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Abstract—In this paper, two kinds of fuzzy approaches are
proposed for not only multiobjective stochastic linear program-
ming problems, but also multiobjective fuzzy random linear
programming problems through a probability maximization
model. In a probability maximization model, it is necessary for
the decision maker to specify permissible values of objective
functions in advance, which have a great influence on the
corresponding distribution function values. In our proposed
methods, the decision maker does not specify permissible values
of objective functions, but sets his/her membership functions
for permissible values. By assuming that the decision maker
adopts the fuzzy decision as an aggregation operator of fuzzy
goals for not only the permissible objective levels but also
the permissible probability levels, a satisfactory solution of the
decision maker is easily obtained based on linear programming
technique. Two kinds of numerical examples are illustrated to
show the feasibility of the proposed methods.

Index Terms—multiobjective stochastic linear programming,
multiobjective fuzzy random linear programming, fuzzy deci-
sion, a probability maximization model.

I. I NTRODUCTION

In the real world decision making situations, we often
have to make a decision under uncertainty. In order to deal
with decision problems involving uncertainty, stochastic pro-
gramming approaches and fuzzy programming approaches
have been developed. In stochastic programming approaches
[1],[2],[4],[7], two stage problems and chance constrained
programming models have been investigated in various ways,
and they were extended to multiobjective stochastic program-
ming problems [13],[17]. In fuzzy programming approaches,
various types of fuzzy programming problems have been
formulated and investigated [10],[12],[21]. As a natural ex-
tension, multiobjective fuzzy programming technique first
proposed bu Zimmermann [20], and many methods have
been proposed [14],[21].

From a different point of view, mathematical programming
problems with fuzzy random variables have been proposed
[8],[11],[18], whose concept includes both probabilistic un-
certainty and fuzzy one simultaneously. Since such fuzzy
random programming problems are usually ill-defined, it
is necessary to utilize not only stochastic programming
technique but also fuzzy programming technique to construct
a decision making model.
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Recently, in order to deal with probabilistic uncertainty
and fuzzy one simultaneously, the hybrid approaches of
stochastic programming and fuzzy programming have been
proposed [6]. Especially, Sakawa et al. [15], [16] proposed an
interactive method for multiobjective fuzzy linear program-
ming problem with random variable coefficients. Katagiri
et al. [9] proposed an interactive method for multiobjective
linear programming problem with fuzzy random variable
coefficients. They also adopted a probability maximization
model to transform stochastic programming problems into
well-defined mathematical programming ones. However, us-
ing a probability maximization model, it is necessary that,
in advance, the decision maker specifies permissible levels
for objective functions in his/her subjective manner. It seems
to be very difficult to specify such values in advance,
because there exist conflicts among permissible levels and
the corresponding distribution function values.

From such a point of view, in this paper, assuming that the
decision maker adopts the fuzzy decision to integrate mem-
bership functions, two types of fuzzy approaches [19] are
proposed for both multiobjective fuzzy linear programming
problem with random variable coefficients and fuzzy random
variable coefficients. In section II, a fuzzy approach is pro-
posed for multiobjective stochastic linear programming prob-
lems through a probability maximization model, where the
coefficients of the objective functions are random variables.
Section III provides a numerical example to demonstrate
the proposed fuzzy approach for multiobjective stochastic
linear programming problems. In section IV, a fuzzy ap-
proach is proposed for multiobjective fuzzy random linear
programming problems through a probability maximization
model, where the coefficients of the objective functions are
fuzzy random variables. Section V provides a numerical
example to demonstrate the proposed fuzzy approach for
multiobjective fuzzy random linear programming problems.
Finally, in section VI, we conclude this paper.

II. A F UZZY APPROACH FORMULTIOBJECTIVE

STOCHASTIC L INEAR PROGRAMMING PROBLEMS

In this section, we focus on multiobjective programming
problem involving random variable coefficients in objective
functions. Such a problem can be formally formulated as
follows.
[MOSP1]

min
x∈X

z(x) = (z1(x), · · · , zk(x)) (1)
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wherex = (x1, x2, · · · , xn)
T is ann dimensional decision

variable column vector,zi(x) = cix+ αi, i = 1, · · · , k, are
objective functions involving random variable coefficients,
ci is an dimensionalrandom variable row vector expressed
by ci = c1i + tic

2
i , where ti is a random variable,αi is a

randomvariable row vector expressed byαi = α1
i + tiα

2
i . In

the following, we assume thatTi(·) is a distribution function
of a random variableti, whichis strictly monotone increasing
and continuous.X is a linear constraint set with respect to
x.

Since MOSP1 contains random variable coefficients in
objective functions, mathematical programming techniques
can not be directly applied. In order to deal with such
multiobjective stochastic programming problems, we make
use of a probability maximization model, which aims to
maximize the probability that each objective functionzi(x)
is lessthan or equal to a certain permissible objective level
fi. Such a probabilitypi(x, fi) can be defined as follows.

pi(x, fi)
def
= Pr(ω | zi(x, ω) ≤ fi), i = 1, · · · , k (2)

wherePr(·) denotes a probability measure,ω is an event,
andzi(x, ω) is a realization of the random objective function
zi(x) under theoccurrence of each elementary eventω. The
decision maker subjectively specifies a certain permissible
objective levelfi for each objective functionzi(x, ω). Let
us denote ak dimensional vector of certain permissible
objective levels asf = (f1, · · · , fk).

Then, MOSP1 can be transformed into the traditional mul-
tiobjective programming problem MOP1(f), where probabil-
ity functionspi(x, fi), i = 1, · · · , k are adopted as objective
functions instead ofzi(x, ω), and each of them is maximized.
[MOP1(f )]

max
x∈X

(p1(x, f1), · · · , pk(x, fk)) (3)

Under the assumption thatc2ix+ α2
i ≥ 0, i = 1, · · · , k for

any x ∈ X, using distribution functionsTi(·), i = 1, · · · , k
we can rewrite the objective functionpi(x, fi) as the follow-
ing form.

pi(x, fi) = Pr(ω | zi(x, ω) ≤ fi)

= Pr(ω | ci(ω)x+ αi(ω) ≤ fi)

= Pr

(
ω | ti(ω) ≤

fi − (c1ix+ α1
i )

c2ix+ α2
i

)
= Ti

(
fi − (c1ix+ α1

i )

c2ix+ α2
i

)
In order to deal with MOP1(f), we consider the feasible

regionP (f) = {(p1(x, f1), · · · , pk(x, fk) ∈ Rk | x ∈ X}.
In the feasible regionP (f), we can define Pareto optimal
solution to MOP1(f).
Definition 1.
x∗ ∈ X is said to be a Pareto optimal solution to MOP1(f),
if and only if there does not exist anotherx ∈ X such that
pi(x, fi) ≥ pi(x

∗, fi), i = 1, · · · , k, with strict inequality
holding for at least onei.

Sakawa et al. [15] formulated a probability maximization
model for MOSP1, and proposed an interactive method to
obtain the satisfactory solution of the decision maker. In
their interactive method, after the decision maker specifies
permissible objective levelsfi, i = 1, · · · , k for each ob-
jective functionzi(x, ω), the candidate of the satisfactory

solution is obtained from among M-Pareto optimal solution
set which is Pareto optimal solutions in membership space.
However, in general, the decision maker seems to prefer
not only the less value of permissible objective levelfi,
but also the larger value of probability functionpi(x, fi).
Since these values conflict with each other, the less values
of permissible objective levelfi results in the less value of
probability functionpi(x, fi). From such a point of view, we
consider the following multiobjective programming problem
which can be regarded as a natural extension of MOP1(f).
[MOP2]

max
x∈X,fi,i=1,···,k

(p1(x, f1), · · · , pk(x, fk),−f1, · · · ,−fk)

(4)
Considering the imprecise nature of the decision maker’s

judgment, it is natural to assume that the decision maker
have fuzzy goals for each objective function in MOP2. In this
section, it is assumed that such fuzzy goals can be quantified
by eliciting the corresponding membership functions. Let
us denote a membership function of probability function
pi(x, fi) as µpi(pi(x, fi)), and a membership function of
permissible objective levelfi asµfi(fi) respectively. Then,
MOP2 can be transformed as the following multiobjective
programming problem.
[MOP3]

max
x∈X,fi,i=1,···,k

(µp1(p1(x, f1)), · · · , µpk
(pk(x, fk)),

µf1(f1), · · · , µfk(fk)) (5)

Throughout this section, we make the assumptions that
µfi(fi), i = 1, · · · , k are strictly monotone decreasing
and continuous with respect tofi, and µpi(pi(x, fi)), i =
1, · · · , k are strictly monotone increasing and continuous
with respect topi(x, fi).

For example, we can define the domain ofµpi(pi(x, fi))
as follows. Considering the individual minimum and maxi-
mum ofE(zi(x)), thedecision maker subjectively specifies
the sufficiently satisfactory maximum valuefimin and the
acceptable minimum valuefimax. Then, the domain of
µfi(fi) is defined as:

Fi = [fimin, fimax]. (6)

Corresponding to the domainFi, denote the domain of
µpi(pi(x, fi)) as:

Pi(Fi) = [pimin, pimax]. (7)

pimax can be obtained by solving the following problem.

pimax = max
x∈X

pi(x, fimax), i = 1, · · · , k, (8)

It should be noted here that the above problem is equivalent
to the following linear fractional programming problem
[3] because distribution functionT (·) is strictly monotone
increasing and continuous.

max
x∈X

(
fimax − (c1ix+ α1

i )

c2ix+ α2
i

)
(9)

On theother hand, in order to obtainpimin, we first solve

max
x∈X

pi(x, fimin), i = 1, · · · , k, (10)
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and denotethe corresponding optimal solution asxi. Using
the optimal solutionsxi, i = 1, · · · , k, pimin can be obtained
as follows.

pimin = min
ℓ=1,···,k,ℓ̸=i

pi(xℓ, fimin) (11)

If the decision maker adopts the fuzzy decision as aggrega-
tion operator for MOP3, the satisfactory solution is obtained
by solving the following maxmin problem.
[MAXMIN1]

max
x∈X,fi∈Fi,i=1,···,k,λ∈[0,1]

λ (12)

subject to

µpi(pi(x, fi)) ≥ λ, i = 1, · · · , k (13)

µfi(fi) ≥ λ, i = 1, · · · , k (14)

According to the assumption forµpi(pi(x, fi)) andc2ix+
α2
i > 0, the constraints (13) can be transformed as:

µpi(pi(x, fi)) ≥ λ,

⇔ pi(x, fi) ≥ µ−1
pi

(λ),

⇔ Ti

(
fi − (c1ix+ α1

i )

c2ix+ α2
i

)
≥ µ−1

pi
(λ),

⇔ fi − (c1ix+ α1
i ) ≥ T−1

i (µ−1
pi

(λ)) · (c2ix+ α2
i ),

(15)

whereµ−1
pi

(·) andT−1
i (·) are pseudo-inverse functions with

respect toµpi(·) andTi(·) respectively. Moreover, from the
constraints (14) and the assumption forµfi(fi), it holds that
fi ≤ µ−1

fi
(λ). Therefore, the constraint (15) can be reduced

to the following inequality where a permissible objective
level fi is removed.

µ−1
fi

(λ)− (c1ix+ α1
i ) ≥ T−1

i (µ−1
pi

(λ)) · (c2ix+ α2
i ) (16)

Then, MAXMIN1 is equivalently transformed into the fol-
lowing problem.
[MAXMIN2]

max
x∈X,λ∈[0,1]

λ (17)

subject to

µ−1
fi

(λ)− (c1ix+ α1
i ) ≥ T−1

i (µ−1
pi

(λ)) · (c2ix+ α2
i ),

i = 1, · · · , k (18)

It should be noted here that the constraints (18) can be
reduced to a set of linear inequalities for some fixed valueλ.
This means that an optimal solution(x∗, λ∗) of MAXMIN2
is obtained by combined use of the bisection method with
respect to0 ≤ λ ≤ 1 and the first-phase of the two-phase
simplex method of linear programming.

The relationship between the optimal solution(x∗, λ∗) of
MAXMIN2 and Pareto optimal solutions to MOP1(f) can
be characterized by the following theorem.
Theorem 1.
If (x∗, λ∗) is a unique optimal solution of MAXMIN2, then
x∗ ∈ X is a Pareto optimal solution to MOP1(f∗), where
f∗ = (µ−1

f1
(λ∗), · · · , µ−1

fk
(λ∗)).

(Proof）

TABLE I
PARAMETERS OF OBJECTIVE FUNCTIONS AND CONSTRAINTS INMOSLP

x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

c11 19 48 21 10 18 35 46 11 24 33
c21 3 2 2 1 4 3 1 2 4 2
c12 12 -46 -23 -38 -33 -48 12 8 19 20
c22 1 2 4 2 2 1 2 1 2 1
c13 -18 -26 -22 -28 -15 -29 -10 -19 -17 -28
c23 2 1 3 2 1 2 3 3 2 1
a1 12 -2 4 -7 13 -1 -6 6 11 -8
a2 -2 5 3 16 6 -12 12 4 -7 -10
a3 3 -16 -4 -8 -8 2 -12 -12 4 -3
a4 -11 6 -5 9 -1 8 -4 6 -9 6
a5 -4 7 -6 -5 13 6 -2 -5 14 -6
a6 5 -3 14 -3 -9 -7 4 -4 -5 9
a7 -3 -4 -6 9 6 18 11 -9 -4 7

Since anoptimal solution(x∗, λ∗) satisfies the constraints
(18), it holds that

µ−1
fi

(λ∗)− (c1ix
∗ + α1

i )

≥ T−1
i (µ−1

pi
(λ∗)) · (c2ix∗ + α2

i ),

⇔ Ti

(
µ−1
fi

(λ∗)− (c1ix
∗ + α1

i )

c2ix
∗ + α2

i

)
= pi(x

∗, µ−1
fi

(λ∗))

≥ µ−1
pi

(λ∗), i = 1, · · · , k.

Assume thatx∗ ∈ X is not a Pareto optimal solution
to MOP1(f∗), wheref∗ = (µ−1

f1
(λ∗), · · · , µ−1

fk
(λ∗)), then

there existsx ∈ X such that

pi(x, µ
−1
fi

(λ∗)) ≥ pi(x
∗, µ−1

fi
(λ∗)) ≥ µ−1

pi
(λ∗),

i = 1, · · · , k.

Then there existsx ∈ X such that

µ−1
fi

(λ∗)− (c1ix+ α1
i ) ≥ T−1

i (µ−1
pi

(λ∗)) · (c2ix+ α2
i ),

i = 1, · · · , k,

which contradicts the fact that(x∗, λ∗) is a unique optimal
solution of MAXMIN2.

III. A N UMERICAL EXAMPLE FOR MOSLP

In this section, in order to demonstrate the feasibility
of our proposed method, we consider the following three-
objective stochastic linear programming problem (MOSLP)
which is the modified version of the numerical example
formulated by Sakawa et al. [15].
[MOSLP]

min z1(x) = (c11 + t1c
2
1)x+ (α1

1 + t1α
2
1)

min z2(x) = (c12 + t2c
2
2)x+ (α1

2 + t2α
2
2)

min z3(x) = (c13 + t3c
2
3)x+ (α1

3 + t3α
2
3)

subject to x ∈ X = {aix ≤ bi, i = 1, · · · , 7,x ≥ 0}

wherex = (x1, x2, · · · , x10)
T is a 10-dimensional decision

vector, c11, c
2
1, c

1
2, c

2
2, c

1
3, c

2
3,ai, i = 1, · · · , 7 are parameter

vectors of the objective functions and the constraints as
shown in Table I.α1

1 = −18, α2
1 = 5, α1

2 = −27, α2
2 =

6, α1
3 = −10, α2

3 = 4, are parameters of the objective
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functions.ti, i = 1, 2, 3 are Gaussian random variables, that
is,

t1 ∼ N(4, 22),

t2 ∼ N(3, 32),

t3 ∼ N(3, 22).

The right-hand-side parameters of the constraints
(b1, b2, b3, b4, b5, b6, b7) are set as (164,−190,−184,
99,−150, 154, 142).

Considering the individual minimum and maximum of
E(zi(x)), let us assume that the hypothetical decision maker
subjectively specifies the sufficiently satisfactory maximum
value and the acceptable minimum value as follows.

F1 = [f1min, f1max] = [2100, 2200]

F2 = [f2min, f2max] = [400, 500]

F3 = [f3min, f3max] = [−1000,−900]

Then, the hypothetical decision maker sets his/her member-
ship functions of fuzzy goals for the permissible objective
levels as follows.

µf1(f1) =
f1 − 2200

(2100− 2200)

µf2(f2) =
f2 − 500

(400− 500)

µf3(f3) =
f3 − (−900)

((−1000)− (−900))

Corresponding tothe domainFi, the domainPi(Fi) =
[pimin, pimax], i = 1, 2, 3 can be obtained by solving the
optimization problems (8), (10) and (11) as follows.

P1(F1) = [p1min, p1max] = [0.00390, 0.99989]

P2(F2) = [p2min, p2max] = [0.00704, 0.99783]

P3(F3) = [p3min, p3max] = [0.07331, 0.99351]

Then, the hypothetical decision maker sets his/her member-
ship functions of fuzzy goals for the permissible probability
levels as follows.

µp1(p1(x, f1)) =
p1(x, f1)− 0.0039

(0.99989− 0.0039)

µp2(p2(x, f2)) =
p2(x, f2)− 0.00704

(0.99783− 0.00704)

µp3(p3(x, f3)) =
p3(x, f3)− 0.07331

(0.99351− 0.07331)

For these membership functionsµpi(pi(x, fi)),
µfi(fi),i = 1, 2, 3, MAXMIN2 is formulated and solved
by combined use of the bisection method with respect to
0 ≤ λ ≤ 1 and the first-phase of the two-phase simplex
method of linear programming. The optimal solution is
obtained as (x∗

1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8, x

∗
9, x

∗
10, λ

∗) =
(3.3833, 3.2987, 0, 4.6295, 0.1135, 4.7246, 0, 7.5564, 2.6569,
20.9413, 0.6807). Since three constraints (18) of MAXMIN2
are active at the optimal solution, we can get the following

optimal values of the corresponding membership function.

µp1(p1(x
∗, µ−1

f1
(λ∗))) = 0.6807

µp2
(p2(x

∗, µ−1
f2

(λ∗))) = 0.6807

µp3(p3(x
∗, µ−1

f3
(λ∗))) = 0.6807

µf1(µ
−1
f1

(λ∗)) = 0.6807

µf2(µ
−1
f2

(λ∗)) = 0.6807

µf3(µ
−1
f3

(λ∗)) = 0.6807

At the optimal solution, the proper balance between the
membership functionsµpi(pi(x, µ

−1
fi

(λ))), i = 1, 2, 3 and
µfi((µ

−1
fi

(λ))), i = 1, 2, 3 in a probability maximization
model is attained through the fuzzy decision.

IV. A F UZZY APPROACH FORMULTIOBJECTIVE FUZZY

RANDOM L INEAR PROGRAMMING PROBLEMS

In this section, we focus on multiobjective programming
problems involving fuzzy random variable coefficients in
objective functions called multiobjective fuzzy random linear
programming problem (MOFRLP).
[MOFRLP]

min
x∈X

C̃x = (c̃1x, · · · , c̃k) (19)

wherex = (x1, x2, · · · , xn)
T is ann dimensional decision

variable column vector,X is a linear constraint set with
respect tox. c̃i = (̃ci1, · · · , c̃in), i = 1, · · · , k, are coeffi-
cient vector of objective functioñcix, whoseelements are
fuzzy random variables (The symbols"-" and "˜" mean
randomness and fuzziness respectively, and the concept of
fuzzy random variable in this section is defined precisely in
[9],[16]). Under the occurrence of each elementary eventω,
c̃ij(ω) is arealization of the fuzzy random variablec̃ij , which
is a fuzzy number whose membership function is defined as
follows.

µ̃
cij(ω)

(s) =


L
(

dij(ω)−s
αij(ω)

)
(s ≤ dij(ω) ∀ω),

R

(
s−dij(ω)

βij(ω)

)
(s > dij(ω) ∀ω),

where thefunction L(t)
def
= max{0, l(t)} is a real-valued

continuous function from[0,∞) to [0, 1], andl(t)is a strictly
decreasing continuous function satisfyingl(0) = 1. Also,

R(t)
def
= max{0, r(t)} satisfies the same conditions. Let us

assume that the parametersdij , αij , βij are randomvariables
expressed asdij = d1ij + tid

2
ij , αij = α1

ij + tiα
2
ij , βij =

β1
ij+ tiβ

2
ij respectively, whereti is a random variable whose

distribution functionT (·) is continuous and strictly monotone
increasing, anddℓij , α

ℓ
ij , β

ℓ
ij , ℓ = 1, 2 are constants. It should

be noted thatαij(ω), βij(ω) are positive for anyω because of
a property of spread parameters of LR-type fuzzy numbers.
Therefore, let us give the assumptions thatα1

ij + ti(ω)α
2
ij >

0, β1
ij + ti(ω)β

2
ij > 0, for any ω.

As shown in [9], the realizations̃ci(ω)x becomes a
fuzzy number characterized by the following membership
functions.

µ
c̃i(ω)x

(y) =


L

(
di(ω)x−y

αi(ω)x

)
(y ≤ di(ω)x ∀ω),

R

(
y−di(ω)x
βi(ω)x

)
(y > di(ω)x ∀ω),
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Similar to the previous section, it is assumed that the
decision maker has fuzzy goals for the objective functions
in MOFRLP, whose membership functionsµ

G̃i
(y), i =

1, · · · , k are continuous and strictly monotone decreasing.
By using a concept of possibility measure [5], the degree of
possibility that the objective function valuẽcix satisfies the
fuzzy goal G̃i is expressed as follows.

Π
c̃ix

(G̃i)
def
= sup

y
min{µ

c̃ix
(y), µ

G̃i
(y)} (20)

Usingthe above possibility measure, MOFRLP can be trans-
formed to the following multiobjective stochastic program-
ming problem MOSP2.
[MOSP2]

max
x∈X

(Π
c̃1x

(G̃1), · · · ,Πc̃kx
(G̃k)) (21)

Katagiri etal. [9] first formulated MOFRLP as the follow-
ing multiobjective programming problem through a probabil-
ity maximization model.
[MOP4(h)]

max
x∈X

(Pr(ω | Π
c̃1(ω)x

(G̃1) ≥ h1), · · · ,

Pr(ω | Π
c̃k(ω)x

(G̃k) ≥ hk)) (22)

whereh = (h1, · · · , hk) are permissible degrees of possibil-
ity measure specified by the decision maker. In MOP4(h),
the constraintΠ

c̃i(ω)x
(G̃i) ≥ hi can be transformed as

follows.

sup
y

min{µ
c̃i(ω)x

(y), µ
G̃i
(y)} ≥ hi,

⇔ ∃y : µ
c̃i(ω)x

(y) ≥ hi, µG̃i
(y) ≥ hi,

⇔ ∃y : L(
di(ω)x− y

αi(ω)x
) ≥ hi, R(

y − di(ω)x

βi(ω)x
) ≥ hi,

µ
G̃i
(y) ≥ hi,

⇔ ∃y : (di(ω)− L−1(hi)αi)x ≤ y

≤ (di(ω) +R−1(hi)βi)x, y ≤ µ−1

G̃i

(hi),

⇔ (di(ω)− L−1(hi)αi(ω))x ≤ µ−1

G̃i

(hi)

whereL−1(·) andR−1(·) are pseudo-inverse function corre-
sponding toL(·) andR(·). Using a distribution functionTi(·)
of ti, eachobjective function of MOP4(h)is transformed as
below.

Pr(ω | Π
c̃i(ω)x

(G̃i) ≥ hi)

= Pr
(
ω | (di(ω)− L−1(hi)αi(ω))x ≤ µ−1

G̃i

(hi)
)

= Pr
(
ω | (d1

i + ti(ω)d
2
i )x

−L−1(hi)(α
1
i + ti(ω)α

2
i )x ≤ µ−1

G̃i

(hi)
)

= Pr
(
ω | (d1

ix− L−1(hi)α
1
ix)

+ti(ω)(d
2
ix− L−1(hi)α

2
ix) ≤ µ−1

G̃i

(hi)
)

= Pr

ω | ti(ω) ≤
µ−1

G̃i

(hi)− (d1
ix− L−1(hi)α

1
ix)

d2
ix− L−1(hi)α2

ix


= Ti

µ−1

G̃i

(hi)− (d1
ix− L−1(hi)α

1
ix)

d2
ix− L−1(hi)α2

ix


def
= pi(x, hi) (23)

where(d2
i −L−1(0)α2

i )x > 0, i = 1, · · · , k for anyx ∈ X.
Usingpi(x, hi), i = 1, · · · , k, MOP4(h)can be expressed as
the following simple form.
[MOP5(h)]

max
x∈X

(p1(x, h1), · · · , pk(x, hk)) (24)

In order to deal with MOP5(h), we define Pareto op-
timal solutions in the feasible setP (h) = {(p1(x, h1),
· · · , pk(x, hk) ∈ [0, 1]

k | x ∈ X}.
Definition 2.
x∗ ∈ X is said to be a Pareto optimal solution to MOP5(h),
if and only if there does not exist anotherx ∈ X such that
pi(x, hi) ≥ pi(x

∗, hi), i = 1, · · · , k, with strict inequality
holding for at least onei.

Katagiri et al. [9] proposed an interactive method to obtain
a satisfactory solution from among Pareto optimal solution
set to MOP5(h), where permissible values of possibility
measureh = (h1, · · · , hk) must be set in advance by the
decision maker in his/her subjective manner. However, in
general, the decision maker seems to prefer not only the
larger value of permissible value of possibility measurehi

but also the larger value of probability functionpi(x, hi).
From such a point of view, we consider the following
multiobjective programming problem which can be regarded
as a natural extension of MOP5(h).
[MOP6]

max
x∈X,hi∈[0,1],i=1,···,k

(p1(x, h1), · · · , pk(x, hk), h1, · · · , hk)

(25)
Similar to the previous section, we assume that the de-

cision maker has fuzzy goals forpi(x, hi), i = 1. · · · , k,
and such fuzzy goals can be quantified by eliciting the
corresponding membership functionsµpi(pi(x, hi)). Then
MOP6 can be replaced by the following form.
[MOP7]

max
x∈X,hi∈[0,1],i=1,···,k

(µp1(p1(x, h1)), · · · , µpk
(pk(x, hk)),

h1, · · · , hk) (26)

Throughout this section, we assume thatµpi(pi(x, hi)), i =
1, · · · , k are strictly monotone increasing and continuous
with respect topi(x, hi).

For example, we can define the domain ofµpi(pi(x, hi))
as follows. Considering the individual minimum and maxi-
mum of E(di)x, the decision maker subjectively specifies
the sufficiently satisfactory maximum value and the accept-
able minimum value for the original objective functions in
MOFRLP, and defines membership functionµ

G̃i
(y). For the

possibility measure (20) based onµ
G̃i
(y), the decision maker

subjectively specifies the sufficiently satisfactory maximum
valuehimax and the acceptable minimum valuehimin. Then,
the interval for permissible valuehi is defined as:

Hi = [himin, himax]. (27)

Corresponding to the intervalHi, let us denote the domain
of µpi(pi(x, hi)) as:

Pi(Hi) = [pimin, pimax]. (28)

pimax can be obtained by solving the following problem.

pimax = max
x∈X

pi(x, himin) (29)
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In order to obtainpimin, we first solve

max
x∈X

pi(x, himax), i = 1, · · · , k, (30)

and denote the optimal solution asxi. Using the optimal
solutionsxi, i = 1, · · · , k, we can obtainpimin as follows.

pimin = min
ℓ=1,···,k,ℓ̸=i

pi(xℓ, himax) (31)

If the decision maker adopts the fuzzy decision as an
aggregation operator for MOP7, a satisfactory solution is
obtained by solving the following maxmin problem.
[MAXMIN3]

max
x∈X,hi∈Hi,i=1,···,k,λ∈[0,1]

λ (32)

subject to

µpi(pi(x, hi)) ≥ λ, i = 1, · · · , k (33)

hi ≥ λ, i = 1, · · · , k (34)

Since there exist pseudo-inverse functionsµ−1
pi

(·) and
T−1
i (·) with respect toµpi(·) andTi(·), the constraints (33)

can be transformed as:

µpi(pi(x, hi)) ≥ λ,

⇔ pi(x, hi) ≥ µ−1
pi

(λ),

⇔ Ti

µ−1

G̃i

(hi)− (d1
ix− L−1(hi)α

1
ix)

d2
ix− L−1(hi)α2

ix

 ≥ µ−1
pi

(λ),

⇔ µ−1

G̃i

(hi) ≥ (d1
ix− L−1(hi)α

1
ix)

+T−1
i (µ−1

pi
(λ)) · (d2

ix− L−1(hi)α
2
ix)

⇔ µ−1

G̃i

(hi) ≥ (d1
ix+ T−1

i (µ−1
pi

(λ))d2
ix)

−L−1(hi)(α
1
ix+ T−1

i (µ−1
pi

(λ))α2
ix) (35)

On theother hand, because of the constraint (34), it holds
that µ−1

G̃i

(hi) ≤ µ−1

G̃i

(λ), L−1(hi) ≤ L−1(λ). Since it is

guaranteed that(α1
ix + T−1

i (µ−1
pi

(λ)) α2
ix) > 0, the right

hand side of the constraint (35) can be transformed as the
following form.

(d1
ix+ T−1

i (µ−1
pi

(λ))d2
ix)

−L−1(hi)(α
1
ix+ T−1

i (µ−1
pi

(λ))α2
ix)

≥ (d1
ix+ T−1

i (µ−1
pi

(λ))d2
ix)

−L−1(λ)(α1
ix+ T−1

i (µ−1
pi

(λ))α2
ix)

= (d1
ix− L−1(λ)α1

ix)

+T−1
i (µ−1

pi
(λ)) · (d2

ix− L−1(λ)α2
ix) (36)

From the inequalities (35) and (36), the following inequality
can be easily obtained.

µ−1

G̃i

(λ) ≥ µ−1

G̃i

(hi) ≥ (d1
ix− L−1(λ)α1

ix)

+T−1
i (µ−1

pi
(λ)) · (d2

ix− L−1(λ)α2
ix)

As a result, MAXMIN3 can be transformed into MAXMIN4
where permissible degrees of possibility measurehi, i =
1, · · · , k have disappeared.
[MAXMIN4]

max
x∈X,0≤λ≤1

λ (37)

subject to

µ−1

G̃i

(λ) ≥ (d1
ix− L−1(λ)α1

ix)

+T−1
i (µ−1

pi
(λ)) · (d2

ix− L−1(λ)α2
ix),

i = 1, · · · , k (38)

It should be noted here that the constraints (38) can be
reduced to a set of linear inequalities for some fixed valueλ.
This means that an optimal solution(x∗, λ∗) of MAXMIN4
is obtained by combined use of the bisection method with
respect to0 ≤ λ ≤ 1 and the first-phase of the two-phase
simplex method of linear programming.

The relationship between the optimal solution(x∗, λ∗) of
MAXMIN4 and Pareto optimal solutions to MOP5(h) can
be characterized by the following theorem.
Theorem 2.
If (x∗, λ∗) is a unique optimal solution of MAXMIN4, then
x∗ ∈ X is a Pareto optimal solution of MOP5(λ∗), where
λ∗ = (λ∗, · · · , λ∗).
(Proof）
Since an optimal solution(x∗, λ∗) satisfies the constraints
(38), it holds that

µ−1

G̃i

(λ∗) ≥ (d1
ix

∗ − L−1(λ∗)α1
ix

∗)

+T−1
i (µ−1

pi
(λ∗)) · (d2

ix
∗ − L−1(λ∗)α2

ix
∗)

⇔ Ti

µ−1

G̃i

(λ∗)− (d1
ix

∗ − L−1(λ∗)α1
ix

∗)

d2
ix

∗ − L−1(λ∗)α2
ix

∗


= pi(x

∗, λ∗)

≥ µ−1
pi

(λ∗), i = 1, · · · , k

Assume thatx∗ ∈ X is not a Pareto optimal solution of
MOP5(λ∗), whereλ∗ = (λ∗, · · · , λ∗), then there existsx ∈
X such that

pi(x, λ
∗
i ) ≥ pi(x

∗, λ∗
i ) ≥ µ−1

pi
(λ∗), i = 1, · · · , k.

Then there existsx ∈ X such that

µ−1

G̃i

(λ∗) ≥ (d1
ix− L−1(λ∗)α1

ix)

+T−1
i (µ−1

pi
(λ∗)) · (d2

ix− L−1(λ∗)α2
ix),

i = 1, · · · , k

which contradicts the fact that(x∗, λ∗) is a unique optimal
solution of MAXMIN4.

V. A N UMERICAL EXAMPLE FOR MOFRLP

In this section, in order to demonstrate the feasibil-
ity of our proposed method, we consider the following
three-objective fuzzy random linear programming problem
(MOFRLP) which is the modified version of the numerical
example formulated by Sakawa et al. [15].
[MOFRLP]

min
x∈X

c̃1x =
10∑
ℓ=1

c̃1ℓxℓ

min
x∈X

c̃2x =
10∑
ℓ=1

c̃2ℓxℓ

min
x∈X

c̃3x =
10∑
ℓ=1

c̃3ℓxℓ
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TABLE II
PARAMETERS OF OBJECTIVE FUNCTIONS AND CONSTRAINTS IN

MOFRLP

x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

d1
1 19 48 21 10 18 35 46 11 24 33

d2
1 3 2 2 1 4 3 1 2 4 2

d1
2 12 -46 -23 -38 -33 -48 12 8 19 20

d2
2 1 2 4 2 2 1 2 1 2 1

d1
3 -18 -26 -22 -28 -15 -29 -10 -19 -17 -28

d2
3 2 1 3 2 1 2 3 3 2 1

α1 0.51 0.54 0.53 0.55 0.48 0.57 0.47 0.52 0.5 0.53
α2 0.43 0.48 0.46 0.37 0.44 0.46 0.39 0.41 0.48 0.42
α3 0.59 0.56 0.58 0.62 0.6 0.52 0.65 0.57 0.64 0.63
β1 0.51 0.54 0.53 0.55 0.48 0.57 0.47 0.52 0.5 0.53
β2 0.43 0.48 0.46 0.37 0.44 0.46 0.39 0.41 0.48 0.42
β3 0.59 0.56 0.58 0.62 0.6 0.52 0.65 0.57 0.64 0.63
a1 12 -2 4 -7 13 -1 -6 6 11 -8
a2 -2 5 3 16 6 -12 12 4 -7 -10
a3 3 -16 -4 -8 -8 2 -12 -12 4 -3
a4 -11 6 -5 9 -1 8 -4 6 -9 6
a5 -4 7 -6 -5 13 6 -2 -5 14 -6
a6 5 -3 14 -3 -9 -7 4 -4 -5 9
a7 -3 -4 -6 9 6 18 11 -9 -4 7

wherex = (x1, x2, · · · , x10)
T is a 10-dimensional decision

vector andX = {ajx ≤ bj , j = 1, · · · , 7,x ≥ 0}. Under the
occurrence of each elementary eventω, c̃iℓ(ω) is arealization
of the fuzzy random variablẽciℓ, which is a fuzzy number
whose membership function is defined as follows.

µ̃
ciℓ(ω)

(s) =

 L
(

diℓ(ω)−s
αiℓ

)
(s ≤ diℓ(ω) ∀ω),

R
(

s−diℓ(ω)
βiℓ

)
(s > diℓ(ω) ∀ω),

where thefunction L(t)(= R(t))
def
= max{0, 1− | t |}.

The parametersdiℓ, i = 1, 2, 3, j = 1, · · · , 10 are random
variables expressed as:

diℓ = d1iℓ + tid
2
iℓ, (39)

where ti, i = 1, 2, 3 are Gaussian random variables as
follows:

t1 ∼ N(4, 22),

t2 ∼ N(3, 32),

t3 ∼ N(3, 22).

d1iℓ, d
2
iℓ, αiℓ, andβiℓ, i = 1, 2, 3, j = 1, · · · , 10 are constants

as shown in Table II. Considering the individual minimum
and maximum ofE(di)x, i = 1, 2, 3, the hypothetical
decision maker sets his/her linear membership functions of
fuzzy goalsG̃i, i = 1, 2, 3 for the original objective functions
c̃ix, i = 1, 2, 3 as follows.

µ
G̃1

(y1) =
y1 − 1800

1700− 1800

µ
G̃2

(y2) =
y2 − 700

600− 700

µ
G̃3

(y3) =
y3 − (−900)

(−1000)− (−900)

For the elicited membership functionsµ
G̃i
(yi),i = 1, 2, 3,

the hypothetical decision maker sets the intervalsHi =
[himin, himax], i = 1, 2, 3 as follows in his/her subjective

manner.

H1 = [h1min, h1max] = [0.3, 0.7]

H2 = [h2min, h2max] = [0.3, 0.7]

H3 = [h3min, h3max] = [0.3, 0.7]

Then, using (29), (30) and (31), the corresponding domains
Pi(Hi) = [pimin, pimax], i = 1, 2, 3 are calculated as follows.

P1(H1) = [p1min, p1max] = [0.0003, 0.9510]

P2(H2) = [p2min, p2max] = [0.1099, 0.9996]

P3(H3) = [p3min, p3max] = [0.0754, 0.9906]

Then, the hypothetical decision maker sets his/her member-
ship functions of fuzzy goals forpi(x, hi), i = 1, 2, 3 as
follows.

µp1(p1(x, h1)) =
p1(x, h1)− 0.0003

(0.9510− 0.0003)

µp2(p2(x, h2)) =
p2(x, h2)− 0.1099

(0.9996− 0.1099)

µp3(p3(x, h3)) =
p3(x, h3)− 0.0754

(0.9906− 0.0754)

For these membership functionsµ
G̃i
(yi), µpi(pi(x, hi)),i =

1, 2, 3, MAXMIN4 is formulated and solved by
combined use of the bisection method with respect to
0 ≤ λ ≤ 1 and the first-phase of the two-phase simplex
method of linear programming. The optimal solution is
obtained as (x∗

1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8, x

∗
9, x

∗
10, λ

∗) =
(11.7424, 0, 0, 3.3132, 0, 3.0463, 0, 12.2617, 2.9396, 21.144,
0.4704). Since three constraints for (38) are active at the
optimal solution, we can get the following optimal values
of the corresponding membership function.

µp1(p1(x
∗, λ∗)) = 0.4704

µp2(p2(x
∗, λ∗)) = 0.4704

µp3(p3(x
∗, λ∗)) = 0.4704

µ
G̃1

(µ−1

G̃1

(λ∗)) = 0.4704

µ
G̃2

(µ−1

G̃2

(λ∗)) = 0.4704

µ
G̃3

(µ−1

G̃3

(λ∗)) = 0.4704

At the optimal solution, the proper balance between
the membership functionsµpi(pi(x, λ)), i = 1, 2, 3 and
µ
G̃i
(µ−1

G̃1

(λ)), i = 1, 2, 3 in a probability maximization
model is attained through the fuzzy decision.

VI. CONCLUSION

In this paper, two kinds of fuzzy approaches are proposed
to obtain a satisfactory solution of the decision maker, where
the first one is for multiobjective stochastic linear program-
ming problems, and the second one is for multiobjective
fuzzy random linear programming problems. Both of them
are formulated on the basis of a probability maximization
model. In our proposed methods for such two kinds of
multiobjective programming problems, it is not necessary
that the decision maker specifies permissible levels in a
probability maximization model. Instead of that, by adopting
the fuzzy decision as an aggregation operator of fuzzy
goals for both permissible levels and distribution functions,
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a satisfactory solution of the decision maker is easily ob-
tained based on linear programming technique. Although a
probability maximization model is one of the most efficient
tool to transform stochastic programming problems into
well-defined mathematical programming ones, appropriate
permissible levels are not known for the decision maker
in advance. In order to resolve such a problem, we have
proposed fuzzy approaches for both multiobjective stochas-
tic linear programming problems and multiobjective fuzzy
random linear programming problems under the assumption
that the decision maker adopts the fuzzy decision as an
aggregation operator of fuzzy goals.
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