TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

A Precise Execution Semantics for BPMN

Vitus S.W. Lam

Abstract—Bringing a high confidence to the validity of performing formal analysis. Dijkman et al. [8] propose the
business processes is one of the prevailing themes in businesgitilization of ProM framework for studying the behaviour
process management. Regardless of the introduction of BPMN of BPMN models by defining a semantic mapping between

1.2, there is no discernible improvement in the preciseness . . .
of the BPMN semantics. Motivated by the need to ensure BPMN and Petri nets. To verify BPMN models against

the trustworthiness of BPMN models and the absence of an different properties by means of CPN Tools [9], Ou-Yang

accurate behavioural semantics, a rigorous semantic definition and Lin [10] propound an approach that BPMN models are
of BPMN is advocated. T(;\e sym_bollic en_cod:_ngs of the exelculltio_n first translated into BPEL4WS and then encoded as Colored
semantics are expressed concisely using linear temporal 10gic patri-net XML (CPNXML

(LTL). The LTL-based representations serve as a basis for the etri-net (C).

formal analysis of BPMN diagrams as well as the prototypical Both the second and third approaches that are discussed

implementation of software tools. in the following, unlike the first approach, harness the power
Index Terms—BPMN, execution semantics, behavioural se- of process Cf_ilcu.“' They utll!ze the-calculus [11], [12]
mantics, linear temporal logic. and Communicating Sequential Processes (CSP) [13] as the

semantic formalisms, respectively. Bog et al. [14], [15], [16],
[17] put forward the simulation and analysis of BPMN

models using PiVizTool by translating BPMN into the

The b_usiness process modelling notation (BPMN) [1,1:alculus. The work of Puhlmann [18] formalizes BPMN
[2]. [3] is emerging as a widely accepted approach iy the form of thenr-calculus and verifies the respective

the domain of business process management. The BPMN,5 101y representations through the use of Advanced

which embodies a collection of notational elements, is Bisimulation Checker (ABC) [19]. Wong and Gibbons [20]

visual modelling language for the construction of busineﬁl] convert BPMN into CSP in order to determine the

process diagrams. In the BPMN specifications [1], [3], th8ompatibility between BPMN processes with the Failures-

behavioural semantics is elucidated using the notion of tOkBR/ergence Refinement (FDR) model checker [22]. In [23]
flow. The Petri-like semantics of BPMN is along the sam@4) ‘\wong and Gibbons develop their idea a littie further
vein as the one in UML activity diagrams [4]. by establishing a relative-time semantic model built upon
Wh|_le t_he syntax of .BPMN is specified by _theﬂiclal CSP. The application of symbolic model checking on the
speC|f|cat|(_)ns N & precise manne, th(_e execution semaniiggiication of BPMN models constitutes the fourth approach.
of BPMN is solely described in narrative form using plaiy samantic model for BPMN 1.0 is defined using New
text. Since a rigorous semantics is a prerequisite for t%mbolic Model Verifier (NUSMV) language [25] in [26].
verification of a BPMN model, we take on the challenge Though substantial studies have been performed on

of defining the behaviour of BPMN elements in the fomE}PMN, our efort is distinguished from them in several
of linear temporal logic [5], [6]. The rationale behind therespectS'

adoption of linear temporal logic in lieu of computation tree (i) The main purpose of our work is to develop a solid
logic is due to the fact that the BPMN semantics matches ™ ¢, 1 qation for the Petri-like semantics of BPMN rather

closely with a linear time model. than on the formal analysis of BPMN models.

The rest of the paper proceeds as follows. Section gii) The theoretical basis concentrates on BPMN 1.2 instead
reviews prior work in the area. Section 3 is dedicated to an "+ 55MN 1.0 In contrast to BPMN 1.0. BPMN 1.2

overV|ewdo_f BSPMN' 'I;lhessyn_taxsof Ilnlfar tempg(;al logic is . supports the concepts of catching events, throwing
presented in Section 4. Section 5 seeks to provide a semantic . ic and signal events.

foundation for BPMN on the basis of linear temporal l_()gic_gii) The underlying framework is built on linear temporal
The application of the formalized execution semantics i logic in lieu of Petri-netsg-calculus, CSP and NuSMV
exemplified in Section 6. Section #fers brief concluding language '

comments as well as points to ideas for future research. (iv) The temporal analyses of BPMN process models are
a class of problems that are not fully addressed
: . __in [7], [8], [10], [14], [15], [16], [17], [18], [20]

In the business process management community, there i ang [21]. A prime motivation for using linear temporal
a growing body of literature regarding BPMN. Most of these |ogic is to complement these studies by providing a

contributions emphasize the static analysis of BPMN models ethodical approach for reasoning about the temporal
and can be classified as four main approaches. The first 4gpects of BPMN.

approach exploits Petri nets as the underlying frameworlfv) Our semantic analysis examines more advanced graph-
for assessing the behavioural correctness of BPMN models. -5/ elements encompassing subprocess, exception and
Raedts et al. [7] adopt Petri nets as an intermediate repre- ransaction.

sentation when transforming BPMN models into MCRL2 for There js relatively little research conducted directly on the

V. Lam is with the Computer Centre, The University of Hong Kong,execunon semantics O_f BPMN'_D_umaS et al: [27] _mtrOduce
Pokfulam Road, Hong Kong (e-mail: vitus.lam@ieee.org). a behavioural semantics pertaining to the inclusive merge

|. INTRODUCTION

Il. ReLaTED WORK

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

gateway of BPMN. Borger and Thalheim [28] develop aubprocess upon receiving a token from its respective parent
samantic model for BPMN 1.0 by the abstract state machingsocess. Contrary to none start events, all other types of
method. In [29], Grosskopf presents an executable businetart events including message start events, timer start events,
process specification language in which the semantics is baitinditional start events, signal start events and multiple start
on the semantics of BPMN 1.0. Unlike these earlier studiesents are regarded as trigger-based start events in which the
that are based on BPMN 1.0, a full explanation for these of them in subprocesses is not permitted.
behaviour of all the notational elements of BPMN 1.2 is A message start event, a timer start event, a conditional
given in Section V. When compared with the work of Dumastart event, a signal start event and a multiple start event
et al. that is limited to a single notational element, our workymbolize the activation of a process on receipt of a message,
covers a larger set of graphical constructs. whenever a particular time-date condition holds, when a
A related strain of research in the context of BPMN deatsondition is fulfilled, upon arrival of a signal and if any one
with the equivalence checking of BPMN processes. In [30df the two or more defined start events occurs, respectively.
a structured framework for classifying ftirent sorts of The happening of an end event terminates a process and
equivalences for BPMN processes is presented. As opposesults in the consumption of a token. A none end event is
to our previous attempt, the goal of our current work isimilar in concept to a none start event. It denotes either
to construct a mathematical-based semantics that lays {)ehe event trigger type is not indicated or (ii) the cessation
groundwork for analyzing business processes expressedoh$ subprocess on receipt of a token along the incoming
BPMN. sequence flow. A message end event, an error end event,
Besides, there is a great variety of research topics relatg@dancel end event, a compensation end event, a signal end
to BPMN. Auer et al. [31] enhance the BPMN by augmentingvent, a terminate end event and a multiple end event signify
it with submitfesponse-style user interaction. Mazanek antle completion of a process that leads to the sending of
Hanus [32] develop a software tool using the functional logie message to other process, the throwing of an error, the
programming language Curry that automates the transfornaortion of a transaction, the execution of a compensation,
tions between BPMN and BPEL. In [33], Sanchez-Gonzalége broadcasting of a signal, the immediate cessation of all
et al. utilize the Bender method to find out the thresholgsocess flows and the triggering of all defined end events,
of the control-flow complexity measures for BPMN procesgspectively.
models. Kopp et al. [34] present a systematic way for Catch intermediate events and throw intermediate events
obtaining a complete BPMN process from a BPMN procesge events that occur during the course of a process. With
fragment. An application of BPMN in the healthcare domaithe exception that a catch intermediate event does not initiate
is examined in [35]. Additionally, emerging research on busi process, the behaviours of a catching none intermediate
ness process management encompasses a broad range @vant, a catching message intermediate event, a catching
eas such as compliance checking of business constraints [$@jer intermediate event, a catching conditional intermediate
automated rectification of behavioural anomalies in busineggent, a catching signal intermediate event and a catching
process models [37], process mining [38], [39], [40], [41multiple intermediate event are analogous to the behaviours
declarative workflows [42], [43] and distributed businessf a none start event, a message start event, a timer start

processes [44]. event, a conditional start event, a signal start event and a
multiple start event. Likewise, the execution semantics of a
lll. BusiNess Process MoDELLING NotTation throw intermediate event is similar to the one of an end event

This section is devoted to a discussion of the main featur@scept that a throw intermediate event does not terminate a
of BPMN 1.2. Most of the material in this section is derivegrocess. The behavioural semantics of a throwing message
from our earlier studies [30], [45]. For a more thorougintermediate event, a throwing compensation intermediate
description of BPMN, the reader is referred to [1], [2], [3].event, a throwing signal intermediate event and a throwing

The BPMN is a well-known diagrammatic notation formultiple intermediate event correspond to the behavioural
supporting the specification of business processes. The semantics of a message end event, a compensation end event,
tational elements of BPMN are classified into four types signal end event and a multiple end event. The occurrence
flow objects, connecting objects, artifacts and swimlanedf an error, the abortion of a transaction, the receipt of a
The flow objects and connecting objects, which are the basiempensation event, the catching of a link event and the
elements for constructing business processes, are deline#itedwing of a link event are rendered by a catching error
in Figures 1, 2, 3 and 4. The extra information of a busine¥ermediate event, a catching cancel intermediate error, a
process and the organizational perspective of a business matching compensation intermediate event, a catching link
cess diagram are expressed in BPMN by means of artifattgermediate event and a throwing link intermediate event.
(Figure 5) and swimlanes (Figure 6), respectively. Unlike An activity is regarded as an unit of work that is either a
flow objects as well as connecting objects, artifacts arask or a subprocess (Figure 2). A task is atomic and does not
swimlanes are not related to process flows and do not hawgpport a hierarchical structure. On the contrary, a subprocess
token-based semantics. is decomposable. The three types of markers in a task are

In BPMN, flow objects fall into three categories: eventdpop, multiple instance and compensation. Likewise, there are
activities and gateways. The occurrence of a start event (Ffiye sorts of subprocess markers: collapsed subprocess, loop,
ure 1) initiates a process and causes the creation of a tokeultiple instance, ad hoc and compensation. A collapsed
that moves down the outgoing sequence flow. Depending smbprocess hides all the details of its internal structure,
how a none start event is utilized, it represents either (i) thehereas an expanded subprocess shows all the fine details. A
event trigger type is not indicated or (ii) the beginning of &ansaction is a subprocess in which all the enclosed activities

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

o () D ©

none message timer conditional signal multiple

RO NCONON R MONONO

none message error cancel compensation signal terminate multiple

w O

catching) . —)) -
none message timer error cancel compensation conditional link signal multiple
intermediate
event —
throwing .) . .
message compensation link signal multiple
Fig. 1. Events
e D [=21] O" ' » .('.0
task collapsed
subprocess
expanded transaction
subprocess

O M«

loop multiple compensation
instance

task marker

subprocess O I I I ~ <K

marker collapsed loop multiple ad hoc compensation
subprocess instance

Fig. 2. Activities

gateway Cq
(with o o °
sequence . . .
flows) Cn
data-based data-based event-based event-based
exclusive exclusive exclusive exclusive
decision merge decision merge
gateway gateway gateway gateway
Cq
D - g
[) L) L] L[]
L] [) L] [)
Cn
inclusive inclusive complex complex
decision merge decision merge
gateway gateway gateway gateway
[]
(] (]
.
parallel parallel
fork join
gateway gateway

Fig. 3. Gateways

c
sequence flow —> <> N—>
normal/ conditional flow default flow
uncontrolled
flow

message fow O———-[>
association = cereececs >

directed (non-directed)
association association

Fig. 4. Connecting objects

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

oo =
artifact | X el
: ;L

data group text
object annotation

Fig. 5. Artifacts

Lane4

POO|1
eee

pool and lane

Lane,

POO|2

Fig. 6. Swimlanes

are either complete or cancel. compensation intermediate event attached to the boundary of
Each outgoing sequence flow of a data-based exclusie activity with a compensation activity. A (non-directional)
decision gateway (Figure 3) is associated with a conditionagsocation links up a text annotation and a flow object.
expression. A token is placed on one of the outgoing se-As shown in Figure 5, the three pre-defined artifacts
guence flows in which the respective condition is met. Gn BPMN are data objects, groups and text annotations.
receiving a token from one of the incoming sequence flow&, data object models both electronic and tangible items
a data-based exclusive merge gateway sends a token deweh as data or document. A group highlights a collection
the outgoing sequence flow. When a token reaches an evefitnotational elements for satisfying a variety of purposes
based exclusive decision gateway, a token is emitted on e&tttompassing documentation, reporting, analysis, etc. A text
of the outgoing sequence flows. A token leaves an eveannotation ffers additional information regarding a process
based exclusive merge gateway upon receipt of a token al@ignotational element.
one of the incoming sequence flows. In BPMN, a pool (Figure 6) is considered as a participant.
On receipt of a token, an inclusive decision gatewagrsff Each pool contains a process and embodies at least one lane.
a token to each of the outgoing sequence flows in which thelane is a means for grouping thefigirent portions of a
corresponding condition expression returns true. After the dausiness process.
rival of all the tokens generated by an upstream, an inclusive
merge gateway sends a token on the outgoing sequence flow. IV. LineaR TEMPORAL L oGic
The set of outgoing sequence flows of a complex decision _ o))
gateway on which tokens are sent as well as the collection ofl€mporal logic, which is a category of logic, delineates
incoming sequence flows of a complex merge gateway frdigW the truth value of a formula evolve_s over time. In the
which tokens are received are determined by an expressipfftext of computer science, the application of temporal
The sending of tokens along all outgoing sequence flows Kch is mainly utilized for specifying the desired properties
a parallel fork gateway creates parallel flows. The receipf @ System. One of the most commonly accepted ways for
of tokens on all incoming sequence flows by a parallel joif@ssifying temporal logics is by means of time models. In
gateway synchronizes parallel flows. the Ilnea_r time _model there is a single futL_Jre t|_me at any
Connnecting objects are classified into three categori@en Point of time, whereas in the branching time model

sequence flows, message flows and assocations (Figuret_'lﬁ.re are multiple f_uture times at any giv<_en point of t_ime. The
A sequence flow is a connection between two flow objeci3€ar temporallogic (LTL) and computation tree logic (CTL)

in which a token moves from the source flow object to th@dopt, respectively, the linear time model and branching time

target flow object. Gateways are passed over in a normal fIJ\YA‘PdeI as the underlying structure of .tlme. .

In contrast, an uncontrolled flow does not pass through anyBY Zap We denote the set of atomic propositions oper
gateways. A conditional flow determines whether a tokéhandr- The syntax of LTL is inductively defined as:

is sent along the outgoing sequence flow by evaluating fs.= p| ¢ | (¢) |d AP |dV | d > ¢ | X | Fe | G | pUg.

associated conditional expression. A default flow is chosen)
when the conditional expressions of all other outgoing s& F. G and U are linear temporal operators. The temporal

quence flows become false. A message flow expresses @R€rators X, F, G and U stand for next state, some future
interaction between two business processes. An associafié#fe all future states and all future states until a condition
establishes a linkage between a flow object and an artifale@!ds, respectively. The intuitive meanings of the associated
A directed association either (i) specifies data objects tHakL formulas are given below:

are the inputs and outputs of an activity or (ii) connects a X¢: meansg is true in next state.

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

G FO G1). The propositional formula\ ., ~tokenConsumedBy,

states that none of the terminate end everis, ..., TE;,
consumes a token which results in the immediate cessation
of all flows. The sending of tokens on all outgoing sequence
flows is specified by/\'j‘=2 tokenAg, ro;. The negation of the
atomic propositiortokenAgo, g, stipulates that the received
token is no longer on the incoming sequence flow whenever
there are tokens on all the outgoing sequence flows. The
property that the emission of tokens must take place after
receiving a token from the incoming sequence flow is ensured

FO4

FO,

Fig. 7. A parallel gateway;

Fo: meansg is true in some future state.

Go: meansy is true in all future states.
#1Udy: @1 is true in all future states unti, holds. by means of the temporal operator X. _
) The dficial semantics of BPMN does not specify whether
The unary operators X, F and G have a higher precedence _ . . o
than the binary operator U a'maximal set of flow objects is fired in each state of a BPMN
' diagram. We extend theflicial semantics by adopting the
V. FoRMAL SEMANTICS oF BPMN maximal property as a central principle in our formalization.
- ' i ~For instance, if there are tokens on the incoming sequence
To facilitate the adoption of LTL as the ma_thematlcall)_ﬂOWS of two parallel fork gateways simultaneously, both
founded framework for representing the execution semantigsieways are fired in the next state in lieu of either one

of BPMN, some atomic propositions coupled with theips them is fired. The temporal operator X in Definition 1

meanings are defined as f°"°W§5 _ guarantees that the maximal property is preserved.
tokenAf: A token is resided orx. We denote byFp;c a set of parallel join gateways. The
tokenAf, x,: A token is located at the sequenceyrecise semantics of a parallel join gateway is defined below.
flow or directed association con- Definition 2 (Parallel Join Gateway)Suppose G; ¢
nectingx; and xo. Fpic FOi € S, (FO;,G1), (G1,FOn) € Csr and TE¢ €
tokenConsumedBy. A token is consumed by the termi—F@ fori=1,..,n j=1,...,n-1andk=1,..., m
nate end ev_enTI_E. The behavioural semantics of the parallel join gatev@y
catchEven: The eventE is triggered. with n— 1 incoming sequence flows is expressed as:
throwEvent: The eventE throws a trigger. 1 o
C: . The conditionc holds. G((A tokenAgo, g, A A —~tokenConsumedBy) —
Our formalized semantics follows the token-based seman- \"j_; el
tics of BPMN given in [2], [3]. Each atomic proposition N1
is ug!;;ed to keep track of the status of a token, event or X(tokenAg, o, A /\ ﬂtOkenAﬁoj,Gl)).
condition. =1

In BPMN, a gateway is allowed to have multiple incoming 1 .
and multiple outgoing sequence flows. Since the gateway is' "€ formula\jZ; tokenAto, g, specifies that tokens are

regarded as an alternative representation of a merge gatefzifved along all incoming sequence flows (FGy).
and a decision gateway in which the outgoing sequence figWe raverse of a token along the outgoing sequence
of the merge gateway connects to the incoming sequence iV (G1.FOn) is modelled as the atomic proposition
of the decision gateway, we omit it in the semantic mappinﬂ?kenA%FOn') L

Figure 7 depicts the graphical representation of a parallel-€t Fxoe b€ @ set of data-based exclusive decision gate-
fork gatewayG;. We let Fprg be a set of parallel fork WayS:Scondbe @ set of conditionsbeond: Csr — Scond be a

!) " o
gateways,Sr be a set of flow objectsCsr be a set of function returning the condition of a sequence fIG@bnd_

il _ . ldx Idx i
sequence flows anB[®™ be a set of terminate end events! D>+ = 1} and Pevar © {Scond = Scgng bE @ function

The execution semantics of the parallel fork gatev@y returning the index of the condition that first evaluates to
; . . true.

connecting to flow object8O;, .. ., FO, is formally captured I . -)

in the following definition in terms of an LTL formula on the Definition 3 (Data-based Exclusive Decision Gateway):

D ' .
assumption that there are zero or more terminate end evertPPoss € Fypg, FOi € S, (FOL Gy), (G, FO;) € Csr,
in the corresponding BPMN processes. €j-1 € Scond Peond(G1, FOy)) = €j-1, t = Peval{l.....n-1))

Definition 1 (Parallel Fork Gateway)Suppose G; e andTE € Fegmfori=1,..,n j=2 .., nandk=1,

Fers, FOi € Sk, (FOL,G1), (GL,FO;) € Csr and T € --» M The behaviour of the data-based exclusive decision

FW; fori = 1 ’ n J _ 2 ’n ajnd k=1 m. The gatewayG; with n— 1 outgoing sequence flows is specified
EE =1....n,j=2,..., =1,....,m ‘

execution semantics of the parallel fork gatew@y with below:

n - 1 outgoing sequence flows is denoted in LTL as: i\
going seq) G((tokenAﬁol,G1 A /\ -tokenConsumedBy A ¢;) —
k=1

m
G((tokenAﬁol,G1 A /\ -tokenConsumedBy) —

k=1 X(tokenAg, ro,,, A ~tokenAto, g,) |-
n
X(_/\IOke”AéLFOj A ﬁtOKe”AfOLGl))- The conditional expression of an outgoing sequence flow
I=2 that is the first to become true is denoted by the atomic

The atomic propositiortokenAto, g, represents the re- propositionc;. Whenever a token isfiered to the incoming
ceipt of a token along the incoming sequence flow {FOsequence flowKO;,G;) andc; evaluates to true, the data-

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

based exclusive decision gatew@&y emits a token along X(tokenAg, A ﬂtokenA@,l,Ej)))/\
the outgoing sequence flovs{, FO,1) represented as the
atomic propositiortokenAg, ro..,-

=

-
(A ((tokenAtj A catchEveng A
In the following, we present the formal semantics of a j=1
data-based exclusive merge gateway. A set of data-based

—-catchEvent A
exclusive merge gateways is denoted . L H
Definition 4 (Data-based Exclusive Merge Gateway): m

SupposeG; € Fh;, FO € Sk, (FO;,G1), (G1,FOn) € A—'tokenConsumedBM) -
CsrandTEc e Fl¥™fori=1,...,n, j=1,...,n—1 and k=1 -
k = 1,...,m. The execution semantics of the data-based

R : . X(tokenAg ro.,, A /\ —~tokenAg,) .
exclusive merge gatewdy; is defined by: (A, Foj..]/:\1 AE')))

m

n-1
G(/\ ((tokenAi&oi,G1 A /\ -tokenConsumedBy) —
j:]_ k=1

On receiving a token along the incoming sequence flow,
a token traverses each of the outgoing sequence flows of
the event-based exclusive decision gatev@y expressed
X(tokenAg, Fo, A ﬁtOkeﬂAﬁoj,Gl))). a_s_/\rj‘;i tokenAéLEj. The atomic propositiOIlJoker_1A§i sig-_
nifies the arrival of the token at the catch intermediate

eveng,. When one of the catch intermediate evehtsis

The behaw_our.of the data-based exclusive merge gatemf%gered as defined in LTL byokenAt. A catchEvent
G; is exclusive in the sense that a token is sent alon i i
Ad/\iE{l n-1\(j) "CatchEvery, the token onE; moves

¢
h in nce flow n ken is received’ M€t :
the outgoing sequence Tlow as soon as a token s rece deown the outgoing sequence flovij(FOj,1) denoted as
from one of the incoming sequence flows. The formul 1)
m . okenAt, ro,,,. The formulaA_; -tokenAg, symbolizes the
tokenAto, g, A Ayr; —tokenConsumedBy formalizes the et . J=1 i
N . . o token exits the catch intermediate ev&jtand the consump-
exclusive behaviour of the gateway since it is based on opje ;)
. . ; . ign of all tokens on the other catch intermediate events.
incoming sequence flow rather than all incoming sequence_ " " :
flows Definition 6 (Event-based Exclusive Merge Gateway):
SupposeG; € F%,.. FO € Sg, (FO;,Gy), (G1,FOp) €

Next, the mathematical definitions of event-based €&k and TE € Flem

) - ’ g fori=1,...,n,j=1...,n-1and
clusive decision gateway and event-based exclusive mefge 1 1 The event-based exclusive merge gateay

gateway are given. The sets of event_-based exclusive decisjafy, 5 1 incoming sequence flows is encoded in the same
gateways and e_/ent-basid exclusnE/e merge gz_iteways WS as a data-based exclusive merge gateway.

(jerl]\(l)ted, I(/(lespe_(l:flvely, EbFXgG Eling FXMG‘éNe dde:!nil"g An event-based exclusive merge gateway and a data-
= .onehonesg, imer, Err, Lncl, Lmpen, Lond, LINK, SIgNpa56q exclusive merge gateway are equivalent in terms of
Multi}, Fig"° as a set of none intermediate events for CatCh"ﬁﬂahavioural semantics. As a result of this, the encodings of

the event triggersF ™ as a set of message intermediatgese two gateways are the same as stipulated by Defini-

events for catching the event triggerlé,Tlémer as a set of jions 6 and 4.
timer intermediate events for catching the event triggers

Err H H H
Fig as a set ch error intermediate events for catching they concentrates on an inclusive decision gateway without a
event triggersF " as a set of cancel intermediate events f

i i Cmpen S IYefault flow. The second part is concerned with an inclusive
catching the event trigger§,c ™ as a set of compensationgecision gateway that a default sequence flow is specified.

intermediate events for catching the event triggéﬁé’,”d asa \We let Fpg be a set of inclusive decision gateways and
set of conditional intermediate events for catching the evegl,. : Cs- — B be a function that returns whether a

triggers,FL" as a set of link intermediate events for catchingequence flow is a default flow.

the event triggerst %" as a set of signal intermediate events Definition 7 (Inclusive Decision GatewayBuppose Gy
for catching the event triggers ach{l’E'“'“ as a set of multiple ¢ Fog, FO € Sg, (FO1, G1), (Gu, FO;) € Csr, Spien =
intermediate events for catching the event triggers. XX € Uiez...n{(G1, FO)} A Dispi(X) = true} and TE €

.....

Definition 5 (Event-based Exclusive Decision Gateway)Ff&™fori=1,...,n, j=2,...,nandk=1,..., m If ¢j_s
SupposeG; € F&o ., FOi € Sk, Ej € Uger, FZ, (FOL,G1), € Scona Cf' = 215"\ {0}, Cr € C}', ®cond(G1. FOy))
(G1,Ej), (Ej,FOj;1) € Csr andTE, € F@“ fori=1,...,n, = Cj1andSyep =0 for j =2,..., n, then the inclusive
j=1,....n—1andk=1,...,m The LTL representation of decision gatewag; with no default flow andh—1 outgoing
the event-based exclusive decision gatev@ywith n— 1 sequence flows associated with conditians is modelled

'The definition that follows comprises two parts. The first

outgoing sequence flows is given below: in LTL as:
m
m
G(((tokenAtol,Gl A /\ ~tokenConsumedBy) — G((tokenA&oLG1 A k/\ -tokenConsumed By A
=1
k=1
n-1 /\ C A /\ —|C|) -
X(/\tokenA{«.;l,Ei A ﬁtokenAiEol,Gl))/\ ieCr i€{1,...n-1\Cr
j=1
n-1 m X(/\ tokenAg, ro.., A ﬂtokenAﬁol,Gl)).
(((tokenA@LEj A /\ —-tokenConsumedBy) — i€Cr
j=1 k=1 If Cj-1 = Scond C#” = 2L n—2|' Cre CA”, (I)Conc((Gl, FO]))

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

= ¢j_1 and Spren = {(G1, FOp)} for j = 2,...,n— 1, then X(tokenAb. ko A /\ —tokenAto o)).
the inclusive decision gatewdy; associated with conditions e /\ m

Cj-1 and a default flow @1, FOp) is defined in LTL by:

j€ltkn

m The receipt of one token on each incoming sequence
G(((mkenAﬁol,Gl A /\ —tokenConsumedBy A flow that a token is expected to arrive is detected by
k=1 Ajeir tOKENAEQ, G,. The emission of a token along the out-
/\ G A /\ -¢ A =(Ctr =0)) — going flow G, FOp) after synchronizing the set of incoming
ieCy i€(L,...n=2)\Cr sequence flows$rky is represented a®kenAg, o, .
X(‘/\ tokenAg, Fo,, A -'IOkenAﬁol,Gl))/\ In [46], Volzer puts forwards a brand-new algorithm with
1<Cr " a linear-time complexity for determining if an inclusive
token A A —tokenConsumedBy A merge ggteway is activated. The use of this new algo.nthm in
((Abo.e, k/:\l i substitution for the one advocated by Dumas et al. is valid

as concrete implementation is not specified in Definition 8.
/\ci/\ /\ -¢ A (Cr =0) — P P

i€Cr iE(L,...n=21\Cr Let Fcpg be a set of complex decision gateways &g
22"\ {0} be the set of outgoing sequence flows that are
X(token A —token) . < .) L
(A, Fo, Ao.,)) selected by evaluating the expression of a complex decision
gateway.

The default sequence flow of the gateviayis denoted by
Speen. In the first portion of the definitiorS;ey is an empty Definition 9 (Complex Decision Gatewaygupposeés; €
set as there is no default flow. In contrast, the Sgte) in Fcpe, FO;i € Sk, (FO1, G1), (G1,FO;) € Csr and TE €
the second portion of the definition contains;(FO,) in F@ fori=1,...,n,j=2,..,nandk=1, ..., m The
order to indicate that it is a default flow. behaviour of the complex decision gatew@y with n— 1

The setCA' in the above represents all possible combin@U90Ing sequence flows is represented as:
tions of conditions that hold. To conform with the semantics m
that at least one of the conditions must hold, the empty set G((tOKGnAﬁol,Gl A /\ -tokenConsumedBy,) —
is excluded from the se€?! when there is no default flow. k=1
The setCr, which is an element of4", is the collection of

X token - A —tokenAg .
conditions that are evaluated to true. (/\ A, Fo, 01.6:)

j€Onctd
The use of the seCy in both formulas Ajc, ¢ and
Aiec, tOkenAg, Fo,, guarantees that every activation of an An inclusive decision gateway and a complex decision
outgoing sequence flow is due to the condition associatgdteway both activate one of the combinations of the out-
with the outgoing sequence flow is evaluated to true. going sequence flows. Unlike an inclusive decision gateway,
token moves down the default sequence flow representedaasomplex decision gateway determines the collection of
tokenAg, ro, in the second temporal formula @t = 0 is outgoing sequence flows to be selected by evaluating an
true. expression. The result values of the evaluation are contained

The BPMN specification does not stipulate how the actjir—' the S?tOA“d' AS Opcig i 2 non-empty set, the behavioural
vation of an inclusive merge gateway is decided. Dumas %qr_nantl(cj:sbthat one Ior :jnor_e_ outgoing sequence fIO\(/jvsTa;]re
al. [27] close the gap by proposing a method that finds ofetivate yfahcomp ex decision gatev]:iay |s_preseCrIV(|e| d ©
whether an inclusive merge gateway is enabled in linear tir'naec.t'vat'onkO the ‘?“tgo:j‘g _seq;ence ows 1S modetied as
In what follows, we build upon their work and abstract away" i€Cacd tokers, Fo; In Definition 9.

the detailed implementation of the propounded algorithm'Compared to a data-based exclusive merge gateway, an

We defineFiue as a set of inclusive merge gateways anEklent-based exclusive merge gateway and an inclusive merge

(1,...n-1) ; ; -)
ITen € 2 \ {0} as the set of Incoming sequence flow ateway, the exact behavioural semantics of a complex merge
that tokens are expected to be received from an upstre

h inclusi .) d Th Hieway depends on an expression in lieu of a predefined
whenever an inclusive merge gateway is activated. The rging behaviour. In the following definition, an upstream

Ik is obtained by checking which incoming sequence flowg, o el fork gateway is utilized to illustrate the use of a

have one or more tokens. complex merge gateway for implementing a discriminator

Definition 8 (Inclusive Merge GatewayBupposeG; € pattern. Our attention is confined to this case as other
Fiva, FOi € Sg, (FOj,Gy), (G1,FO) € CsrandTE, € FEeE”“ merging patterns of a complex merge gateway are merely
fori=1,...,n j=1,..,n-1andk =1, ..., m The variants of the formalized execution semantics.Myc we
encoding of the behaviour of the inclusive merge gatewalgnote a set of complex merge gateways.
G; is given by: o

Definition 10 (Complex Merge GatewaygupposeG; €
G((N\ tokenAtos, A /\ -tokenAtan Femo FO € Sk (FO;, Gu). (Gi,FO) € Cor and T €

iClmen L1\ Flemfori=1,...,n,j=1,..,n-1 .andk =1...m

m If an upstream parallel fork gateway is placed prior to the
/\—dokenConsumedBM) - complex merge gatewags; for modelling a discriminator

k=1 pattern, then the execution semantics of the complex merge

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

gatewayG; is specified as: catch intermediate evefit; is modelled by:
n-1 m
G(A ((tOkenAionl,Gl A A ~tokenAto, 6, A G(((tokenAﬁol,E1 A /\ —tokenConsumedBy) —
it i€l -1\ (1) k=t

m
/\ ~tokenConsumedBy) — X(tokenAg, A —.tokenAtol,El))/\
k=1

((tokenAg1 A catchEveng, A
X(tOkenA&l’Fon A ﬂtokenAﬁoh,Gl/\

m
/\ ((tokenAko,, 6, A /\ —-tokenConsumedBy) —
j2€{L,...n=1}\{j1} k=1
—tokenAko,, 6,/ X(tokenAg, ro, A ﬂtokenAgl))).
i2€{1,...n-1}\{j2}
m
/\ —tokenConsumedBy) — A catch compensation intermediate event is not allowed
k=1 to utilize in a normal flow. This is expressed as €
X(-'tOkenAﬁojz,Gl))))). I'se \ {Cmpen. The arrival of a token aEj, the placemer_lt
of the token onE; and the occurrence of the intermediate

. L _event trigger are denoted kpkenAto, g,, tokenAg, and
The most important feature of a discriminator pattern is t@atchEvengl respectively.

traverse the first received token along the outgoing sequence

flow and discard all other received tokens. The former is\y, definel= = {Msg, Cmpen,Link, Sign, Multi} F:\é_sg

expressed akenAg, Fo, and the latter is formalized by: 5 pe a set of message intermediate events for throwing

the event triggersF7™" to be a set of compensation

intermediate events for throwing the event triggﬁ%‘k to
be a set of link intermediate events for throwing the event

triggers,FlsEign to be a set of signal intermediate events for

((tokenAﬁojz,Gl/\
j2€{L....n=1}\{j1}

-tokenAto, 6, A

i2€(1,...n=1)\{j2} . . MUl .
m throwing the event triggerdr 2™ to be a set of multiple
/\ ~tokenConsumedBy) — intermediate events for throwing the event triggers.
k= Definition 13 (Throw Intermediate EventBupposeE; €
X(ﬁtOKGHAﬁojz,Gl)). UU‘EFE FI(rE’ FO¢, FO, € Sf, (FO]_, El), (E]_, FOz) € Cse and
TE« € Fl¥™for k = 1,..., m. The throw intermediate event
In the same spirit, the execution semantics of start eveht, is specified in LTL as:
catch intermediate event, throw intermediate event and end m
event is further specified in the form of LTL formulas. We G(((tokenAﬁC,LE1 A /\ -tokenConsumedBy) —
defineT'sge = {None, Msg, Timer, Cond, Sign, Multi Let k=1

F2" be a set of none start evenr%';g be a set of message X(tokenAg, A —tokenAto, ¢))/\
1 1,51

start eventsF{"" be a set of timer start event§52" be a
set of conditional start eventES?" be a set of signal start

m
events and=¥U"" be a set of multiple start events. ((tokenAgl A Al ~tokenConsumedgy) —

Definition 11 (Start Event)SupposeE; € Ugere: Fe
FO; € S and €y, FO;) € Csr. The behavioural semantics X(throwEveng, A tokenAg, ro, A ﬁtOKenAﬁl)))-
of the start evenE; is encoded as:

In contrast to a catch intermediate event, a throw interme-

diate event is triggered immediately on receipt of a token.
The firing of the intermediate evef; is encoded in LTL

(tokenAgl — X(tokenAg, ro, A ﬂtokenAgl))). asthrowEveng, .

G((catch Event, — XtokenAg,)A

A token is created whenever a start event trigger occurs."et T'ee = {None, Msg, Err, Cncl, Cmpen, Sign, Term,

The LTL formula catchEvent, — XtokenAg, captures Mullil. Assume a S%Of none end everizg™, a set of
the relationship between the occurrence of a start evénessage end eveﬂ?% 9 a set of error end evenl%’Er, a set

trigger and the generation of a token. The generated tokefincancel end evenl'S‘E:EC', a set of compensation end events
then leaves the start event and traverses the outgoing BETPeN 3 set of signal end even Sign 5 set of terminate

E)
quence flow. These correspond to the formiokenAg, — Torm . i
X(tokenAg, o, A —-tokenAt,). end eventd= 7™ and a set of multiple end evenl@E"E .

Definition 12 (Catch Intermediate EventBupposeE; e Definition 14 (End Event)Suppose E1 € Ugeree FZe
UcergvicmpenFie: FO1, FO2 € Sk, (FO1,E1), (E1,FOz) € FOp € Sk, (FO1,E1) € Csr and TEx € FIE™ for k = 1,

CseandTEy € FEeE’m fork=1,..., m The behaviour of the ..., m. If E; € FEE”Q, then the execution semantics of the

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

k=1

end eventE; is represented in LTL as: SP,
m
E
G(((tokenAﬁol,E1 A /\ -tokenConsumedBy) — FO, O—»FO,

X(tokenAg, A ﬁtokenAtol,El))/\

(tokenAg1 — X(tokenConsumedByA ﬁtokenAtl))). Fig. 8. The initiation of a subproce&P,

If E1 € Ugeree\nong FZg: then the end ever; is expressed
as: "
m ((tokenAI\1 A /\ -tokenConsumedBy) —
G(((tokenAﬁol,E1 A /\ -tokenConsumedBy) — k=1

k=1

n
F(A tokenAk, ro A —-tokenAj\l))).
X(tokenAg, A ﬂtokenAﬁol,El))/\ i=2

Consider the taskd; with multiple incoming sequence
flows and one outgoing sequence flow. The formal be-
havioural semantics is encoded as the first formula. The
—-tokenAgl))). execution of the task\; commences whenever a token is
received from one of the incoming sequence floRS; Ay).
Upon receipt of a token from the incoming sequence floWhe associated LTL representation is defined by the follow-
(FOy, E1), the end evenE; consumes the token as statednd formulas:

(tokenAg1 — X(throwEveng, A tokenConsumed By

in both the first and second LTL formulas. As opposed to m

a none end event that does not result in the throwing of an (tokenAgo, a, A /\ -tokenConsumedBy) —
event trigger, end event results which occur in other types of k=1

end events are modelled ggowEveng, in the second LTL X(tokenAg, A —tokenAgo, a,)

formula.

We leave the topic of the formal definitions of events for m
now and move on to tasks and subprocesses. Assume a set (tokenAgq, , A, A /\ ~tokenConsumedBy) —
of tasks is denoted b¥r. ket

Definition 15 (Task):Suppose; € Fr, FO; € Sg and TE¢ X(tokenAg, A —tokenAto, , a,)-

€ FESErm fori =1, 2o N andk =1, ..., mIf (Foi’Al?’ A token is emitted on the outgoing sequence flow after the
(A, FOn) € Csr .for J=1,...n-1, then the LTL epcod|ng termination of the task;. Since the duration for performing
of the.taskAl with n— 1 incoming sequence flows is showrh task varies, a temporal operator F is utilized to indicate that
below: the atomic propositiortokenAf, ro, holds solely at some
point in the future.

The LTL formula of the taskA; with one incoming
sequence flow and multiple outgoing sequence flows can be

m
G(((tokenA&ol,A1 A /\ —-tokenConsumedBy) —
k=1

X(tokenAg, A “tOKG”AfOLAl))/\ obtained by combining the preceding formula:
m
(tokenAgo, A, A /\ -tokenConsumedBy) —
m k=1
((tokenAﬁonfl,A1 A /\ -tokenConsumedBy) — X(tokenAf, A —tokenAo, a,)

k=1
with the definition of a parallel fork gateway as well as

X(tokenAg, A —token)/\ e)
(ks Aoy 1.a) substituting the temporal operator F for X in the formula

m of Definition 1. This is due to the facts that (i) a task with
((tokenAI\I A /\ —tokenConsumedBy) — one incoming sequence flow is just a special case of a task
k=1 with multiple incoming sequence flows; and (ii) the traverse
F(tOKGHAI\l,Fon))). of a token along each outgoing sequence flow of a task is
similar to the behaviour of a parallel fork gateway.

If (FO1,A1), (A1,FOj) € Csr for j = 2, ..., n, then the In BPMN, the notion of hierarchical structures is under-
behaviour of the tasik; with n— 1 outgoing sequence flowspinned by subprocesses. Figures 8 and 9 delineate, respec-

is expressed in LTL as: tively, the initiation and termination of a subprocess.
m When a token arrives from the flow objdeD; (Figure 8),
G(((tokenAtol,A1 A A —-tokenConsumedBy) — the parent-level token is placed inside the subproS&snd
k=1 the none start everi; is triggered. A child-level token is
X(tokenAf, A ﬂtokenAﬁol,Al))/\ then generated andffered to the outgoing sequence flow
that connecgk; and the flow objecFO..

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

These encompass message, timer, error, conditional, signal,
multiple and cancel. We now consider the first six kinds
of catch intermediate events as depicted in Figure 10. The
cancel intermediate event is discussed later in a definition
pertaining to the behavioural semantics of a transaction.
Attaching a catch intermediate evelit to the boundary
of an activity A; signifies that the activity; is interruptible
In Figure 9, the receipt of the child-level token alongrigure 10). Whenever a token reaches the interruptible
the incoming sequence flow emanating from the flow objegttivity A;, an additional token is produced and placed
FO: triggers the none end evenks. The none end eventon the catch intermediate eveRi. The tokens, which are
Ex consumes the child-level token. The subproc&% |ocated at the activityd; and the catch intermediate event
terminates when all other child-level tokens are consumgli, are sent a|ong the outgoing sequence flow and consumed
and the parent-level token is then sent down the outgoifgspectively when the execution of the activity completes
sequence flow connectirg?, and the flow objectO,. prior to the occurrence of the catch intermediate event
Let FEMPedpe a set of embedded subproces§&$'®be If the happening of the catch intermediate evéht is
a set of reusable subprocesse§g' be a set of reference earlier than the termination of the activiy, the activity
subprocesses anbistx: FETP* U FEeeu FRS' — B be a A, ceases immediately. The additional token exits the catch
function that returns whether a subprocess is a transactiorimiermediate evenE; and traverses the outgoing sequence
not. We denote b§5,:_(sp1>, Fgggsl), Fgg{;gl), FEEE@H andCgrsey flow. Simultaneously, the token resided in the activityis
the sets of flow objects, none start events, none end evegtsmsumed.
terminate end events and sequence flowSBf We definel'x = {Msg, Timer, Err, Cond, Sign, Multi
Definition 16 (SubprocessfSuppose SP, € Fgg"bed U andI'sp = {Embed, Reuse, RpfThe sets of activities and

FgguseuF_ggf, ®is7x(SR) = false,FO; € S, FO, € Spemy, transactions are given ya = Fr U Ugerg, Fggdangxsm =
TE € Fl@™fork = 1,..., m If Ey € FNO% (FOL,SR) (XX € Upery, Fgp A Distx(¥) = true). We let@ 0 - Fy

SP, A, tokenConsumedBy
£ Although there are ten sorts of catch intermediate events,
FO,—»0 FO, merely seven of them are capable of interrupting an activity.

Fig. 9. The termination of a subproceSB

€ Csr and E1,FO,) € Cspsmy, then the initiation of the \ Stx — 2UYsrxuemenFie be a function returning the set of
subproces$P is formally defined as follows: intermediate events attached to the boundary of an activity
m that is not a transaction.
(3(((token,o\;zol’spl A A —~tokenConsumedBy) — Definition 17 (Exception)Suppose Ay € Fy, E; €
et Uoer, Fit: @ ™(A) = {Ea}, FOL, FOp, FO; € Sk,

(FO1, A1), (A1, FO,), (E1, FO3) € Csr and TEx € FL&™

X(tokenAgp, A throwEvent, A —token)/\ ' -
($n El Ako,sm) for k= 1,...,m. The interruption of a tasla; caused by an

(catchEvergl — X(tokenAg,) A intermediate event; is represented as:
m
(tokenAgl 5 X(tokenAg, ro, A ﬂtokenAgl))). G(((tokenAiEol,A1 A 101 —-tokenConsumedBy,) —
If E e F@w (FOL, E1) € Cgpsmy, (SR, FO,) € Csr and X(tokenAg, A tokenAg, A ﬂtokenAﬁobAl))/\
e bonawioe ot the trminatan of he subproce & (okenA A scachEvers
denoted as:

m
/\ -tokenConsumedBy) —
k=1

N2
G(((tokenAﬁol,E1 A /\ -tokenConsumedByss A =
=1 J F(tokenAk, ro, A —tokenAg, A ﬂtokenAgl))/\

m
/\ —tokenConsumedBy) — ((tokenAt1 A catchEveng, A
k=1
m
X(tokenAg, A ﬁtOkeﬂAﬁol,El))/\ /\ —~tokenConsumedBy) —
k=1

(tokenAg1 — X(tokenConsumedBy, A ﬂtokenAgl))/\
X(tokenAg, ro, A ~tokenAg, A ﬁtokenAixl))).

ny
((A tokenConsumedByA tokenAgp) —

[} The normal flow and exception flow are specified, respec-

tively, in LTL by:

X(—tokenAgp /\tokenAQPl,Foz))). ((tokenAj\ A ~catchEvent A

The placement of the parent-level token withBP m
is represented by tokenAtp. Determining whether /\—-tokenConsumedBM)e
all child-level tokens are consumed is formulated as k=1

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

A1 A1
FO1—¥ —»FO; FO1—>| —»FO;
FO3 FOs3
Aq A
FO—» —»FO, FO— —»FO,
®
Eq Eq
FO3 FO3
)
A1 A1
FO— —>FO, FO— —>FO,
FO3 FO3

Fig. 10. A taskA; interrupted by an intermediate evest

FO1_’

Error and cancellation in a transactibn

the set of markers for a task.

Definition 18 (Transaction)SupposeT; € Ugerg, Fdp
(D|s'|'x(T1) = true, E; € Fggne, E; € FlcEmpen, Esz € FFE"’ E4
€ FO, Es € FRO"® Ay, A, € Fr, FOy, FO,, FO3, FO4 €
Sk, D ™(Ty) = (Es, Ea), O (AY) = (Ez), Drm(A2)
= {Mc}, (FO1, T1), (E1, A1), (A1, Es), (T1,FO2), (Es, FOs),
(E4,FO4) € Csr and E2,A2) € Cpa. The interruption of
the transactionT; by the error intermediate ever; is
formalized by:

Fig. 11.

F(tokenAf, ro, A —tokenAg, A ﬁtokenAtl))

and

m
((tokenA&1 A catchEvent, A A -tokenConsumedBy) —
k=1

X(tokenAt, ro, A ~tokenAg, A ﬂtokenAi\l))

as stated in Definition 17.

The receipt of an error intermediate evefj leads to
the immediate termination of the transactidn as shown
in Figure 11. The token that is placed & moves down
the outgoing sequence flow and no compensation activity is
invoked.

The triggering of the cancel intermediate evéntresults
in the token resided in the none end evdf to move
in reverse direction. When the token arrives at the activity
A, another token is generated and put on the compensation
intermediate evertE,. The newly created token traverses the
outgoing directed association. Upon receipt of the token, the
compensation activityd, is executed. On completion of the
compensation activity,, the token situated a4; keeps on
moving backward until it reaches the none start event
The arrival of the token aE; symbolizes the transactiory
is cancelled and causes the token locatdfl,ab move down
the outgoing sequence flow.

Let I'n. = {None, Link, SY = {{M.}, {(Mw}, {Mc},
{Mr, Mc}, {Mmi, Mc}), Cpa be a set of directed associations,
oM™ gy 2Urrenw Fie be a function that returns
the set of intermediate events attached to the boundary of a
transaction andbty : F1 — S¥ be a function that returns

G((tokenAt3 A catchEvent) —

X(tokenAg, ro, A ~tokenAt, A —tokenAg, A
—tokenAg, a, A ~tokenAg, A
-tokenAf, g, A -tokenAg, A —tokenAg, A

ﬂtokenAga)).

The cancellation of the transactidn is modelled as:

G(((tokenAg4 A catchEvend, A tokenAg,) —

X(tokenAj, g, A ﬁtokenAES))/\
((tokenAg1 A catchEvert, A tokenAf, g,) —
X(tokenAk, A tokenAg, A ﬂtokenAl\l,ES))/\

((tokenAgl A catchEverd, A tokenAg,A
catchEvent,) —
X(tokenAg, A, A ﬂtokenAgz))/\

((tokenAgl A catchEverg, A tokenAg, a,) —
X(tokenAg, A ﬁtokenAtz,Az))/\

((tokenAg1 A catchEvent, A tokenAg,) —
F(tokenAg, s, A —tokenAf, A ﬂtokenAI\Z))/\

((tokenAgl A catchEvert, A tokenAg, a,) —

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

The LTL specifications logically imply the following condi-
tional reachability property:

G| (tokenAg, g, A C1) — FtokenAf, |.

Literally, the two derived formulas mean that (i) a token
will eventually arrive at the sequence flow betwdenand
G, if a start event trigger occurs; and (ii) the task will
eventually reach an execution state if a token is received and
the conditionc; is met. Likewise, the behavioural semantics
((tokenAgA A catchEvent, A tokenAg,) — of the data—ba_lsed exclusive merge gatewayand th_e_r)one
end eventE;, is encoded through the use of Definitions 4
and 14 as:

Fig. 12. BPMN process

X(tokenAg, A ﬁtokenAtl,Al))/\

X(tokenAg, ro, A —~tokenAg, A —-tokenAgl))).

G (tokenA X(token A —tokenA)/\
In Definition 18, the backward movement of the token (huc: = X(ALz . huc:)

from Es to the sequence flow connectidy and Es is
expressed as: (tokenAI\&G2 — X(tokenAg, g, A ﬂtokenAI\&Gz)))
((tokenAg1 A catchEveng, A tokenAg,) — and
X(’[Oken/A,&lE5 A —|t0kenA§5)). G((tOkenAéz,Ez - X(tOkenAtz A _'tOkenAéz,Ez))A

The token onE4 ultimately travels down the outgoing (tokenAg _, X(tokenConsumedBy —tokenAg)))
sequence flow is denoted in LTL by: : 2))

Combining the LTL formulas based on Definitions 15, 4

((tokenAgl A catchEvent, A tokenAg,) — and 14, we obtain another reachability property:

X(tokenAt, ro, A —~tokenAg, A ﬁtokenAgl)). G(tokenAj, — FtokenAg,).

The formula is interpreted as a token placed on the fask

VI. Anarysis oF BPMN WorkFLows . .
_ o _ _ will eventually arrive at the none end evefj.
To illustrate the utilization of the defined semantics for a | g similar way, we assume thet is true. The encoding

rigorous analysis of BPMN models, we consider the BPM; G (Definition 3) is given by:
process in Figure 12. The none start event, data-based exclu-

sive decision gateway, data-based exclusive merge gatewé{(tokenAg G, A C2) — X(tokenAg, a, A ~tokenAg, o))'
and none end event are labelled wih, G;, G, and E, o v o

respectively. Applying Definition 11, the execution semanticfhe pehaviour of tasks\, and Az is expressed in LTL

of the none start everl;, is represented as: (Definition 15) as shown below:

G((catch Event — XtokenAg,)A G((tokenAJ_:,lyA2 — X(tokenAf, A ﬂtokenA@,bAz))/\

(tokenAg1 — X(tokenAg, g, A ﬂtokenAgl))). (token At, — F(tokenAg, A3)))
The temporal formula infers the following reachability
property: G((tokenA}\z,A3 — X(tokenAg, A ﬁtokenAI\Z,As))/\
G(catchEverg, — FtokenAg, g,).
We assume that; evaluates to true. The behaviour of the (tOKG”Al\s - F(tokenAI\&Gz))).
data-based exclusive decision gatev@yand the taslkd; is))
modelled in LTL according to Definitions 3 and 15 by: Consider these three forml_JI_as and the '—TL expressions of
G2 andE,, the following conditional reachability property is
G((tokenAgLG1 AC1) = obtained:

G((tokenAghG1 ACp) — FtokenAgz).
X(tokenAg, A, A ﬁtokenAgl,Gl))

In addition to the reachability properties, the other soundness
and criterion for the BPMN process in Figure 12 is the fulfillment
of liveness properties. Based on the LTL specifications of the
G((tokenA@l,Al — X(tokenAg, A ﬁtOkenAéLAl))/\ BPMN process, the following liveness formula is yielded:

(tokenAI\1 - F(tokenAj\l,Gz))). G(catchEveng1 - FtokenAgz).

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

REFERENCES

[1] OMG, “Business process modeling notation, v1.1,” Jan. 2008, http:
//www.bpmn.org; accessed January 7, 2009.
[2] S.White and D. MiersBPMN Modeling and Reference Guid&uture
Strategies Inc., 2008.
. . 3] OMG, “Business process modeling notation, v1.2,” Jan. 2009, http:
Fig. 13. BPMN process with a deadlock el J/www.bpmn.org; :fccessed Februa?y 13, 2010. P
[4] O. M. Group, “OMG unified modeling languaf® (OMG UML), su-
perstructure version 2.2,” Feb. 2009, htpwww.omg.orgspe¢UML/
. . . 2.2/Superstructure; accessed Feb 13, 2010.
Stated in words, any occurrence of a start event trigger wiljs] E. Clarke, 0. Grumberg, and D. Pelddpdel Checking MIT Press,

eventually lead to the happening of the none end event. 1999.

. . . .] M. Huth and M. Ryan,Logic in Computer Science: Modelling and
The satisfaction of the liveness property ascertains thé? Reasoning about Systen2hd ed. Cambridge University Press, 2004.

every process instance of Figure 12 will finally terminate(7] I. Raedts, M. Petkovic, Y. Usenko, J. van der Werf, J. Groote, and
The execution semantics Bf guarantees the consumption of L. Somers, “Transformation of BPMN models for behaviour analysis,”

; " in MSVVEIS 20072007, pp. 126-137.
the token whenever the process instance ends. Addltlonall[)é] R. Dikman. M. Dumas pgn d C. Ouyang, “Semantics and analysis

every graphical construct in the BPMN process has the of pusiness process models in BPMNfiformation and Software
possibility of being executed in accordance to the reachability Technology vol. 50, no. 12, pp. 1281-1294, 2008.

roperties. Hence, we can conclude that the BPMN modéil A. Ratzer, L. Wells, H. Lassen, M. Laursen, J. Qvortrup, M. Stissing,
prop M. Westergaard, S. Christensen, and K. Jensen, “CPN tools for editing,

in Figure 12 is sound. simulating, and analysing coloured petri nets”IGATPN 2003 ser.
Through the substitution of the data-based exclusive merge LNCS 2679. Springer-Verlag, 2003, pp. 450-462.

i i i 0] C. Ou-Yang and Y. Lin, “BPMN-based business process model
gateway in Figure 12 by a pa-raIIeI .Jom. gateway, we g& feasibility analysis: A Petri Net approachiternational Journal of
another BPMN process as depicted in Figure 13. To check production Researghvol. 46, no. 14, pp. 3763-3781, 2008.
the validity of the BPMN process, the parallel join gatewaji1] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile process

is labelled withGs. According to Definition 2, the behaviour (Parts 1 and II),"Information and Computatigrvol. 100, pp. 1-77,

. . . - . 1992.
semantics of5s is specified in LTL as: [12] R. Milner, “The polyadicr-calculus: A tutorial,” inLogic and Algebra
of Specification, Proceedings of International NATO Summer School
G (tokenAAl,G3 A tokenAI\3,G3) N vol. 94. Springer-yer!ag, 1993, pp. 203-246. .
[13] C. Hoare,Communicating Sequential ProcesseBrentice-Hall, 1985.
X(tokenA&,&EZ/\ [14] A. Bog, Introduction to PiVizTogl Hasso Plattner Institute, Univer-

sity of Potsdam, 2006, httbpt.hpi.uni-potsdam.dpeulyPiworkflow/

Simulatoypiviztool-intro.pdf; accessed January 13, 2009.
—-tokenAf, g, A —tokenAk,c,) |- [15] ——, “A visual environment for the simulation of business pro-

cesses based on the pi-calculus,” Master’s thesis, Hasso Plattner Insti-

- : . tute, University of Potsdam, 2006, hifibpt.hpi.uni-potsdam.dpuly
Since eitherc, or ¢, holds, the parallel join gatewagss PubligFrankPuhlmant\njaBogThesisFinal.pdf; accessed January 13,

is never executed. The BPMN process in Figure 13 does 2009.
not satisfy the liveness property defined earlier owing 1661 A. Bog and F. Puhlmann, “A tool for the simulation afcalculus

P systems,” in Open.BPM 2006: Geschaftsprozessmanagement mit
the presence of deadlock. Consequently, it is regarded as an Open Source-Technologier2006, htty/bpt. hpi.uni-potsdam. deuly

unsound BPMN model. PubligFrankPuhlmanfPiSimulator openBPM.pdf; accessed January
9, 2009.

[17] A. Bog, F. Puhimann, and M. Weske, “The PiVizTool: Simulat-
ing choreographies with dynamic binding,” iDemo Session of
the 5th International Conference on Business Process Manage-

. o . . ment 2007, http/bpt.hpi.uni-potsdam.deulyPubligFrankPuhimanh

An unambiguous definition of the execution semantics of bpm2007-piviztool.pdf; accessed February 17, 2008.
BPMN is of paramount importance_ The absence of a prec[gé] F. Puhlmann, “Soundness verification of business processes specified
semantics hampers (I) the semantic analysis of BPM’B[Q] in the pi-calculus,” inCooplS 2007ser. LNCS 4803, 2007, pp. 6-23.

.. e . . S. Briais, The ABC User’s Guide2005, httgy/lamp.epfl.cir~sbriaig
(i) the verification and reasoning on BPMN models; an abgabc_ug.pdf; accessed February 17, 20%8_ p-ep

iii) the equivalence checking of BPMN diagrams. This papg20] P. Wong and J. Gibbons, “A process semantics for BPMN, Pin-
(iii) q g g pap
has bridged the gap by formalizing the token-based semantics ceedings of the 10th International Conference on Formal Engineering

. . . Methods ser. LNCS 5256, 2008, pp. 355-374.
of BPMN in terms of LTL. The behavioural mechanism of21] —_ “Verifying business process compatibility.” Broceedings of the

each graphical construct has been codified using one or more 8th International Conference on Quality Softwa2908, pp. 126—131.
LTL formulas. Our work is regarded as a Supp|ement {82] F. S. E. Ltd.,Failures-Divergence Refinement: FDR2 User Manual

the dficial BPMN documentation. It contributes to both the 3/':;' 2200023(,)0?.tp‘/www.fsel.conﬁfdr2_d0wnl0ad.html; accessed Jan-

theoretical and practical facets of BPMN. [23] P. Wong and J. Gibbons, “A relative timed semantics for BPMN,”
A promising line of inquiry is to further explore the Electronic Notes in Theoretical Computer Scigneel. 229, no. 2,
. " . ip pp. 59-75, 2009.
applicability of the formal semantics. Specifically, we plar[1zéﬂ “Formalisations and applications of BPMNScience of Com-
to construct a workflow engine that is based on the proposed puter Programming2009.
semantic foundation. Another possible direction is to adagbl R. Cavada, A. Cimatti, E. Olivetti, M. Pistore, and M. RovéiilJISMV

our LTL-based semantics to BPMN 2.0 [47]_ The BPMN g.olOSUser Manual 2002, httpynusmv.irst.itc.it; accessed January 20,
2.0, like BPMN 1.2, does notfter a well-founded execution [26] v. Lam, “Formal analysis of BPMN models: A NuSMV-based ap-
semantics using mathematical techniques. Extending our proach, International Journal of Software Engineering and Knowl-

work to BPMN 2.0 is relatively easy since the operationT]I edge Engineeringvol. 20, no. 7, pp. 987-1023, 2010.

VII. CoNCLUSIONS

. . . . 27] M. Dumas, A. Grosskopf, T. Hettel, and M. Wynn, “Semantics of
semantics of BPMN 2.0 is considered as a variant of the oN€" gangard process models with OR-joins,” @TM 2007 ser. LNCS

given in BPMN 1.2. 4803, 2007, pp. 41-58.

(Advance online publication: 27 February 2012)

TAENG International Journal of Computer Science, 39:1, [JCS 39 1 03

[28] E. Borger and B. Thalheim, “A method for verifiable andigatable
business process modeling,” idvances in Software Engineering,
Lipari Summer School 2003er. LNCS 5316, 2008, pp. 59-115.

[29] A. Grosskopf, “xBPMN: Formal control flow specification of a
BPMN-based process execution language,” Master’s thesis, Hasso
Plattner Institute, University of Potsdam, 2007, Httgww.myhpi.
de/~alexander.grosskopBPMN _thesis.pdf; accessed November 14,
2010.

[30] V. Lam, “Equivalences of BPMN processe§ervice Oriented Com-
puting and Applicationsvol. 3, no. 3, pp. 189-204, 2009.

[31] D. Auer, V. Geist, and D. Draheim, “Extending BPMN with
submifresponse-style user interaction modeling, d&C 2009 2009,
pp. 368-374.

[32] S. Mazanek and M. Hanus, “Constructing a bidirectional transforma-
tion between BPMN and BPEL with a functional logic programming
language,’Journal of Visual Languages and Computirgl. 22, no. 1,
pp. 6689, 2011.

[33] L. Sanchez-Gonzalez, F. Ruiz, F. Garcia, and J. Cardoso, “Towards
thresholds of control flow complexity measures for BPMN models,”
in SAC '11 2011, pp. 1445-1450.

[34] O. Kopp, F. Leymann, D. Schumm, and T. Unger, “On BPMN process
fragment auto-completion,” iZEUS 20112011, pp. 58-64.

[35] R. Miller and A. Rogge-Solti, “BPMN for healthcare processes,” in
ZEUS 20112011, pp. 65-72.

[36] F. Maggi, M. Montali, M. Westergaard, and W. van der Aalst, “Mon-
itoring business constraints with linear temporal logic: An approach
based on colored automata,”8PM 2011 ser. LNCS 6896, 2011, pp.
132-147.

[37] M. Gambini, M. La Rosa, S. Migliorini, and A. ter Hofstede, “Au-
tomated error correction of business process modelsBRM 2011
ser. LNCS 6896, 2011, pp. 148-165.

[38] R. Jagadeesh Chandra Bose and W. van der Aalst, “Abstractions in
process mining: A taxonomy of patterns,” BPM 2009 ser. LNCS
5701, 2009, pp. 159-175.

[39] J. Carmona, J. Cortadella, and M. Kishinevsky, “Divide-and-conquer
strategies for process mining,” BPM 2009 ser. LNCS 5701, 2009,
pp. 327-343.

[40] R. Jagadeesh Chandra Bose and W. van der Aalst, “Trace alignment in
process mining: Opportunities for process diagnosticsBRM 2010
ser. LNCS 6336, 2010, pp. 227-242.

[41] D. Fahland and W. van der Aalst, “Simplifying mined process models:
An approach based on unfoldings,” BPM 2011 ser. LNCS 6896,
2011, pp. 362-378.

[42] M. Pesic, H. Schonenberg, and W. van der Aalst, “Declarative work-
flow,” in Modern Business Process Automafi@®10, pp. 175-201.

[43] M. Westergaard, “Better algorithms for analyzing and enacting declar-
ative workflow languages using LTL,” iBPM 2011 ser. LNCS 6896,
2011, pp. 83-98.

[44] R. Khalaf and F. Leymann, “Coordination for fragmented loops and
scopes in a distributed business process,BPM 2010 ser. LNCS
6336, 2010, pp. 178-194.

[45] V. Lam, “Foundation for equivalences of BPMN models,” submitted
for publication.

[46] H. Vdlzer, “A new semantics for the inclusive converging gateway in
safe processes,” iBPM 201Q ser. LNCS 6336, 2010, pp. 294-309.

[47] OMG, “Business Process Model and Notation (BPMN), version 2.0,"
Jan. 2011, httgwww.omg.orgspe¢BPMN/2.0; accessed May 23,
2011.

(Advance online publication: 27 February 2012)

