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Abstract—This paper presents an adaptive approach to the
problem of estimating the direction of arrival angles of narrow-
band signals emitted from multiple sources. We reformulate the
problem in state-space, and employ a multi-model partitioning
algorithm, combined with extended Kalman filters, for com-
bined identification of the number of sources and estimation
of the angles of arrival. The proposed algorithm’s performance
is assessed by simulation in several operational scenaria. The
results presented demonstrate that the algorithm is capable
of tracking changes in the angles of arrival, and of detecting
variations in the number of sources present.

Index Terms—State estimation, system identification, Kalman
filtering, direction of arrival estimation.

I. I NTRODUCTION

I N THIS paper we address the problem of estimating
the direction of arrival (DOA) angles of narrowband

signals emitted from multiple sources, based on measure-
ments obtained by a linear sensor array. This problem has
been the focus of substantial research effort during the last
two decades due to its importance in several application
areas, including sonar and radar signal processing [1], mobile
communications [2], acoustics and speech processing [3],
and structural health monitoring [4].

Most of the proposed solutions employ the Maximum
Likelihood (ML) approach in some form, either stochastic
or deterministic [5], [6]. Suboptimal techniques with reduced
computational requirements include the Minimum Variance
(MV), MUSIC, Minimum Norm, ESPRIT, and weighted
subspace fitting (WSF) algorithms. A key assumption made
by all the above methods is that the number of sources
that contribute to the received signal is known. In many
problems, however, this prior knowledge is not available. For
example, in sonar applications, the number of targets tracked
is both unknown and time-varying, as new contacts are
occasionally detected. Since the number of sources directly
affects the signal model, the DOA estimation problem is
in fact a combined estimation and system identification
problem. The identification of the number of sources is
typically carried our separately by information theoretic
methods, such as the Final Prediction Error (FPE) criterion,
the Akaike Information Criterion (AIC) [7] and the Minimum
Description Length (MDL) Criterion [8]. The techniques that
result from the above criteria do not guarantee convergence to
the correct model; in fact, they typically exhibit model overfit
or underfit. They also require large sets of measurements,
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which inhibits real-time operation, while they cannot address
adequately the case of a variable number of sources.

The problem of DOA estimation is mathematically pre-
sented in the following section. The algorithm presented
in Section 3 addresses the combined problem of DOA
estimation and model identification. The estimation part is
performed by a bank of Extended Kalman Filters (EKFs),
each of which is implemented assuming a particular constant
number of sources being present. A Multi-Model Partitioning
Algorithm (MMPA) [9] is then used to select the correct
model and corresponding EKF. The algorithm’s performance
is assessed by simulation experiments presented in Section
4. Finally, Section 5 summarizes our conclusions.

II. PROBLEM STATEMENT

We assume a linear array comprisingm isotropic sensors,
which receive the signals emitted fromn far-field point
sources. Letφi be the direction of thei-th source, andsi(t)
the complex envelope of the corresponding received signal.
We assume for the moment that the sources are stationary,
i.e. theφi angles are constant. We further assume that the
signal characteristics are invariant in time and

si(t) = ejωi(t), i = 1, . . . , n (1)

We define the column vectora(φi) of dimensionm to be
the complex array response to a unit waveform from a source
at directionφi. Assuming thatn signals are simultaneously
intercepted, under the narrowband assumption, the array
outputz(t) is a column vector comprising the output signals
zi(t) at individual sensorsi = 1, . . . ,m, which is given by
the following equation:

z(t) = A(φ)s(t) + v(t) (2)

where

z(t) =
[

z1(t) z2(t) . . . zm(t)
]T

A(φ) =
[

a(φ1) a(φ2) . . . a(φn)
]T

φ =
[

φ1 φ2 . . . φn

]T

s(t) =
[

s1(t) s2(t) . . . sn(t)
]T

The vector process{v(t)} of dimensionm represents
additive measurement noise, which is assumed to be white,
Gaussian, with zero mean and covariance matrixR. The
columns of them×n matrixA(φ) are the array propagation
vectorsa(φi), i = 1, . . . , n. These vectors can be determined
by considering the geometry of the problem, as depicted in
Fig. 1.
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Fig. 1. Arrival delays of wavefront across the array

Let d be the spacing between sensors. When the signal
wavefront from thei-th source reaches a sensor, the distance
of the wavefront to the next sensor down the array isd sinφi.
Thus the time delay between two consecutive sensors is
τi = (d sinφi)/c, wherec is the propagation velocity. The
corresponding phase difference isωiτi = (2πd sinφi)/λi,
where λi is the signal wavelength andωi is the angular
frequency. Therefore the array responsea(φi) for a source
at directionφi and wavelengthλi becomes:

a(φi) =
[

1 e−jωiτi e−jωi2τi · · · e−jωi(m−1)τi
]T

(3)
The output of thel-th sensor, wherel = 1, . . . ,m, can be

written using (2) and (3) as follows:

zl(t) =

n
∑

i=1

ej2π[ct−(l−1)d sinφi]/λi (4)

In order to formalize the problem in the state space, we
choose the state vector to consist of the angles of arrival
φi of the n received signals, and the corresponding signal
wavelengthsλi:

x =
[

λ1 λ2 . . . λn φ1 φ2 . . . φn

]T

Under the assumption of stationary sources and observer,
the system statex is constant. However, in the general case
of moving sources (e.g. in tracking applications), the state
equation will be nonlinear and complex:

x(k + 1) = f
(

x(k)
)

+ w(k) k = 0, 1, . . . (5)

The array output is sampled at distinct time instants,
producing the following sequence of measurements:

z(k) = h
(

x(k)
)

+ v(k) k = 1, 2, . . . (6)

The functionh in (6) is the nonlinear function ofλi andφi

given in (4). Equations (5) and (6) define a nonlinear discrete-
time state-space model. The objective is, at each time step
k, to obtain an estimatêx(k|k) of the statex(k), given the
set of measurementsz(k) up to and including timek.

III. A M ULTI -MODEL PARTITIONING ALGORITHM FOR

DOA ESTIMATION

Assuming that the number of sourcesn is a known
constant, the state space model given by (5)–(6) is completely
specified. An Extended Kalman Filter (EKF) can therefore
be employed to process the measurementsz(k) and obtain
recursively the state estimatesx̂(k|k). The EKF is a subop-
timal estimator, since it approximates the nonlinear equation
(6) by a linear one. However, its main advantage is that it
computes the estimates in real time, without requiring a large
batch of data. When the actual number of sourcesn differs
from the one assumed by the EKF, the algorithm will exhibit
large errors, due to the model mismatch.

In practical applications,n is an unknown parameter,
although we may be able to set an upper boundn ≤ nmax. In
such cases a viable approach is to employ a bank of EKFs,
operating in parallel and independent of each other [10]. Each
filter is implemented based on the same set of equations (5)–
(6), but assuming a particular value ofn. All filters operate
concurrently on the same measurementsz(k); however, since
they assume different system models, each filter produces
its own model-conditional estimatêx(k|k;n). It must be
noted that the conditional system models, and therefore the
conditional estimates, are of different dimensions.

In order to select the correct model and corresponding
filter among thenmax candidate models, we employ a multi-
model partitioning algorithm (MMPA). The general form of
the algorithm [9], [11] can produce an unconditional state
estimate from a (possibly infinite) set of model-conditional
estimates; this can be either a minimum-variance, or a
maximum a posteriori (MAP) estimate, depending on the
formulation. The algorithm is based on calculation of the a
posteriori probability of each model being the correct one.
In the problem at hand, the a posteriori probabilityp(n|k)
of the parametern can be recursively calculated as follows:

p(n|k) =
L(k|k;n)

nmax
∑

i=1

L(k|k; i)p(i|k − 1)

p(n|k − 1) (7)

whereL(k|k;n) is a likelihood function given by

L(k|k;n) = |Pz̃(k|k − 1;n)|
−1/2

× exp
[

− 1
2 z̃

T (k|k − 1;n)P−1
z̃ (k|k − 1;n)z̃(k|k − 1;n)

]

(8)

The quantities̃z(k|k−1;n) = z(k)−H(k;n)x̂(k|k−1;n)
andPz̃(k|k− 1;n) are the conditional innovation sequences
and corresponding covariance matrices produced by the con-
ditional EKFs, whereH(k;n) are the observation matrices
produced by the filters during linearization of the nonlinear
functionh in (6).

At each stepk, the algorithm selects as the number of
sources the value ofn that maximizes the a posteriori
probabilityp(n|k), for n = 1, . . . , nmax. The DOA estimates
are then given by the conditional estimatex̂(k|k;n) of the
correspondingn-th EKF. This approach has, among others,
the advantage of producing estimates of both the number of
sources and their DOA in real time; i.e. there is no need
to collect a large set of measurements. In addition, if the
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number of sources changes, we would expect the a posteriori
probabilities to reflect this change and select the correct filter,
again in real time.

IV. SIMULATION RESULTS

The proposed algorithm is a suboptimal estimator of a
nonlinear system. Its performance can therefore be assessed
only by experimentation. Here we present results obtained
by simulation of the algorithm in several typical operational
scenaria. In all cases, the array consists of 15 isotropic
sensors with equal spacing ofd = 0.45λ.

The algorithm employs a parallel bank of six EKFs, each
of which is implemented assuming a different number of
sourcesn being present in the received signal, fromn = 1
to nmax = 6. The a posteriori probabilities corresponding to
each elemental filter were calculated from (7) and (8).

Experiment 1: A single source emitting from a constant
direction φ = 40◦ was simulated. In this case, the signal
received by the array is given by (4) forn = 1. The received
signal was corrupted by additive Gaussian noise of equal
power to that of the signal (SNR= 0 dB). The results of
this experiment are shown in Fig. 2.

Despite the high noise level, the algorithm was able to
identify correctly the number of sources within the first three
steps. As shown in Fig. 2(c), the a posteriori probability
p(n = 1|k), corresponding to the correct hypothesis of a
single source present, converged rapidly to 1 from time step
k = 3 onwards, while the rest probabilitiesp(n|k) converged
to 0 for n = 2, . . . , 6. This convergence behavior is due
to the exponential in (8), which is used to calculate the a
posteriori probabilities. The estimates produced by the EKF
conditioned onn = 1 is shown in Fig. 2(a) as a function of
time (snapshots taken). It can be seen that the response time
of the EKF is higher than that of the a posteriori probabilities,
since the filter requires about 100 measurements to estimate
the source direction within a 10% margin of error. However,
the filter converged in all our simulation trials, displaying a
low steady-state error.

The rest EKFs (i.e. the ones assumingn = 2, . . . , 6
sources present) gave erratic or divergent results; however
these were discarded by the algorithm, sincep(n|k) ≈ 0.
The estimates produced by the EKF conditioned onn = 3
are depicted in Fig. 2(b) for comparison purposes. The
three curves shown are the estimates corresponding to the
three sources assumed by the filter. All estimates display an
oscillatory behavior.

Experiment 2: Three completely coherent signals arriving
from directionsφ = 10◦, 20◦ and30◦ were simulated. Again,
measurement noise was added with SNR= 0 dB. This is
an unfavorable situation for DOA estimation because of the
narrow spacing between the sources. As shown in Fig. 3,
after a transient period of about 10 samples, the algorithm
identified correctly the number of sources, as indicated by
p(n = 3|k) ≈ 1. The EKF corresponding ton = 3 was able
to differentiate between the three sources after 30 samples,
and produced steady-state estimates of the DOAs after about
150 samples.

Experiment 3: Here we assess the capability of the al-
gorithm to identify a variable number of sources, while
simultaneously estimating their DOAs. The noise level and
all other parameters remain as previously described, but the
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Fig. 2. Results of experiment 1: (a) DOA estimates by the EKF conditioned
on the correct hypothesis ofn = 1 (single source). (b) Erratic behaviour of
the EKF conditioned on the hypothesis ofn = 3 sources. (c) A posteriori
probabilitiesp(n|k) for n = 1, . . . , 6, calculated by the MMPA.
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Fig. 3. Results of experiment 2: (a) Estimates of the EKF conditioned on the
correct hypothesis ofn = 3 sources present. (b) A posteriori probabilities
p(n|k) for n = 1, . . . , 6, calculated by the MMPA.

number of sources varies as follows: during the first 100
steps of the simulation, a single source is present at direction
φ1 = 10◦. At time stepk = 100, a second source appears
at directionφ2 = 30◦. The two sources are present in the
signal received untilk = 400, when the second source stops
transmitting.

The a posteriori probabilities calculated by the algorithm
are depicted in Fig. 4(c). It can be seen that the algorithm
successfully detects the transitions from one to two sources
at k = 100 and back to one source atk = 400. In both
cases 5-10 snapshots were sufficient to determine the correct
number of sources. The estimates produced by the EKF
conditioned onn = 1, shown in Fig. 4(a), are valid for the
intervals (0, 100) and (400, 600). During these intervals we
had p(n = 1|k) ≈ 1, and the filter estimates approached
the actual DOA valueφ1 = 10◦, as seen in Fig. 4(b).
On the contrary, outside these intervals the filter exhibited
erratic and oscillatory behaviour. Similarly, the second EKF
yielded valid results only within the interval (100, 400),

corresponding with the fact thatp(n = 2|k) ≈ 1.
Experiment 4: A slowly moving source is simulated. The

noise level and all other parameters are as described in
the previous experiments. The source direction now changes
linearly from an initial value ofφ = 10◦ to a final value of
φ = 30◦ over the observation period of 600 time steps. In this
situation there exists a model mismatch, since our algorithm
has been designed based on a model of a constant state vector
(i.e. constant DOAs). In order to provide the algorithm with a
minimal tracking capability without altering the basic system
model, we introduce a fictitious plant noise in the EKFs. In
particular, we implement the filters assuming that the system
state evolves according to

x(k + 1) = x(k) + w(k) (9)

The sequence{w(t)} in (9) is a white Gaussian noise
vector with zero mean and covarianceQ; in our experiments
we usedQ = 10−4 for the case of a single source. On the
other hand, the actual system model used to produce the
DOA measurements in this experiment was of the form

x(k + 1) = Ax(k) (10)

It must be noted that both (9) and (10) are special cases
of (5). The model mismatch lies in the different value for
the system matrixA assumed by each model.

Again the algorithm identified correctly the presence of
a single source. The estimates of the EKF corresponding to
n = 1 are presented in Fig. 5. It can be seen that the filter is
able to track the moving source, although it underestimates
the rate of change of the DOA angles. However, in order
for the algorithm to be capable of following a faster moving
source, a higher order state model is required, incorporating
at least the derivatives of the arrival anglesφi.

V. CONCLUSIONS

In this work we have presented an algorithm that addresses
two aspects of the DOA estimation problem: the identifica-
tion of the number of sources, and the estimation of the
corresponding directions of arrival. Results obtained from
simulation experiments show that the algorithm is capable to
identify correctly the number of sources present. Typically
the identification is carried out using 5 to 10 measurements
in most cases, which is a lot faster than information-theoretic
approaches used in the literature [7], [8]. A key advantage
of the algorithm is also its capacity to detect a change
in the number of sources in real time. Finally, it must
also be noted that the algorithm exhibits a high degree of
parallelism; all EKFs can be implemented in parallel for real-
time applications.

The algorithm, as presented herein, is based on a simplified
model assuming stationary sources. A natural extension
would be to consider moving sources by incorporating into
the system model information on the source location, veloc-
ity, and possibly acceleration. This is the subject of current
investigation.
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