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Abstract—Change point detection is recognized as an essen-
tial tool of root cause analyses within quality control programs
as it enables clinical experts to search for potential causes
of disturbance in hospital outcomes more effectively. In this
paper, we consider estimation of the time when a linear trend
disturbance has occurred in an in-control clinical dichotomous
process in the presence of variable patient mix. To model
the process and change point, a linear trend in the odds
ratio of a Bernoulli process is formulated using hierarchical
models in a Bayesian framework. We use Markov Chain Monte
Carlo to obtain posterior distributions of the change point
parameters including location and magnitude of changes and
also corresponding probabilistic intervals and inferences. The
performance of the Bayesian estimator is investigated through
simulations and the result shows that precise estimates can
be obtained when they are used in conjunction with the risk-
adjusted CUSUM and EWMA control charts for different
magnitude and direction of change scenarios. In comparison
with alternative EWMA and CUSUM estimators, reasonably
accurate and precise estimates are obtained by the Bayesian
estimator. These superiorities are enhanced when probability
quantification, flexibility and generalizability of the Bayesian
change point detection model are also considered.

Index Terms—Bayesian Hierarchical Model, Change Point,
Hospital Outcomes, Markov Chain Monte Carlo, Risk-Adjusted
Control Charts.

I. INTRODUCTION

Control charts monitor behavior of processes over time by
taking into account their stability and dispersion. The chart
signals when a significant change has occurred. This signal
can then be investigated to identify potential causes of the
change and corrective or preventive actions can then be im-
plemented. Following this cycle leads to variation reduction
and process stabilization [1]. The achievements obtained by
industrial and business sectors through the implementation of
a quality improvement cycle including quality control charts
and root causes analysis have motivated other sectors such
as healthcare to consider these tools and apply them as an
essential part of the monitoring process in order to improve
the quality of healthcare delivery.

One of the earliest comprehensive research studies was
undertaken by Benneyan [2], [3] who utilized SPC methods
and control charts in epidemiology and control infection and
discussed a wide range of control charts in the health context.
Woodall [4] comprehensively reviewed the increasing stream
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of adaptions of control charts and their implementation in
healthcare surveillance. He acknowledged the need for mod-
ification of the tools according to health sector characteristics
such as emphasis on monitoring individuals, particularly
dichitomos data, and patient mix. Risk adjustment has been
considered in the development of control charts due to the
impact of the human element in process outcomes. Steiner
et al. [5] developed a Risk-adjusted type of Cumulative
Sum control chart (CUSUM) to monitor surgical outcomes,
death, which are influenced by the state of a patient’s health,
age and other factors. This approach has been extended
to Exponential Moving Average control charts (EWMA)
[6], [7]. Both modified procedures have been intensively
reviewed and are now well established for monitoring clinical
outcomes where the observations are recorded as binary data
[8], [9], [10].

Consideration of identified needs and how they are being
satisfied in industrial and business sectors can accelerate
other sectors in their own research and development of
effective quality improvement tools. The need to know the
time at which a process began to vary, the so-called change
point, has recently been raised and discussed in the industrial
context of quality control. Precise identification of the time
when a change in a hospital outcome has occurred enables
clinical experts to search for potential special causes more
effectively since a tighter range of time and observations
are investigated. Assareh et al. [11] discussed the benefits
of change point investigation in monitoring cardiac surgery
outcomes and post-signal root causes analysis by providing
precise estimates of the time of the change in the rates of
use of blood products during surgery and adverse events in
the follow-up period.

A built-in change point estimator in CUSUM charts sug-
gested by Page [12], [13] and also an equivalent estimator
in EWMA charts proposed by Nishina [14] are two early
change point estimators which can be applied for all discrete
and continuous distribution underlying the charts. However
they do not provide any statistical inferences on the obtained
estimates.

Samuel and Pignatiello [15] developed and applied a
maximum likelihood estimator (MLE) for the change point
in a process fraction nonconformity monitored by a p-chart,
assuming that the change type is a step change. They showed
how closely this new estimator detects the change point in
comparison with the usual p-chart signal. Subsequently, Perry
et al. [16] compared the performance of the derived MLE
estimator with EWMA and CUSUM charts. These authors
also constructed a confidence set based on the estimated
change point which covers the true process change point with
a given level of certainty using a likelihood function based on
the method proposed by Box and Cox [17]. It is not rare to
experience other types of change in the process parameters.
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Bissell [18] and Gan [19], [20] investigated the performance
of CUSUM and EWMA control charts over linear trends in
the process mean. Such drifts can be caused by tools wearing,
spread of infections, learning curve and skill improvement
or motivation reduction that may lead to shifts the process
parameter over time in an industrial or clinical contexts. MLE
estimators of the time when such drifts has occurred were
developed for normal [21] and Poisson processes [22].

An interesting approach which has recently been consid-
ered in the SPC context is Bayesian hierarchical modelling
(BHM) using, where necessary, computational methods such
as Markov Chain Monte Carlo (MCMC). Application of
these theoretical and computational frameworks to change
point estimation in a clinical context facilitates modelling
the process and also provides a way of making a set of
inferences based on posterior distributions for the time and
the magnitude of a change [23]. This approach has recently
been considered by Assareh et al. [11] in change point
investigation of two clinical outcomes.

All MLE estimators described above were developed as-
suming that the underlying distribution is stable over time.
This assumption cannot often be satisfied in monitoring
clinical outcomes as the mean of the process being monitored
is highly correlated to individual characteristics of patients.
Therefore it is required that the risk model, which explains
patient mix, be taken into consideration in detection of true
change points in control charts for different change types.
Assareh et al. [24] and Assareh and Mengersen [25] recently
proposed Bayesian modelling for estimation of changes in
the rate of death and survival time after surgery among
patients with varying pre-operation risk of death. In this
setting the process mean is no longer stable and risk models
explain in-control state of the process.

The motivation of this study arose from a monitoring
program of mortality of patients admitted to an Intensive care
Unit (ICU) in a local hospital, Brisbane, Australia. The Acute
Physiology and Chronic Health Evaluation II (APACHE II),
an ICU scoring system [26], is used to quantify and express
patient mix in quality control charting. APACHE II predicts
the probability (p) of mortality based on a logistic regression
given 12 physiological measurements taken in the first 24
hours after admission to ICU, as well as chronic health status
and age. In this program detection of the true change point
in control charts at the presence of linear trend disturbances,
as a part of root cause efforts, is sought.

In this paper we model and detect the change point in
a Bayesian framework. The change points are estimated
assuming that the underlying change is a linear trend. In
this scenario, we model the linear trend in the odds ratio
of risk of a Bernoulli process. We analyze and discuss the
performance of the Bayesian change point model through
posterior estimates and probability based intervals. We re-
view risk-adjusted control charts in Section 2. The model
is demonstrated and evaluated in Sections 3-5. We then
compare the Bayesian estimator with CUSUM and EWMA
built-in estimators in Section 6 and summarize the study and
obtained results in Section 7.

II. RISK-ADJUSTED CONTROL CHARTS

The probability of death of a patient who has undergone
cardiac surgery is affected by the rate of mortality of cardiac

surgery within the hospital and also patient’s covariates such
as age, gender, co-morbidities and etc. Risk-adjusted control
charts (RACUSUM) are monitoring tools designed to detect
changes in a process parameter of interest, such as probability
of mortality, where the process outcomes are affected by
covariates, such as patient mix. In these procedures, risk
models are used to adjust control charts in a way that the
effects of covariates for each input, patient say, would be
taken into account.

A risk-adjusted CUSUM (RACUSUM) control chart is a
sequential monitoring scheme that accumulates evidence of
the performance of the process and signals when either a
significant deterioration or improvement is detected, where
the weight of evidence has been adjusted according to
patient’s prior risk [5].

For the ith patient, we observe an outcome yi where yi ∈
(0, 1). This leads to a set of Bernoulli data. The RACUSUM
continuously evaluates a hypothesis of an unchanged risk-
adjusted odds ratio, OR0, against an alternative hypothesis
of changed odds ratio, OR1, in the Bernoulli process [10].
A weight Wi, the so-called CUSUM score, is given to each
patient considering the observed outcomes yi and their prior
risks pi,

W±
i =


log[ (1−pi+OR0×pi)×OR1

1−pi+OR1×pi ] if yi = 0

log[ 1−pi+OR0×pi
1−pi+OR1×pi ] if yi = 1.

(1)

Upper and lower CUSUM statistics are obtained through
X+
i = max{0, X+

i−1 + W+
i } and X−

i = min{0, X+
i−1 −

W−
i }, respectively, and then plotted over i. Often the null

hypothesis, OR0, is set to 1 and CUSUM statistics, X+
0 and

X−
0 , are initialized at 0. Therefore an increase in the odds

ratio, OR1 > 1, is detected when a plotted X+
i exceeds

a specified decision threshold h+; conversely, if X−
i falls

below a specified decision threshold h−, the RACUSUM
charts signals that a decrease in the odds ratio, OR1 < 1,
has occurred. See Steiner at al. [5] for more details.

A risk-adjusted EWMA (RAEWMA) control chart is a
monitoring procedure in which an exponentially weighted
estimate of the observed process mean is continuously com-
pared to the corresponding predicted process mean obtained
through the underlying risk model. The EWMA statistic of
the observed mean is obtained through Zoi = λ × yi +
(1 − λ) × Zoi−1. Zoi is then plotted in a control chart
constructed with Zpi = λ × pi + (1 − λ) × Zpi−1 as the
center line and control limits of Zpi ± L × σZpi

where
the variance of the predicted mean is equal to σ2

Zpi
=

λ2× pi(1− pi)+ (1−λ)2×σ2
Zpi−1 . We let σ2

Zp0 = 0 and
initialize both running means, Zo0 and Zp0, at the overall
observed mean, p0 say, in the calibration stage of the risk
model and control chart (so-called Phase 1 in an industrial
context); see Cook [6] and Cook et al. [10] for more details.
The smoothing constant λ of EWMA charts is determined
considering the size of shift that is desired to be detected
and the overall process mean; see Somerville et al. [27] for
more details.

The magnitude of the decision thresholds in the
RACUSUM, h+ and h−, and the coefficient of the control
limits in RAEWMA control charts, L, are determined in a
way that the charts have a specified performance in terms
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of false alarm and detection of shifts in odds ratio; see
Montgomery [1] and Steiner et al. [5] for more details. The
proposed initialization may also be altered to achieve better
performance in the detection of changes that immediately
occur after control chart initialization, see Steiner [28] and
Knoth [29] for more details on fast initial response (FIR).
It should be noted that there exists an alternative for risk-
adjusted EWMA in which the focus is on estimation of
probability of death using pseudo observations and Bayesian
methods [10]. This formulation would not be considered in
this study; see Grigg & Spiegelhalter [7] for more details.

III. CHANGE POINT MODEL

Statistical inferences for a quantity of interest in a
Bayesian framework are described as the modification of
the uncertainty about their value in the light of evidence,
and Bayes’ theorem precisely specifies how this modification
should be made as below:

Posterior ∝ Likelihood× Prior, (2)

where “Prior” is the state of knowledge about the quantity
of interest in terms of a probability distribution before
data are observed; “Likelihood” is a model underlying the
observations, and “Posterior” is the state of knowledge about
the quantity after data are observed, which also is in the form
of a probability distribution.

For monitoring a process with dichotomous outcomes,
survival say, where no covariates contribute to the outcomes
and standard control charts are applied, the observations yi,
i = 1, ..., T , are considered as samples that independently
come from a Bernoulli distribution. Assume that such process
is initially in-control with a known rate of p0. At an unknown
point in time, τ , the Bernoulli rate parameter changes from
its in-control state of p0 to p1, p1 = p0 + δ and p1 6= p0.
The general Bernoulli process step change model can thus
be parameterized as follows:

pr(yi | pi) =
{
pyi0 (1− p0)1−yi if i = 1, 2, ..., τ
pyi1 (1− p1)1−yi if i = τ + 1, ..., T.

(3)

However this formulation is not sustained where the in-
control rate is not stable due to covariate contributions. In
other words in risk-adjusted charting procedures, we let the
process mean vary over observations and we control the
variable observed rate against the corresponding expected
rate obtained through the risk models. In this setting, a
Bernoulli process is in the in-control state when observations
can be statistically expressed by the underlying risk models,
taking into account their individual covariates. The risk-
adjusted control chart signals when observations tend to
violate the underlying risk model.

To express an in-control process and construct a change
point model, where covariates exist, we apply the common
parameter of odds ratio, OR, which is frequently used for
design of control charts in a clinical monitoring context [5].
In this setting, OR0 = 1 is identical to no change and
departing from that through OR1 = OR0 + β × t leads
to a linear trend with a slope of size β over time t in the
Bernoulli process.

To model a change point in the presence of covariates,
consider a Bernoulli process yi, i = 1, ..., T , that is initially

in-control, with independent observations coming from a
Bernoulli distribution with known variable rates p0i that can
be explained by an underlying risk model p0i | xi ∼ f(xi),
where f(.) is a link function and x is a vector of covariates.
At an unknown point in time, τ , the Bernoulli rate parameter
changes from its in-control state of p0i to p1i obtained
through

OR1 = OR0 + β × (i− τ) = p1i/1− p1i
p0i/1− p0i

(4)

and

p1i =
(OR0 + β × (i− τ))× p0i/(1− p0i)

1 + ((OR0 + β × (i− τ))× p0i/(1− p0i))
, (5)

where OR1 6= 1 and > 0 so that p1i 6= p0i, i = τ, ..., T .
The Bernoulli process linear trend change model in the

presence of covariates can thus be parameterized as follows:

pr(yi | pi) =
{
p0
yi
i (1− p0i)1−yi if i = 1, 2, ..., τ

p1
yi
i (1− p1i)1−yi if i = τ + 1, ..., T.

(6)

Modeling a linear trend in terms of odds ratios benefits
the change point model since no constraint on each p1i,
i = τ, ..., T , is needed. In this parametrization, any β > 0
corresponds to OR1 > 1 that induces an increase in the
rate. This type of change is analogous to linear trend models
in a Bernoulli process rate without covariates. Equivalently,
a negative slope, β < 0, causes a fall; however such
disturbance cannot last long since OR1 is restricted to be
positive. Therefore for simplicity, we limit the investigation
to increasing linear trends scenarios where β > 0.

As seen in Equation (5), although a specific magnitude of
change induces in the odds ratio, the obtained out-of control
rates, p1i, i = τ, ..., T , are affected differently; see Section
IV for more details.

Relating this to Equation (2), pr(. | .) is the likelihood that
underlies the observations; the time, τ , and the magnitude of
the slope, β, in the linear trend in odds ratio are the unknown
parameters of interest; and the posterior distributions of these
parameters will be investigated in the change point analysis.
Assume that the process delivering yi is monitored by a
control chart that signals at time T .

We assign a zero left truncated normal distribution (µ =
0, σ2 = k)I(0,∞) for β as prior distributions where k is
study-specific. In the followings, we set k = 1, giving a rel-
atively informed priors for the magnitude of the slope change
in an in-control rate as the control chart is sensitive enough to
detect very large shifts and estimate associated change points.
Other distributions such as uniform and Gamma might also
be of interest for β since it is assumed to be a positive value;
see Gelman et al. [23] for more details on selection of prior
distributions. We place a uniform distribution on the range
of (1, T -1) as a prior for τ where T is set to the time of
the signal of control charts. See the Appendix for the linear
trend change model code in WinBUGS.

IV. EVALUATION

We used Monte Carlo simulation to study the performance
of the constructed BHM in linear trend detection following a
signal from RACUSUM and RAEWMA control charts when
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(1) (2)

Fig. 1. Distribution of calculated (1) logit of APACHE II scores logit(p); and (2) probability of mortality for 4644 patients who admitted to ICU during
2000-2009.

a change in odds ratio is simulated to occur at τ = 500.
However, to extend to the results that would be obtained in
practice, we considered a dataset of available APACHE II
scores that was routinely collected over 2000-2009 in the
pilot hospital for construction of baseline risks in the control
charts.

Figure 1-1 shows the calculated logit of APACHE II scores
(logit(p)) for 4644 patients who were admitted to ICU. The
scores led to a distribution of logit values with a mean of
-2.53 and a variance of 1.05. The distribution of the obtained
probability of death over patients is also shown in Figure 1-2.
This led to an overall risk of death of 0.082 with a variance
of 0.012 among patients in the pilot hospital.

To generate observations of a process in the in-control
state yi, i = 1, ..., τ , we first randomly generated asso-
ciated risks, p0i, i = 1, ..., τ , from a normal distribution
(µ = −2.53, σ2 = 1.05) and then drew binary outcomes
from a Bernoulli distribution with rates of p0i, i = 1, ..., τ .
Plotting the obtained observations when the associated risks
are considered results in risk-adjusted control charts that
are in-control. However other distributions such as Beta
and uniform distributions with proper parameters or even
sampling randomly from the baseline data can be applied to
generate risks directly.

Because we know that the process is in-control, if an
out-of-control observation was generated in the simulation
of the early 500 in-control observations, it was taken as a
false alarm and the simulation was restarted. However, in
practice a false alarm may lead to stopping the process and
analyzing root causes. When no cause is found, the process
would follow without adjustment.

To form an increasing linear trend in odds ratio,
we then induced trends with a slope of sizes β =
{0.0025, 0.005, 0.01, 0.025, 0.05, 0.1} and generated obser-
vations until the control charts signalled. The effect of such
drifts should be considered in two ways, over different base-
line risk and time.

These slopes led to different shift sizes in the in-control
process rate, p0i, for the ith patient after the occurrence of the
change. As shown in Figure 2 patients with a more extreme
risk of mortality are less affected compared to patients who
have a probability of around 0.5 at i = 600, after 100

observations coming from an out-of-control process caused
by linear trend disturbances of size β. This effect remains
consistent over next patients where the size of the change
in odds ratio increases by time. Patients with more extreme
risks of mortality are less affected compared to patients who
have a probability of around 0.5.

The effect of a linear trend with a positive slope of size
β = 0.025 in odds ratio is demonstrated in Figure 3 over
time, next patients say. The resultant distributions are more
over-dispersed and shifted to the right and concentrates on
higher values of risks in comparison with the observed risks
in Figure 1-2. As seen in Figure 3-1 for the 550th patient,
when the odds ratio increases and reaches to δ1 = 2.25,
the overall risk increases to 0.15 with a variance of 0.021.
This increase in the risk almost doubles after the next 150
patients, reaching to an overall risk of 0.28 with a variance
of 0.033, see Figure 3-4.

To form an increasing linear trend in odds ratio,
we then induced trends with a slope of sizes β =
{0.0025, 0.005, 0.01, 0.025, 0.05, 0.1} and generated obser-
vations until the control charts signalled. We constructed
risk-adjusted control charts using the procedures discussed
in Section II. We designed RACUSUM to detect a doubling
and a halving of the odds ratio in the in-control rate, p0 =
0.082, and have an in-control average run length ( ˆARL0)
of approximately 3000 observations. We used Monte Carlo

Fig. 2. Effect of linear trend disturbances with a slope of β occurred at
i = 500 in odds ratio of an in-control Bernoulli process for the 600th

patient with a baseline risk of p0.
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(1) (2)

(3) (4)

Fig. 3. Distribution of observable probability of mortality after (1) 50, (2) 100, (3) 150 and (4) 200 observations since occurrence of a linear trend
disturbance with a slope of size β = 0.025 in odds ratio for 4644 patients who admitted to ICU during 2000-2009.

simulation to determine decision intervals, h±. However
other approaches may be of interest; see Steiner et al. [5].
This setting led to decision intervals of h+ = 5.85 and
h− = 5.33. As two sided charts were considered, the
negative values of h− were used. The associated CUSUM
scores were also obtained through Equation (1) where yi is
0 and 1, respectively.

We set the smoothing constant of RAEWMA to λ = 0.01
as the in-control rate was low and detection of small changes
was desired; see Somerville et al. [27], Cook [6] and [7] for
more details. The value of L was calibrated so that the same
in-control average run length ( ˆARL0) as the RACUSUM was
obtained. The resultant chart had L = 2.83. A negative lower
control limit in the RAEWMA was replaced by zero.

The linear trend disturbances and control charts were
simulated in the R package (http://www.r-project.org). To
obtain posterior distributions of the time and the magnitude
of the changes we used the R2WinBUGS interface [30]
to generate 100,000 samples through MCMC iterations in
WinBUGS [31] for all change point scenarios with the first
20000 samples ignored as burn-in. We then analyzed the
results using the CODA package in R [32]. See the Appendix
for the linear trend change model code in WinBUGS.

V. PERFORMANCE ANALYSIS

To demonstrate the achievable results of Bayesian change
point detection in risk-adjusted control charts, we induced a
linear trend with a slope of size β = 0.25 at time τ = 500
in an in-control binary process with an overall death rate
of p0 = 0.082. RACUSUM and RAEWMA, respectively,
detected an increase in the odds ratio and sinalled at the
595th and 565th observations, corresponding to delays of

95 and 65 observations as shown in Figure 4-a1, b1. The
posterior distributions of time and magnitude of the change
were then obtained using MCMC discussed in Section IV.
For both control charts, the distribution of the time of
the change, τ , concentrates on the values closer to 500th

observation as seen in Figure 4-a2, b2. The posteriors for the
magnitude of the change, β, also approximately identified the
exact change size as they highly concentrate on values of less
than 0.05 shown in Figure 4-a3, b3. As expected, there exist
slight differences between the distributions obtained follow-
ing RACUSUM and RAEWMA signals since non-identical
series of binary values were used for two procedures.

Table I summarizes the obtained posteriors. If the posterior
was asymmetric and skewed, the mode of the posteriors was
used as an estimator for the change point model parameter
(τ and β1). As shown, the Bayesian estimator of the time
outperforms chart’s signals, particularly for the RACUSUM
with a delay of three observations. However, the magnitude
of the slope of the linear trend tends to be over overestimated
by the Bayesian estimator, obtaining 0.051 and 0.041 for
RACUSUM and RAEWMA charts, respectively. Having said
that, these estimates must be studied in conjunction with their

TABLE I
POSTERIOR ESTIMATES (MODE, SD.) OF LINEAR TREND CHANGE POINT

MODEL PARAMETERS (τ AND β) FOLLOWING SIGNALS (RL) FROM
RACUSUM ((h+, h−) = (5.85, 5.33)) AND RAEWMA CHARTS
(λ = 0.01 AND L = 2.83) WHERE E(p0) = 0.082 AND τ = 500.

STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

β
RACUSUM RAEWMA

RL τ̂ β̂ RL τ̂ β̂

0.025 595 503.0 0.051 565 513.9 0.042
(34.9) (0.14) (22.9) (0.13)
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 4. Risk-adjusted (a1) CUSUM ((h+, h−) = (5.85, 5.33)) and (b1) EWMA (λ = 0.01 and L = 2.83) control charts and obtained posterior
distributions of (a2, b2) time τ and (a3, b3) magnitude β of an induced linear trend with a slope of size β = 0.025 in odds ratio where E(p0) = 0.082
and τ = 500.

corresponding standard deviations.
Applying the Bayesian framework enables us to construct

probability based intervals around estimated parameters. A
credible interval (CI) is a posterior probability based interval
which involves those values of highest probability in the pos-
terior density of the parameter of interest. Table II presents
50% and 80% credible intervals for the estimated time and
the magnitude of slope of the linear trend disturbance in
odds ratio for RACUSUM and RAEWMA control charts.
As expected, the CIs are affected by the dispersion and
higher order behaviour of the posterior distributions. Under
the same probability of 0.5 for the RACUSUM, the CI for
the time of the change of size β = 0.025 in odds ratio
covers 25 observations around the 500th observation whereas
it increases to 35 observations for RAEWMA due to the
larger standard deviation, see Table I.

Comparison of the 50% and 80% CIs for the estimated
time for the RACUSUM chart reveals that the posterior
distribution of the time tends to be left-skewed and the
increase in the probability contracts the left boundary of
the interval, from 496 to 476 in comparison with a shift of
10 observations in the right boundary. This result can also
be seen for the RAEWMA chart. As shown in Table I and
discussed above, magnitude of the changes are overestimated,
however Table II indicates that the real sizes of slope are
approximately contained in the respective posterior 50%

TABLE III
PROBABILITY OF THE OCCURRENCE OF THE CHANGE POINT IN THE

LAST 25, 50 AND 100 OBSERVATIONS PRIOR TO SIGNALLING FOR
RACUSUM ((h+, h−) = (5.85, 5.33)) AND RAEWMA CHARTS
(λ = 0.01 AND L = 2.83) WHERE E(p0) = 0.082 AND τ = 500.

β
RACUSUM RAEWMA

25 50 100 25 50 100
0.025 0.02 0.04 0.70 0.04 0.57 0.98

and 80% CIs. Construction of probablistic intervals can be
extended to other sizes of slope and direction of linear trends
in odds ratio.

Having a distribution for the time of the change enables us
to make other probabilistic inferences. As an example, Table
III shows the probability of the occurrence of the change
point in the last {25, 50, 100} observations prior to signalling
in the control charts. For a linear trend with a slope of size
β = 0.025 in odds ratio, since the RACUSUM signals late
(see Table I), it is unlikely that the change point occurred in
the last 25 or 50 observations. In contrast, in the RAEWMA,
where it signals earlier, the probability of occurrence in the
last 50 observations is 0.57, then increases to 0.98 as the
next 50 observations are included. These kind of probability
computations and inferences can be extended to other change
scenarios.

The above studies were based on a single sample drawn

TABLE II
CREDIBLE INTERVALS FOR LINEAR TREND CHANGE POINT MODEL PARAMETERS (τ AND β) FOLLOWING SIGNALS (RL) FROM RACUSUM

((h+, h−) = (5.85, 5.33)) AND RAEWMA CHARTS (λ = 0.01 AND L = 2.83) WHERE E(p0) = 0.082 AND τ = 500.

β Parameter RACUSUM RAEWMA
50% 80% 50% 80%

0.025 τ̂ (496,521) (476,531) (511,526) (497,532)
β̂ (0.028,0.081) (0.020,0.141) (0.021,0.079) (0.018,0.129)
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TABLE IV
AVERAGE OF POSTERIOR ESTIMATES (MODE, SD.) OF LINEAR TREND CHANGE POINT MODEL PARAMETERS (τ AND β) FOR A DRIFT IN ODDS RATIO

FOLLOWING SIGNALS (RL) FROM RACUSUM ((h+, h−) = (5.85, 5.33)) AND RAEWMA CHARTS (λ = 0.01 AND L = 2.83) WHERE
E(p0) = 0.082 AND τ = 500. STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

β
RACUSUM RAEWMA

E(RL) E(τ̂) E(στ̂ ) E(β̂) E(RL) E(τ̂) E(στ̂ ) E(β̂)

0.0025 920.8 740.1 151.7 0.006 861.8 763.0 114.9 0.008
(101.5) (94.8) (77.6) (0.004) (95.8) (94.5) (31.5) (0.003)

0.005 787.7 633.6 125.1 0.010 723.1 657.4 76.9 0.013
(88.3) (78.5) (64.7) (0.041) (78.2) (78.0) (31.7) (0.032)

0.01 689.0 579.7 76.4 0.022 655.5 591.5 59.7 0.028
(33.5) (41.8) (36.6) (0.050) (36.4) (31.2) (31.1) (0.044)

0.025 610.3 524.4 52.8 0.041 590.6 528.4 49.2 0.039
(26.6) (42.9) (29.1) (0.045) (30.9) (35.4) (23.2) (0.048)

0.05 583.3 514.7 37.8 0.081 569.3 513.7 42.9 0.078
(17.5) (20.4) (17.3) (0.027) (16.6) (21.1) (19.9) (1.034)

0.1 562.7 504.3 28.7 0.129 552.4 503.3 34.6 0.130
(11.8) (17.5) (14.6) (0.033) (11.8) (17.2) (19.3) (0.031)

from the underlying distribution. To investigate the behavior
of the Bayesian estimator over different sample datasets,
for different slope sizes of β, we replicated the simula-
tion method explained in Section IV 100 times. Simulated
datasets that were obvious outliers were excluded. Table IV
shows the average of the estimated parameters obtained from
the replicated datasets where there exists a linear trend in
odds ratio.

Comparison of performance of RACUSUM and
RAEWMA charts in Table IV reveals that, the RAEWMA
detected increasing linear trend disturbances in odds ratio
faster. This superiority drops from 59 observations for
β = 0.0025 to 10 observations when the slope size reaches
to β = 0.1. For a very small slope of size β = 0.0025, the
average of the mode, E(τ̂), reports the 740th observation as
the change point in RACUSUM, whereas the chart detected
the change with a delay of 420 observations. This superiority
persists for the RAEWMA chart, however a delay of 263
observations is still associated with the estimate of the time,
τ , for β = 0.0025 following RAEWMA signal.

Table IV shows that, although the RACUSUM signals
later than the alternative, RAEWMA, particularly over small
to medium slope sizes, the average of posterior estimates
for the time, E(τ̂), outperforms the estimates obtained for
RAEWMA charts. A less delay of 23 observations is ob-
tained for β = 0.0025 scenario. This delay drops when the
slop size increases. Over medium to large sizes of slope, β =
{0.025, 0.05, 0.1}, the bias of the Bayesian estimator, E(τ̂),
did not exceed 24 observations for the RACUSUM. This
bias slightly increased for the RAEWMA chart, reaching to
28 observations, yet significantly outperformed the chart’s
signal. At best, the RACUSUM and RAEWMA signals at
the 562nd and 552nd observations for the most extreme
jump in the slope of the linear trend in odds ratio were also
outperformed by posterior modes, E(τ̂), that exhibited a bias
of four and three observations, respectively.

Table IV indicates that in both risk-adjusted control charts,
the variation of the Bayesian estimates for time tends to
reduce when the magnitude of slope increases. The mean
of the standard deviation of the posterior estimates of time,
E(στ̂ ), also decreases when the slope sizes increases. The
average of the Bayesian estimates of the magnitude of the
change, E(β̂), shows that the posterior modes tend to over-
estimate slope sizes. As seen in Table IV, better estimates

are obtained in moderate to large slopes. Having said that,
Bayesian estimates of the magnitude of the change must
be studied in conjunction with their corresponding standard
deviations. In this manner, analysis of credible intervals is
effective.

VI. COMPARISON OF BAYESIAN ESTIMATOR WITH
OTHER METHODS

To study the performance of the proposed Bayesian esti-
mators in comparison with those introduced in Section I, we
ran the available alternative, built-in estimators of Bernoulli
EWMA and CUSUM charts, within the replications dis-
cussed in Section V. Based on Page [12] suggestion, if an
increase in a process rate detected by CUSUM charts, an
estimate of the change point is obtained through τ̂cusum =
max{i : X+

i = 0}. We modified the built-in estimator of
EWMA proposed by Nishina [14] and estimated the change
point using τ̂ewma = max{i : Zoi ≤ Zpi} following signals
of an increase in the Bernoulli rate.

Table V shows the average of the Bayesian estimates,
τb, and detected change points provided by the built-in
estimators of CUSUM, τcusum, and EWMA, τewma, charts
for drifts in the odds ratio, OR. The built-in estimators of
EWMA and CUSUM charts outperform associated signals
over all drifts in the odds ratio, however they tend to under-
estimate the exact change point when the magnitude of slope
is large, β = 0.1. The CUSUM built-in estimator, τ̂cusum,
outperforms the alternative built-in estimator over small to
moderate slopes, exactly over the same range of changes in
which the Bayesian estimates obtained for RACUSUM are
superior.

The Bayesian estimator, τ̂b, is outperformed by both built-
in estimators, τ̂cusum and τ̂ewma, with less delays which
is at most 35 observations obtained for RAEWMA for
β = 0.005. Having said that, considering corresponding
standard deviations over replications, the Bayesian estimator
remains a reasonable alternative. The superiority of the built-
in estimators drops when slope size increases since they tend
to underestimate the time of the change, whereas the average
of posterior modes estimates more accurately. Comparison
of variation of estimated change points also supports the
superiority of the Bayesian estimators over alternatives across
linear trend with a small slope.
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TABLE V
AVERAGE OF DETECTED TIME OF A LINEAR TREND CHANGE IN ODDS RATIO OBTAINED BY THE BAYESIAN ESTIMATOR (τb), CUSUM AND EWMA

BUILT-IN ESTIMATORS FOLLOWING SIGNALS (RL) FROM RACUSUM ((h+, h−) = (5.85, 5.33)) AND RAEWMA CHARTS (λ = 0.01 AND
L = 2.83) WHERE E(p0) = 0.082 AND τ = 500. STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES.

β
RACUSUM RAEWMA

E(RL) E(τ̂cusum) E(τ̂b) E(RL) E(τ̂ewma) E(τ̂b)

0.0025 920.8 727.7 740.1 861.8 739.4 763.0
(101.5) (131.9) (94.8) (95.8) (128.5) (94.5)

0.005 787.7 605.8 633.6 723.1 622.3 657.4
(88.3) (110.2) (78.5) (78.2) (103.9) (78.0)

0.01 689.0 559.7 579.7 655.5 573.2 591.5
(33.5) (56.2) (41.8) (36.4) (55.5) (31.2)

0.025 610.3 513.1 524.4 590.6 514.0 528.4
(26.6) (62.6) (42.9) (30.9) (67.6) (35.4)

0.05 583.3 495.2 514.7 569.3 506.1 513.7
(17.5) (56.5) (20.4) (16.6) (61.4) (21.1)

0.1 562.7 483.4 504.3 552.4 497.8 503.3
(11.8) (45.7) (17.5) (11.8) (63.2) (17.2)

VII. CONCLUSION

Quality improvement programs and monitoring process for
medical outcomes are now being widely implemented in the
health context to achieve stability in outcomes through detec-
tion of shifts and investigation of potential causes. Obtaining
accurate information about the time when a change occurred
in the process has been recently considered within industrial
and business context of quality control applications. Indeed,
knowing the change point enhances efficiency of root causes
analysis efforts by restricting the search to a tighter window
of observations and related variables.

In this paper, using a Bayesian framework, we modeled
change point detection for a clinical process with dichoto-
mous outcomes, death and survival, where patient mix was
present. We considered an increasing drift in odds ratio,
caused by a linear trend with a positive slope, of the in-
control rate. We constructed Bayesian hierarchical models
and derived posterior distributions for change point estimates
using MCMC. The performance of the Bayesian estimators
were investigated through simulation when they were used
in conjunction with well-known risk-adjusted CUSUM and
EWMA control charts monitoring mortality rate in the ICU
of the pilot hospital where risk of death was evaluated
by APACHE II, a logistic prediction model. The results
showed that the Bayesian estimates significantly outperform
the RACUSUM and RAEWMA control charts in change
detection over different scenarios of magnitude of slopes in
drifts. We then compared the Bayesian estimator with built-in
estimators of EWMA and CUSUM. Although the Bayesian
estimator has outperformed by the built-in estimators, they
remain a viable alternative when precision of the estimators
are taken into account.

Apart from accuracy and precision criteria used for the
comparison study, the posterior distributions for the time and
the magnitude of a change enable us to construct probabilistic
intervals around estimates and probabilistic inferences about
the location of the change point. This is a significant ad-
vantage of the proposed Bayesian approach. Furthermore,
flexibility of Bayesian hierarchical models, ease of extension
to more complicated change scenarios such as decreasing lin-
ear trends, nonlinear trends, relief of analytic calculation of
likelihood function, particularly for non-tractable likelihood
functions and ease of coding with available packages should
be considered as additional benefits of the proposed Bayesian

change point model for monitoring purposes.
The investigation conducted in this study was based on a

specific in-control rate of mortality observed in the pilot hos-
pital. Although it is expected that superiority of the proposed
Bayesian estimator persists over other processes in which
the in-control rate and the distribution of baseline risk may
differ, the results obtained for estimators and control charts
over various change scenarios motivates replication of the
study using other patient mix profiles. Moreover modification
of change point model elements such as replacing priors
with more informative alternatives, or truncation of prior
distributions based on type of signals and prior knowledge,
may be of interest.

The two-step approach to change-point identification de-
scribed in this paper has the advantage of building on control
charts that may be already in place in practice (as in the
pilot hospital). An alternative may be to retain the two-
step approach but to use a Bayesian framework in both
stages. There is now a substantial body of literature on
Bayesian formulation of control charts and extensions such
as monitoring processes with varying parameters [33], over-
dispersed data [34], start-up and short runs [35], [36]. A
further alternative is to consider a fully Bayesian, one-step
approach, in which both the monitoring of the in-control
process and the retrospective or prospective identification of
changes is undertaken in the one analysis. This is the subject
of further research.
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APPENDIX A
CHANGE POINT MODEL CODE IN WINBUGS

model {
for(i in 1 : RLcusum)
{
y[i] ∼ dbern(p[i])
p[i]=x[i]+step(i-change)*-x[i]+

((1+beta*(i-change))*x[i])/
(x[i]*((1+beta*(i-change))-1)+1)

}
RL=RLcusum-1
beta ∼ dnorm(0,1)I(0,)
change ∼ dunif(1,RL) }
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