
 

  
Abstract— Image contrast enhancement finds its place in 

many imaging applications. Unsharp masking is a classical tool 
for image contrast sharpening. The basic idea in this method 
relies on emphasizing the edge information in the image by 
adding a scaled version of the high frequency content of image 
to the original image. Despite its simplicity and effectiveness, 
unsharp masking suffers from noise amplification, edge 
ringing artifacts, and the need for specifying the scaling factor. 
In this paper, we propose a novel technique for scaling the edge 
information in order to achieve higher levels of enhancement 
with lower levels of noise amplification and ringing artifacts. 
The proposed technique utilizes an adapted version of the 
popular histogram equalization technique to amplify the edge 
information automatically and adaptively. Experimental 
evaluation proves the validity of the proposed technique in 
producing better contrasted images, qualitatively and 
quantitatively. 
 

Index Terms— Contrast enhancement, histogram 
equalization, image erosion, Laplacian mask, ringing artifacts 
 

I. INTRODUCTION 
HE availability of multimedia and communication 
systems has increased the interest in image data in 

many fields such as astronomy, remote sensing, medical 
sciences, science of materials, and biology. Regardless of 
the field, the quality of the captured images might be 
degraded for one or more reason such as malfunctioning 
issues in the imaging device and/or insufficient lighting and 
presence of noise in the environment. The level of 
degradation could be high enough to affect the usefulness of 
these images. In such occasions, image enhancement [1,2] 
and denoising [3,4] algorithms techniques come into action, 
where the degraded images are processed to make them 
suitable for human viewers or machine vision applications. 
Although the research in image enhancement techniques has 
been around for a while, the area is still attracting many 
researchers due to the subjectivity in evaluating the quality 
of the processed images and the emergence of new 
applications for digital images. Actually, the problem of 
image enhancement is not a trivial task since each image has 
its own characteristics, in addition to the fact that different 
image applications demand different enhancement 
requirements. Thus, it is hard to find a universal 
enhancement technique that would satisfy such diverse 
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requirements. In fact this justifies the presence of a plenty of 
techniques in the literature.  

In general, image enhancement techniques can be 
grouped into two main categories; direct and indirect 
techniques [1,2]. In the indirect approaches, the intensities 
or color channels are modified by means of some 
transformation function such that the dynamic range of the 
display device is fully utilized and the image details are 
more distinct. Contrast stretching using linear and nonlinear 
functions [5,6], histogram equalization and specification 
[7]-[11], iterative histogram thinning [12], graylevel 
grouping [13] and fuzzy contrast intensification [14] are 
examples of the indirect enhancement techniques. 
Generally, indirect contrast enhancement techniques are 
successful in improving the global quality of the image. 
However, they usually fail to enhance local details.  

On the contrary, direct enhancement techniques attempt 
to improve the image contrast by manipulating some local 
contrast measure that is usually related to the edge 
information and local statistics in the image. The contrast 
measure is typically selected based on prior knowledge of 
the imaging application. In [15], Matz and Figueriedo 
proposed a contrast enhancement technique that stretches 
the intensity values based over the Munsell’s scale [16] 
intervals based on an optimal transformation function and 
the mean edge gray values contrast measure proposed by 
Beghdadi et al. [17]. Performance evaluation of this 
technique shows its ability in contrast sharpening. However, 
it results in noise amplification. This is because the 
transformation function depends only on the minimum and 
maximum intensity values of the intensity intervals defined 
in the Munsell’s scale, out of which are some wide intervals. 
This may result in excessive stretching and accumulation of 
the intensities near the endpoints of the intervals, which 
leads to noise amplification. Hanmandlu and Jha proposed a 
novel enhancement method that is based on fuzzifying the 
image using a Gaussian membership function and then 
applying a global contrast intensification operator [18].  

The technique proposed by Cheng et al. [19] builds on 
the techniques in [15] and [17], however, a set of four 
homogeneity measures are used to compute the local 
contrast at each pixel. Additionally, the technique 
automatically specifies the parameters of the contrast 
modification function. Another technique in this category is 
presented in [20] where contrast enhancement by using the 
intensity-pair distribution which reflects both global and 
local information of the image content. Based on this 
distribution a set of expansion and anti-expansion forces are 
computed and used to define a transformation function that 
is used to modify pixel intensities.   

Among the direct enhancement techniques is the unsharp 
masking [21]. Basically, this technique relies on 
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emphasizing discontinuities in the image based on the fact 
that the human visual system is sensitive to intensity 
transitions. Thus, emphasizing discontinuities associated 
with intensity transitions is expected to improve the image 
contrast. The enhanced image g(x,y) in unsharp masking is 
obtained by 

( , ) ( , ) ( , )g x y f x y E x yα= +                       (1) 
where f(x,y) is the original image, E(x,y) is the edge image 
obtained by convolving the original image with a highpass 
filter mask such as the  Laplacian [1,2], and α is real scaling 
factor that is greater than 1. Despite its simplicity and 
effectiveness in improving the image contrast and 
sharpness, many complications arise when using unsharp 
masking for contrast enhancement. First, the edge image 
usually contains the noise information in the image in 
addition to the edge information. This leads to amplification 
of the noise that exists in the image after enhancement, 
especially in smooth regions. Second, the Laplacian 
response for many pixels in the image has relatively high 
positive or low negative values, especially in edge and near-
edge regions. Consequently, this may lead to overshooting 
or undershooting the pixels’ intensity values in the output 
image after addition, thus out of range values. The visual 
effect of this is what is known as halo or ringing artifacts. 
Finally, the level of enhancement obtained using unsharp 
masking depends on manual specification of the scaling 
factor α. Sharper images can be obtained by using large 
values for α; however, this increases the severity of ringing 
artifacts and noise amplification.  

To address the problem of ringing artifacts, the authors in 
[22,23] suggested making the scale factor variable and 
inversely proportional to the local standard deviation of the 
pixel’s neighborhood. Although ringing is reduced in these 
techniques, noise amplification is inevitable since smooth 
regions are characterized with low standard deviation 
values. Chang et al. [24] proposed a technique to specify the 
scale factor of the edge image by using a nonlinear contrast 
gain function that is determined by using a transformation 
between the local standard deviation histogram and a 
desired histogram that is derived by extending Hunt’s image 
model. The proposed function produces better results in 
terms of enhanced image quality and reduced ringing and 
noise amplification. However, the method is iterative in 
nature and requires user interaction to specify three different 
parameters in order to design the suitable contrast gain 
function.     

In this paper, we propose a new contrast enhancement 
technique that builds on the classical unsharp masking 
technique and the same time attempts to address its 
problems. The proposed technique relies on processing the 
histogram of the edge information and K-means clustering 
such that: 1) the edge information of noisy pixels is not 
scaled, 2) the scale factor is specified adaptively and is 
determined by performing histogram equalization on the 
edge histogram, 3) the edge information computed using the 
Laplacian operator is weighted by the pixel intensity values 
to reduce overshooting and undershooting problems. 
Additionally, the proposed technique employs a filtering 
step on the scaled edge image for further reduction of noise 
amplification and ringing artifacts. The filtering step 
exploits the use of a different filter mask to compute the 
edge information instead of the Laplacian, in addition to the 

morphological erosion operation for edge thinning and 
removal of isolated noise pixels. The remaining of this 
paper is organized as follows. In Section II, the proposed 
technique details and justifications are presented. 
Experimental enhancement results of the proposed 
technique are presented in Section III. Finally, the paper is 
concluded in Section IV.  

II. PROPOSED TECHNIQUE 

A. The Basic Technique 
The proposed enhancement technique in this paper is 

basically based on the unsharp masking technique. 
However, in order to accommodate for the problem of 
specifying the scale factor α automatically and adaptively, 
the histogram equalization technique is applied on the 
histogram of edge image. Histogram equalization is a 
popular indirect enhancement technique that attempts to 
redistribute the image intensities over the entire dynamic 
range by transforming the image histogram into a flat one 
[1,2]. The function that achieves such transformation is 
basically  

[ ]max min min min max
0

( ) ( ) ( )  + , ,  
k

i

T k L L h i L k L L
=

⎛ ⎞= − ∈⎜ ⎟
⎝ ⎠
∑

  
(2) 

wher h(i) is the normalized image intensity histogram, and 
Lmin and Lmax are the minimum and maximum of the 
intensity dynamic range. Using this function has the effect 
of stretching the histogram bins toward the two ends of the 
dynamic range, which is equivalent of scaling the intensity 
values adaptively. An important observation regarding this 
function is its simplicity and dependence on the image 
attributes only.   

Based on this argument, the proposed technique in this 
paper employs the histogram equalization technique to the 
histogram of the edge image before it is added to the 
original image. This operation is essentially equivalent to 
multiplying the edge values by a different scale factor based 
on the shape of the transformation function obtained using 
the histogram equalization. Nonetheless, histogram 
equalization cannot be applied on the edge image in a 
straight forward manner due to some typical properties of 
the Laplacian edge image. Figures 1(a), 1(b), and 1(c), show 
the original image Peppers, an example of Laplacian mask, 
and the corresponding absolute edge image, respectively. 
Two important observations can be made from this edge 
image. First, it is obvious how this image has large values 
for pixels that represent edges and low or zero values for 
pixels in smooth regions. Second, the double-edge effect is 
clearly noticeable due to the presence of negative and 
positive edges which is an inherent property of the 
Laplacian operator [1,2].  

These observations can be also identified by looking at 
the quantized histogram of the edge information of the 
Peppers image as shown in Figure 1(d). Looking at the edge 
histogram, we can see how it peaks near zero with most of 
its large bins located near the origin. Actually, these bins 
include pixels in pure smooth regions or regions with 
relatively small intensity variations. For the remaining bins, 
we can see that they have lower counts and they are 
centered on lower negative values or higher positive values. 
Typically, these bins usually correspond to true edge pixels.   
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Fig. 1. Illustration of Laplacian edge response and its properties (a) original 
image Peppers (b) a Laplacian mask example (c) edge image computed 
using the Laplacian mask (d) edge histogram. 
 
If histogram equalization is applied on the edge histogram 
over [Emin Emax], where Emin and Emin are the minimum and 
maximum edge values in the image, respectively, then the 
corresponding transformation function T(E) shown in Figure 
2(a) is obtained according to (2), where h(i) in this case is 
the normalized histogram of the edge image and i is the 
quantized edge value. This transformation function suggests 
that bins centered on negative values are excessively pushed 
toward the minimum edge value Emin while bins centered on 
positive values are excessively pushed toward the maximum 
edge value Emax without any special treatment to the bins  
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Fig. 2. Illustration of the basic enhancement technique (a) Transformation 
function derived from the whole edge histogram (b) Edge histogram after 
applying the transformation function (c) Enhanced image. 
 
that include noisy pixels, and the overshooting and 
undershooting of edge values. The effect of this behavior is 
clearly shown in Figure 2(b) which shows the histogram of 
the equalized edge image that is characterized with higher 
contrast, but with severe noise amplification and excessive 
emphasis of true edge content, or ringing artifacts, as shown 
in Figure 2(c). In fact, this is a typical example that shows 
how histogram equalization technique fails when the 
processed histogram has large bins, which are always 
present in edge images since the true edge content usually 
has small contribution in the overall number of pixels in the 
image. Thus, this inhibits histogram equalization in its basic 
form to be suitable for the proposed technique.  

In the following subsections, the details of adapting the 
histogram equalization technique to cope for these problems 
are presented. First, the technique is adapted before the edge 
image is scaled. Then, a filtering operation for the scaled 
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edge image is proposed to aid the process of reducing noise 
amplification and ringing artifacts. 

B. Adaptation of the Basic Technique 

B.1. Pre-scaling Adaptation 
Based on the previous discussion, if the edge image is to 

be scaled automatically, then this should be done carefully 
such that: 1) edge values that correspond to true edge pixels 
are not excessively pushed toward the two ends edge 
dynamic range to reduce edge ringing artifacts, 2) bins that 
correspond to smooth regions are excluded to avoid noise 
amplification. Accordingly, scaling the edge image using 
histogram equalization should comply with these two 
requirements. In the proposed technique, these problems are 
addressed according to the following.   

Regarding edge ringing artifacts, they are inevitable when 
unsharp masking is used due to the fact that the Laplacian 
response suffers from overshooting and undershooting 
problems, especially when the edge scale factor is high. In 
other words, the Laplacian may have very high positive or 
very low negative values for some pixels in the image, 
specifically, edge pixels. For pixels with high intensity 
values and high positive Laplacian response, the values of 
these pixels in the enhanced image could be greater than 
Lmax after adding the edge image to the original image. The 
same argument is true for pixels with low intensity values 
and low negative edge values. In this case, the intensity 
values in the output image for these pixels could be lower 
than Lmin. Such behavior results in over-emphasizing the 
edge pixels. As a first step in dealing with this problem in 
the proposed technique, a weighted edge image is used 
instead of the edge image E(x,y) in the enhancement 
process. The weighted edge image is obtained by  

max

max

max

( , )     ( , )       , ( , ) 0
( , )

( , )
( , )  , ( , ) 0

w

f x yE x y E x y
L

E x y
L f x y

E x y E x y
L

⎧ <⎪⎪= ⎨ −⎪ >
⎪⎩

         (3) 

The argument behind scaling the edge image using (3) is 
that for pixels with positive Laplacian response, the edge 
value is weighted by a factor that reflects the intensity level 
of the pixel, such that the closer the intensity to Lmax , the 
lower the weighting factor. Therefore, when the edge 
information is added to the intensity of the pixel, the 
possibility of exceeding Lmax is reduced. Similarly, for pixels 
with negative Laplacian response, the edge values are scaled 
such that the closer the intensity to Lmin, the lower the 
weighting factor. Again, this reduces the possibility of 
getting values lower than Lmin.  

In order to address the issue of specifying the scaling 
factor α of the edge image adaptively and automatically, the 
basic technique applies the histogram equalization technique 
on the edge histogram. However, such approach is not 
effective as it doesn’t provide special treatment for noise 
pixels and it may result in over stretching the edge values, 
which may lead to noise amplification and ringing artifacts. 
Actually, the overstretching problem is also encountered 
when histogram equalization is applied to the intensity 
values and many approaches have been proposed to deal 
with this problem [25]-[28]. The basic idea in some of these 
approaches is to divide the dynamic range of the image into  

 

TABLE I  
VALUES USED TO EXTRACT THE EDGE SUB-HISTOGRAMS 

Sub-histogram Lower Value Upper Value 
h1(i) min

wE  δ1 
h2(i) δ1+1 δ2 
h3(i) δ2+1 δ3 
h4(i) δ3+1 δ4 
h5(i) δ4+1 max

wE  

 
two or more sub-range and then apply the histogram 
equalization technique on the sub-histograms independently.  

On overall, such approach limits the stretching of the 
intensity bins, thus reducing the problems related to 
overstretching. Consequently, the second adaptation to the 
basic technique borrows the concept of divided histogram 
equalization to overcome overstretching problems. Another 
advantage of working with divided edge histograms is that 
the edge bins that correspond to noise pixels can be 
excluded from the equalization operation to reduce noise 
amplification.  

In the proposed technique, the edge histogram is divided 
into five sub-histograms h1(i), h2(i), h3(i), h4(i), and h5(i) 
using four thresholds δ1, δ2, δ3, and δ4 such that  

min 2 0w
1E δ δ< < <                   (4) 

and 
3 4 max0 wEδ δ< < <                   (5) 

with min
wE  and max

wE  being the minimum and maximum 
values of the weighted edge image. The five sub-histograms 
essentially include a subset of the bins from the full edge 
histogram h(i) over different ranges using the four 
thresholds as given in Table I. Effectively, the thresholds δ2 
and δ3, are used to identify the bins that correspond to pixels 
in smooth regions from the bins of true negative and 
positive edges. These bins are included in the h3(i) sub-
histogram and are expected to be left unchanged when the 
edge image is scaled. This should have the effect of 
reducing noise amplification. The thresholds δ1 and δ4 are 
used to split each of the true negative and positive edge bins 
into two groups. The first group includes bins with 
moderate edge values included in the h2(i) and h4(i) sub-
histograms, while the second group has the bins with high 
edge values included in the h1(i) and h5(i) sub-histograms. 
This splitting has two roles. First, it limits the stretching of 
the true edge bins toward the two ends of the histogram, 
thus reducing ringing artifacts, especially for moderate edge 
values. Second, if some noise pixels that are supposed to be 
in h3(i) are mistakenly included in h2(i) and h4(i) sub-
histograms, then the splitting of the true edge values limits 
their amplification.  

According to this division, scaling the edge image 
proceeds by excluding the sub-histogram h3(i) and 
manipulating the edge values of the remaining sub-
histograms through computing the transformation function 
for each sub-histogram using equation (2) with Lmin and Lmax 
being the values specified to extract each sub-histogram as 
given in Table I. The scaled edge image ( , )w

scaledE x y  is 
computed from the weighted edge image ( , )wE x y  by 
replacing the edge value for each pixel with the value 
computed using the corresponding transformation function 
based on the sub-range it belongs to. The enhanced image  
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Fig. 3. Illustration of the effect of pre-scaling adaptation on the basic 
enhancement technique (a) Combined transformation function (b) 
Enhanced image. 
 
g(x,y) according to the unsharp masking technique is then 
computed by adding the scaled image back to the original 
image using  

( , ) ( , ) ( , )w
Scaledg x y f x y E x y= +             (6) 

The combined transformation function for the Peppers 
image using certain values for the four thresholds and the 
enhanced image are shown in Figure 3(a). Examining this 
transformation function and the equalized histogram, it is 
clear how the division of the edge histogram has limited the 
stretching of the true edge bins to be within a sub-range of 
the full range of edge values while excluding the bins that 
represent noise when compared to the transformation 
function computed by equalizing the entire edge image as 
shown in Figure 2(a). Actually, such behavior produces a 
better contrasted image, as shown in Figure 3(b), with less 
noise amplification and ringing artifacts when compared to 
the image in Figure 2(c).   

B.2. Post-scaling Adaptation 
Examining the image produced by the proposed 

technique in Figure 3(b), it is obvious how the contrast has 
been significantly increased. However, a closer look into the 
image reveals that some of the smooth regions have 
acquired some noise amplification and some of the edges 
and their neighboring regions appear too bright or too dark 
(ringing artifacts). Actually, these two problems are 
imposed by the nature of the Laplacian operator which gives 
larger weight to the center pixel as shown in the Laplacian 
mask given in Figure 1(b). This implies that for pixels with 
relatively high noise levels and those in the regions near the 
edges, the Laplacian response is relatively high and is not 
excluded when the K-means clustering is applied. 
Consequently, when the edge image is added back to the 

original image, this would result in emphasizing high- level 
noise pixels and pixels in the regions around the edges. In 
fact, these problems are more critical in the proposed 
technique since the edge image is scaled, which increases 
the severity of the problems.  

A simple approach to reduce the effect of noise in the 
Laplacian edge image is to compute the Laplacian image 
from a smoothed version of the original image. However, 
applying the technique using the smoothed Laplacian edge 
image produces less contrasted image since the edge 
response computed from the smoothed image is lower. 
Additionally, smoothing the original image produces thicker 
edges, thus ringing artifacts may increase. Alternatively, 
higher contrast image with less severity of the mentioned 
problems can be obtained if the pixels with high noise levels 
and pixels around the edges are identified and are excluded 
from scaling.  

In order to identify all or most problematic pixels, let’s 
consider the following procedure which is explained using 
the hypothetical image shown in Figure 4(a). This image 
contains an edge between two smooth regions with some 
high level noise pixels indicated in bold font. If this image is 
first smoothed using a 3x3 averaging mask and then edges 
are detected using the Laplacian mask, the result in Figure 
4(b) is obtained. In this image, it is clear how the response 
of some noise pixels is close to that of the pixels in the 
smooth regions they belong to. However, for noise pixels 
near the edge, their response is comparable to that of the 
pixels that are assumed to represent the edge. Also, note 
how many of the high responses are 2 pixels far from the 
edge due to smoothing and the double-edge effect of the 
Laplacian operator. Figure 4(c) shows a binary edge image 
that is obtained by thresholding the absolute edge image in 
Figure 4(b) using a threshold δ such that edge responses 
higher than δ (true edge pixels) are set to 1 while responses 
less than δ (noise and near edge pixels) are set 0. From this 
image we can see how some of the smooth regions and 
near-edge pixels are considered as edges. Most or all of the 
mistaken pixels can be removed by applying the 
morphological erosion operation [1,2] to eliminate isolated 
noise pixels and to thin the edge response. The erosion 
result is shown in Figure 4(d). It is clear in this image how 
edge response is almost completely lost while we still have 
false-positive edge pixels. Again this is directly tied with the 
fact that the Laplacian mask is used to compute the edge 
response.  

Accordingly, to identify these problematic pixels, the 
filtering operation outlined earlier is modified to utilize a 
different edge operator to compute the edge response 
instead of using the Laplacian. For a smoothed image 

( , )f x y  , this operator is defined by  

2

1( , ) ( , ) ( , )   
(2 1) 1

                                    ,  , 

y nx n

i x n k y n
S x y f x y f x i y k

n
i x k y

++

= − = −

= − + +
+ −

≠ ≠

∑ ∑
    

(7) 

Basically, this equation computes the average of the 
absolute intensity difference between the pixel (x,y) and its 
adjacent pixels in a (2n+1)x(2n+1) neighborhood. Note 
how this operator is similar to the Laplacian in the sense that 
it computes the edge response through intensity differences. 
However, the weight for the center pixel is 1, which has the 
effect of reducing the Laplacian response of noisy pixels.  
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Fig. 4. (a) Hypothetical image (b) edge image computed from the smoothed image using 
Laplacian operator (c) binary edge map (d) eroded binary edge map. 
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Fig. 5. (a) Edge image computed from the smoothed image using equation (7) (b) binary edge map (c) eroded binary edge map.
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Fig. 6. (a) Equalized edge image of Peppers image (b) filtered edge image using the Laplacian  (c) filtered edge using the equation (7) (d) enhanced image 
using edge image in (b)  (e) enhanced image using edge image in (c).  

 
Additionally, the expression in (7) introduces some 

smoothing effect on the edge response since it computes the 
average difference between the center pixel and its 
neighbors. The result of applying this operation on the 
image in Figure 4(a) is shown in Figure 5(a). When 
compared with the Lapalcian edge response, it is obvious 
that edge responses obtained using equation (7) have more 
coherent values and are better localized. Also, the edge 
response within smooth regions is lower and coherent. 

Thus, levels of isolated noise pixels are reduced further. 
The corresponding binary edge image that is produced 
using a threshold δ is shown in Figure 5(b). Note how most 
of the isolated noise pixels have been eliminated and the 
pixels along the edge are preserved. However, the edge still 
contains many near edge pixels. As mentioned earlier, the 
erosion can be applied for further removal of isolated noise 
pixels and to thin the edge. This is shown Figure 5(c) which 
shows the binary edge map R(x,y) that is supposed to  
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Fig. 7. Results for image Boat. 

identify the edge pixels only. It is clear in this figure how 
the edge structure is preserved while isolated noise pixels 
are removed.  

The edge map image R(x,y) obtained after erosion is 
assumed to identify the actual edge pixels, thus it can be 
used to filter the equalized edge image ( , )w

ScaledE x y  before 
it is added to the original image as given in (6). This should 
help in reducing noise amplification and ringing artifacts. 
This is achieved by using the equalized edge values for 
pixels that are identified as true edge pixels in ( , )R x y  
while for the remaining pixels the original edge value is 
used. In other words, the scaled edge image is modified 
such that  

 ( , )  , ( , ) 1
( , )  

 ( , )       , ( , ) 0

w
Scaledw

Scaled w

E x y R x y
E x y

E x y R x y

⎧ =⎪= ⎨
=⎪⎩

          (8) 

Considering real images, Figure 6 demonstrates the 
effectiveness of using the edge operator in (7) in the 
filtering operation of the scaled edge image and compares it 
with the result of using the Laplacian of the smoothed 
image.  It is obvious in this figure how the noise level in 
smooth regions have significantly decreased after applying 
the filtering operation in both cases. However, edges 
obtained using equation (7) are more structured than those 
obtained when the filtering operation employs the 
Laplacian of the smoothed image as shown in figures 6(b) 
and 6(c). The enhanced images after filtering the scaled 
edge image in both cases are shown in Figures 6(d) and 
6(e). Note how both images exhibit higher contrast when 
compared to the original image and less noise amplification 

and edge ringing when compared to the image in Figure 
3(b) that was obtained using the proposed edge equalization 
technique without filtering. However, the image in Figure 
6(e) has less ringing artifacts (examples are pointed to by 
white arrows) and lower noise amplification (an example is 
enclosed by the white rectangle) than the image in Figure 
6(d). 

B.3. Specification of Parameters 
In general, the proposed technique is expected to 

increase the image contrast with less noise amplification 
and ringing artifacts given that the appropriate values for 
the four thresholds are specified. Typically, these values 
could be changed interactively until satisfactory result is 
obtained. The specification process should be done such 
that δ2 and δ3 are far from the origin to include most noise 
bins in h3(k), but not too far in order include weak edges in 
the scaling process. For δ1 and δ4, they should be far 
enough from the origin to obtain reasonable stretching for 
moderate edge values, but not too far in order to avoid 
ringing artifacts. Although it sounds simple, manual 
specification of the thresholds could be a time consuming 
job. Instead, the following approach is proposed to 
determine these thresholds automatically. The approach is 
defined based on an extensive experimentation on a large 
set of images. 

For the thresholds δ2 and δ3, they are assumed to 
partition the edge image into smooth and edge regions. This 
can be simply achieved by applying any data clustering 
technique, such as K-means clustering and self-organizing  
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(a) Original (b) Unsharp masking (c) Ref. [15] 

(d) Ref. [19] (e) Ref. [20] (f) Proposed 
Fig. 8. Results for image Cameraman. 

maps [29] on the edge image. In this paper, the K-means 
clustering algorithm is used because of its simplicity.  
Effectively, this algorithm attempt to group data points into 
clusters such that the intra-cluster similarity is minimized. 
Assuming that the edge histogram is symmetric, the K-
means clustering algorithm is used to partition the absolute 
value of the edge image into two clusters; CL and CH, which 
represent the sets of low and high edge values, respectively. 
Consequently, we specify the two thresholds, δ2 and δ3, 
such that δ3 is the center of CL cluster and δ2 is –δ3.  

Actually, the logical procedure to apply the clustering 
algorithm should be to partition the edge image into three 
clusters; negative edge values, smooth edge values, and 
positive edge values, and then use some of the clusters 
statistics to specify the two thresholds. However, for many 
images, the K-means algorithm couldn’t produce the three 
clusters as required. For example, the cluster that should 
include the true negative edge pixels sometimes had 
positive values for some images since the K-means 
algorithm does not employ any restrictions on the clustering 
process other than minimizing the intra-cluster similarity. 
On the other hand, clustering the absolute edge image into 
two clusters as described before guarantees that δ2 is 
negative while δ3 is positive. 

Regarding the δ1 and δ4 thresholds, the straight forward 
approach could be to cluster the absolute edge image into 
three clusters instead of two. However, for all tested images 
this did not produce useful clusters due to the fact that most 
edge content is close to the origin, which results in low 
values for δ1 and δ4. Thus, the level of scaling is not high 
enough. Alternatively, these thresholds are specified using  

1 2 min( ) / 2wEδ δ= +                   (9) 
and 

   4 3 max( ) / 2wEδ δ= +                 (10) 
Basically, the threshold δ1 is the midpoint edge value 
between min

wE and δ2 while δ4 is the midpoint edge value 
between δ3 and max

wE . 
Concerning the threshold δ that is used to compute the 

binary edge map R(x,y) is specified through clustering the 
edge response image S(x,y) into two clusters using the K-
means clustering algorithm and then using the center of the 
cluster of low values as the values for δ. The assignment of 
the five thresholds using the approach presented here 
produced very satisfactory results for many test images. 

III. RESULTS & DISCUSSION 
In this section, the experimental results obtained using 

the proposed technique and the comparison with unsharp 
masking technique and the techniques described in [15], 
[19], and [20] are presented. The scale factor α for the 
unsharp masking technique is specified manually until the 
obtained contrast is visually comparable to that of the 
proposed technique. The results presented here include six 
512x512 test images; Boat, Cameraman, Toys, Cart, Lena, 
and Tank. The thresholds δ, δ1, δ2, δ3, and δ4 used in the 
proposed technique are computed as discussed in Section II 
with the number of iterations for the K-means clustering 
algorithm set to 50. The smoothed image using in (7) is 
obtained using a 3x3 standard averaging mask.  
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a) Original b) Unsharp masking c) Ref. [15] 

(d) Ref. [19] (e) Ref. [20] (f) Proposed 
Fig. 9. Results for image Toys. 

In order to evaluate the results quantitatively, two contrast 
measures are used. The first one is the well-known 
benchmark image sharpness measure, the Tenegrad, is used 
[30]. The Tenegrad measure is based on gradient magnitude 
maximization and is considered one of the most robust and 
functionality accurate image quality measures [30]. The 
Tenegrad value is computed from the gradient at each pixel 
in the image where the partial derivatives are obtained by a 
high-pass filter such as Sobel operator. The Tenegrad 
(TEN) value for the whole image is computed using  

( , ) ,   ( , )
x y

TEN G x y G x y λ= ∀ >∑ ∑            
(11) 

where ( , )G x y is the gradient magnitude and λ is some 
threshold that is used to eliminate low edge responses 
which correspond to low levels of noise in the smooth 
regions in the image. In our experiments, λ is chosen to be 
the mean of the gradient magnitude values. The second 
contrast measure is the mean edge gray value [17], MEG, 
which is defined for a pixel (x,y) with (2n+1)x(2n+1) 
neighborhood by  

( )
   

   

( ,
( , )

) ,

( , )

y nx n

k x n l y n
y nx n

k x n l y n

k l f k l

k
MEG x y

l

++

= − = −
++

= − = −

Δ
=

Δ

∑ ∑

∑ ∑
              (12) 

with Δ(k,l) is the edge value computed using any edge 
operator such as Sobel or Roberts operators [1,2].  In the 
presented results, the average of MEG value of the entire 
MxN image  

1 1

1 ( , )
M N

x y
MEG E x y

MN = =

= ∑∑                      (13) 

is reported. Generally, a high value of MEG for a certain 
image reflects better contrast.  

The original test images and the enhanced images using 
different techniques and the proposed technique are shown 
in figures 7 through 12. In these figures, it is clear how the 
processed images are better contrasted than the original 
image. The best results in terms of enhancement level could 
be claimed for the unsharp masking technique. However, 
images obtained using unsharp masking exhibit severe 
ringing artifacts (examples are pointed to by the white 
arrows) and noise amplification (examples are enclosed in 
white rectangles). As mentioned earlier, this is due to the 
fact that   enhancement in unsharp masking uses the actual 
edge values which may result in over-shooting and under-
shooting in the intensity values in the enhanced image. 
Additionally, no special treatment for the noise that may 
exist in the image is provided. Such problems are less 
noticeable in the images produced by the proposed 
technique due to its capability of dealing with the causes of 
these problems through using the weighted edge values, 
partitioning the edge image to isolate noisy pixels, filtering 
of the scaled image. Nonetheless, the contrast of the images 
obtained using the proposed technique is quite comparable 
to that of the unsharp masking. 

Regarding the comparison with the remaining 
techniques, it is obvious in the provided results how the 
proposed technique produces images with higher contrast. 
The technique in [15] resulted in noise amplification in 
smooth regions as indicated by the yellow rectangles in the 
figures. The Cheng et al. technique [19] produced images 
with no noise amplification and ringing artifacts as it uses 
four different homogeneity measures in the enhancement  
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(a) Original (b) Unsharp masking (c) Ref. [15] 

(d) Ref. [20] (e) Ref. [19] (f) Proposed 
Fig. 10. Results for image Cart. 

(a) Original (b) Unsharp masking (c) Ref. [15] 

(d) Ref. [19] (e) Ref. [20] (f) Proposed 
Fig. 11. Results for image Lena. 
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(a) Original (b) Unsharp masking (c) Ref. [15] 

(d) Ref. [19] (e) Ref. [20] (f) Proposed 
Fig. 12. Results for image Tank. 

process. However, the level of enhancement is relatively 
low when compared to that of the proposed technique. This 
is due to the fact that the technique in [19] is very 
conservative in manipulating the contrast measure defined 
using the four homogeneity measures. Similarly, the 
technique in [20] exhibits lower levels of artifacts and lower 
contrast. Lower levels of contrast in this technique are due 
to the fact that the transformation function used for 
enhancement is applied globally, although it is derived 
based on local contrast measure.        

Quantitatively, the TEN and MEG values for the four 
images before and after they are processed are listed in 
Tables II and III, respectively. Comparing these values of 
the original images with those of the processed images it is 
obvious how the processed images have higher values. This 
is good indication that the enhanced images for different 
techniques are of higher contrast and stronger edges, which 
is consistent with the visual evaluation. From the numbers 
given in Tables II and III, it is obvious how the proposed 
technique supersedes the techniques in [15], [19], and [20] 
as it has larger TEN and MEG values. However, these 
values are lower than those for the images processed by the 
unsharp masking technique. This is easily justifiable by the 
fact that the unsharp-masked images exhibit edge ringing 
artifacts due to overshooting and undershooting the 
intensity of many edge pixels. This makes the gradient 
response higher for such pixels, thus higher TEN and MEG 
values.     

In terms of processing time, the average processing time 
for different techniques is listed in Table IV. These numbers 
are obtained by executing different techniques on a 
computer with 2.2 GHz Intel® Core 2 Duo and 3 GB of 

RAM. It is indisputable that the unsharp masking technique 
and the technique in [15] require lower time than other 
techniques due to their simplicity. From these numbers, it is  
obvious how the proposed technique requires moderate 
processing time when compared to the other techniques. 
The technique of [19] requires the longest time as it 
demands the computation of four homogeneity measures for 
each pixel in the image. Similarly, the technique in [20] is 
computationally expensive as it requires the computation  
of a set of expansion and anti-expansion forces for each 
intensity pair difference in the image.  

 In summary, experimental evaluation reveals the 
capability of the proposed technique in enhancing the image 
contrast and edge sharpness with less noise amplification 
and edge ringing artifacts with moderate processing 
requirements. 

IV. CONCLUSION  
In this paper, we presented a new technique for image 

contrast enhancement that is based on the popular unsharp 
masking technique. However, the proposed technique 
addresses the common problems associated with the 
unsharp masking. This is achieved through using an adapted 
version of the histogram equalization to scale the edge 
content in the image. Adaptation includes using weighted 
edge information, partitioning of the dynamic range of the 
edge histogram and equalizing the partitions that 
correspond to true edges only, as well as applying a filtering 
procedure on the scaled edge image before it is added to the 
original image. The effect of these resulted in better 
contrasted images with less noise amplification and ringing  
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TABLE II 
 TENEGRAD VALUES (X107) FOR THE ORIGINAL IMAGES AND THE RESULTS OBTAINED  

USING DIFFERENT TECHNIQUES 

Image Original Unsharp Masking Ref. [15] Ref. [19] Ref. [20] Proposed 
Boat 1.25 3.86 1.79 1.47 1.59 2.19 

Cameraman 0.99 2.28 1.36 1.10 1.21 1.90 
Toys 0.90 2.32 1.20 1.24 1.35 1.86 
Cart 1.63 4.45 2.06 2.19 1.89 2.76 
Lena 0.90 2.57 1.31 1.17 1.19 1.88 
Tank 0.588 2.54 1.06 0.65 1.23 1.34 

 
TABLE III 

 MEAN EDGE GRAY VALUES FOR THE ORIGINAL IMAGES AND THE RESULTS OBTAINED  
USING DIFFERENT TECHNIQUES 

Image Original Unsharp Masking Ref. [15] Ref. [19] Ref. [20] Proposed 
Boat 0.031 0.073 0.034 0.038 0.035 0.043 

Cameraman 0.067 0.132 0.069 0.067 0.073 0.106 
Toys 0.032 0.086 0.042 0.057 0.048 0.063 
Cart 0.112 0.224 0.132 0.113 0.123 0.146 
Lena 0.026 0.066 0.029 0.042 0.031 0.051 
Tank 0.010939 0.034 0.015 0.012 0.018 0.023 

 
Table IV 

AVERAGE  PROCESSING TIME IN SECONDS FOR DIFFERENT  
TECHNIQUES 

Technique Time (sec) 
Unsharp masking 0.02 

Ref. [15] 4.87 
Ref. [19] 98.71 
Ref. [20] 15.05 
Proposed 10.93 

 
 

 

artifacts when compared to the original unsharp and other 
enhancement techniques. 
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