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Performance Analysis of an Adaptive Algorithm
for DOA Estimation

Assimakis K. Leros and Vassilios C. Moussas

Abstract—This paper presents an adaptive approach to the which inhibits real-time operation, while they cannot address
probler_n of estim_ating the direc_tion of arrival angles of narrow- adequately the case of a variable number of sources.
band S|gr_1als emitted from multiple sources. We reformu!a_\te _the The problem of DOA estimation is mathematically pre-
problem in state-space, and employ a multi-model partitioning d in the followi . Th lqorith d
algorithm, combined with extended Kalman filters, for com- .Seme .'n the following section. .e algorithm presente
bined identification of the number of sources and estimation in Section 3 addresses the combined problem of DOA
of the angles of arrival. The proposed algorithm’s performance estimation and model identification. The estimation part is
is assessed by simulation in several operational scenaria. Theperformed by a bank of Extended Kalman Filters (EKFs),
results presented demonstrate that the algorithm is capable 50 of which is implemented assuming a particular constant
of tracking changes in the angles of arrival, and of detecting b f bei t A Multi-Model Partitioni
variations in the number of sources present. num .er orsources elng present. ufti-Model Fartiioning
o S Algorithm (MMPA) [9] is then used to select the correct
_ Index Terms—State estimation, system identification, Kalman 1,4 4e| and corresponding EKF. The algorithm’s performance
filtering, direction of arrival estimation. . : . . . .
is assessed by simulation experiments presented in Section
4. Finally, Section 5 summarizes our conclusions.

I. INTRODUCTION

N THIS paper we address the problem of estimating Il. PROBLEM STATEMENT

the direction of arrival (DOA) angles of narrowband We assume a linear array comprisimgisotropic sensors,
signals emitted from multiple sources, based on measuveiich receive the signals emitted from far-field point
ments obtained by a linear sensor array. This problem hemsurces. Let); be the direction of the-th source, and;(t)
been the focus of substantial research effort during the ldse complex envelope of the corresponding received signal.
two decades due to its importance in several applicatite assume for the moment that the sources are stationary,
areas, including sonar and radar signal processing [1], mobiile the ¢; angles are constant. We further assume that the
communications [2], acoustics and speech processing [Signal characteristics are invariant in time and
and structural health monitoring [4].

Most of the proposed solutions employ the Maximum si(t) =€ i=1...n (1)
Likelihood (ML) approach in some form, either stochastic i ) )
or deterministic [5], [6]. Suboptimal techniques with reduced Ve define the column vectar(¢;) of dimensionm to be
computational requirements include the Minimum Variandd€ complex array response to a unit waveform from a source
(MV), MUSIC, Minimum Norm, ESPRIT, and weightedf"‘t directiong;. Assuming that signals are smultaneously
subspace fitting (WSF) algorithms. A key assumption madgercepted, under the narrowband assumption, the array
by all the above methods is that the number of sourc@.tPUtz(¢) is a column vector comprising the output signals
that contribute to the received signal is known. In man (f) at individual sensor$ = 1,...,m, which is given by
problems, however, this prior knowledge is not available. Fgt€ following equation:
example, in sonar applications, the number of targets tracked
is both unknown and time-varying, as new contacts are z(t) = A(¢)s(t) +v(t) 2)
occasionally detected. Since the number of sources directl
affects the signal model, the DOA estimation problem is
in fact a combined estimation and system identification
problem. The identification of the number of sources is 2(t) = |z1(t)  z2(t) ... zm(t)]T

Xvhere

typically carried our separately by information theoretic A(g) = %

methods, such as the Final Prediction Error (FPE) criterion, .

the Akaike Information Criterion (AIC) [7] and the Minimum o= [gbl P2 . qﬁn}
Description Length (MDL) Criterion [8]. The technigues that s(t) = [s1(t) salt) ... Sn(tﬂT

result from the above criteria do not guarantee convergence to
the correct model; in fact, they typically exhibit model overfit

or underfit. They also require large sets of measurementsyne vector procesqu(t)} of dimensionm represents

. . _ additive measurement noise, which is assumed to be white,
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I1l. AMULTI-MODEL PARTITIONING ALGORITHM FOR
DOA ESTIMATION

Assuming that the number of sourcesis a known
constant, the state space model given by (5)—(6) is completely
specified. An Extended Kalman Filter (EKF) can therefore

w be employed to process the measuremefitg and obtain
recursively the state estimatégk|k). The EKF is a subop-
timal estimator, since it approximates the nonlinear equation

~ ~ (6) by a linear one. However, its main advantage is that it

_(m _ >3 2] il computes the estimates in real time, without requiring a large

batch of data. When the actual number of sounceafiffers
from the one assumed by the EKF, the algorithm will exhibit

Fig. 1. Arrival delays of wavefront across the array large errors, due to the model mismatch.

In practical applicationsp is an unknown parameter,
although we may be able to set an upper bound n,,,.. In
Let d be the spacing between sensors. When the sigisgich cases a viable approach is to employ a bank of EKFs,
wavefront from thei-th source reaches a sensor, the distane@erating in parallel and independent of each other [10]. Each

of the wavefront to the next sensor down the arraysim ¢;. ~filter is implemented based on the same set of equations (5)—

Thus the time delay between two consecutive sensors(®, but assuming a particular value of All filters operate

7; = (dsin¢;)/c, wherec is the propagation velocity. The concurrently on the same measuremerits; however, since

corresponding phase differencedsr; = (2rdsing;)/);, they assume different system models, each filter produces
where ); is the signal wavelength and; is the angular its own model-conditional estimate(k|k;n). It must be
frequency. Therefore the array responrge;) for a source noted that the conditional system models, and therefore the
at directiong; and wavelength\; becomes: conditional estimates, are of different dimensions.
In order to select the correct model and corresponding
filter among then,,., candidate models, we employ a multi-

(m-1)dsinw 2dsinw dsinw

a(g;) = [1 e dwim emdwidmi ... e*jw(m*Uﬂf model partitioning algorithm (MMPA). The general form of
(3) the algorithm [9], [11] can produce an unconditional state

The output of the-th sensor, wheré=1,...,m, can be estimate from a (possibly infinite) set of model-conditional
written using (2) and (3) as follows: estimates; this can be either a minimum-variance, or a

maximum a posteriori (MAP) estimate, depending on the

n formulation. The algorithm is based on calculation of the a

z(t) = Zeﬁﬂet’(l’l)dsmd’”“i (4) posteriori probability of each model being the correct one.
i=1 In the problem at hand, the a posteriori probabifity:|k)

. . f th ram n recursivel Icul follows:
In order to formalize the problem in the state space, V\?et e parameten can be recursively calculated as follows

choose the state vector to consist of the angles of arrival L(k|k;n)
¢; of the n received signals, and the corresponding signal ~ P(n[k) = 57— p(nlk—1)  (7)
wavelengths\;: > L(kl|k; d)p(ilk — 1)
i=1
where L(k|k;n) is a likelihood function given b
VD T W P S i (klh: ) given by

Under the assu_mption of stationary sources and observerL(klk;n) — |Ps(k|k — 1;n)|_1/2
the system state is constant. However, in the general case L O _
of moving sources (e.g. in tracking applications), the state® ¢*P (=327 (klk — 1) P (k[ — 1;n) Z(kk — 15n)]
equation will be nonlinear and complex: (8)
The quantitieg (k|k—1;n) = z(k)— H (k;n)&(k|k—1;n)
and P;(k|k — 1;n) are the conditional innovation sequences
w(k+1) = f(x(k)) + w(k) k=0,1,... ®) and corresponding covariance matrices produced by the con-
) o ] ) ditional EKFs, whereH (k;n) are the observation matrices
The array output is sampled at distinct time instantgyoqyced by the filters during linearization of the nonlinear
producing the following sequence of measurements: function i in (6).
At each stepk, the algorithm selects as the number of
2(k) = h(z(k)) + v(k) k=1,2,... (6) sources the value ofi that maximizes the a posteriori
probabilityp(n|k), forn = 1,...,nmax. The DOA estimates
The functionh in (6) is the nonlinear function of; and¢; are then given by the conditional estimaté|k;n) of the
givenin (4). Equations (5) and (6) define a nonlinear discretesrresponding:-th EKF. This approach has, among others,
time state-space model. The objective is, at each time step advantage of producing estimates of both the number of
k, to obtain an estimaté(k|k) of the statex(k), given the sources and their DOA in real time; i.e. there is no need
set of measurementgk) up to and including time. to collect a large set of measurements. In addition, if the
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number of sources changes, we would expect the a posteri
probabilities to reflect this change and select the correct filte
again in real time.

IV. SIMULATION RESULTS

The proposed algorithm is a suboptimal estimator of i
nonlinear system. Its performance can therefore be asses:
only by experimentation. Here we present results obtaine
by simulation of the algorithm in several typical operationa
scenaria. In all cases, the array consists of 15 isotrop
sensors with equal spacing éf= 0.45\.

The algorithm employs a parallel bank of six EKFs, eact
of which is implemented assuming a different number o
sourcesn being present in the received signal, fram= 1
to nmax = 6. The a posteriori probabilities corresponding to
each elemental filter were calculated from (7) and (8).

Experiment 1: A single source emitting from a constant
direction ¢ = 40° was simulated. In this case, the signal
received by the array is given by (4) far= 1. The received
signal was corrupted by additive Gaussian noise of equ
power to that of the signal (SNR- 0 dB). The results of
this experiment are shown in Fig. 2.

Despite the high noise level, the algorithm was able t
identify correctly the number of sources within the first three

steps. As shown in Fig. 2(c), the a posteriori probabilitys
p(n = 1|k), corresponding to the correct hypothesis of ¢= %0

single source present, converged rapidly to 1 from time ste g
k = 3 onwards, while the rest probabilitigén|k) converged £
to 0 forn = 2,...,6. This convergence behavior is due%
to the exponential in (8), which is used to calculate the i©
posteriori probabilities. The estimates produced by the EK
conditioned om = 1 is shown in Fig. 2(a) as a function of

time (snapshots taken). It can be seen that the response ti
of the EKF is higher than that of the a posteriori probabilities
since the filter requires about 100 measurements to estims
the source direction within a 10% margin of error. However
the filter converged in all our simulation trials, displaying a
low steady-state error.

The rest EKFs (i.e. the ones assuming= 2,...,6
sources present) gave erratic or divergent results; howev
these were discarded by the algorithm, sin¢e|k) ~ 0.
The estimates produced by the EKF conditionednoa 3
are depicted in Fig. 2(b) for comparison purposes. Th
three curves shown are the estimates corresponding to t
three sources assumed by the filter. All estimates display ¢
oscillatory behavior.

Experiment 2: Three completely coherent signals arriving
from directionsp = 10°, 20° and30° were simulated. Again,
measurement noise was added with SNR) dB. This is
an unfavorable situation for DOA estimation because of th
narrow spacing between the sources. As shown in Fig. .
after a transient period of about 10 samples, the algorithi
identified correctly the number of sources, as indicated b
p(n = 3]k) =~ 1. The EKF corresponding ta = 3 was able
to differentiate between the three sources after 30 sample
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and produced steady-state estimates of the DOAs after abou.

150 samples.
Experiment 3: Here we assess the capability of the al-
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gorithm to identify a variable number of sources, Wh"gig. 2. Results of exper'iment 1: (a) DOA estimates by the'EKF conditioned
. . . . . on the correct hypothesis af = 1 (single source). (b) Erratic behaviour of
simultaneously estimating their DOAs. The noise level angk Exr conditioned on the hypothesis of= 3 sources. (c) A posteriori

all other parameters remain as previously described, but thebabilitiesp(n|k) for n = 1,...,6, calculated by the MMPA.
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40 corresponding with the fact tha(n = 2|k) ~ 1.

Experiment 4: A slowly moving source is simulated. The
noise level and all other parameters are as described in
the previous experiments. The source direction now changes
linearly from an initial value ofp = 10° to a final value of
¢ = 30° over the observation period of 600 time steps. In this
situation there exists a model mismatch, since our algorithm
| ‘,"‘ N - 1 has been designed based on a model of a constant state vector
; (i.e. constant DOAS). In order to provide the algorithm with a
15| M 41 minimal tracking capability without altering the basic system
| R model, we introduce a fictitious plant noise in the EKFs. In
0f g T - 777 =71 particular, we implement the filters assuming that the system
vt state evolves according to

351 b

20

DoA estimates (deg)

x(k+1) = z(k) + w(k) 9)

The sequencdw(t)} in (9) is a white Gaussian noise
vector with zero mean and covarian@ein our experiments
we used@ = 10~* for the case of a single source. On the
other hand, the actual system model used to produce the
DOA measurements in this experiment was of the form

0 100 200 300 400 500 600
Snapshots

@

x(k+1) = Az(k) (10)

It must be noted that both (9) and (10) are special cases
of (5). The model mismatch lies in the different value for
1 the system matrix4 assumed by each model.

Again the algorithm identified correctly the presence of
a single source. The estimates of the EKF corresponding to
n = 1 are presented in Fig. 5. It can be seen that the filter is
able to track the moving source, although it underestimates

< p=2Kk 4 the rate of change of the DOA angles. However, in order
Y for the algorithm to be capable of following a faster moving
Y source, a higher order state model is required, incorporating
at least the derivatives of the arrival anglgs

< p(h=3]k)
0.8
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Snapshots V. CONCLUSIONS

(b) In this work we have presented an algorithm that addresses
Fig. 3. Results of experiment 2: (a) Estimates of the EKF conditioned on th&/0 aspects of the DOA estimation problem: the identifica-
correct hypothesis oh = 3 sources present. (b) A posteriori probabilitiestion of the number of sources, and the estimation of the
p(nlk) forn =1,...,6, calculated by the MMPA. corresponding directions of arrival. Results obtained from
simulation experiments show that the algorithm is capable to
identify correctly the number of sources present. Typically
number of sources varies as follows: during the first 1abe identification is carried out using 5 to 10 measurements
steps of the simulation, a single source is present at directiormost cases, which is a lot faster than information-theoretic
¢1 = 10°. At time stepk = 100, a second source appearspproaches used in the literature [7], [8]. A key advantage
at directiong, = 30°. The two sources are present in thef the algorithm is also its capacity to detect a change
signal received untik = 400, when the second source stop#n the number of sources in real time. Finally, it must
transmitting. also be noted that the algorithm exhibits a high degree of

The a posteriori probabilities calculated by the algorithi@rallelism; all EKFs can be implemented in parallel for real-
are depicted in Fig. 4(c). It can be seen that the algorithiin€ applications. o S
successfully detects the transitions from one to two sources! N algorithm, as presented herein, is based on a simplified
at k — 100 and back to one source &t — 400. In both Model assuming stationary sources. A natural extension
cases 5-10 snapshots were sufficient to determine the cord@lld be to consider moving sources by incorporating into
number of sources. The estimates produced by the EREe system model information on the source location, veloc-
conditioned om = 1, shown in Fig. 4(a), are valid for the ity, and possibly acceleration. This is the subject of current
intervals (0, 100) and (400, 600). During these intervals wavestigation.
hadp(n = 1|k) = 1, and the filter estimates approached
the actual DOA valuep; = 10°, as seen in Fig. 4(b). ' ' _ o
On the contrary, outside these intervals the filter exhibiteél] S: D. Likothanassis, S. K. Katsikas, and E. N. Demiris, “Direction of

. : . . arrival estimation via extended Lainiotis filters,” IProc. 5th Inter-
erratic and _oscnlatory behaw_ou_r. Slmllgrly, the second EKF  ignal Conference on Information Systems Analysis and Synthesis
yielded valid results only within the interval (100, 400), (Orlando, FL, Aug. 1999), vol. VI, pp. 525-530.
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