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Abstract − This paper introduces the method of intelligent 

regulation to control the power-electronic Buck DC-DC 
converter using a newly developed small-signal model of the 
pulse width modulation (PWM) switch. The implemented method 
uses a fuzzy-PID controller that is tuned using the global search 
method of genetic algorithm (GA). The experimental simulation 
results show that the utilized intelligent hierarchical control 
method using the GA-tuned fuzzy-PID controller, for the used 
new PWM small-signal model, produces the desired system 
response for performance enhancement of the electronic 
switching-mode Buck power converter despite the existence of 
disturbances with comparatively high amplitudes.  

 
Index Terms − Buck converter, fuzzy logic, genetic algorithms, 

intelligent control, switching-mode DC-DC power supply. 
 

I. INTRODUCTION 
 

     In recent years, small-signal modeling of dynamic 
behaviors of the open loop DC-to-DC power converters has 
received notable amount of attention, due to the fact that these 
models are the basis to extract accurate transfer functions 
which are essential in the feedback control design [7, 31]. 
They are used to design reliable high performance regulators, 
by enclosing the open loop DC-to-DC power converters in a 
feedback loop, to keep the performance of the system as close 
as possible to the desired operating conditions. The direct 
purpose of this feedback loop is to counteract the outside 
disturbances in the (a) source voltages, (b) duty ratio (the 
output pulses of the pulse width modulator (PWM)), and (c) 
load current, in order to regulate the output voltage [7, 31].  

The utilized power converters generally operate in (a) 
Continuous Conduction Mode (CCM) or (b) Discontinuous 
Conduction Mode (DCM) [7, 31]. The CCM mode is 
desirable, as the output ripple of the DC-to-DC power 
converter is very small compared to the DC steady state 
output. A linearized small-signal model is constructed to 
examine the dynamic behaviors of the converter, due to the 
fact that disturbances are of small signal variations. 
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Through this small-signal model, the necessary open-loop 
transfer functions can be determined and plotted using Bode 
plots. This is needed in order to use compensation to the pulse 
width modulation (PWM) power converters, to meet the 
desired nominal operating conditions, through the application 
of various control methods. These control methods can 
incorporate the approaches of: (a) frequency analysis in the 
classical control theory [32, 77], (b) time analysis in the 
modern control theory [32, 77], (c) both frequency analysis 
and time analysis domains in the post modern (digital and 
robust) control theory [77], and (d) soft computing (e.g., fuzzy 
logic, neural networks, and genetic algorithms) in the 
intelligent control methodology [2-4, 8, 10, 13-15, 100]. These 
control methods can be applied to the models of power 
converters that usually work with only one specific control 
scheme, which is pulse width modulation (PWM) through 
either duty-ratio control or current programming control [31]. 
In this paper, the duty-ratio control is used, in which the 
switch ON-time is controlled externally by comparing a saw 
tooth ramp with the controller voltage [31].  

Various modeling approaches of the PWM power 
converters already exist. These approaches can be separated 
into three main categories. The first modeling category aims 
towards modeling the whole PWM converters. Examples for 
this category are (a) volt-second and current-second (charge) 
balance approach, and (b) state-space averaging approach [7, 
31]. These approaches suffer from inaccurate results in the 
high-frequency range. The second modeling category aims 
more specifically towards modeling what is called the 
converter cell, that includes modeling the basic cell of the 
PWM converter, and ignoring the input (the DC voltage 
source) and the output (the RC filter) parts in the model (the 
cell includes only the PWM switch with the inductors and the 
capacitors associated with it). An example for this category is 
the averaged modeling approach [7, 31]. This approach also 
suffers from inaccurate results in the high-frequency range. 
The third modeling category aims more specifically to model 
the PWM switch, by itself, in the PWM power converters. 

The previously mentioned modeling approaches utilize in 
general four techniques. The first technique is the sampled-
data representation technique. The second technique is the 
averaged technique. The third technique is the exact small-
signal analysis technique [7, 31], and the fourth technique 
combines the averaged technique and the sampled-data 
technique [7, 31]. The averaged technique represents the 
easiest and the most widely used technique. It can be used to 
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determine the various impedances and transfer functions for 
the power-electronic converter systems. The basic 
characteristics of this technique are (1) it uses the averaging 
technique of voltages and currents and (2) it gives accurate 
low-frequency results, but inaccurate high-frequency results.  

Averaged models can be produced for the nonlinear switch 
in the converter circuits, which is called the PWM switch, as 
well for the converter system as a whole. This switch is 
usually a single pole double throw (SPDT) switch; it is this 
switch which is responsible for switching the converter from 
one configuration to another during each switching period. 
These models, derived for the PWM switch, are usually easier 
than the derivation of converter models. Yet, it has the 
limitation of the fact that not all the converter topologies have 
the same PWM switch arrangement [31].      

The exact small-signal technique [7, 31] is very accurate to 
a wide range of frequencies. This technique can be applied to 
any converter system that is (a) periodic, (b) time-varying, and 
(c) piecewise linear. The trade off for the high accuracy occurs 
in the complexity of the matrix manipulations and the time 
consumed to produce the exact results. Yet, it has a great 
advantage of being automated through the use of computer- 
aided design (CAD) software packages.  

The sampled data technique is based on the generation of a 
difference equation that describes the propagation of a point 
on a converter waveform from one cycle to another. It is 
usually used to derive an accurate response for the PWM 
current mode control. Yet, the price is paid again through the 
limitation of the upper-frequency range, to be limited to half 
of the switching frequency. The fourth modeling technique 
combines the averaged technique and the sampled-data 
technique, in an effort to gain the main benefits of each 
technique. However, this technique, while improved, is also 
inaccurate [7, 31].  

From above, it can be seen that there is a need to develop a 
model applicable to various regulating schemes, including the 
most used scheme which is the PWM duty ratio and current 
mode control scheme. Therefore, a small-signal modeling 
approach which is applicable to any power converter system 
represented as a two-port network has been introduced [7]. 
This was done through the modeling of the nonlinear part in 
the power converter system, which is the PWM switch.  

Fuzzy logic is a form of many-valued logic which is derived 
from fuzzy set theory to deal with reasoning that is non-fixed 
or approximate rather than fixed and exact. In contrast with 
"crisp logic", where binary sets have two-valued logic, fuzzy 
logic variables may have a truth value that ranges in degree 
between “0” and “1”. In another formulation, one can point 
out that fuzzy logic is a superset of the conventional (Boolean) 
logic that has been extended to handle the concept of partial 
truth which is the truth values between completely true and 
completely false. In addition, when linguistic variables are 
used, these degrees can be managed by specific functions. 
Fuzzy logic, that was emerged as a consequence of the fuzzy 
set theory, has been applied successfully into several fields in 
social and technical sciences such as in social psychology, 
expert systems, artificial intelligence, and control engineering 

that lead to the design of many variants of fuzzy controllers 
that effectively control noisy non-linear systems [1, 6, 14, 17, 
19-20, 25, 28, 34, 35, 43, 45, 47, 53, 54, 57, 59, 61, 63, 64, 66-
67, 70-71, 76, 79, 80, 84, 88, 89, 92, 96, 99-100, 101-103, 
106, 108, 111]. 

Genetic algorithm (GA) is a global search heuristic that 
mimics the process of natural evolution. This heuristic 
algorithm is frequently used to generate useful solutions to 
several optimizations and search problems that are widely 
used in many applications such as in bioinformatics, 
computational sciences, economics, mathematics, physics, and 
engineering [18, 21-22, 24, 26-27, 29, 33, 36, 41-42, 44, 48, 
50-52, 55-56, 59-62, 69, 72, 74-75, 78, 81-83, 85, 91]. Genetic 
algorithms belong to the larger class of evolutionary 
algorithms (EA), which generate solutions to optimization 
problems using naturally-inspired operations such as 
inheritance, mutation, selection, and crossover. A typical GA 
requires (a) a genetic representation of the solution domain 
and (b) a fitness function to evaluate the solution domain. In 
GA, a population of strings called chromosomes or genotype 
of the genome, which encode candidate solutions to an 
optimization problem (called individuals, creatures, or 
phenotypes), evolves toward better solutions. Usually, 
solutions are represented as strings of “0”s and “1”s, but other 
encoding schemes are also used. The evolution usually starts 
from a population of randomly generated individuals and 
occurs in generations, where, in each generation, the fitness of 
each individual in the population is evaluated, multiple 
individuals are stochastically selected (based on their fitness), 
and then modified using the corresponding GA operations to 
form a new population. The new population is then used in the 
next iteration of the GA, where usually the GA terminates 
when either a maximum number of generations have been 
produced or a satisfactory fitness level for the population has 
been reached. 

Fig. 1 illustrates the layout of the Buck-based control 
methodology that is used in this paper. In Fig. 1, the first layer 
presents the state space representation of the Buck converter, 
the second layer presents the GA-based tuning to achieve the 
needed dynamic performance, and the third layer presents the 
implemented fuzzy-based PID controller.  

 
Fuzzy-PID Controller 

GA-based Tuning 
Buck System: {[A], [B], [C], [E]} 

 
Fig. 1. Buck-based converter hierarchical control methodology 
which is used in this paper. 

 
Although several previous approaches have been presented 

for the purpose of controlling switching-mode converters such 
as the Buck, Boost and Buck-Boost [5, 9, 11, 12, 16, 30, 31, 
65, 90, 93, 100], the control method presented in this work 
using GA-tuning of fuzzy-PID controller is new for the 
application upon the newly developed small-signal model of 
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the PWM switch [7] within the switching-mode electronic 
Buck power converter. 

The remainder of this paper is organized as follows: Section 
II presents basic background on the Buck DC-DC power 
converter, fuzzy logic, and genetic algorithms. Section III 
presents the illustration of the used methodology of the genetic 
algorithm-based tuning of the fuzzy-PID controller for 
controlling the utilized Buck converter. Section IV presents 
the simulation results for the application of GA-tuned fuzzy-
PID controller on the state-space model of the Buck converter 
for both of the input-to-output and control-to-output transfer 
functions in the existence of high-amplitude disturbances. 
Conclusions and future work are presented in Section V.    

 

II. BACKGROUND 
 

This section presents an important background on the Buck 
DC-DC power converter, fuzzy logic, and genetic algorithms 
that will be used in later sections. 

 

II.1. Switching Mode Power Supply: The Application of the 
Averaged Modeling Approach and the New Small-Signal 
Model for the PWM Converters  

There are many averaged modeling techniques used to 
model the PWM converters. These techniques include (a) volt-
second and current-second balance approach, and (b) state-
space averaging approach [7, 31]. These techniques are used 
to model the converter systems as a whole, as well as to model 
the pulse width modulation (PWM) switch by itself. Yet, these 
techniques are valid for the low-frequency range, and they 
give inaccurate results for the dynamic behaviors of the power 
converters in the high-frequency ranges [7, 31]. Another 
modeling approach that focuses on modeling the converter-
cell, instead of the converter as a whole, is used to get 
averaged models for the PWM converters. This approach is 
also useful for the low-frequency ranges, but not useful for the 
high-frequency ranges. One major advantage of these 
techniques is the fact that they are easy to implement, and the 
results obtained are not in complicated forms. 

 

II.1.1. The Averaged Modeling Approach and its Application 
on the Buck DC-DC Power Converter 

The averaged modeling approach aims to produce an 
averaged model for a specific cell of the PWM converters. 
This cell is shown in Fig. 2, where this basic cell is used to 
explore the DC behaviors and the AC small-signal dynamic 
behaviors of the PWM Buck converter. 

       
Fig. 2. The basic cell of the PWM converter. 

 It is shown that a DC and AC small-signal averaged model 
of the converter-cell which is shown in Fig. 2, can be 
produced as shown in Fig. 3, where D is the DC value of the 

duty ratio, d̂  is the small-signal perturbation of the duty ratio, 
and V32 is the DC voltage between terminals 3 and 2.  

 

 
 

Fig. 3. The DC and AC small-signal averaged model of the 
converter-cell that was shown in Fig. 2. 

  
The DC and AC small-signal averaged model, shown in 

Fig. 3, will be used to derive the corresponding control-to-
output, input-to-output, input impedance, and the control-to-
input current transfer functions for the Buck converter. Also, 
the averaged model will be used to derive the input-to-output, 
control-to-output, input impedance, and control-to-input 
current average transfer functions for the PWM Buck 
converter. Fig. 4 shows a typical Buck converter. 

 
 

Fig. 4. The power-electronic DC-DC Buck converter. 
 
We assume a small-signal perturbation gv̂ , in the DC 

voltage source Vg, and that |ˆ||| gg vV  . After the 

implementation of the averaged model that was shown 
previously, we get the following small-signal model for the 
PWM Buck converter as shown in Fig. 5. 

Nulling the input gv̂ , we get the following control-to-

output transfer function [7]: 

2)/(1

1
ˆ

ˆ

LCssRL
V

d

v
g

o


                                   (1) 

Nulling the input d̂ , we get the following input-to-output 
transfer function [7]: 
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Fig. 5. The AC small-signal model of the Buck converter 
operating in the continuous conduction mode. 
 

2)/(1
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ˆ

ˆ
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
                                      (2) 

Other transfer functions of interest for the Buck converter 
are the input impedance and the control-to-input current 

transfer functions. To get the input impedance ( ivg
ˆ/ˆ ), we 

null the input d̂ , so we get the following equation [7]: 

 
RCs
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                                 (3) 

To get the control-to-input current transfer function ( di ˆ/1̂ ), 

we null the input gv̂ , so we get the transfer function [7]:    

2
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II.1.2. New Method for Obtaining an Exact Model of the PWM 
Switch Within the Duty Ratio Programming Mode 

In this subsection, a new approach is developed to 
formulate a new model for the PWM nonlinear switch [7]. The 
Buck converter will be used now as the basic model to extract 
the corresponding two-port network parameters. The main 
reason that the Buck is used over the other PWM converters, 
is the fact that the Buck converter is a second order system 
with a simple structure. This will be reflected upon the 
simplicity of the results that will be obtained. 

Since the ripple voltage is comparatively much smaller than 
the DC voltage across the output capacitor (as the Buck 
converter is operating in the CCM), the capacitor will be 
replaced with a constant DC voltage source Vc´p. This is 
illustrated in Fig. 6. 

 
Fig. 6. An alternative Buck configuration. 

 
From the Buck converter shown in Fig. 6, the two-port 

augmented equations can be written as follows: 

 
Fig. 7. Circuit model for Equations (5) and (6). 

 

               divyvyi idpcioapia
ˆˆˆˆ

'                                         (5)                  

dvvgizv odapvfcopc
ˆˆˆˆ '                                                                      (6) 

 

A circuit model for the two-port augmented equations, 
which are represented by Equations (5) - (6), can be 
constructed as shown in Fig. 7. 

The aim is to develop a new model for the PWM switch, 
which is the nonlinear part of the PWM converter. This model 
can be constructed directly by replacing the values of the 
parameters {yi, yio, iid, zo, gvf, vod} in their simplest form [7] in 
Equations (5) - (6). Thus, the mathematical model will be as 
follows [7]:  
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By noting that the parameter zo represents an inductor, we 
can “pull” the zo parameter outside the circuit model, which is 
equivalent to the mathematical model which is represented by 
Equations (7) - (8), as the zo parameter is merely an inductor 
impedance, which is then multiplied by the corresponding path 

current cî , to form a voltage source (zo cî ) in series with the 

voltage sources (gvf apv̂ ) and (vod d̂ ). The result of this process 

is shown in Fig. 8. 

 
Fig. 8. A derived new circuit model. 
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Fig. 9. Circuit model for the PWM switch. 

 
From Fig. 8, we can recognize that the circuit model 

between the terminals {a, p, c} is merely the switch between 
these terminals in the original Buck converter circuit. So, the 
equivalent switch model in terms of the perturbations { apv̂ , 

pc
v 'ˆ , d̂ } is shown in Fig. 9. Now we need to obtain the 

switch model in terms of the perturbations { apv̂ , cpv̂ , d̂ } 

instead of the perturbations { apv̂ , 
pc

v 'ˆ , d̂ }. To do so, we note 

from Fig. 8 that: 

ccppc
iLjvv ˆˆˆ '                                                                                 (9) 

 
From Fig. 8, we note that the common node (c´) 

corresponds to the node (c´) in the Buck converter in Fig. 6. 
After multiplying both sides of Equation (9) by the parameter 
yio, we get:  

ccpiopcio iDvyvy ˆˆˆ '                                                                     (10) 

So, we can replace the term {
ccpio iDvy ˆˆ  } instead of the 

term {yio pc
v 'ˆ } in the previously derived switch model shown 

in Fig. 9, in order to make the new model contains the 

perturbations { apv̂ , cpv̂ , d̂ } instead of the perturbations 

{ apv̂ , 
pc

v 'ˆ , d̂ }. The new switch model will be constructed as 

shown in Fig. 10. 
       In order to reduce the number of the dependent current 

sources that appear in the new switch model, which are four 
dependent current sources, we will try to reduce the number of 
terms in the previous mathematical switch model. One has:  

 

 
Fig. 10. Alternative circuit model for the PWM switch. 

 

 

apapcp vDdVv ˆˆˆ                                                                              (11) 

and as ( dvvgizv odapvfcopc
ˆˆˆˆ '  ), we obtain: 

capappc
iLjvDdVv ˆˆˆˆ '                                                    (12) 

        

To develop the first reduced mathematical switch model, we 

note that divyvyi idpcioapia
ˆˆˆˆ

'  . Substituting Equation 

(12) in Equation (5), and after the collection of the similar 
terms, we get the following reduced-form equation:  
 

cioidapioapioia iLjydiVyvDyyi ˆˆ)(ˆ)(ˆ      (13)  

 
Substituting the values of {yi, yio, iid} in Equation (13), we 

get the following equation [7]:  
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The other equation of the model is Equation (11). So, 

Equations (11) and (14) represent the final reduced 
mathematical model of the PWM switch, replacing the model 
represented in Fig. 9. The final equivalent circuit model of the 
switch mathematical model (which is represented by 
Equations (11) and (14)) is as shown in Fig. 11 [7], where: 

 

L

jD
TjeLT

TDjeDTjeDTjDTjTje
h

 

2

)s1(2s

s s s 1)s 1(s
1 









'

                                                                                              (15)          

           
)1( 

) 1( 

 s

 
ss

 
2 TjeL

VDTjeTDjje

L

jDV
Ih

papa
x 



 




'
        (16) 

 

    The new switch model in Fig. 11 is expected to be an exact 
small-signal model since the mathematical equations, upon 
which the whole derivation process was built, are exact. Also, 
one notes that two of the dependent current sources are 
frequency dependent, which is uncommon for current or 
voltage dependent sources. 
 

 
 

Fig. 11. The new small-signal model of the PWM switch. 
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II.1.3. Examining the New Small-Signal Model: The 
Implementation of the New Small-Signal Model of the PWM 
Switch on the Buck DC-DC Power Converter  

In this subsection, the new small-signal model of the PWM 
switch, that was developed in the previous sub-section, will be 
examined on the PWM Buck converter. The control-to-output, 
input-to-output, input impedance, and control-to-input current 
transfer functions will be derived for the Buck converter, 
using the new small-signal model of the PWM switch. These 
transfer functions will be compared to the corresponding 
transfer functions for the averaged modeling approach and the 
exact transfer functions for the Buck converter. 

By applying the PWM switch model that was developed 
previously for the Buck power converter, one obtains the 
equivalent circuit model as shown in Fig. 12. 

 
Fig. 12. Equivalent circuit model of the PWM Buck converter, 
which is obtained through the application of the new small-
signal model of the PWM switch. 

 
We assume that the input DC voltage source, Vg, has small-

signal perturbation, gv̂ , and that |ˆ||| gg vV  . To determine 

the system quadruple {[A], [B], [C], [E]} for the Buck model 

shown in Fig. 12, for the inputs d̂ and gv̂ , we null the DC 

voltage source Vg. Then, the following equations can be 

developed for the Buck model shown in Fig. 12, where lî  is 

the inductor current, cî  is the capacitor current, and oî  is the 

output current that flows in the output resistor. Hence, we 
have the following equations:  

              co vv ˆˆ  , ocl iii ˆˆˆ  oc v
R

vC ˆ
1

ˆ                             (17)                         

clc v
RC

i
C

v ˆ1ˆ1ˆ                                                  (18)            

gap vv ˆˆ                                                                   (19) 

               0ˆˆˆˆ  clgg viLVdvD


 

c
g

gl v
L

d
L

V
v

L

D
i ˆ

1ˆˆˆ                                         (20) 

The output equation is ( co vvy ˆˆ  ). For the converter states x 

and inputs u, where x =
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, the system 

quadruple {[A], [B], [C], [E]} will be [7]: 
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To find the control-to-output transfer function, we null the 
input gv̂ . The new system quadruple {[A], [B], [C], [E]} will 

be as follows [7]: 
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







1/RC  1/C

1/L         0
                                                  (21) 
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                                                            (22) 

C=  1       0                                                              (23) 

E=  0                                                                      (24) 
 
To find the control-to-output transfer function from the 

system quadruple represented by Equations (21) - (24), we 
apply the Laplace transformation to both sides of the state and 
output equations represented by system state space equations 

)()()( tButAxtx   and )()()( tEutCxty  . After re-

arranging the resulting terms, we get the following general 
input-to-output transfer function: 

EBAsC
u

y
 1)( Ι                                            (25) 

By applying Equations (21) - (24) in Equation (25), for the 
circuit values of {Vg = 15 V, R = 18.6  , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the control-to-output frequency response plots of the 
PWM Buck converter, which is obtained through the 
application of the new PWM switch small-signal model, with 
both of the exact and the averaged control-to-output frequency 
responses, as shown in Fig. 13. 

To get the input-to-output transfer function, we null the 

input d̂ . The system quadruple {[A], [B], [C], [E]} will be as 
follows [7]: 

A= 










1/RC  1/C

1/L         0
                                                  (26) 

B = 







0   

D/L
                                                            (27) 

C =  1       0                                                            (28) 

E =  0                                                                    (29) 
 
By applying  Equations (26) - (29) in  Equation (25),  for 

the circuit values of {R = 18.6  , D = 0.4, fs = 40.3 kHz, D´ 
= 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to investigate the 
accuracy of the new PWM switch model, we compare the 
input-to-output frequency response plots of the PWM Buck 
converter, which is obtained through the application of the 
new PWM switch small-signal model, with both of the exact 
and the averaged input-to-output frequency responses, as 
shown in Fig. 14. 
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Fig. 13. The control-to-output magnitude and phase frequency response plots of the PWM Buck converter operating in CCM: 
exact (solid line), averaged (dotted line), and the new model (dashed line). 
 

 
From the previous frequency response plots for both of the 

control-to-output and the input-to-output transfer functions of 
the PWM Buck converter, which is operating in the CCM, we 
see that an excellent match occurs between the exact and the 
new model results, as well as between the averaged and the 
new model results.  

These results indicate, for the time being, that the newly 
utilized small-signal model of the PWM switch is, in fact, an 
accurate model [7].  

Yet, the effect of the new source coefficients h1 and h2 that 
exist in the new model of the PWM switch, does not appear in 
the case of the control-to-output and input-to-output transfer 
functions. So, we need the input impedance and the control-to-
input current transfer functions to investigate the effect of the 
new source coefficients h1 and h2, respectively. 

By referring to Fig. 12, and considering the input current aî  

to be the output, we get the following output equation aiy ˆ . 

For the converter states x and the inputs u, where 













o

l

v

i

ˆ

ˆ
x  

and 









d

vg

ˆ
ˆ

u , the system quadruple {[A], [B], [C], [E]} will 

be as follows [7]: 
 













1/RC  1/C

1/L         0
A , 










0           0  

/LV   D/L g
B ,    0       DC , 

 21 h       hE .  
 
To find the control-to-input current transfer function, we 

null the input gv̂ . Thus, the new system quadruple {[A], [B], 

[C], [E]} will be as follows [7]: 
 













1/RC  1/C

1/L         0
A                                                  (30) 











0    

/LV  g
B                                                            (31) 

 
 0       DC                                                          (32) 

 2hE                                                                   (33) 
 

                      
 

Fig. 14. The input-to-output magnitude and phase frequency response plots of the PWM Buck converter operating in CCM: 
exact (solid line), averaged (dotted line), and the new model (dashed line). 
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Fig. 15. The control-to-input current magnitude and phase frequency response plots of the PWM Buck converter operating in 
CCM: exact (solid line), averaged (dotted line), and the new model (dashed line). 
 

To find the control-to-input current transfer function from 
the system quadruple represented by Equations (30) - (33), we 
use the general input-to-output transfer function which is 
represented by Equation (25).  

By applying Equations (30) - (33) in Equation (25), for the 
circuit values of {Vg = 15 V, R = 18.6  , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the control-to-input current frequency response plots 
of the PWM Buck, which is obtained through the application 
of the new PWM switch small-signal model, with both of the 
exact and the averaged control-to-input current frequency 
responses, as shown in Fig. 15. 

To obtain the input impedance transfer function, we null the 

input d̂ . Thus, the system quadruple {[A], [B], [C], [E]} will 
be as follows [7]: 













1/RC  1/C

1/L         0
A                                                 (34) 











0   

D/L
B                                                              (35) 

 0       DC                                                          (36) 

 1hE                                                                   (37) 
 
 By applying Equations (34) - (37) in Equation (25), for the 

circuit values of {Vg = 15 V, R = 18.6 , D = 0.4, fs = 40.3 
kHz, D´ = 1 – D = 0.6, L = 58 µH, C = 5.5 µF}, and to 
investigate the accuracy of the new PWM switch model, we 
compare the input impedance frequency response plots of the 
PWM Buck, which is obtained through the application of the 
new PWM switch small-signal model, with both of the exact 
and the averaged input impedance frequency responses, as 
shown in Fig. 16. 

 From the previous frequency response plots of the transfer 
functions of the PWM Buck converter, operating in the CCM, 
we see that a good match occurs between the exact and the  

 
 

 
new model results, as well as between the averaged and the 
new model results, for the frequency range up to half of the 
switching frequency [7], although a mismatch occurs between 
the exact and the new model results, as well as between the 
averaged and the new model results, for the frequency range 
higher than half of the switching frequency [7].  

Yet, in an overall performance evaluation, the new small 
signal model behaves in a much accurate response than the 
older averaged modeling approach.  
 

II.2. Fuzzy Logic  
Fuzzy logic can be considered as an efficient tool for 

embedding structured (human) knowledge into useful 
algorithms that has a large number of existing applications in 
human sciences, natural sciences, and engineering applications 
[1, 6, 14, 15, 17, 19-20, 23-25, 28, 34, 35, 37, 40, 43-47, 49, 
53, 54, 57- 59, 61, 63, 64, 66-67, 70-71, 76, 79, 80, 84, 86, 88-
89, 92, 94-111]. It is a precise engineering tool developed to 
do a good job of trading off precision and significance. As in 
human reasoning and inference, the truth of any statement, 
measurement, or observation is a matter of degree. This degree 
is expressed through the membership functions that quantify 
(measure) the degree of belonging of some (crisp) input to 
given fuzzy subsets. Fig. 17 shows the difference between 
crisp set used in crisp logic and fuzzy set used in fuzzy logic. 

A fundamental notion within set theory is that of belonging 
or membership. In the classical crisp convention, there are two 
possibilities that x belongs to A or it does not. This can be 
compared to fuzzy notion where a membership function 
describes the degree of belonging. Thus, crisp sets all have 
precise boundaries, where fuzzy sets have imprecise 
boundaries. The membership µ is “0” or “1” for the crisp sets 
and ( 10   ) for the fuzzy sets. For Fig. 17(a), the set is 

crisp in that:  

  


 


otherwise,0

,1 41 xxx
                                             (38) 

and for Fig. 17(b), the set is fuzzy in that:  
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Fig. 16. The input impedance magnitude and phase frequency response plots of the PWM Buck converter, operating in CCM: 
exact (solid line), averaged (dotted line), and the new model (dashed line). 
 

 

 
 

                     (a)                                            (b) 
Fig. 17. An example of two types of sets: (a) crisp set and (b) 
fuzzy set. 
 













otherwise,0

,1

and],1,0[

32

4321

xxx

xxxxxx

                 (39) 

 
Like crisp sets, fuzzy sets are subject to set operations such 

as union, intersection and complement. There are many 
functions that describe the union and intersection operations, 
where the mostly used ones in fuzzy logic are the max and min 
functions as follows: 

 
       Union:    )](),(max[)()( xxxx BABAC          (40) 

    Intersection:
  

)](),(min[)()( xxxx BABAC       (41) 
 

As previously stated, fuzzy logic is based on representing 
human reasoning as a classical binary relation. The concept of 
relation is general; it is based on the concept of ordered pairs 
(a, b), where a relation from A to B (or between A and B) is 
any subset   of the Cartesian product A x B. We say that 

{ BbAa  , } are related by .  

Fuzzy logic is usually expressed in terms of (if … and … 
then) form.  Fig. 18 shows an example of this (if … and … 
then) rule where the actual meaning of the (if … and … then) 
rules is (if x is Ai and y is Bj then z is Ck). 

 

 
 B1 … Bj Bj+1 … Bm 

A1 C11 … C1j C1,j+1 … C1,m 
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. 

. 

. 

. 

. 
An Cn,1 … Cn,j Cn,j+1 … Cn,m 

 
Fig. 18. An example of a decision table which is represented 
by (if … and … then) rules. 

 
In fuzzy logic, the mathematical interpretation of AND is 

the intersection. For example, the intersection of Ai and Bj is 
treated using the min function as follows: 

 
  ),min(

jiji BABA                                  (42) 

 
The membership value α is called the power of the rule or the 
firing power. This part is then intersected with Cij to simulate 
the “then” part of the (if…and…then) rule. This intersection is 
expressed as a clipped fuzzy rule as shown in Fig. 19. 

A crisp input can cause the firing of several rules. This is 
interpreted as the aggregation or union of these rules, where 
the final part of the aggregation of the rules is usually 
interpreted as the max operation. An example of rule 
aggregation is shown in Fig. 20, and Fig. 21 shows an 
example of firing rules within fuzzy logic.  

The final part which is usually utilized within fuzzy 
implementation is defuzzification. The defuzzification process 
has several techniques including the center of area method 
where we divide the area into equally spaced rectangles and 
for each we find the membership function. This is shown for 
the rule aggregation in Fig. 20 as follows: 
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                        (a)                                        (b) 
Fig. 19. Clipped triangular and trapezoidal membership 
functions. 

 
zk 10 20 30 40 50 60 70 
µagg 2/3 2/3 2/3 1/3 1/6 1/6 1/6 

 
For the above example, when implementing the 

defuzzification, using the center of area method, one obtains 
the defuzzified value as follows: 
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II.3. Genetic Algorithms 
    This subsection provides a basic background for the 
evolutionary-based algorithms. In general, evolutionary 
computing (EC) is one type of “black box” global 
optimization methods that has been successfully implemented 
to solve for many difficult nonlinear problems. An EC 
implements the idea which was proposed by Darwin as an 
explanation of the biological world surrounding us which is 
the "Evolution by Natural Selection". By evolution, we mean 
the change of the genes that produce a structure. The result of 
this evolution is the survival of the fittest and the elimination 
of the unfit. Darwin's theory of evolutionary selection states 
that variation within species occurs randomly and that the 
survival or extinction of each organism is determined by that 
organism's ability to adapt to its environment. 

This simple, but powerful, EC idea has been implemented 
in algorithms such as genetic algorithms (GA) and genetic 
programming (GP), and found wide spectrum of applications 
in several natural and applied fields [18, 21, 22, 24, 26, 27, 29, 
33, 36, 41, 42, 44, 48, 50-52, 55, 56, 59-62, 68-69, 72-75, 78, 
81-83, 85, 87, 91]. The difference between GA and GP is the 
representation of the problem and consequently the set of 
genetic  operators  used to obtain the solution; GA  uses  string 

 
Fig. 20. An example of fuzzy rule aggregation with firing 
powers α1 = 2/3 and α2 = 1/6. 
 

 
representation and the consequent  genetic  operators, while 
GP uses tree representation and the consequent genetic 
operators. Fig. 22 represents the general optimization using 
the EC method, where iterations on this flow diagram are 
made until the actual output matches exactly the desired 
output (i.e., without error) or the actual output mismatches the 
desired output within an acceptable range of error. 

In general, GA is based on the simulation of life, where the 
first step is usually to represent the problem variables as 
chromosomes also called genomes. The basic steps and 
common operations within GAs are as follows (cf. Fig. 23):  
(a) Initialization: within this step, the chromosomes are 
generated randomly to cover the search space and in some 
special cases the population is seeded with special solution or 
optimal solutions. 
(b) Selection: there are several types used for selection such 
as: (1) fitness proportionate selection or roulette-wheel 
selection (a single random number is used), (2) stochastic 
universal sampling (multiple random numbers are generated 
for selection), (3) tournament selection (best individuals are 
always selected), (4) truncation selection (a portion of the 
population is selected), and (5) elitism or elitist selection 
(where the best individual(s) are always selected). 
(c) Crossover: this operation involves the combination of 
genes from two parents to produce offsprings. There are 
several variants of crossover: (1) single point crossover where 
a fixed position is selected in both parents and then the 
contents beyond that crossover point are swapped, (2) multiple 
crossover points, (3) cut and slice crossover (change in length 
between the parents and the children), and (4) uniform 
crossover where a random number is generated and, if it is 
greater than a threshold value, then swapping is performed. 
(d) Mutation: this process involves the reproduction of an 
erroneous copy of the individual, in which a random number is 
generated where if it is greater than a threshold value then the 
zero binary value is changed to one. This part is added to 
increase the diversity. 
(e) Copying: this process involves the reproduction of an exact 
copy of the individual. 
(f) Termination: where a certain number of generations is 
reached, or an acceptable solution is reached, or no change in 
the optimal solution is reached. 
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Fig. 21. Several rules applied in fuzzy logic with various firing powers τi. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 22. Block diagram showing the mechanism of solving a problem using evolutionary computing. 
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Fig. 23. A flow graph of a generally-utilized GA. 
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Fig. 24. Canonical flow diagram for evolutionary methods. 
 
Fig. 23 demonstrates a general flow diagram of an EC, 

where Run is the current run number, N is the maximum 
number of runs, Gen. is the current generation number, M is 
the population size, i is the current individual in the 
population, Pr is the probability of reproduction, Pc is the 
probability of crossover, Pm is the probability of mutation, and 
(Pr + Pc + Pm = 1.0). In Fig. 23, the result of looping over Gen. 
is the best-of-run individual, the result of looping over Run is 
the best-of-all individual, and the result of looping over i is the 
best-of-generation individual. Iterations in Fig. 23 continue 
until an optimal solution is obtained. Since the EC algorithms 
are try-and-check (i.e., try-and-error) probabilistic search 
algorithms (i.e., depends on the reduction of error in the search 
process to produce a solution), the EC program may have to 
perform so many iterations (as in Fig. 23) to produce the 
desired solution to a problem. Thus, and although EC methods 
produce in many occasions new solutions that humans never 
made before, it is in general highly advisable to consider EC 
as one final option for problem solving (i.e., when other 
methods fail to solve the problem), since EC acts like a “black 
box” that produces solutions without showing methodology 
(i.e., EC does not provide a detailed step-by-step algorithm 
(analytical or procedural) to solve a problem and it only shows 
the final solution). 
The evolutionary algorithm from Fig. 23 has many variants. 
Yet, a canonical form for all of these variants exist. Fig. 24 
illustrates one possible canonical diagram for evolutionary 
computing, where selecting survivors means (1) selection of 
parents and (2) generation of offspring. 

The canonical diagram for EC (shown in Fig. 24) 
characterizes the canonical implementation of various types of 
EC such as GA, and as stated previously, the only difference 
between GA and other EC (such as the GP) will be in (1) the 
internal representation of chromosomes operated upon and (2) 

the types of internal operations used accordingly. Fig. 25 
shows an example of some important GA operations. 

 
III. GENETIC–BASED TUNING FOR THE BUCK–BASED 

FUZZY CONTROL 
 
This section presents the basic used Simulink and 

MATLAB setups, and the GA-based tuning of the fuzzy 
controller that will be used in Section IV to obtain the fuzzy-
PID control results. 

 
III.1. Simulink and MATLAB Setups 

In MATLAB, solvers are divided into two main types of (a) 
fixed-step solvers and (b) variable-step solvers. Both types of 
solvers compute the next simulation time as the sum of the 
current simulation time and a quantity known as the step size. 
With a fixed-step solver, the step size remains constant 
throughout the simulation. On the contrast, with a variable-
step solver, the step size can vary from step to step, depending 
on the model's dynamics. In particular, a variable-step solver 
reduces the step size when the model's states are changing 
rapidly in order to maintain accuracy and increases the step 
size when the system's states are changing slowly in order to 
avoid taking unnecessary steps.  

The type of control within the Simulink solver 
configuration allows selecting either of these two types of 
solvers. Fixed-step solvers have lower chances of missing an 
event in the model as compared to a variable-step solver that 
may cause the simulation to miss error conditions that can 
occur on a real-time computer system. Thus, for this work, 
fixed-step solvers are used for a step size of 0.001s to ensure 
capturing all of the dynamics occurring in the Buck system. If 
the step size is chosen less than this value, it will be highly 
time consuming for the GA code to run as the model will take 
large amount of time to run. Other step-size values such as 
0.01s were tested but the model results were not as accurate as 
that of 0.001s.  

Another configuration for the MATLAB solvers is (a) 
continuous time and (b) discrete time, where continuous time 
solvers can handle both of the discrete and continuous blocks 
which is the case for the analyzed system.  

Thus, we have chosen the continuous solvers. Within the 
prospect of continuous systems, we can use (a) implicit 
solvers or (b) explicit solvers by using implicit or explicit 
functions. The implicit solvers are more time consuming than 
explicit solvers, and thus explicit solvers were used with the 
Runge-Kutta (RK4) model because of the optimization part. 

  
III.2. Genetic–Based Tuning for the Centers of Fuzzy 
Membership Functions 

For this case, the centers in Fig. 26 for the inputs and 
outputs can be set by the GA algorithm and not the gains {ke, 
kde, Alpha, Beta}. The Simulink is then executed with the 
generated fuzzy logic variable. The sum of square error (SSE) 
is calculated as the fitness value.  

 Evaluate 
 Fitness 

 Select 
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   Randomly 
   Vary  
   Individuals 

 Initialize  
 Population 
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Fig. 25. An illustrative example of important GA operations. 
 
 
 
 

 
 

Fig. 26. The GA tuning for the centers of the inputs and outputs within the Buck dynamic system. 
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Fig. 27. The utilized Simulink block diagram for the GA-based tuning of the fuzzy variables within the Buck dynamic system. 

 
 
Then the GA, which was explained earlier, regenerates a 

new population using the selection, crossover and mutation 
genetic operators. However, this can lead to lengthy GA runs 
and thus the convergence time for the GA could be very high. 
Therefore, this setup was not used in this research.  

 
III.3. Fuzzy PID Case: Genetic–Based Tuning for the Fuzzy 
Variables 

As an alternative to the method shown in sub-section III.2, 
Fig. 27 shows the Simulink block diagram that is used in this 
work for the GA tuning of the fuzzy-PID variables, where GA 
changes the chromosomes for tuning the fuzzy variables (cf. 
Fig. 29). The fuzzy-PID method shown in Fig. 27 is a standard 
commonly used PID control form which is utilized in several 
other applications [15, 24, 44]. 

 
IV. GENETIC–BASED TUNING FOR THE FUZZY 

VARIABLES OF THE BUCK CONVERTER 
 
This section presents the simulation results for the GA 

tuning of the fuzzy variables for both of the input–to–output 
and control–to–output Buck transfer functions. 

 
IV.1. Genetic–Based Tuning for the Fuzzy Variables for the 
Input-to-Output Buck Transfer Function 

In Fig. 27, the error is calculated first using the summing 
function as the difference between the input and the output. 
Followed to that, the proportional part and the derivative part 
are calculated and multiplied by the counterpart gain {ke, kde}.  

 

 
Fig. 28. Fuzzy sets for the error, derivative and the output. 
 
 
 
 

 
Then, this is used as an input to a multiplexer, and then these 
two inputs (i.e., proportional and derivative) are used as an 
input to the fuzzy logic part. These are then fuzzified using the 
fuzzy sets and membership functions shown in Fig. 28.   

The fuzzified variables are then processed using the 
Mamdani-type fuzzy system using the rules in Table (1). The 
centroid type defuzzification system is then estimated. The 
output is then multiplied by the corresponding gains {Alpha, 
Beta} and then integration is used. 

Fig. 29 shows the block diagram of the interaction between 
the genetic algorithm part and the fuzzy-PID controller part 
that is used in this work, and Fig. 30 illustrates a sample run 
for the utilized fuzzy control. The GA is based on representing 
the different parameters {ke, kde, Alpha, Beta} as a 
chromosome. The fuzzy-PID controller runs the model with 
the selected values for these parameters and passes the output 
to an M-file which estimates the sum of the square error 
(SSE). This in turn is treated as the fitness function. The GA 
then performs the genetic operations of selection, crossover 
and mutation on the chromosomes and produces a new 
population which in turn uses the fuzzy-PID controller model 
to estimate the fitness. This cycle continues until a suitable 
minimum value is reached for termination. 

 
 

 
Fig. 29.  Block diagram that presents the utilized interaction 
between the GA and the fuzzy-PID controller. 
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Table 1. Rules for the used Mamdani-type fuzzy system. 
 

 
 
 
 

 Fig. 31 presents the simulation results for the input-to-
output Buck transfer function using the state space matrices 

{A = 









1/RC  1/C

1/L         0
, B = 








0   

D/L
, C =  1       0 , E =  0 } 

using  the Buck  system values of {D = 0.4, R = 18.6  , L 

= 5.8 H, C = 0.55 mF} with noisy input for a step function 
and square wave functions, where the noise in the first 
square wave is 0.1:1 of the signal, the noise in the second 
square wave is 1:1 of the signal, and the noise in the third 
square wave is 10:1 of the signal. 

 
 
 
 

 
Fig. 30. A sample run for the utilized fuzzy control. 
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                                                               (a)                                    (b)                                     (c) 

Fig. 31. The simulation results for the input-to-output Buck transfer function using Buck system values of {D = 0.4, R = 18.6 ,  
L = 5.8 H, C = 0.55 mF}. 
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Fig. 32. The simulation results for the input-to-output Buck transfer function using Buck system values of {D = 0.4, R = 18.6 ,  
L = 580 mH, C = 55 µF}. 
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Fig. 33. The simulation results for the control-to-output Buck transfer function using Buck system values of {Vg = 15 V,  
C = 1 mF, R = 1 k, L = 5.8 H}. 

 
To ensure that the system is tested well, different type of 

inputs were used including (a) step input in Fig. 31(a), (b) 0.2 
Hz pulse input with noise levels {0.1:1, 1:1, 10:1} in Fig. 
31(b), and (c) 0.4 Hz pulse input with noise levels {0.1:1, 1:1, 
10:1} in Fig. 31(c). The different noise levels are used to test 
the ability of this system to reject the existing disturbance.  

Fig. 31 shows that the system has good robustness against 
noise and possesses good accuracy for the steady-state 
reponse. However, the settling time is somewhat high, where 
these values are obtained as a result of the optimization 
process and shows the best obtained performace that the 
system can perform under the aforementioned condititions. 

To further investigate the system, different Buck system 
values of {D = 0.4, R = 18.6  , L = 580 mH, C = 55 µF} 
were used for (a) step input in Fig. 32(a), (b) 0.2 Hz  pulse 
input with noise levels {0.1:1, 1:1, 10:1} in Fig. 32(b), and (c) 
0.4 Hz pulse input with noise levels {0.1:1, 1:1, 10:1} in Fig. 
32(c). The different noise levels are used to test the ability of 
this system to reject the occurring disturbances. Fig. 32 shows 
the performance of the Buck converter system which is 

represented by the state- space matrices {A= 










1/RC  1/C

1/L         0
, B 

= 







0   

D/L
, C =  1       0 , E =  0 } using the previously 

mentioned values with noisy inputs for a step function and 
square wave functions, where the noise in the first square 
wave is 0.1:1 of the signal, the noise in the second square 
wave is 1:1 of the signal, and the noise in the third square 
wave is 10:1 of the signal. The system shows a low steady- 

state error, but bad noise rejection especially for high noise 
level of 10:1 when compared to the signal. The response time 
is comparable to that in Fig. 31 for the previous Buck system. 
The system gets worse for high-frequency values as the final 
steady-state value might not be reached for the used step time. 

 
IV.2. Genetic–Based Tuning for the Fuzzy Variables for the 
Control-to-Output Buck Transfer Function 

The Buck dynamic system is then tested for the important 
control-to-output transfer function as shown in Fig. 33, where 
Fig. 33 presents the simulation results for the control-to-output 
Buck transfer function using the state space matrices                  

{A = 










1/RC  1/C

1/L         0
, B = 









0 

Vg , C =  1       0 , E =  0 } with 

values {Vg = 15 V, C = 1 mF, R = 1 k, L = 5.8 H}. The Buck 
system is simulated for different types of inputs including (a) 
step input in Fig. 33(a), (b) 0.2 Hz  pulse input with noise 
levels {0.1:1, 1:1, 10:1} in Fig. 33(b), and (c) 0.4 Hz pulse 
input with noise levels {0.1:1, 1:1, 10:1} in Fig. 33(c). The 
different noise levels are used to test the ability of this system 
to reject the corresponding noise.  

The results in Fig. 33 show an acceptable Buck 
performance in terms of the steady-state value. Fig. 33 also 
shows a rapid response, but this system has the drawback of 
slight overshoots for small periods of time, especially at the 
beginning rising edges of the step and square wave signals, 
where these small overshoots can be ignored as they have 
usually a comparatively negligible effect on the overall 
performance of the Buck dynamic system. 
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                                                             (a)                                    (b)                                     (c) 

 
Fig. 34. The simulation results for the control-to-output Buck transfer function using Buck system values of {Vg = 20 V,  
C = 2 mF, R = 3 k, L = 11 H}. 

 
To further investigate the Buck system performance, 

different Buck values of {Vg = 20 V, C = 2 mF, R = 3 k, L = 
11 H} were used. The Buck system is simulated for different 
types of inputs including: (a) step input in Fig. 34(a), (b) 0.2 
Hz pulse input with noise levels {0.1:1, 1:1, 10:1} in Fig. 
34(b), and (c) 0.4 Hz pulse input with noise levels {0.1:1, 1:1, 
10:1} in Fig. 34(c), where the different noise levels are used to 
test the ability of this system to reject noise.  

Similar to Fig. 33, the results in Fig. 34 show an acceptable 
Buck performance in terms of the steady-state value. Fig. 34 
also shows a rapid response, but this system has the drawback 
of slight overshoots for small periods of time, especially at the 
beginning rising edges of the step and square wave signals, 
where these small overshoots can be ignored as they have 
usually a comparatively negligible effect on the overall 
performance of the Buck dynamic system. 

 
IV.3. Performance Evaluation of the Genetic–Based Tuning 
for the Fuzzy Variables for the Input-to-Output and Control-
to-Output Buck Transfer Functions 

To investigate the effect of the important control gains of 
{ke, kde} upon the performance of the Buck dynamic system, 
the following interval-based notes are utilized: (a) the 
following are the interval-based divisions for ke and kde {close 
to zero < 0.1, moderate value > 0.1 and less than 10, and high 
values}, (b) using low ke values results in a slow system where 
the speed of the system is directly related to ke value, and (c) 
 
 
 

 
the gain kde is associated with system damping where the 
increase in kde will dampen the system and will slow it. 

Fig. 35 shows the effect of the gains ke and kde on the sum-
of-square error (SSE) value, where the lowest region (shown 
on the side) is close-to-zero kde and moderate ke.  
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                                            (c) 
Fig. 35. Evaluations for the sum-of-square error (SSE), rising 
time, and % overshoot (P.O.) for the Buck input-to-output 
transfer function for Buck system values of {D = 0.4, R = 
18.6  , L = 5.8 H, C = 0.55 mF}. 
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Fig. 35 shows that close-to-zero ke results in a very slow 
system which increases the rise time appreciably which this in 
turn leads to higher SSE. Also, increasing kde slows the system 
further and increases the rise time. Thus, the highest rise time 
corresponds to close-to-zero ke region. The P.O. shows the 
highest value for close-to-zero ke and for moderate kde, where 
if the value of kde is increased then the damping increases and 
the value of P.O. becomes zero. 
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Fig. 36. Evaluations for the sum-of-square error (SSE), rising 
time, and the % overshoot (P.O.) for the Buck control-to-
output transfer function for Buck system values of {Vg = 15 V, 
C = 1 mF, R = 1 k, L = 5.8 H}. 
 

The performance evaluation of the control-to-output in Fig. 
36 is similar to that of the input-to-output in Fig. 35, in that the 
optimal region exists for moderate values (i.e., 1-10) of ke and 
close-to-zero kde. If ke is close-to-zero, then the rise time will 
be extremely high and this will in turn increase kde, while the 
P.O. will be high for higher values of kde and ke and thus the 
system will not give the best SSE. It is also noted that, beyond 
ke = 10, the SSE curve increases. The P.O. shows more 
sensitivity to kde (i.e., needs more damping) as the highest P.O. 
exists for close-to-zero and moderate kde. The system becomes 
slower for low ke and will give high P.O. for close-to-zero ke.  

 
V. CONCLUSIONS AND FUTURE WORK 

 
Hierarchical intelligent control for the electronic Buck 

power converter using a newly developed small-signal model 
of the pulse width modulation (PWM) switching is introduced 
in this paper. The hierarchical intelligent control uses the GA-
based tuning of the fuzzy-PID controller to counteract the 
existence and effect of high-amplitude disturbances. The 
simulation results show that the presented control method, 
which is used upon the new PWM small-signal model, 
succeeds in minimizing the effect of noise even when noise is 
of several folds higher than the Buck-generated output signal. 
Future work will investigate the implementation of the 
introduced intelligent control method upon other important 
power-electronic converter systems such as the Boost 
converter, Buck-Boost converter, and the C’uk converter.    
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