v), ) *

following (pre(v),) (post(v), ) F *
preceding [0, pre(v)) [0, post(v)) F *
following-s
ibling

(pre(v),) (post(v), ) par(v) F *

preceding-
sibling

[0, pre(v)) [0, post(v)) par(v) F *

attribute pre(v) T *

B. Implementation of range queries using R*-tree

Since all of the XPath axes can be mapped to range queries
in the five-dimensional descriptor-space, the R*-tree (used in
[1]) seems helpful for improving the range query performance.
Since we will propose a new structure to further improve the
range query performance, the R*-tree is briefly reviewed here.

The R*-tree [12] is a hierarchy of nested multidimensional
MBRs. Each non-leaf node of the R*-tree contains an array of
entries, each of which consists of a pointer and an MBR. The
pointer refers to one child node of this node and the MBR is the
minimum bounding rectangle of the child node referred to by
the pointer. Each leaf node of the R*-tree contains an array of
entries, each of which consists of an object identifier and the
object itself (for point-object datasets) or its MBR (for
extended object datasets). In the present paper, the object and
tuple are used interchangeably. In the R*-tree, the root node
corresponds to the entire index space and each of the other
nodes represents a sub-space (i.e., the MBR of all of the objects
contained in this region) of the space formed by its parent node.
Note that, each MBR in the R*-tree nodes is denoted by two
points. One is the lowest vertex with the minimum coordinate
in each axis and the other is the upper-most vertex with the
maximum coordinate in each axis. When the R*-tree is used for
a range query, all of the nodes intersecting the query range are
accessed and their entries must be checked.

v

postorder

preorder

ancestor following

preceding descendan
t

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

III. OBSERVATIONS

From the abovementioned Table Ⅱ, we can observe that
most of the query ranges of XPath axes use only partial items of
the five-dimensional descriptor. For example, the child axis
uses only par and att and the parent axis uses only pre. In the
present paper, the range queries that use only some (rather than
all) of the dimensions of the entire space are called
partially-dimensional range queries (denoted as PD range
queries). In contrast, the range queries that use all dimensions
of the entire space are called all-dimensional range queries
(denoted as AD range queries).

Note that all of the existing multidimensional indices are
designed to evaluate AD range queries because all of the
objects are clustered in the leaf nodes according to their
information in all index dimensions and every node contains
the information of its entries in all of the index dimensions.
Actually, they can also evaluate PD range queries as follows.
Using one n-dimensional index in the entire n-dimensional
index space, one PD range query using d (d < n) query
dimensions can be evaluated by simply extending the query
range in each of the (n-d) irrelevant index dimensions to the
entire data range.

However, a disadvantage of using all-dimensional indices
for PD range queries is that each node of the index contains
n-dimensional information, but only d-dimensional
information is necessary for a PD range query using only d (d <
n) dimensions. This means that a great deal of unnecessary
information, i.e., the information in the irrelevant dimensions,
also has to be read from disk, which degrades the query
performance. In other words, the irrelevant information in the
index nodes decreases the capacity (fanout) of each node.
Directing against this disadvantage and considering that most
of the query ranges of XPath axes are PD range queries, a new
index structure for indexing XML data is proposed in the
present paper.

IV. NEW STRUCTURE: THE AR*-TREE

According to the features of the range queries for XPath axes,
the Adaptive R*-tree (denoted as AR*-tree) is proposed in
order to improve the performance of such range queries.

A. Structure

The key concept of the AR*-tree is to divide each of the
n-dimensional R*-tree nodes into n one-dimensional nodes
(these n one-dimensional nodes form a node-group), each of
which holds the information in one dimension, while each node
of the R*-tree holds the information in all of the index
dimensions. The general structure of the AR*-tree is depicted
in Fig. 3.

Whereas each entry in R*-tree nodes includes the MBR
information in all of the dimensions, each entry in the nodes of
the AR*-tree includes only one-dimensional information. In
each node-group, each set of entries having the same index
(location) and distributed in different nodes forms an entry of
node-group, which corresponds to a complete MBR. Each
entry of each node in one node-group corresponds to an edge of

the MBR, whereas each of the entries in the index nodes of the
R*-tree corresponds to a complete MBR.

Fig. 4 shows the structure of the AR*-tree node-group. All of
the entries with the same index in the n nodes of this
node-group form a complete n-dimensional MBR in the index
space. Whereas each entry in the R*-tree nodes includes MBR
information in all of the dimensions, each entry in the nodes of
the AR*-tree includes only one-dimensional information. The
term entry of node-group is used hereinafter, which refers to
the set of entries having the same index distributed in all of the
different nodes of one node-group. One entry of each index
node-group corresponds to a complete MBR in the index space.
In Fig. 4, all of the entries in an ellipse form a complete entry of
the node-group, which is a complete MBR in the entire index
space.

Fig. 4 Structure of AR*-tree node-group.

Fig. 5 is an example of entries in a node-group of the
AR*-tree in a two-dimensional index space. In this example,
each complete MBR is divided into two parts, which are
separately contained in two nodes of one node-group. For
example, Xentryi and Yentryi in Fig. 5 correspond to the two
edges of MBRi paralleling the X-axis and the Y-axis,
respectively. That is, Xentryi + Yentryi = MBRi.

The question then arises as to whether the total number of
nodes in the AR*-tree becomes n times that in the R*-tree,
because each node of the R*-tree has been divided into n nodes.
However, this is not the case. The maximum number of entries
in each node of the AR*-tree is up to approximately n times
that in the R*-tree because the dimensionality of each node in
the AR*-tree becomes 1. The structure of the AR*-tree
guarantees that it can be applied to PD range queries with any

node-group

… …

MBR1 MBR2 MBRn

Entry1 Entry2 … … Entryn … …

R*-tree node

A
R

*-
tre

e
no

de
-g

ro
upEntry1 Entry2 … … Entryn … …

Entry1 Entry2 … … Entryn … …

Entry1 Entry2 … … Entryn … …

Fig. 3 General structure of AR*-tree.

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

combinations of the query dimensions and that only the
relevant one-dimensional nodes are visited.

The main advantage of the AR*-tree over the R*-tree
(all-dimensional index) is that, for PD range queries, only the
relevant nodes of the accessed node-groups need be visited,
and the other nodes, even though they are in the same
node-groups, can be skipped. That is, the information in the
irrelevant dimensions (the dimensions that are not used in the
present query) need not be read from disk. However, in the
R*-tree, the information in all of the index dimensions is
contained in each R*-tree node, but only information in the
query dimensions are necessary for PD range queries, which
means that a great deal of irrelevant information has to be
loaded from disk, and this degrades the search performance,
especially for large datasets.

Fig. 5 Example in a two-dimensional space.

B. Algorithms of the AR*-tree

The insert algorithm of the AR*-tree is a naive extensions of
the counterparts of the R*-tree. After the new tuple reaches the
leaf node-group, it is divided and stored in different nodes of
the leaf node-group according to dimension. If a node-group
must be split, then all of its nodes must be split at the same time
and the split may be up propagated. After a delete operation, if
the node-group under-flowed, then all of its nodes should be
deleted at the same time and all of its entries are reinserted to
the AR*-tree. That is, all of the nodes in each node-group must
be born simultaneously and die simultaneously.

A range query algorithm for the AR*-tree, which can be used
for AD range queries and PD range queries, is shown in Table
Ⅲ.

Table Ⅲ Algorithm for range queries on the AR*-tree.

Procedure RangeQuery (rect, node-group)
Input: rect: query range

node-group: initial node-group of the query
Output: result: all the tuples in rect
Begin
For each entry e in node-group Do

If e INTERSECT rect in all query dimensions Then
If node-group is not at leaf Then

RangeQuery (rect, e.child);
//e.child means the child node-group of e

Else result e
EndFor
End

Note that
1) An entry in a node-group includes all of the parts with the

same index in the different nodes of this node-group, i.e., all of
the parts in one ellipse in Fig. 4.

2) When an entry is checked to determine whether it
intersects the query range or not, only the nodes in the query
dimensions are accessed and the other nodes in the current
node-group are skipped. EVEN, not all of the nodes in the
query dimensions need to be checked, because the
investigation of the current entry can be stopped if the entry is
found not to intersect the query range in the current query
dimension.

Starting with the root node-group, each entry of the current
node-group must be checked to determine whether its MBR
intersects the query range or not. If its MBR intersects the
query range and the current node-group is not at the leaf level,
then this algorithm is invoked recursively with the
corresponding child node-group. Note that, when each entry of
the current node-group is checked, (1) not all of the nodes in
the current node-group have to be accessed (such irrelevant
nodes are skipped), and (2) in each of the visited node-groups,
not all of the nodes in the relevant dimensions (query
dimensions) must be visited. That is, after the current entry is
found not to intersect the query range in the
present-investigating dimension, further checks are not
necessary. An example is shown in Fig. 6.

Fig. 6 Example of a four-dimensional AR*-tree node-group.

In the example in Fig. 6, three dimensions, d1, d3, and d4 of

the four index dimensions are used in the present query, and the
node group shown in Fig. 6 is visited. Each of the entries (an
MBR) in this node-group is investigated edge by edge to decide
whether it intersects the query range. Since all of the
investigations of the entries stopped before the investigation of
the node d4, the node d4 can be skipped, although d4 is one of
the query dimensions.

The example in Fig. 6 also indicates that, even for AD range
queries, the AR*-tree probably has better query performance
than the R*-tree. Although, intuitively, it may seem that all of
the nodes in the visited node-groups have to be accessed for
AD range queries, this is not true. Another example in a
three-dimensional index space is shown in Fig. 7.

In Fig. 7, clearly, the current query is an AD range query.
Since the MBR of the current node-group intersects the query
range, the entries (the dotted cuboids) of this node-group
should be investigated. Since all of these entries do not

… … … …ptr (a1,a2)

… … … …ptr (b1,b2)

Xentryi

Yentryi

Corresponding node-group in AR*-tree

A node-group in index space

Xentryi+Yentryi=MBRi

MBRi

X

Y

a1

b1

b2

a2

d4

d1

d2

d3

entry1 entry2 …… entryn

entry1 entry2 …… entryn

 entry1 entry2 …… entryn

 entry1 entry2 …… entryn

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

intersect the query range in the X-Y plane, the Z-axis need not
be checked. That is, the node corresponding to the Z-axis in this
node-group can be skipped, and the information in the Z-axis in
this node-group need not be read from disk. Note that, if the
X-Z plane is checked first, the node corresponding to the
Y-axis can be skipped. More importantly, for the
higher-dimensional spaces, since the MBRs (entries) in each
node-group become increasingly sparse, it generally becomes
possible to skip more nodes in the visited node-groups. This
means that, in the visited node-groups, the information in one
or more dimensions may not need to be read from secondary
storage, even for AD range queries. In contrast, for the R*-tree,
the information corresponding to all of the dimensions in the
visited nodes must be read from disk. Thus, even for AD range
queries, the AR*-tree probably has better query performance
than the R*-tree.

Fig. 7 Example of AD range queries in a three-dimensional space.

C. Discussion on Search Performance

In this section, under the assumption of uniformity, the
performance of the AR*-tree for PD range queries is examined
mathematically by comparing the performance of the AR*-tree
with that of the R*-tree. That is, the tuples (objects) are
assumed to be distributed uniformly in the index space. The
number of accessed leaf nodes is estimated and compared since
it is an important factor with regard to query performance [13],
particularly for large datasets. The symbols used in this section
are described in Table Ⅳ.

In the case of the R*-tree, the average number of leaf-node
accesses (i.e., the number of leaf nodes intersecting the query
range), Rl, can be given by

.
l

N
S

q
S

l
R 

If the AR*-tree is used, the average number of leaf node
groups intersecting the query range, ARg, can be given as

gN
S

qS

gAR  .

Since the node sizes of the R*-tree and the AR*-tree are the

same (one node one page), the maximum number of entries in
each leaf node of the AR*-tree is roughly n times that in each

leaf node of the R*-tree. This is easy to understand considering
that the dimensionality of each leaf node in the R*-tree is n
times that in the AR*-tree. That is, only one-dimensional
information of each entry is contained in each node of the
AR*-tree, while n-dimensional information of each entry is
required in every node of the R*-tree. In addition, considering
that the clustering algorithms (insert algorithms) of the R*-tree
and the AR*-tree are the same, we have

ngM
rM

lN

gN 1
 .

Table Ⅳ Symbols and their descriptions.
n Dimensionality of the entire index space
d Number of query dimensions
S Volume of the entire index space
Sq Volume of the extended query range of the PD range

query
Mr Maximum number (capacity) of entries in each leaf node

of the R*-tree (see [3])
Mg Maximum number (capacity) of entries in each leaf

node-group of the AR*-tree
Nl Number of leaf nodes in the case of the R*-tree
Ng Number of leaf node-groups in the AR*-tree

 The extended query range of one PD range query refers to the
n-dimensional range obtained by extending the d-dimensional
given query range in the way that the query ranges in the
unused (n-d) dimensions are regarded as their entire data
ranges.

In each accessed node-group, at most d nodes are visited for
each d-dimensional PD range query. Thus, the number of leaf
nodes (not the node-groups) that must be visited, ARl , can be
given by

.)(
1

ndwhenRR
n

d
dN

nS

S

dN
S

S
dARAR

lll
q

g
q

gl





The last equation indicates that, for PD range queries with d

< n, the number of accessed leaf nodes in the case of the
AR*-tree is less than that in the case of the R*-tree. If d = n,
then the number of accessed leaf nodes may be approximately
the same and it is also possible that ARl < Rl. More importantly,
for a fixed n, the lower the number of query dimensions, d, the
bigger the advantage of the AR*-tree compared to the R*-tree.
This equation can be explained as follows. Since the capacity
of each leaf node-group in the AR*-tree is roughly n times that
of each leaf node in the R*-tree, the number of accessed leaf
node-groups in the AR*-tree is approximately 1/n times that of
the accessed leaf nodes in the R*-tree. However, in each of the
accessed leaf node-groups of the AR*-tree, at most, d nodes
must be visited. That is, although this query is relevant to d
dimensions, the investigation of the current entry may stop
midway if this entry does not intersect the query range in the
current dimension.

Y

query range

Space (MBR) corresponding to the current

X

Z

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

Note that the above equations are only rough estimations.

V. EXPERIMENTS

A. Experiment Process

The procedure of the experiments performed in the present
study is shown in Fig. 8.

XML documents. The XML documents used in the
experiments are generated by XMLgen [17], an easily
accessible XML generator, which is developed for the Xmark
benchmark project [14]. Using XMLgen, the three documents
shown in Table Ⅴ were generated and used. In this table,
XMLgen factor was given as a size factor to control document
sizes.

Fig. 8 Experimental procedure.

 Table Ⅴ XML documents used in the experiments.

Reader. Based on Libxml2 [15] which is an XML C parser
and toolkit, we built a loader to obtain one accel table
(described in the next paragraph) for each XML document,
which is used to build the indices. Since the XML documents
have a total of 77 different node names, all of the possible node
names are encoded from 0 to 76 in order to be handled by the
indices.

Accel table. Each tuple of the accel table is the
five-dimensional descriptor of one node of an XML document.
As mentioned above, all of the node names are encoded from 0
to 76. The accel table is directly used to build the R*-tree and
the AR*-tree.

Building indices. An R*-tree and an AR*-tree are
constructed for the accel table of each XML document. The
node size is set to 4,096 bytes.

Performance test. We assume that the multidimensional
index is disk-resident, which is reasonable for large datasets.
Thus, the query performance is tested in terms of the number of
node accesses. Except for the three XPath axes of self, attribute,
and namespace (they are too simple, and the performance

difference between the R*-tree and the AR*-tree could not be
shown clearly), the query performance of all of the other 10
XPath axes are tested using the R*-tree and the AR*-tree,
respectively. By comparing the query performance of the
XPath axes on the R*-tree and the AR*-tree, we will determine
whether the R*-tree or the AR*-tree is better suited to XPath
axes.

B. Experimental results

The experimental results are shown in Tables Ⅵ~Ⅷ. The
context nodes for different XML documents are chosen
independently. That is, the same XPath axis may be tested with
different context nodes for different data documents. For the
sake of comparison, all of the tests on the R*-tree and the
AR*-tree for the same XML documents used the same context
nodes.

From the experimental results, we can obtain the following
observation. Except for the XPath axes of ancestors (including
ancestor-or-self) and preceding-sibling, for which the
advantage of the AR*-tree is not shown very clearly, the
AR*-tree clearly performs better than the R*-tree for the other
seven XPath axes. As mentioned in Section 1, the query
performance of XPath axes is very important, because the main
building block of XQuery is Xpath, and XPath expressions
consist of a sequence of XPath axis operations, which are
evaluated from left to right. Moreover, each step of an XPath
expression (one XPath axis operation) often obtains a great
number of intermediate results, which means that the
evaluation of one XPath expression may require a great number
of XPath axis operations. Thus, any improvement in the query
performance of XPath axes will be significant.

Table Ⅵ Experiment results.
Documents
size(MB)

parent ancestor descenden following

5.5
R* 10.3 13.3 749.0 1420.0

AR* 4.4 12.9 582.1 1095.2

11.1
R* 11.6 17.8 1507.2 2700.3
AR* 6.4 14.5 1163.0 2072.2

22.4
R* 13.5 19.3 2995.6 5705.6
AR* 7.0 15.4 2304.6 4375.1

113.8
R* 25.7 31.7 6236.3 9678.5
AR* 13.0 23.3 4556.9 7612.6

Table Ⅶ Experiment results.
Documents size
(MB)

preceding following-sibling child

5.5
R* 1186.2 485.1 484.2
AR* 973.4 338.3 116.0

11.1
R* 1641.3 493.2 1200.4
AR* 1321.0 353.0 230.5

22.4
R* 2972.0 1030.5 1848.3
AR* 2323.6 680.4 439.4

113.8
R* 5346.7 3100.2 3996.2
AR* 4952.1 1932.1 1509.1

Document
size [MB]

Number of nodes XMLgen
factor

5.5 103,135 0.05
11.1 206,130 0.10
22.4 413,108 0.20

113.8 1,666,316 1.00

accel tables

R*-tree

XML
documents

Reader

Performance
 test

AR*-tree

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

Table Ⅷ Experiment results.
Document
size (MB)

preceding-sibling
descendent-

or-self
ancestor-or-

self

5.5
R* 22.6 749.0 13.3
AR* 21.1 582.1 12.9

11.1
R* 17.8 1507.2 17.8
AR* 17.7 1163.0 14.5

22.4
R* 21.9 2995.6 13.3
AR* 18.0 2304.6 12.4

113.8
R* 32.3 5693.3 29.2
AR* 25.6 4973.1 19.4

VI. HOW ABOUT MULTI-BTREE?

Another naive approach to handling PD range queries is
based on the B-tree, herein referred to as multi-Btree. In this
approach, one B-tree (or a variant thereof) is constructed in
each index dimension, using the projections of the objects
(tuples for relational data). For PD range queries, the
corresponding B-trees are used individually and their results
are intersected to obtain the final query result. In total, n B-trees
should be constructed in advance for an n-dimensional index
space.

Fig. 9 A PD range query using the multi-Btree.

Fig. 9 is an example of a two-dimensional PD range query

evaluated using the multi-Btree, where the two dimensions (d1
and d2) are used as query dimensions. In this case, the two
B-trees constructed on d1 and d2 are used.

In Fig. 9, the thick shadow region is the given query range.
Two range queries are first evaluated on the two corresponding
B-trees. All of the objects located in the vertical shadow region
and the horizontal shadow region are reported as intermediate
results, R1 and R2, respectively, and then the final result of this
PD range query is given by R1  R2.

The main advantages of the AR*-tree over the multi-Btree
are as follows.

(1) When an entry of a node-group is checked to determine
whether it intersects the query range, the AR*-tree can make a
decision according to the information in all of the query
dimensions, i.e., mutual reference is possible. As a result,
regions A, B, C, and D in Fig. 5 can be skipped. However,
mutual reference is impossible in queries using the multi-Btree
because each B-tree contains only one-dimensional
information and these B-trees are used independently. That is,
during searching on each B-tree, the algorithm cannot realize
the query ranges in the other query dimensions. Thus, a number
of unnecessary investigations are thus performed, and a great

deal of irrelevant information is read from disk.
(2) In the AR*-tree, only one index is needed, while multiple

B-trees are necessary in the multi-Btree. The management and
updating of such B-trees incur additional costs.

(3) In the multi-Btree, too many intermediate results may be
reported and the intersection operation on the intermediate
results may be very time-consuming. Consider a dataset having
1,000,000 data points uniformly distributed in a
six-dimensional space. Assume that the given PD range query
has four query dimensions and that the query range in each of
the four query dimensions is 1/10 of the entire data domain in
each respective dimension. In this case, the final result has only
106/104 = 100 objects. However, the query result on each B-tree
has 105 objects and the total number of intermediate results is
4*105.

Thus, the multi-Btree cannot be efficiently used for
multidimensional range queries. The performance of
multi-dimensional range queries using the multi-Btree has been
discussed and investigated in our previous study [19].

VII. CONCLUSION

The query performance of XPath axes is very important
because they are the main building blocks of XQuery. The
evaluation of one XPath expression may require a great number
of XPath axis operations because, often, each step of an XPath
expression (one XPath axis operation) obtains a great number
of intermediate results. Thus, any improvement in the query
performance of XPath axes will be significant. Multi-
dimensional indices have been successfully introduced to the
field of querying on XML data. The existing methods apply
all-dimensional indices (such as the R*-tree in [1]). In the
present paper, a new multidimensional index structure, called
AR*-tree, was proposed and discussed. Discussion and
experiments using various XML documents showed that the
proposed method has a clear performance advantage for XPath
axes, as compared with the R*-tree, a well known and popular
multi-dimensional index structure. In the future, the
performance of the AR*-tree for XPath axes will be examined
using various types of XML documents.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Satoshi Tani for
conducting the experiments.

REFERENCES
[1] T. Grust: Accelerating XPath Location Steps. Proc. ACM SIGMOD

International Conference, pages 109-120, 2002.
[2] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, et .al.: XML

Path Language (XPath) 2.0. Technical Report W3C Working Draft,
Version 2.0, World Wide Web Consortium, December 2001.
http ://www. w3. org/TR/xpath20/.

[3] S. Boag, D. Chamberlin, M. F. Fernandez,et.al.: XQuery 1.0: An
XML query language. In W3C Working Draft:
http://www.w3.org/TR/xquery/, 2002.

[4] B. F. Cooper, N. Sample, M. J.Franklin, G. R. Hjaltason, and M.
Shadmon: A Fast Index for Semistructured Data. Proc. the 27th

International Conference on Very Large Data Bases (VLDB), pages
341-360, 2001.

A

BC

D

d1

d2

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

[5] Q. Li and B. Moon: Indexing and Querying XML Data for Regular Path
Expressions. Proc. the 27th International Conference on Very Large
Data Bases (VLDB), pages 361-370, 2001.

[6] D. Suciu and T. Milo: Index Structures for Path Expressions. Proc. the
7th International Conference on Database Theory (ICDT), LNCS 1540,
pages 277-295 Springer Verlag, 1999.

[7] R. Goldman and J. Widom: DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. Proc. the 23rd
International Conference on Very Large Databases (VLDB), pages
436-445, 1997

[8] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman: On
Supporting Containment Queries in Relational Database Management
Systems. Proc. ACM SIGMOD International Conference on
Management of Data, pages 425-436, 2001.

[9] H. P. Kriegel, M. Potke, and T. Seidl: Managing Intervals efficiently in
Object-Relational Databases. Proc. the 26th International Conference on
Very Large Databases (VLDB), pages 407-418, 2000.

[10] H. P. Kriegel, M. P. otke, and T. Seidl: Managing Intervals Efficiently in
Object-Relational Databases. Proc. the 26th International Conference on
Very Large Databases (VLDB), pages 407-418, 2000.

[11] P. F. Dietz and D. D. Sleator: Two Algorithms for Maintaining Order in a
List. Proc. the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 365-372, 1987. ACM Press.

[12] N. Beckmann, and H. Kriegel: The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. Proc. ACM SIGMOD
International Conference., pages.322-331, 1990.

[13] G.R.l Hjaltason and H. Samet: Distance Browsing in Spatial Database.
ACM Transactions on Database Systems, Vol.24, No.2, pages 265-318,
1999.

[14] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M.
J. Carey, and R. Busse: The XML Benchmark Project. Technical Report
INSR0103, CWI, Amsterdam, The Netherlands, April 2001.

[15] XML C parser and toolkit: http://xmlsoft.org/
[16] H. Jiang, H. Lu, W. Wang, B. C. Ooi:XR-Tree: Indexing XML Data for

Efficient Structural Joins. Proc. the 19th International Conference on
Data Engineering (ICDE), pages 253-263, 2003.

[17] XMLgen: http://monetdb.cwi.nl/xml/downloads.html
[18] T. Grust, M. V. Keulen, and J. Teubner: Accelerating Xpath Evaluation

in Any RDBMS. ACM Transactions on Database Systems, Vol. 29, No.1,
pages 91-131, 2005.

[19] Y. Feng, A. Makinouchi: Efficient Evaluation of Partially- dimensional
Range Queries Using Adaptive R*-tree. Proc. the 17th International
Conference on Database and Expert Systems Applications (DEXA),
LNCS 4080, pages 687-696, Springer-Verlag, 2006.

Yaokai Feng received his B.S. and M.S. degrees in
Computer Science from Tianjin University, China,
in 1986 and 1992, respectively. Since he received
PhD degree in Information Science from Kyushu
University, Japan, in 2004, he has been staying in
the same university as an research associate. Now,
he is an assistant professor in the same university.
He is a member of IPSJ, IEEE, ACM and an
editorial board member of IAENG International
Journal of Computer Science.

Akifumi Makinouchi received his B.E. degree
from Kyoto University, Japan, in 1967,
Docteur-ingereur degree from Univrcite de
Grenoble, France, in 1979, and D.E. degree from
Kyoto University, Japan, in 1988. From 1990 to
2006, he was with the Graduate School of
Information Science and Electrical Engineering,
Kyushu University, Japan, where he was a
professor. From 2006, he is a professor in the
Department of Information Network Engineering,
Kurume Institute of Technology, Japan. He is a

member of IPSJ, ACM, and IEEE and fellow of IEICE.

IAENG International Journal of Computer Science, 38:2, IJCS_38_2_03

(Advance online publication: 25 May 2011)

__

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

