ITAENG International Journal of Computer Science, 38:3, [JCS 38 3 07

Two Fuzzy Approaches for Multiobjective
Stochastic Programming and Multiobjective Fuzzy
Random Programming Through a Probability

Maximization Model

Hitoshi Yano and Kota Matsui

Abstract—In this paper, two kinds of fuzzy approaches are Recently, in order to deal with probabilistic uncertainty
proposed for not only multiobjective stochastic linear program-  and fuzzy one simultaneously, the hybrid approaches of
ming problems, but also multiobjective fuzzy random linear stochastic programming and fuzzy programming have been

programming problems through a probability maximization .
model. In a probability maximization model, it is necessary for proposed [6]. Especially, Sakawa et al. [15], [16] proposed an

the decision maker to specify permissible values of objective interactive method for multiobjective fuzzy linear program-
functions in advance, which have a great influence on the ming problem with random variable coefficients. Katagiri

corresponding distribution function values. In our proposed et al. [9] proposed an interactive method for multiobjective
methods, the decision maker does not specify permissible values”near programming problem with fuzzy random variable

of objective functions, but sets his/her membership functions - - L
for permissible values. By assuming that the decision maker coefficients. They also adopted a probability maximization

adopts the fuzzy decision as an aggregation operator of fuzzy Model to transform stochastic programming problems into

goals for not only the permissible objective levels but also well-defined mathematical programming ones. However, us-

the permissible probability levels, a satisfactory solution of the ing a probability maximization model, it is necessary that,

decision maker is easily obtained based on linear programming , ‘aqyance, the decision maker specifies permissible levels

technique. Two _k_lnds of numerical examples are illustrated to f biective functi in his/h biecti It

show the feasibility of the proposed methods. or objective functions in his/her subjective manner. It seems
o o ) to be very difficult to specify such values in advance,

Index Terms—multiobjective stochastic linear programming, - pe.qse there exist conflicts among permissible levels and
multiobjective fuzzy random linear programming, fuzzy deci- . L .
sion, a probability maximization model. the corresponding distribution function values.

From such a point of view, in this paper, assuming that the
decision maker adopts the fuzzy decision to integrate mem-
bership functions, two types of fuzzy approaches [19] are

In the real world decision making situations, we ofteRroposed for both multiobjective fuzzy linear programming
have to make a decision under uncertainty. In order to dgfbblem with random variable coefficients and fuzzy random
with decision prOblemS inVOlVing Uncertainty, stochastic Prerariable coefficients. In section I, a fuzzy approach is pro-
gramming approaches and fuzzy programming approachgssed for multiobjective stochastic linear programming prob-
have been developed. In stochastic programming approacfgss through a probability maximization model, where the
[1].[2],[4],[7], two stage problems and chance constraineghefficients of the objective functions are random variables.
programming models have been investigated in various wagction 11l provides a numerical example to demonstrate
and they were extended to multiobjective stochastic prograghe proposed fuzzy approach for multiobjective stochastic
ming problems [13],[17]. In fuzzy programming approacheginear programming problems. In section 1V, a fuzzy ap-
various types of fuzzy programming problems have befioach is proposed for multiobjective fuzzy random linear
formulated and investigated [10],[12],[21]. As a natural exyrogramming problems through a probability maximization
tension, multiobjective fuzzy programming technique firshodel, where the coefficients of the objective functions are
proposed bu Zimmermann [20], and many methods hayg,zy random variables. Section V provides a numerical
been proposed [14],[21]. example to demonstrate the proposed fuzzy approach for

From a different point of view, mathematical programmingnyltiobjective fuzzy random linear programming problems.
problems with fuzzy random variables have been proposgghally, in section VI, we conclude this paper.

[8],[11],[18], whose concept includes both probabilistic un-
certainty and fuzzy one simultaneously. Since such fuzzy
random programming problems are usually ill-defined, it Il. A FuzZzy APPROACH FORMULTIOBJECTIVE
is necessary to utilize not only stochastic programming STOCHASTICLINEAR PROGRAMMING PROBLEMS
technique but also fuzzy programming technique to construct
a decision making model.

I. INTRODUCTION

In this section, we focus on multiobjective programming
problem involving random variable coefficients in objective
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wherexz = (x1,x2, - ,xn)T is ann dimensional decision solution is obtained from among M-Pareto optimal solution
variable column vectorz;(x) = ¢,z + @;,i = 1,---, k, are set which is Pareto optimal solutions in membership space.
objective functions involving random variable coefficientd]lowever, in general, the decision maker seems to prefer
¢; is an dimensionarandom variable row vector expressedot only the less value of permissible objective leyeg)

by € = ¢! + t;c?, wheret; is arandom variablew; is a but also the larger value of probability functign(z, f;).
randomvariable row vector expressed by = @, +#;a2. In  Since these values conflict with each other, the less values
the following, we assume thdk;(-) is a distribution function of permissible objective levef; results in the less value of

of a random variablé;, whichis strictly monotone increasing probability functionp; (z, f;). From such a point of view, we
and continuousX is a linear constraint set with respect taonsider the following multiobjective programming problem

x. which can be regarded as a natural extension of M@R1
Since MOSP1 contains random variable coefficients [MOP2]

objective functions, mathematical programming techniques max x x I

can not be directly applied. In order to deal with such TeX.fii=1, -k Pr(@, f1), o Pel®, i)y =fro fk)4

multiobjective stochastic programming problems, we make )

use of a probability maximization model, which aims to Considering the imprecise nature of the decision maker’s
maximize the probability that each objective functiesa) judgment, it is natural to assume that_the. decision maker
is lessthan or equal to a certain permissible objective lev&2ve fuzzy goals for each objective function in MOPZ2. In this

f;. Such a probability; (, f;) can be defined as follows. section, it is assumed that such fuzzy goals can be quantified
’ I by eliciting the corresponding membership functions. Let

pi(x, f;) def Pr(w|zi(z,w) < fi),i=1,---,k (2) US denote a membership function of probability function
. ) pi(z, fi) as pp, (pi(=, f;)), and a membership function of
where Pr(-) denotes a probability measure,is an event, permissible objective levef; as i/, (f;) respectively. Then,

andz;(z, w) is a realization of the random objective function\yop2 can be transformed as the following multiobjective
z;(x) under theoccurrence of each elementary eventThe programming problem.

decision maker subjectively specifies a certain permissibﬂaopg]
objective levelf; for each objective functiorz;(x,w). Let

gzjedcetizll(;tleevaeklsd;gens(i?naI ve}ct)or of certain permissible wex Ifn?)—(l o (11p, (P12, £1)), - s s, (P (2, fr)),

= 17«..7 k" R R ) El

Then, MOSP1 can be transformed into the traditional mul- o (f1)y s g (fr) )

tiobjective programming problem MOP#), where probabil- . . .

ity functions pi (z, fi),i — 1, - -, k are adopted as objectiveThrough_om this section, we .make the assumptlons. that

functions instead of;(x, w), and each of them is maximized A:(fi);i = 1,k are strictly monotone decreasing

[MOP1(f)] and continuous with respect tfj, and p,, (p;(, fi)),7 =
max(p1 (@, f1), - pe(, f)) 3) 1,---,k are strictly monotone increasing and continuous
T P J1)s w0 PR, T with respect top; (z, f;).

For example, we can define the domainigf (p;(x, f;))
as follows. Considering the individual minimum and maxi-
mum of E(z;(x)), the decision maker subjectively specifies
the sufficiently satisfactory maximum valug,,;, and the
acceptable minimum valu€f;,,.. Then, the domain of
pi(z, fi) = Pr(w]|zz,w) < fi) iy, (fi) is defined as:
= Pr(w]|cw)e+ a;(w) < fi)

Under the assumption thafx +a? > 0,i = 1,---,k for
any x € X, using distribution functiong;(-),i = 1,---,k
we can rewrite the objective functign(z, f;) as the follow-
ing form.

Fi = fimin7 fimax . (6)
— pr<w |t (w) < ﬁ(c}a%a})) | [ | ] |
- cix + o? Corresponding to the domaitt;, denote the domain of
o (fi ~(cle a})) o, (pil@, 1)) @s:
o ccx + a?
¢ ¢ Pz(Fz) - [piminapimax]' (7)

In orderto deal with MOP1(jf, we consider the feasible

region P(f) = {(p1(z, f1),- -, pr(x, fr) € R¥ | £ € X}. Pimax CaAN be obtained by solving the following problem.
In the feasible regiorP(f), we can define Pareto optimal .
solution to MOP1f). Pimax = WAX Di(%, fimax), 1 =1, K, (®)
Definition 1.
x* € X is said to be a Pareto optimal solution to MOPL(
if and only if there does not exist anotherc X such that
pi(x, fi) > pi(x*, fi), ¢« = 1,---,k, with strict inequality
holding for at least one.

Sakawa et al. [15] formulated a probability maximization <fimax — (clx + %1))

¥ It should be noted here that the above problem is equivalent

to the following linear fractional programming problem
[3] because distribution functioff’(-) is strictly monotone
increasing and continuous.

©)

model for MOSP1, and proposed an interactive method to max

TeX cix + o?

obtain the satisfactory solution of the decision maker. In
their interactive method, after the decision maker specifi@ theother hand, in order to obtaim,.i,, we first solve
permissible objective levelg;,i = 1,---,k for each ob- )

jective functionz;(x,w), the candidate of the satisfactory glgggpi(w,fmnn),l =1,k (10)
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. . . : TABLE |
and de'nOtahe C()_rresPO”dmg optimal solution as. Us!ng PARAMETERS OF OBJECTIVE FUNCTIONS AND CONSTRAINTS IMOSLP
the optimal solutions;,i =1, - -, k, p;min Can be obtained
as follows.
@ [x1 wy x3 x4 x5 Te Ty T T9 T1o
Pimin = min Di ($€7 fimin) (11) C% 19 48 21 10 18 35 46 11 24 33
E=1,0 kbt |3 2 2 1 4 3 1 2 4 2
L - cy |12 -46 -23 -38 -33 -48 12 8 19 20
. If the decision maker adopts the fuzzy deC|s'|on as aggrega- Sl1 2 4 2 2 1 2 1 2 1
tion operator for MOP3, the satisfactory solution is obtained ci|-18 -26 -22 28 -15 -29 -10 -19 -17 -28
by solving the following maxmin problem. c;/2 1 3 2 1 2 3 3 2 1
[MAXMINL] a1|12 2 4 7 13 -1 6 6 11 -8
az|2 5 3 16 6 -12 12 4 -7 -10
max A (12) az| 3 -16 -4 8 -8 2 -12 -12 4 -3
TeX, fi€F; i=1,-k A€[0,1] as[-11 6 5 9 -1 8 4 6 9 6
. as| 4 7 6 5 13 6 -2 -5 14 -6
subject to as| 5 3 14 3 -9 7 4 4 5 9
a7|3 4 6 9 6 18 11 -9 -4 7
ﬂp7<pl(w,fl)) > Ni=1,--k (13)
:ufi(fi) > A,Z'Zl,"'JC (14)

Since anoptimal solution(x*, \*) satisfies the constraints

According to the assumption far,, (p;(z, f;)) andciz + (18), it holds that

a? > 0, the constraints (13) can be transformed as:

& pilx, fi) > pn (N,

Pt = (cja™ + af)
> T Hpy (M) - (ciz* + af),

—1/y* 1 . 1
S(A) = (cjz + o)
fim(cletal)) _ _ A Al L
n(¢%ﬁ¢22MﬂM’ oo ciz’ +of Pl )
& fi—(cjm+aof) =T (1, (V) - (e + o), > st (V) i= 1,0k

(15)  Assume thatz* € X is not a Pareto optimal solution
to MOPL(f), where f* = (u7'(A*),---,p7 (A*)), then

whereu~1(-) and 77! (-) are pseudo-iverse functions with .
Hp, () i ) P there existsc € X such that

respect tou,, (-) andT;(-) respectively. Moreover, from the
constraints (14) and the assumption fot (f;), it holds that pi(@, 17 ON) > (@, wit () > ot
fi < M}il()\) Therefore, the constraint (15) can be reduced (@177 (09) 2 pil 5o ) 2t (X)

to the following inequality where a permissible objective p=1nk
level f; is removed. Then there exists: € X such that
pp V) = (eim+a7) 2 T (! (V) - (fz+0f) (16)  ppt (V) = (cla+af) > T, (g, (V) - (fa+a),
Then, MAXMIN1 is equivalently transformed into the fol- i=L-sk
lowing problem. which contradicts the fact thdte*, A*) is a unique optimal
[MAXMINZ] solution of MAXMIN2.
max A a7
TeX, \e(0,1]

IIl. A NUMERICAL EXAMPLE FOR MOSLP

subject to In this section, in order to demonstrate the feasibility

pEO) — (elz+al) > TIHust(N) - (x4 a?) of our proposed method, we consider the following three-
fi ! emoon e h ! ! 178 objective stochastic linear programming problem (MOSLP)
’ (18) which is the modified version of the numerical example

It should be noted here that the constraints (18) can B:gmulated by Sakawa et al. [15].
reduced to a set of linear inequalities for some fixed value [MOSLP] B B
This means that an optimal solutigz*, \*) of MAXMIN2 minz (z) = (] +fich)z + (af +11ad)
is obtained by combined use of the bisection method with
respect to0 < A < 1 and the first-phase of the two-phase
simplex method of linear programming.

The relationship between the optimal solutige, A*) of
MAXMIN2 and Pareto optimal solutions to MOPf) can subjectto « € X = {a;x <b;,i=1,---,7,x > 0}
be characterized by the following theorem.
Theorem 1. wherex = (z1, 9, -+, x10)" is a 10-dimensional decision
If (z*,\*) is a unique optimal solution of MAXMINZ2, then vector, ci,c?, ¢}, 3, c3, c%,a;,i = 1,---,7 are parameter
x* € X is a Pareto optimal solution to MOPA"), where vectors of the objective functions and the constraints as
o= ), g () shown in Table l.al = —18,a0? = 5,08 = —27,02 =
(Proofd 6,05 = —10,a3 = 4, are parameters of the objective

i=1,--

min Zy(x) = (¢ + tacs)x + (ad + t2a3)

min Z3(x) = (cé —&—fgcg)m + (aé +¥3a§)
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functions.t;,7 = 1,2,3 are Gaussian random variables, thadptimal values of the corresponding membership function.
is,

Mpl(pl(w*v/i;ll(A*))) 0.6807

f o~ N(4,2%), fips (22", 11y, (A7) = 0.6807

Iy ~ N(3,3%), fips (3 (a*, 7 (A7) = 0.6807

I3 ~ N(3,2%). pp (g (AF) = 0.6807

-1 *
. . . 1 (py, (X)) 0.6807
The right-hand-side parameters of the constraints ’ ’:21 3" 06807
(bl,bg,bg,b4,b5,b6,b7) are set as (164,—190,—184, ‘uf3('uf3 ( )) - .

99, —150, 154, 142). At the optimal solution, the proper balance between the

Considering the individual minimum and maximum ofmembership functionsupi(pi(w,u;il()\))),i = 1,2,3 and
E(Zi(x)), letus assume that the hypothetical decision makar, (. '()))),i = 1,2,3 in a probability maximization
subjectively specifies the sufficiently satisfactory maximummodel is attained through the fuzzy decision.
value and the acceptable minimum value as follows.

IV. AFuzzy APPROACH FORMULTIOBJECTIVE Fuzzy

Fi = [fimin, [imax] = [2100,2200] RANDOM LINEAR PROGRAMMING PROBLEMS
Fy = [fomin, famax] = [400, 500] In this section, we focus on multiobjective programming
F5 = [f3min, f3max] = [—1000, —900] problems involving fuzzy random variable coefficients in

objective functions called multiobjective fuzzy random linear

Then, the hypothetical decision maker sets his/her membefogramming problem (MOFRLP).
ship functions of fuzzy goals for the permissible objectivEMOFRLP]

levels as follows. iy Cz=(ciz, -, ¢) (19)
wp(f1) = fi — 2200 wherex = (x1,x2, - ,xn)T is ann dimensional decision
' (2100 — 2200) variable column vectorX is a linear constraint set with
i (fa) = J2 — 500 respect tox. ¢; = (Ci, -+, Cin),i = 1,---,k, are coeffi-
A2 (400 — 500) cient vector of objective functiol;x, whoseelements are
B f3 — (—900) fuzzy random variables (The symbdls’ and"™™ mean
pr(fs) = ((—1000) — (—900)) randomness and fuzziness respectively, and the concept of
fuzzy random variable in this section is defined precisely in
Corresponding tothe domainF;, the domainP;(F;) = [91[16]). Under the occurrence of each elementary eugnt
[Pimin: Pimax),@ = 1,2,3 can be obtained by solving the€i;(w) is arealization of the fuzzy random varialig, which
Optimization pr0b|ems (8)’ (10) and (11) as follows. isa fUZZy number whose memberShip function is defined as
follows.
Pi(F1) = [Pimin;Pimax] = [0.00390,0.99989] I (%) (s < dij(w) Yw),
Py(F2) = [P2min; P2max] = [0.00704,0.99783] (= (s) = i B
. B B i (@) R( =4l (s > dij(w) V),
5(F3) = [P3min; P3max] = [0.07331,0.99351] B (@)

. def .
Then, the hypothetical decision maker sets his/her membgfere thefunction L(¢) = max{0,i(¢)} is a real-valued

ship functions of fuzzy goals for the permissible probabilitgontinuous function fronf0, o) to [0, 1], andi(t)is a strictly

levels as follows. decredafsing continuous function satisfyin@) = 1. Also,
R(t) = max{0,r(t)} satisfies the same conditions. Let us
1 (@, f1) = p1(z, f1) —0.0039 assume that the paramet:&g;, a;;, B;; are randonvariables
P ’ (0.99989 — 0.0039) expressed ag;; = dj; + t;d};, @i; = oj; + tiag;, By =
pa(x, f2) — 0.00704 1 +1:57; respectiely, wheret; is arandom variable whose
pa (P2(, f2)) = (0.99783 — 0.00704) distribution function’(-) is continuous and strictly monotone
ps(, f3) — 0.07331 increasing, and;;, oy, 5;, ¢ = 1,2 are constants. It should
s (P3(2, f3)) = (0.99351 — 0.07331) be noted thaty;; (w), 3,;(w) are positve for anyw because of

a property of spread parameters of LR-type fuzzy numbers.
: . - 9
For these membership functions sy, (p;(z. f)), ThelrefOEe, let 2us give the assumptions tht+#;(w)a3; >
N ; ' 0,5 +ti(w)ss; > 0, for ary w.
wr(fi)d = 1,2,3, MAXMINZ2 is formulated and solved ij ij L
by combined use of the bisection method with respect toAS shown in [9], the realizationg;(w)z becomes a
0 < A < 1 and the first-phase of the two-phase simplefizzy number characterized by the following membership

method of linear programming. The optimal solution ifunctions.

obtained as (7,3, 2%, o}, xk, af, o, ol xd, x5, \*) = d,(w)x—y -

(3.3833,3.2987,0,4.6295,0.1135,4.7246, 0, 7.5564, 2.6569, N B L O (w)T (v < di(w)z w),
20.9413,0.6807). Since three constraints (18) of MAXMIN2 ME,;(w)w(y) o R y—d,; ()T (y > ds(w)m Vo)
are active at the optimal solution, we can get the following B.(w)x Y ' ’

(Advance online publication: 24 August 2011)
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Similar to the previous section, it is assumed that thehere(d? — L='(0)a?)x > 0,i=1,---,k foranyz € X.
decision maker has fuzzy goals for the objective functiondsingp;(x, h;),i =1,---,k, MOP4(h)can be expressed as
in MOFRLP, whose membership functions; (y), i = the following simple form.

1,---,k are continuous and strictly monotone decreasinfMOP5(h)]
By using a concept of possibility measure [5], the degree of max (p1(x,h1),- -, prp(x, hi)) (24)
possibility that the objective function valugz satisfies the TexX
fuzzy goal G; is expressed as follows. In order to deal with MOP3{), we define Pareto op-
~  def . timal solutions in the feasible seP(h) = {(pi(x,h1),
Haa:(Gi) = Sgpmln{ﬂaw(y)aﬂgi(y)} (20) o prle, he) € [0, 1}"»‘ |z e X}
Definition 2.

Usingthe above possibility measure, MOFRLP can be trans-,

formed to the following multiobjective stochastic programf—n € X is said to be a Pareto optimal solution to MORR(

ming problem MOSP2. if and only if there does not exist anotherc X such that

i(x, hy) > pi(x*, hy), i = 1,--- k, with strict inequalit
[MOSP2] ~ ~ ﬁo(lzing)for gt (I:;ast 3né. ) ’
max(H: (Gl), s ,H: (Gk)) (21) .. . . .
Tex' G C,T Katagiri et al. [9] proposed an interactive method to obtain

Katagiri etal. [9] first formulated MOFRLP as the follow- a satisfactory solution from among Pareto optimal solution
ing multiobjective programming problem through a probabiset to MOP5k), where permissible values of possibility
ity maximization model. measureh = (hy,---,hg) must be set in advance by the
[MOP4(h)] decision maker in his/her subjective manner. However, in

max (Pr(w| H% ( )w(él) > ), general, the decision maker seems to prefer not only the

Tex larger value of permissible value of possibility meastre
Pr(w | TI= (ék) > hy)) (22) but also the larger value of probability functign(x, h;).
Cr(w)® From such a point of view, we consider the following
whereh = (hy,- -, hy) are permissible degrees of possibilmultiobjective programming problem which can be regarded

ity measure specified by the decision maker. In MOP4(has a natural extension of MOH%).
the constraintH:_( ) (G;) > h; can betransformed as [MOP6]

i (w

follows. max. (pl(w7h1)7"'7pk($7hk)7h17"'7hk)
TeX hi€[0,1],i=1,,k
supmin{p= (y), pz (¥)} > hi, » _ , (25)
y Ci(w)® ‘ Similar to the previous section, we assume that the de-
e Jy: Mgv(w)w(y) > hi, pg (y) = hi, cision maker has fuzzy goals for;(z,h;),i = 1.---,k,
13( ) di(w) and such fuzzy goals can be quantified by eliciting the
o Iy LT Yy s g gEZEYTy S . corresponding membership functiops, (pi(, h;)). Then
a;(w)z Bi(w)z MOPS6 can be replaced by the following form.
ng (y) = hi, [MOP7]
Jy : (d; — L Yh)a)x <
< y 7(d7(w) 1 (hi)at)m - y71 max (/u])1 (pl(mahl))7“'au[)k (pk(mahk))a
< (di(w) + R (hi)Bi)x,y < p= (hy), LEX hi€l01),i=1,--.k
Gi ha,-- - hy) (26)
] —1 — —1 1, 3 Ik
& (di(w) — L7 (hi)ai(w))z < p= (hi)

Throughout this section, we assume that(p;(x, h;)),i =
whereZL~'(-) and R~'(-) are pseudo-werse function corre- 1 ... k are strictly monotone increasing and continuous
sponding taZ(-) andR(-). Using a distribution functiofli(-)  with respect top; (x, ;).
of ¢;, eaChObjeCtive function of MOP4(h)S transformed as For examp|e, we can define the domain//gt (pz(:l:, ht))

below. as follows. Considering the individual minimum and maxi-
Pr(w | Il (éi) > h;) mum of.]jJ(Ei)a:, the decision m.aker subjectively specifies
Ci(w)® the sufficiently satisfactory maximum value and the accept-
= Pr (w | (di(w) — L™ (hy)oe (w))x < ”:1(}%)) able minimum value for the original objective functions in
- ) G MOFRLP, and defines membership functieg (y). For the
= Pr(w[(d; +t(w)d)z possibility measure (20) based pg (y), the decision maker
—L7 ) (o} +Li(w)ad)z < ,Ule(hi)) subjectively specifies the sufficiently satisfactory maximum
. . . Gi value h;max and the acceptable minimum valtig,;,. Then,
= Pr(w|(diz— L (h)ajz) the interval for permissible valuk; is defined as:
ti(w)

-1
) § 'LL57 ULZ)) Hl = [himiru himax]- (27)
—1p N (gl T=1(p N\l
_ P (W 7s(w) < ra. (hi) = (djz — L (hl)aiw)) Corresponding to the intervdl;, let us denote the domain
(2 h

of pp, (pi(x, h;)) as:
(le(hi) —(dlz — L—l(hi)a}m)) Pi(Hi) = [pimin; Pimax]- (28)
T,

Pimax Can be obtained by solving the following problem.

= p; (w, hz) (23) Pimax = glg)}(( Di (ma himin) (29)

(Advance online publication: 24 August 2011)
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In orderto obtainp;,i,, we first solve p=t\) > (diz— L7'(\)alx)
%g;((pl(:B) h’imax)ai = 1a ) ka (30) +T171(/1/;11(A)) : (d?ﬂ? - L_l()\)a?w)7
and denote the optimal solution as. Using the optimal
solutionsz;,i = 1,---, k, we can obtairp;,;, as follows. It should be noted here that the constraints (38) can be
. reduced to a set of linear inequalities for some fixed value
Pimin = ezl?}{%e#m(% himax) (31)  This means that an optimal solutige*, \*) of MAXMIN4

is obtained by combined use of the bisection method with

If the decision maker adopts the fuzzy decision as Dspect to) < A < 1 and the first-phase of the two-phase

aggregation operator for MOP7, a satisfactory solution %?mplex method of linear programming
obtained by solving the following maxmin problem. The relationship between the optimal soluti@s‘, A*) of

[MAXMINS] MAXMIN4 and Pareto optimal solutions to MOPB) can
SCEX,hieHir,Iz‘lifu-,k7,\e[071] (32)  pe characterized by the following theorem.
: Theorem 2.
subject to If (x*, \*) is a unique optimal solution of MAXMIN4, then
o (Di(, he)) > Ni=1,---k (33) a:: € Xis a Pa*reto optimal solution of MOP5{)\ where
hi > Ai=1--k 34) N = (N AT,

(Proofd
Since there exist pseudo-inverse functioms'(-) and Since an optimal solutiofz*, \*) satisfies the constraints
T, *(-) with respect tau,, (-) andT;(-), the constraints (33) (38), it holds that

cén be transformed as:
uz (V) = (dla - L7 (V)ale?)

Npi(pih(xvhi)) ?j\‘v +Ti—1(u;1()\*)) . (dl2 * L_l()\*)a?w*)
< ACZRLZ) > M, ) —
pilh) 2 pp ), P ) — (dlet — L (W) eda)
o [ Pe (hi) = (dj@ — L™ (hi) o) PN & T | = T L el
dix — L-1(h;)aix F. L
-1 1 1 1 :pz<m 7)\ )
& g (hi) 2 (diz — L7 (h)e; @) > s )i =1,k

+7}_1(up_il(A)) (d?x — L7 (h)olx)

. : o ) Assume thatr* € X is not a Pareto optimal solution of
& pg (hi) 2 (diz +T7 (1, (N)d;z) MOP5(\*), whereA* = (\*,---, \*), then there exists: €

i

L (el T g (V)ade)  (@5) Y Suen A

* * * —1 * .
On theother hand, because of the constraint (34), it holds i@, A7) 2 pi(@™, A7) 2 g (A7)0 =1, k.
that /‘g(hi) < /‘él()‘)' L7 (hi) < L7(A). Since it is Then there existe € X such that

guaranteed tha(ta%:;: + T M (py L (N) a?a) > 0, the right s L e 1
hand side of the constraint (35) can be transformed as thég, () = (diz - L7 (\)a;z)
following form. +T[1(N;i1()\*)) A(d?x — LY\ alx),
(diz+T; ' (u, (V) djx) i=1-k
L7 (h) (e + T (' (V) af) which contradicts the fact thdtc*, \*) is a unique optimal
> (diz+ T, (u, (\)d; ) solution of MAXMIN4.

LT N(agz + 17 () (V) o)
= (djz - L' (Nejz)
ST (V) - (2 — L (\e2a)  (36) In this section, in order to demonstrate the feasibil-
Lo ’ ’ ity of our proposed method, we consider the following
From the inequalities (35) and (36), the following inequalityhree-objective fuzzy random linear programming problem

V. A NUMERICAL EXAMPLE FOR MOFRLP

can be easily obtained. (MOFRLP) which is the modified version of the numerical
1 1/ 1 1 1 example formulated by Sakawa et al. [15].
+T7 (1 (V) - (dif e — L7 (V) afx) 10
As a result, MAXMIN3 can be transformed into MAXMIN4 min Gz = > e
where permissible degrees of possibility meastyei = ’1:01
1,---,k have disappeared. min o= Zg "
[MAXMIN4] L P S
e ¥ 37 N
. min Ccsx = Z@el’e
subject to reX —
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TABLE II
PARAMETERS OF OBJECTIVE FUNCTIONS AND CONSTRAINTS IN manner.
MOFRLP
Hl = [hlmin; hlmax] = [037 07]
Hy = [homin, hamax] = [0.3,0.7]
[ x1 w2 x3 x4 x5 X6 Ty Ty T9 T1o
dl| 19 48 21 10 18 35 46 11 24 33 Hs = [hsmin; hsmax] = [0.3,0.7]
i3 2 2 1 4 3 1 2 4 2 : . .
dl| 12 46 23 38 33 48 12 8 19 20 Then, using (29), (30) qnd (31), the corresponding domains
21 2 4 2 2 1 2 1 2 1 P;(H;) = [Pimin; Pimax),© = 1,2, 3 are calculated as follows.
di |18 26 22 28 -156 -29 -10 -19 -17 -28
&2 1 3 2 1 2 3 3 2 1 Pi(Hy) = [Pimin; Pimax] = [0.0003,0.9510]
a1 |051 054053 055 048 057 047 052 05 053 _ 4 _
o2 [0.43 048 0.46 0.37 0.44 0.46 0.39 041 048 0.42 Py(Hs) [P2min; P2max] = [0.1099,0.9996]
as3|0.59 056 058 0.62 0.6 0.52 0.65 0.5/ 0.64 0.63 P;(H3) = [P3min,P3max] = [0.0754,0.9906]

B, |051 054053 055 0.48 057 047 052 0.5 053
B, [0.43 0.480.46 0.37 044 046 039 041 048 042  Then, the hypothetical decision maker sets his/her member-

B3 (059 056058 0.62 0.6 0.52 0.65 0.57 0.64 0.63 Ship functions of fuzzy goals fopi(a:,hz-),i = 1,2,3 as

a2 =2 4 7 13 1 & 6 11 8
a;| 2 5 3 16 6 12 12 4 -7 -10 follows.
as| 3 16 4 8 8 2 12 12 4 3 _
;|11 6 5 9 1 8 4 6 9 6 fip, (p1 (2, h1)) = pi(@, ) = 0.0003
as| 4 7 6 5 13 6 2 5 14 6 (0.9510 — 0.0003)
as| 5 3 14 3 9 -7 4 -4 5 9 pa(x, he) — 0.1099
ar| 3 4 6 9 6 18 1L 9 4 7 Lips (P2(, ho)) = 0.9996 — 0.1009)
p3(:13, hg) —0.0754
Hps (P3(@: ha)) = =5 5006 —0.0754)
wherex = (21,29, - ,xlo)T is a 10-dimensional decision

For these membership functionss (v;), pp, (pi(, hi)),i =
1,2,3, MAXMIN4 is formulated and solved by
combined use of the bisection method with respect to
0 < X < 1 and the first-phase of the two-phase simplex
method of linear programming. The optimal solution is

vector andX = {a;x < b;,j=1,---,7, & > 0}. Under the
occurrence of each elementary evenﬁg(w) is arealization
of the fuzzy random variable;,, which is a fuzzy number
whose membership function is defined as follows.

I (Em(u.))—s) (s < dio(w) Vo), obtained as (z7, x5, x5, x}, xf, x§, o5, x§, x5, T, A*) =
g () = EN o (11.7424,0,0,3.3132,0, 3.0463, 0, 12.2617, 2.9396, 21.144,
Gie(w) R (’*[37’[“’) (8> die(w) Yw), 0.4704). Since three constraints for (38) are active at the
optimal solution, we can get the following optimal values
where thefunction L(t)(= R(t)) def max{0,1— | ¢ |}. of the corresponding membership function.
The parametersl;;,i = 1,2,3,5 = 1,---,10 are random £ ok .
variables expressed as: Fpy (P1(ﬂ3*7 )\*)) = 0.4704
B . Hpy (P2(2*, A7) = 0.4704
dig = djy + L}y, (39) tpg (p3(*, A7) = 0.4704
— —1 * o
where £;,i = 1,2,3 are Gaussian random variables as “51(/‘51()‘ ) = 04704
follows: ~ (n=t(\* =
MGQ(“E;'z()‘ ) 0.4704
I 2 ~ —1/y* _
f1 ~ N(4,27), “Gs(“&?()‘ )) = 04704
ty ~ N(3332)a

_ ) At the optimal solution, the proper balance between
ts ~ N(3,29). the membership functiong:,, (p;(x,A)),¢ = 1,2,3 and
ua_(,uél()\))J = 1,2,3 in a probability maximization

dl,, d?,, e, andBip,i=1,2,3,7=1,---,10 are constants 1 . i
i Lt il bie J -model'is attained through the fuzzy decision.

as shown in Table Il. Considering the individual minimu
and maximum of E(d;)xz,i = 1,2,3, the hypothetical
decision maker sets his/her linear membership functions of VI. CONCLUSION
fuzzy goalst;, i = 1, 2, 3 for the original objective functions

/ In this paper, two kinds of fuzzy approaches are proposed
c;x,i=1,2,3 as follows.

to obtain a satisfactory solution of the decision maker, where

y1 — 1800 the first one is for multiobjective stochastic linear program-

'“51(?/1) = 1700 — 1800 ming problems, and the second one is for multiobjective
Yo — 700 fuzzy random linear programming problems. Both of them

He, (y2) = 600 — 700 are formulated on the basis of a probability maximization
ys — (—900) model. In our proposed methods for such two kinds of

Mgg(y:s) = (—1000) — (—900) multiobjective programming problems, it is not necessary

that the decision maker specifies permissible levels in a
For the elicited membership functiory$57‘ (yi)i = 1,2,3, probability maximization model. Instead of that, by adopting
the hypothetical decision maker sets the intervAls = the fuzzy decision as an aggregation operator of fuzzy
[Pimin, Pimax), ¢ = 1,2,3 as follows in his/her subjective goals for both permissible levels and distribution functions,

(Advance online publication: 24 August 2011)
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a satishctory solution of the decision maker is easily ob-

tained based on linear programming technique. Although a
probability maximization model is one of the most efficient

tool to transform stochastic programming problems into

well-defined mathematical programming ones, appropriate
permissible levels are not known for the decision maker
in advance. In order to resolve such a problem, we have
proposed fuzzy approaches for both multiobjective stochas-
tic linear programming problems and multiobjective fuzzy

random linear programming problems under the assumption
that the decision maker adopts the fuzzy decision as an
aggregation operator of fuzzy goals.
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