
Planning a Typical Working Day for Indoor
Service Robots

Anna Gorbenko, Maxim Mornev, Vladimir Popov

Abstract—This paper describes a method of considering the
problem of planning for indoor service robot. We introduce a
novel graph theoretic formulation of the planning a typical
working day problem. We prove that this problem is NP-
complete. In proof we consider an explicit reduction of the
planning a typical working day problem to the problem of
finding a Hamiltonian path. Also we describe an approach to
solve this problem. This approach is based on constructing a
logical model for the planning a typical working day problem.
Using our reduction from the planning a typical working day
problem to the Hamiltonian path problem and reduction from
the Hamiltonian path problem to the satisfiability problem one
can try to solve the planning a typical working day problem
by local search and intelligent algorithms which developed for
the satisfiability problem.

Index Terms—theory of actions, planning algorithms, satisfi-
ability problem, Hamiltonian path problem.

I. INTRODUCTION

PROBLEMS of planning and scheduling are among the
most rapidly developing areas of modern computer

science (see e.g. [1] – [5]). Different planning problems for
mobile vehicles are of considerable interest for many years.
For example, the vehicle routing problem was first introduced
in 1959 [6] but still actual. The vehicle routing problem
and its variants have been intensively studied and received
considerable attention for many decades (see e.g. [7], [8] and
references). Recently, in [9] presented a new distribution and
route planning problem, general delivery problem. Among
other examples we can mention multi-robot forest coverage
problems (e.g. [10]), localization problems (e.g. [11], [12]),
allocating complex tasks problems (e.g. [13]), path and
motion planning problems (e.g. [14] – [18]), pursuit-evasion
problems (e.g. [19]). In this paper we consider a planning
problem for service robots. In particular, for such robots we
consider a planning problem from the point of view of well-
known and intensively studied theory of actions (e.g. [20] –
[23]).

Service robots have no strict internationally accepted defi-
nition, which, among other things, delimits them from other
types of equipment, in particular, the manipulating industrial
robot. The ISRA (International Service Robot Association —
One of the several Robotic Industries Association (RIA)
Organizations) [24] defines service robots as machines that
sense, think, and act to benefit or extend human capabilities
and to increase human productivity. According to the IFR
(International Federation of Robotics) [25], a service robot
is a robot which operates semi- or fully autonomously
to perform services useful to the well-being of humans

Ural State University, Department of Mathematics and Mechanics,
620083 Ekaterinburg, Russian Federation. Email: gorbenko.aa@gmail.com,
max.mornev@gmail.com, Vladimir.Popov@usu.ru

The work was partially supported by Analytical Departmental Program
”Developing the scientific potential of high school” 2.1.1/14055.

and equipment, excluding manufacturing operations. With
this definition, manipulating industrial robots could also be
regarded as service robots, provided they are installed in non-
manufacturing operations. Service robots may or may not
be equipped with an arm structure as is the industrial robot.
Often, but not always, the service robots are mobile. In some
cases, service robots consist of a mobile platform on which
one or several arms are attached and controlled in the same
mode as the arms of the industrial robot.

For a long time, the use of robots was limited to manufac-
turing automation and space exploration. Only large corpo-
rations and government agencies could afford the systems
integration costs associated with the robotics automation
projects. Underdeveloped artificial intelligence technology,
safety issues and high costs of systems integration were the
main limiting factors preventing the use of robotics by small
businesses and households. Service robots have long been a
staple of science fiction and commercial visions of the future.
Until recently, we have only been able to speculate about
what the experience of using such a device might be. Current
service robots, introduced as consumer products, allow us to
make this vision a reality. Though the service robots are
in their infancy stage, we are witnessing perhaps the most
exciting and promising robot evolution of all. Service robots
will one day become the largest class of robot applications,
outnumbering the industrial uses by several times.

Because they are designed for a social world, service
robots must carry out functional as well as non-functional
(social) tasks. In the future, autonomous, mobile service
robots will assist people in many environments. Robots could
help the elderly and caretakers, assist with work around the
home, act as guards, and perform tasks that are repetitive,
boring, or dangerous in nursing homes, hospitals, military
environments, disaster sites, and schools.

Current service robot investigations dial with following
robot specializations [24]: agriculture and harvesting robots;
automatic refilling robots; cleaning and housekeeping robots;
construction robots; edutainment robots; fire fighting robots;
robots for domestic tasks; robots in food industry; guides
and office robots; humanitarian demining robots; humanoid
and anthropomorphic robots; inspection robots; lawn mowing
robots; medical robotics; mining robots; picking and palletiz-
ing robots; rehabilitation robots; surveillance and exploration
robots; search and rescue robots. In this paper we consider
multi-task indoor service robots such as robots for domestic
tasks and office robots. For such robot we can suppose that
during a typical working day it must perform some fixed
set of tasks. It is natural to consider for such robots the
planning a typical working day problem which require to
create a proper sequence of tasks. We introduce a novel
graph theoretic formulation of this problem and prove that it
is NP-complete. Also we describe an approach to solve this

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

problem.

II. THE PLANNING A TYPICAL WORKING DAY FOR
INDOOR SERVICE ROBOTS PROBLEM

Consider an indoor service robot R. Suppose that S is the
set of everyday jobs of R.

Following a common approach in reasoning about actions,
dynamic systems are modeled in terms of state evolutions
caused by actions. A state is a complete description of a
situation the system can be in. Actions cause state transitions,
making the system evolve from the current state to the next
one. In principle we could represent the behavior of a system
(i.e. all its possible evolutions) as a transition graph G =
(V,E),

V = {v1, v2, . . . , vn},

E = {e1, e2, . . . , em},

where:
• Each node vi ∈ V represents a state, and is labeled with

the properties that characterize the state.
• Each arc ej ∈ E represents a state transition, and is

labeled by the action that causes the transition.
Since we consider a working day for robot, we can suppose

that there exist an initial state S. Correspondingly, we can
assume that there exist a final state F . So, during a typical
working day a service robot R performs some path from S
to F .

For each task s ∈ S suppose that during a typical working
day task s can be solved by R only t(s) times where

t(s) ∈ {1, 2, . . . } ∪ {∞}.

For example, let R be a cooking robot and

S = {breakfast, dinner, supper, beep, water}.

It is natural to assume that

t(breakfast) = 1,

t(dinner) = 1,

t(supper) = 1,

t(beep) =∞,

t(water) > 1, t(water) 6=∞.

In general case a task s ∈ S require a sequence of
transitions

vi1 →
ej1

vi2 →
ej2 · · · →

ejk−1
vik .

We suppose that during a working day a task s solved by our
robot t(s) times if and only if during this day it performs
some path from S to F such that node vik visited t(s) times.
Therefore, we can assume that S ⊆ V .

For some service robots we also needed a limitation for
nodes from V \S. For example, water cleaning robots can
move along carpets but we may want to limit with activity.
Therefore, for each node v ∈ V \S we suppose that during a

typical working day node v can be visited by R only f(v)
times where

f(v) ∈ {1, 2, . . . } ∪ {∞}.

From this point of view essential difference between nodes
from S and from V \S consists in following conditions:
• Each node s ∈ S must be visited.
• Each node v ∈ V \S can be visited.
Now, we can introduce a graph theoretic formulation of

the planning a typical working day for indoor service robots
problem. Consider the following problem:

PLANNING A TYPICAL WORKING DAY FOR INDOOR SER-
VICE ROBOTS PROBLEM:

INSTANCE: A set S, a transition graph G = (V,E), a
function t : S → {1, 2, . . . } ∪ {∞}.

QUESTION: Does G have a path from S to F such that
robot R solves all tasks but no more then t(s) times for any
task s from set S and each node v ∈ V \S visited no more
then f(v) times?

Theorem. The planning a typical working day for indoor
service robots problem is NP-complete.

Proof. Note that it is not evident that the planning a typical
working day for indoor service robots problem is in NP,
since in general case a solution of this problem may be not
of polynomial size. To show that our problem is in NP we
reduce the planning a typical working day for indoor service
robots problem to the Hamiltonian path problem.

Lemma 1. Let t(v) = p, t(v) > 1, t(v) 6= ∞, for some
transition graph G = (V,E) and set S, v ∈ S. Let

S′ = (S\{v}) ∪ {vn+1, vn+2, . . . , vn+p}. (1)

Let G′ = (V ′, E′) be a graph such that

V ′ = {v1, v2, . . . , vn+p}\{v},

E′ = {e1, e2, . . . , em,

(vi, vn+r)l, (vn+r, vj)l, (vn+d, vn+d+1)1 | (vi, v)l ∈ E,

(v, vj)l ∈ E, 1 ≤ r ≤ p, 1 ≤ d ≤ p− 1}\

{(vi, v)l, (v, vj)l | (vi, v)l ∈ E, (v, vj)l ∈ E},

t(vn+r) = 1, 1 ≤ r ≤ p.

In G there exist a path from S to F such that robot R solves
all tasks but no more then t(s) times for any task s from set
S and each node v ∈ V \S visited no more then f(v) times
if and only if in G′ there exist a path from S to F such that
robot R solves all tasks but no more then t(s) times for any
task s from set S′ and each node v ∈ V ′\S′ visited no more
then f(v) times.

Proof of Lemma 1. Let a sequence

vi1 , vi2 , . . . , vik (2)

be a path in G = (V,E) from S to F such that robot R
solves all tasks but no more then t(s) times for any task s
from set S and each node v ∈ V \S visited no more then
f(v) times. Consider a set

{j[1], j[2], . . . , j[q]}

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

such that

j ∈ {j[1], j[2], . . . , j[q]}

if and only if vij = v. Suppose that

j[1] < j[2] < · · · < j[q]. (3)

By definition of a sequence (2),

q ≤ t(v) = p.

Therefore, by definition of G′, we can consider in G′ a
sequence in which all occurrences of v replaced by different
occurrences of nodes from

{vn+1, vn+2, . . . , vn+p}.

In view of (3), we can consider the following sequence:

vi1 , vi2 , . . . , vij[1]−1
, vn+1,

vij[1]+1
, vij[1]+2

, . . . , vij[2]−1
, vn+2,

vij[2]+1
, vij[2]+2

, . . . , vij[q]−1
, vn+q,

vij[q]+1
, vij[q]+2

, . . . , vik . (4)

By definition of a sequence (2),

(vij[1]−1
, v)l[1] ∈ E, (v, vij[1]+1

)l[2] ∈ E,

(vij[2]−1
, v)l[3] ∈ E, (v, vij[2]+1

)l[4] ∈ E,

. . .

(vij[q]−1
, v)l[2q−1] ∈ E, (v, vij[q]+1

)l[2q] ∈ E

for some

l[1], l[2], . . . , l[2q].

Therefore, by definition of G′,

(vij[1]−1
, vn+1)l[1] ∈ E′, (vn+1, vij[1]+1

)l[2] ∈ E′,

(vij[2]−1
, vn+2)l[3] ∈ E′, (vn+2, vij[2]+1

)l[4] ∈ E′,

. . .

(vij[q]−1
, vn+q)l[2q−1] ∈ E′, (vn+q, vij[q]+1

)l[2q] ∈ E′. (5)

From (5) and definition of a sequence (2) we obtain that the
sequence (4) is a path in the graph G′. By definition of G′

and (4),

vi1 , vi2 , . . . , vij[1]−1
, vn+1,

vij[1]+1
, vij[1]+2

, . . . , vij[2]−1
, vn+2,

vij[2]+1
, vij[2]+2

, . . . , vij[q]−1
, vn+q,

vn+q+1, vn+q+2, . . . , vn+p,

vij[q]+1
, vij[q]+2

, . . . , vik . (6)

is a path in the graph G′. Since (2) is a path in G from S to
F , (4) is a path in the G′ from S to F . Since (2) is a path in
G such that robot R solves all tasks from S, in view of (1),
(6) is a path in G′ such that robot R solves all tasks from
S′. Moreover, it is easy to see that (6) is a path in G′ such
that robot R solves all tasks but no more then t(s) times for

any task s from set S′ and each node v ∈ V ′\S′ visited no
more then f(v) times.

Now, let a sequence (2) be a path in G′ from S to F such
that robot R solves all tasks but no more then t(s) times for
any task s from set S′ and each node v ∈ V ′\S′ visited no
more then f(v) times. Consider a set

{j[1], j[2], . . . , j[q]}

such that

j ∈ {j[1], j[2], . . . , j[q]}

if and only if ij > n. We can suppose that j[l1] > j[l2] if
and only if l1 > l2. Consider a sequence

vi1 , vi2 , . . . , vij[1]−1
, v,

vij[1]+1
, vij[1]+2

, . . . , vij[2]−1
, v,

vij[2]+1
, vij[2]+2

, . . . , vij[q]−1
, v,

vij[q]+1
, vij[q]+2

, . . . , vik . (7)

By definition of a sequence (2),

(vij[1]−1
, vn+1)l[1] ∈ E′, (vn+1, vij[1]+1

)l[2] ∈ E′,

(vij[2]−1
, vn+2)l[3] ∈ E′, (vn+2, vij[2]+1

)l[4] ∈ E′,

. . .

(vij[q]−1
, vn+q)l[2q−1] ∈ E′, (vn+q, vij[q]+1

)l[2q] ∈ E′

for some

l[1], l[2], . . . , l[2q].

Therefore, by definition of G′,

(vij[1]−1
, v)l[1] ∈ E, (v, vij[1]+1

)l[2] ∈ E,

(vij[2]−1
, v)l[3] ∈ E, (v, vij[2]+1

)l[4] ∈ E,

. . .

(vij[q]−1
, v)l[2q−1] ∈ E, (v, vij[q]+1

)l[2q] ∈ E.

From these relations and definition of a sequence (2) we
obtain that the sequence (7) is a path in the graph G. Since

t(vn+r) = 1, 1 ≤ r ≤ p,

it is easy to see that q ≤ p. Now, it is clear that (7) is a path
in G = (V,E) from S to F such that robot R solves all
tasks but no more then t(s) times for any task s from set S
and each node v ∈ V \S visited no more then f(v) times.

So, in G there exist a path from S to F such that robot
R solves all tasks but no more then t(s) times for any task
s from set S and each node v ∈ V \S visited no more then
f(v) times if and only if in G′ there exist a path from S to
F such that robot R solves all tasks but no more then t(s)
times for any task s from set S′ and each node v ∈ V ′\S′
visited no more then f(v) times.

In view of Lemma 1, we can assume that t(v) ∈ {1,∞},
v ∈ S.

Lemma 2. Let t(v) =∞ for some transition graph G =
(V,E) and set S, v ∈ S. Let

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

S′ = (S\{v}) ∪ {vn+1}.

Let G′ = (V ′, E′) be a graph such that

V ′ = {v1, v2, . . . , vn+2},

E′ = {e1, e2, . . . , em,

(vi, vn+r)l, (vn+r, vj)l, (vn+1, vn+2)1 | (vi, v)l ∈ E,

(v, vj)l ∈ E, 1 ≤ r ≤ 2}\

{(vi, v)l, (v, vj)l | (vi, v)l ∈ E, (v, vj)l ∈ E},

t(vn+1) = 1,

f(vn+2) =∞.

In G there exist a path from S to F such that robot R solves
all tasks but no more then t(s) times for any task s from set
S and each node v ∈ V \S visited no more then f(v) times
if and only if in G′ there exist a path from S to F such that
robot R solves all tasks but no more then t(s) times for any
task s from set S′ and each node v ∈ V ′\S′ visited no more
then f(v) times.

Proof of Lemma 2. Let a sequence

vi1 , vi2 , . . . , vik (8)

be a path in G = (V,E) from S to F such that robot R
solves all tasks but no more then t(s) times for any task s
from set S and each node v ∈ V \S visited no more then
f(v) times. Consider a set

{j[1], j[2], . . . , j[q]}

such that

j ∈ {j[1], j[2], . . . , j[q]}

if and only if vij = v. Suppose that

j[1] < j[2] < · · · < j[q]. (9)

By definition of a sequence (8), q ≥ 1. Therefore, in view
of (9), we can consider the following sequence:

vi1 , vi2 , . . . , vij[1]−1
, vn+1,

vij[1]+1
, vij[1]+2

, . . . , vij[2]−1
, vn+2,

vij[2]+1
, vij[2]+2

, . . . , vij[q]−1
, vn+2,

vij[q]+1
, vij[q]+2

, . . . , vik . (10)

By definition of a sequence (8),

(vij[1]−1
, v)l[1] ∈ E, (v, vij[1]+1

)l[2] ∈ E,

(vij[2]−1
, v)l[3] ∈ E, (v, vij[2]+1

)l[4] ∈ E,

. . .

(vij[q]−1
, v)l[2q−1] ∈ E, (v, vij[q]+1

)l[2q] ∈ E

for some

l[1], l[2], . . . , l[2q].

Therefore, by definition of G′,

(vij[1]−1
, vn+1)l[1] ∈ E′, (vn+1, vij[1]+1

)l[2] ∈ E′,

(vij[2]−1
, vn+2)l[3] ∈ E′, (vn+2, vij[2]+1

)l[4] ∈ E′,

. . .

(vij[q]−1
, vn+2)l[2q−1] ∈ E′, (vn+2, vij[q]+1

)l[2q] ∈ E′.(11)

From (11) and definition of a sequence (8) we obtain that
the sequence (10) is a path in the graph G′.

Since (8) is a path in G from S to F , (10) is a path in the
G′ from S to F . Since (8) is a path in G such that robot R
solves all tasks from S, in view of S′ = (S\{v})∪ {vn+1},
(10) is a path in G′ such that robot R solves all tasks from
S′. Moreover, it is easy to see that (10) is a path in G′ such
that robot R solves all tasks but no more then t(s) times for
any task s from set S′ and each node v ∈ V ′\S′ visited no
more then f(v) times.

Now, let a sequence (8) be a path in G′ from S to F such
that robot R solves all tasks but no more then t(s) times for
any task s from set S′ and each node v ∈ V ′\S′ visited no
more then f(v) times. It is clear, that in this case we can
simply replace all occurrences of vn+1 and vn+2 by v. So,
in G there exist a path from S to F such that robot R solves
all tasks but no more then t(s) times for any task s from set
S and each node v ∈ V \S visited no more then f(v) times
if and only if in G′ there exist a path from S to F such that
robot R solves all tasks but no more then t(s) times for any
task s from set S′ and each node v ∈ V ′\S′ visited no more
then f(v) times.

In view of Lemma 2, we can assume that t(v) = 1, v ∈ S.
For some transition graph G = (V,E) consider a graph

G′ = (V,E′) such that

E′ = E\{(v, v)p, (u, v)l | l > 1, (v, v)p ∈ E, (u, v)l ∈ E}.

It is easy to see that G have a path from S to F such that
robot R solves all tasks but no more then t(s) times for any
task s from set S and each node v ∈ V \S visited no more
then f(v) times if and only if G′ have a path from S to
F such that robot R solves all tasks but no more then t(s)
times for any task s from set S and each node v ∈ V \S
visited no more then f(v) times. Therefore, we can assume
that (v, v)p 6∈ E, (u, v)l 6∈ E for any u, v ∈ V and l > 1.

Let for some transition graph G = (V,E) and set S a
sequence

vi1 , vi2 , . . . , vik

be a path from S to F such that robot R solves all tasks but
no more then t(s) times for any task s from set S and each
node v ∈ V \S visited no more then f(v) times. Assume that

vip ∈ S, vip+q
∈ S,

vir 6∈ S, p+ 1 ≤ r ≤ p+ q − 1,

via = vib , p+ 1 ≤ a < b ≤ p+ q − 1.

Then it is easy to see that a sequence

vi1 , vi2 , . . . , via , vib+1
, . . . , vik

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

be a path from S to F such that robot R solves all tasks but
no more then t(s) times for any task s from set S and each
node v ∈ V ′\S′ visited no more then f(v) times. Therefore,
for any transition graph G = (V,E), set S, and node v ∈
V \S we can suppose that during a typical working day node
v can be visited by R only |S|+1 times. So, we can suppose
that f(v) ≤ |S|+ 1, v ∈ V \S.

Consider a graph G′ = (V ′, E′) such that

V \S = {vi1 , vi2 , . . . , vik},

V ′ = S ∪ {a1,1, a1,2, . . . , a1,g1}∪

{a2,1, a2,2, . . . , a2,g2}∪

. . .

{ak,1, ak,2, . . . , ak,gk}∪

{F0,F1, . . . ,Fg},

gp = f(vip), 1 ≤ p ≤ k,

g = 2
k∑

p=1

gp,

E′ = (((E\{(e,F)1 | e ∈ V })∪

{(e,F0)1 | (e,F)1 ∈ E, e ∈ V })\

{(e, vij)1, (vij , e)1 | e ∈ V, 1 ≤ j ≤ k})∪

{(e, aj,l)1, (aj,l, e)1 | 1 ≤ j ≤ k, 1 ≤ l ≤ gj}∪

{(Fi,Fi+1)1 | 0 ≤ i ≤ g − 1}∪

{(Fi, aj,l)1, (aj,l,Fi+1)1 |

i = 2

j−1∑
p=1

gp + 2l − 1,

1 ≤ j ≤ k, 1 ≤ l ≤ gj}∪

{(Fg,F)1}.

Clearly, graph G′ have a Hamiltonian path if and only if
graph G have a path from S to F such that robot R solves
all tasks but no more then t(s) times for any task s from
set S and each node v ∈ V ′\S′ visited no more then f(v)
times.

It is easy to see that this transformation can be done in
polynomial time. Therefore, we need to prove only NP-
hardness of the planning a typical working day for indoor
service robots problem. For this purpose we reduce the
Hamiltonian path problem to our problem.

A Hamiltonian path in a graph G is a path that visits
each graph node exactly once. Let us consider the following
problem:

HAMILTONIAN PATH PROBLEM:
Instance: A directed graph D = (A,B).
Question: Does D have a Hamiltonian path?
The Hamiltonian path problem is NP-complete (cf. [26]).
Now, we transform an instance of the Hamiltonian path

problem into an instance of the planning a typical working
day for indoor service robots problem as follows:

V = A ∪ {S,F},

E = B ∪ {(S, e), (e,F) | e ∈ B},

S = V,

t(s) = 1, s ∈ S.

It is easy to see that this transformation can be done in
polynomial time and logarithmic space.

Suppose that G have a path from S to F such that robot
R solves all tasks but no more then t(s) times for any task
s from set S. Since S = V and t(s) = 1, s ∈ S, this path
in a graph G is a path that visits each graph node exactly
once. By definition, this is a Hamiltonian path for G. Note
that in graph G there are no arcs from F to x ∈ V \{F}.
Correspondingly, in graph G there are no arcs from x ∈
V \{S} to S . Therefore, there exist a Hamiltonian path in
the subgraph H of G generated by V \{S,F}. It is easy to
see that H = D.

Suppose now that

a1, a2, . . . , ak

is a Hamiltonian path in D. Since

{(S, e), (e,F) | e ∈ B} ⊆ E,

it is easy to see that

S, a1, a2, . . . , ak,F

is a Hamiltonian path from S to F in G. Since t(s) = 1,
s ∈ S, by definition, this Hamiltonian path is a path from
S to F such that robot R solves all tasks but no more then
t(s) times for any task s from set S. Therefore, D have a
Hamiltonian path if and only if G have a path from S to
F such that robot R solves all tasks but no more then t(s)
times for any task s from set S and each node v ∈ V ′\S′
visited no more then f(v) times.

III. A LOGICAL MODEL OF THE PLANNING A TYPICAL
WORKING DAY FOR INDOOR SERVICE ROBOTS PROBLEM

The satisfiability problem is a core problem in mathe-
matical logic and computing theory. In practice, SAT is
fundamental in solving many problems in automated reason-
ing, computer-aided design, computer-aided manufacturing,
machine vision, database, robotics, integrated circuit design,
computer architecture design, and computer network design.
Traditional methods treat SAT as a discrete, constrained
decision problem. In recent years, many optimization meth-
ods, parallel algorithms, and practical techniques have been
developed for solving SAT (see [27]).

In particular, proposed several genetic algorithms [28] –
[31]. Considered hybrid algorithms in which the approach
of genetic algorithms combined with local search [32].
Relatively high efficiency demonstrated by algorithms based
solely on local search. Of course, these algorithms require
exponential time at worst. But they can relatively quick
receive solutions for many boolean functions. Therefore, it is
natural to use a reduction to the SAT to solve computational
hard problems.

Encoding problems as Boolean satisfiability and solving
them with very efficient satisfiability algorithms has recently

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

caused considerable interest. In particular, local search algo-
rithms have given impressive results on many problems. For
example, there are several ways of SAT-encoding constraint
satisfaction (see e.g. [33] – [36]), clique [37], planning (see
e.g. [38] – [40]), and coloring problems (see e.g. [37],
[41]). There are a number of explicit reductions from the
Hamiltonian cycle problem to SAT (see e.g. [37], [41], [42]).

In previous section we obtain an explicit reduction from
the planning a typical working day for indoor service robots
problem to the Hamiltonian path problem. Using simple
combination of ideas from previous section and from [37]
we obtain an explicit reduction from the planning a typical
working day for indoor service robots problem to the satis-
fiability problem.

There is a well known site on which posted solvers
for SAT [43]. Currently on the site published more then
10 implementations of algorithms for solving SAT. They
are divided into two main classes: stochastic local search
algorithms and algorithms improved exhaustive search. All
solvers allow the conventional format for recording DIMACS
Boolean function in conjunctive normal form and solve the
corresponding problem [44]. In addition to the solvers the site
also represented a large set of test problems in the format of
DIMACS. This set includes randomly generated problems of
3SAT.

We create a generator of special hard and natural instances
for the planning a typical working day for indoor service
robots problem. Also we design our own genetic algorithm
for SAT which based on algorithms from [43].

We use heterogeneous cluster based on three clusters
(Cluster USU, Linux, 8 calculation nodes, Intel Pentium
IV 2.40GHz processors; umt, Linux, 256 calculation nodes,
Xeon 3.00GHz processors; um64, Linux, 124 calculation
nodes, AMD Opteron 2.6GHz bi-processors) [45]. For com-
putational experiment we create 161 special hard test sets
and 206 natural test sets. Each test was run on a cluster
of 100 nodes for 20 hours. For special hard test sets: the
maximum solution time was 12 hours; the average time
to find a solution was 21.5 minutes; the best time was 53
seconds. For natural test sets: the maximum solution time
was 10 hours; the average time to find a solution was 5.5
minutes; the best time was 26 seconds.

IV. CONCLUSION

In this paper we consider the planning a typical working
day for indoor service robots problem. We have proved that
the problem is in NP. We considered an approach to solve
this problem.

Note that many planning problems for mobile vehicles are
NP-hard and therefore difficult to solve. Because getting the
best results by applying the exact algorithm from instance
computer program is very costly, therefore, intelligent al-
gorithms are often desired. Often we can not characterize
with assurance an intelligent algorithm that we use. Is this
a really good algorithm? Maybe we just use too simple
instances. We need hard instances to test our algorithms.
Using hard instances requires finding a solver that could find
the exact solutions for testing. If we have a solver for hard
instances, we can create a good test bed for testing intelligent
algorithms. In particular, we can use the explicit reduction

obtained in this paper to create a test bed for the planning a
typical working day for indoor service robots problem.

The problem is quite general. In particular, this problem
can be used for planning for cleaning and housekeeping
robots, robots for domestic tasks, guides and office robots,
humanoid and anthropomorphic robots, inspection robots,
picking and palletizing robots, surveillance and exploration
robots, etc. Note that the considered problem is of interest not
only for robots that have a set of typical repetitive tasks. Also,
the problem is of interest for planning of individual repeating
hard tasks. In particular, we can mention a visual calibration
(see e.g. [46]). However, it is a plenty room for further
investigations. In particular, in further research interesting
to consider planning in dynamic systems and planning with
a counteraction.

REFERENCES

[1] P. Bertoli, M. Pistore, and P. Traverso, “Automated composition of Web
services via planning in asynchronous domains,” Artificial Intelligence,
vol. 174, no. 3-4, pp. 316-361, March 2010.

[2] S. Srivastava, N. Immerman, and S. Zilberstein, “A new representation
and associated algorithms for generalized planning,” Artificial Intelli-
gence, vol. 175, no. 2, pp. 615-647, February 2011.

[3] K. Wang and S. H. Choi, “Decomposition-Based Scheduling for
Makespan Minimisation of Flexible Flow Shop with Stochastic Process-
ing Times,” Engineering Letters, vol. 18, no. 1, EL 18 1 09, February
2010.

[4] F. Wu, S. Zilberstein, and X. Chen, “Online planning for multi-agent
systems with bounded communication,” Artificial Intelligence, vol. 175,
no. 2, pp. 487-511, February 2011.

[5] M. Zhongyi, M. Younus, and L. Yongjin, “Automated Planning and
Scheduling System for the Composite Component Manufacturing Work-
shop,” Engineering Letters, vol. 19, no. 1, pp. 75-83, February 2011.

[6] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,”
Management Science, vol. 6, no. 1, pp. 80-91, October 1959.

[7] A. Boonkleaw, N. Suthikarnnarunai, and R. Srinon, “Strategic Planning
for Newspaper Delivery Problem Using Vehicle Routing Algorithm
with Time Window (VRPTW),” Engineering Letters, vol. 18, no. 2,
EL 18 2 09, May 2010.

[8] G. Koloch and B. Kaminski, “Nested vs. Joint Optimization of Ve-
hicle Routing Problems with Three-dimensional Loading Constraints,”
Engineering Letters, vol. 18, no. 2, EL 18 2 10, May 2010.

[9] L. Lian and E. Castelain, “A Decomposition Approach to Solve
a General Delivery Problem,” Engineering Letters, vol. 18, no. 1,
EL 18 1 10, February 2010.

[10] X. Zheng, S. Koenig, D. Kempe, and S. Jain, “Multi-Robot Forest
Coverage for Weighted and Unweighted Terrain,” IEEE Transactions
on Robotics, vol. 26, no. 6, pp. 1018-1031, November 2010.

[11] S. Koenig, J. Mitchell, A. Mudgal, and C. Tovey, “A Near-Tight
Approximation Algorithm for the Robot Localization Problem,” SIAM
Journal on Computing, vol. 39, no. 2, pp. 461-490, March 2009.

[12] C. Tovey and S. Koenig, “Localization: Approximation and Perfor-
mance Bounds to Minimize Travel Distance,” IEEE Transactions on
Robotics, vol. 26, no. 2, pp. 320-330, March 2010.

[13] X. Zheng and S. Koenig, “K-Swaps: Cooperative Negotiation for Solv-
ing Task-Allocation Problems,” in Proceedings of the 2009 International
Joint Conference on Artificial Intelligence, pp. 373-379.

[14] J.-W. Choi, R. E. Curry, and G. H. Elkaim, “Continuous Curvature
Path Generation Based on Bezier Curves for Autonomous Vehicles,”
IAENG International Journal of Applied Mathematics, vol. 40, no. 2,
IJAM 40 2 07, May 2010.

[15] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta∗: Any-Angle
Path Planning on Grids,” Journal of Artificial Intelligence Research,
vol. 39, pp. 533-579, September 2010.

[16] A. Nash, S. Koenig, and M. Likhachev, “Incremental Phi∗: Incremental
Any-Angle Path Planning on Grids,” in Proceedings of the 2009
International Joint Conference on Artificial Intelligence, 1824-1830.

[17] P. Sotiropoulos, N. Aspragathos, and F. Andritsos, “Optimum Docking
of an Unmanned Underwater Vehicle for High Dexterity Manipulation,”
IAENG International Journal of Computer Science, vol. 38, no. 1, pp.
48-56, February 2011.

[18] W. Yue and J. Franco, “A New Way to Reduce Computing in Nav-
igation Algorithm,” Engineering Letters, vol. 18, no. 4, EL 18 4 03,
November 2010.

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

[19] R. Borie, C. Tovey, and S. Koenig, “Algorithms and Complexity
Results for Pursuit-Evasion Problems,” in Proceedings of the 2009
International Joint Conference on Artificial Intelligence, pp. 59-66.

[20] M. Bienvenu, C. Fritz, S. A. McIlraith, “Specifying and computing
preferred plans,” Artificial Intelligence, vol. 175, no. 7-8, pp. 1308-
1345, May 2011.

[21] M. Sridharan, J. Wyatt, R. Dearden, “Planning to see: A hierarchical
approach to planning visual actions on a robot using POMDPs,”
Artificial Intelligence, vol. 174, no. 11, pp. 704-725, July 2010.

[22] M. Thielscher, “A unifying action calculus,” Artificial Intelligence, vol.
175, no. 1, pp. 120-141, January 2011.

[23] P. H. Tu, T. C. Son, M. Gelfond, A. R. Morales, “Approximation of
action theories and its application to conformant planning,” Artificial
Intelligence, vol. 175, no. 1, pp. 79-119, January 2011.

[24] Website of Robotic Industries Association — Robotics Online. [On-
line]. Available:
http://www.robotics.org/

[25] Website of International Federation of Robotics. [Online]. Available:
http://www.ifr.org/home/

[26] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-completeness. San Francisco, California, USA:
W. H. Freeman and Co, 1979.

[27] J. Gu, P. Purdom, J. Franco, and B. Wah, “Algorithms for the
Satisfiability (SAT) Problem: A Survey,” in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1996, pp. 19-152.

[28] J. Fleurent, “Genetic algorithms and hybrids for graph coloring,”
Annals of Operations Research, vol. 63, no. 3, pp. 437-461, June 1996.

[29] J. Hao, R. Dorne, “A new population-based method for satisfiability
problems,” in Proceedings of 11th European Conference on Artificial
Intelligence, 1994, pp. 135-139.

[30] K. Jong, W. Spears, “Using genetic algorithms to solve np-complete
problems,” in Proceedings of the International Conference on Genetic
Algorithms, 1989, pp. 124-132.

[31] R. Voorn, M. Dastani, E. Marchiori, “Finding simplest pattern struc-
tures using genetic programming,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2001, pp. 3-10.

[32] J. Hao, F. Lardeux, F. Saubion, “A hybrid genetic algorithm for
the satisfiability problem,” in Proceedings of the 1rst International
Workshop on Heuristics, 2002, pp. 102-109.

[33] C. Bessiere, E. Hebrard, and T. Walsh, “Local Consistencies in
SAT,” in Theory and applications of satisfiability testing: SAT 2003:
international conference on theory and applications of satisfiability
testing N 6, 2003, pp. 400-407.

[34] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for
Theorem Proving,” Communications of the ACM, vol. 5, no. 7, pp. 394-
397, July 1962.

[35] A. Frisch, and T. Peugniez, “Solving Non-Boolean Satisfiability Prob-
lems with Stochastic Local Search,” in Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, 2001, pp. 282-
288.

[36] A. M. Frisch, T. J. Peugniez, A. J. Doggett, and P. W. Nightingale,
“Solving Non-Boolean Satisfiability Problems with Stochastic Local
Search: A Comparison of Encodings,” Journal of Automated Reasoning,
vol. 35, no. 1-3, pp. 143-179, March 2005.

[37] K. Iwama and S. Miyazaki, “SAR-variable complexity of hard com-
binatorial problems,” in Information Processing 94, IFIP Transactions
A, Computer Science and Technology, vol. I, pp. 253-258.

[38] M. Büttner, and J. Rintanen, “Improving parallel planning with con-
straints on the number of operators,” in Proceedings of the Fifteenth
International Conference on Automated Planning and Scheduling, 2005,
pp. 292-299.

[39] M. Ernst, T. Millstein, and D. Weld, “Automatic SAT-Compilation of
Planning Problems,” in Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, 1997, pp. 1169-1176.

[40] H. Kautz, “SATPLAN04: Planning as Satisfiability,” in Proceedings
of the 4th International Planning Competition at the 14th International
Conference on Automated Planning and Scheduling, 2004, pp. 44-45.

[41] H. H. Hoos, “SAT-Encodings, Search Space Structure, and Local
Search Performance,” in Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence 1999, pp. 296-302.

[42] A. D. Plotnikov, “A Logical Model of HCP,” International Journal of
Mathematics and Mathematical Sciences, vol. 26, no. 11, November
2001.

[43] SATLIB — The Satisfiability Library. [Online]. Available:
http://people.cs.ubc.ca/∼hoos/SATLIB/index-ubc.html

[44] Satisfiability Suggested Format. [Online]. Available:
http://www.cs.ubc.ca/∼hoos/SATLIB/Benchmarks/SAT/satformat.ps

[45] Web page “Computational resources of IMM UB RAS”. (In Russian.)
[Online]. Available:
http://parallel.imm.uran.ru/mvc now/hardware/supercomp.htm

[46] A. Gorbenko, A. Lutov, M. Mornev, V. Popov, “Algebras of Stepping
Motor Programs,” Applied Mathematical Sciences, vol. 5, no. 34, pp.
1679-1692, June 2011.

Anna Gorbenko was born on December 28, 1987.
She received her B.Sc. in Computer Science from
Department of Mathematics and Mechanics of
Ural State University in 2009. Since 2009 she
is a Researcher of the Department of Intelligent
Systems and Robotics of Ural State University.
She has (co-)authored 2 books and 17 papers. She
has received Microsoft Best Paper Award from
international conference in 2011.

Maxim Mornev was born on October 16, 1986.
He received his B.Sc. in Computer Science from
Department of Mathematics and Mechanics of
Ural State University in 2009. Since 2006 he
is a Researcher of the Department of Intelligent
Systems and Robotics of Ural State University. He
has (co-)authored 13 papers.

Vladimir Popov was born on December 15, 1969.
He received his Diploma in Mathematics (=M.Sci.)
from Department of Mathematics and Mechan-
ics of Ural State University in 1992. He was
awarded his Candidate of Physical and Mathe-
matical Sciences (=PhD) degree from Mathematics
and Mechanics Institute of Ural Branch of Russian
Academy of Sciences in 1996. He was awarded
his Doctor of Physical and Mathematical Sciences
degree from Mathematics and Mechanics Institute
of Ural Branch of Russian Academy of Sciences

in 2002. He is currently the chair of the Department of Intelligent Systems
and Robotics of Ural State University and a Professor at Department of
Mathematics and Mechanics of Ural State University. He has (co-)authored
18 books and more than 120 papers. He has received Microsoft Best Paper
Award from international conference in 2011. In 2008 his paper won the
Russian competitive selection of survey and analytical papers.

IAENG International Journal of Computer Science, 38:3, IJCS_38_3_01

(Advance online publication: 24 August 2011)

__

