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Abstract—In this paper, we investigate the search perfor-
mance of an improved particle swarm optimizer with inertia
weight (PSOIWα) for multi-objective optimization. The basic
idea of the proposed PSOIWα, here, is to introduce a localized
random search into the original PSOIW to reinforce its search
ability for improvement of search performance. To demonstrate
the effectiveness and search effect of the proposal, computer
experiments on a suite of 2-objective optimization problems
are carried out by an aggregation-based manner. We show
the distribution status of the resulting Pareto-optimal solutions
corresponding to each given problem by respectively using three
kinds of dynamically weighted aggregations, point out which
one is the most suitable for acquiring good search result among
them, and clarify the search characteristics and performance
effect of the PSOIWα.

Index Terms—multi-objective optimization, swarm intellin-
gence, particle swarm optimizer with inertia weight, hybrid
search, weighted sum method, dynamically weighted aggrega-
tion.

I. I NTRODUCTION

T HE process of optimizing simultaneously two and more
conflicting objectives subject to certain constraints is

called multi-objective optimization (MOO) [1], [3]. The
treatment technique is very important to indicate rational
potentiality factors in a given MOO problem even if any
complicated constitution and evaluation. So far, MOO has
been widely applied in various areas of science, technology,
industry, finance, automobile design, aeronautical engineer-
ing, daily living and so on [5], [21].

Traditional optimization methods such as many gradient-
based methods are difficult to treat with the true multi-
objective case, because they were not designed to search
multiple optimal solutions. Normally, a MOO problem has
to be converted to a single-objective optimization (SOO)
problem before the optimization. Thus the search generates
a singlePareto optimum for each run of the optimization,
and that the obtained solutions are highly sensitive to the
weight vector used in the converting process. Nevertheless,
the issue of adopting the way is to how to ensure that the
obtained solutions satisfyParetooptimality1.

Since the optimization methods of evolutionary computa-
tion (EC) can obtain plural candidate solutions, i.e. individu-
als in a population, it seems naturally to use them in MOO for
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1Pareto optimality, named after Italian sociologist and economist Vilfredo
Pareto (1848-1923), is a situation which exists when economic resources and
output have been allocated in such a way that no-one can be made better
off without sacrificing the well-being of at least one person.

finding a group ofPareto-optimal solutions simultaneously.
According to the distinguishing features of group search, the
use of EC methods for dealing with MOO problems has
significantly grown and has been found to be successful over
the last decade [4], [14].

As a new member of EC, particle swarm optimization
(PSO) [13] is an adaptive, stochastic, and population-based
optimization technique. Based on the special information
exchange, intrinsic memory, and directional search of the
technique, it has higher search ability in optimization com-
pared to the other members such as genetic algorithms and
genetic programming [16], [17], [28], [29]. Although the
search performance and effect of some PSO methods in
MOO has been studied and investigated [22], [23], there are
insufficient results for systematically solving MOO problems
by an aggregation-based manner, and analyzing the potential
characteristics in details from the obtained experimental
results by using different dynamically weighted aggregations,
respectively.

For resolving the above situation, in this paper we in-
vestigate the search performance of an improved particle
swarm optimizer with inertia weight (PSOIWα) to MOO.
The basic idea of the proposed PSOIWα, here, is to introduce
a localized random search (LRS) [30] into the original
PSOIW [18] to reinforce its search ability for improvement
of search performance. The construction and execution of the
algorithm are the most simple and easy-to-operation in which
a hybrid search (i.e. a compound made up of the PSOIW
and LRS) is implemented to findPareto-optimal solutions
corresponding to a given MOO problem.

To demonstrate the effectiveness and performance ef-
fect of the PSOIWα, computer experiments on a suite
of 2-objective optimization problems are carried out by
a weighted sum method. We show the distribution status
of the obtainedPareto-optimal solutions corresponding to
each given problem by respectively using three kinds of
dynamically weighted aggregations (i.e. linear weighted ag-
gregation, bang-bang weighted aggregation, and sinusoidal
weighted aggregation2), clarify the search characteristics
and performance effect of the PSOIWαby comparing the
search performance with the original PSOIW, and indicate
that which one is the most suitable for acquiring better
search results to the given MOO problems among the used
dynamically weighted aggregations.

The rest of the paper is organized as follows. Section II
briefly introduces some basic concepts and definitions for
completely dealing with a general MOO problem. Section
III describes the algorithms of the PSOIW and the proposed
PSOIWα. Section IV provides the experimental results cor-

2Many researchers call sinusoidal weighted aggregation (SWA) as dy-
namic weighted aggregation (DWA).
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respondingto a suite of 2-objective optimization problems,
and analyzes the potential characteristics of the PSOIWα in
the technical details. Finally, the concluding remarks appear
in Section V.

II. BASIC CONCEPTS

For understanding the whole process of treating with
MOO by a fitness assignment manner, in this section, we
gradually describe some basic concepts and definitions on a
general MOO problem,Pareto optimality, front distance, a
weighted sum method and three kinds of the used dynami-
cally weighted aggregations.

A. MOO Problem

In general, the formulation of a MOO problem can be
defined by

Minimize
~x

(
f1(~x), f2(~x), · · · , fI(~x)

)T

s.t. gj(~x) ≥ 0, j = 1, 2, · · · , J
hm(~x) = 0, m = 1, 2, · · · ,M
xn ∈ [xnl, xnu], n ∈ (1, 2, · · · , N)

(1)

where fi(~x) is the i-th objective, gj(~x) is the j-th in-
equality constraint,hm(~x) is the m-th equality constraint,
~x = (x1, x2, · · · , xN )T ∈ <N (= Ω search space) is the
vector of decision variable,xnl and xnu are the superior
boundary value and the inferior boundary value of each
componentxn of the vector~x, respectively.

Due to the basic condition ofI ≥ 2, as experiential
knowledge, theI-objectives may be conflicting with each
other. Under this circumstance, it is difficult to obtain the
global optimum corresponding to each objective at the same
time. Consequently, the goal of handling the MOO problem
is effectively to achieve a set of solutions that satisfyPareto
optimality for improvement of mental capacity.

B. Pareto Optimality

A solution ~x∗ ∈ Ω is said to bePareto-optimal solution
if and only if there does not exist another solution~x ∈ Ω so
thatfi(~x) is dominated byfi(~x

∗). The formula of the above
relationship is expressed as

fi(~x) 6≤ fi(~x∗) ∀i ∈ I iif fi(~x) 6< fi(~x
∗) ∃i ∈ I (2)

In other words, this definition says that~x∗ is Pareto-
optimal solution if there exists no feasible solution (vector)
~x which would decrease some criteria without causing a
simultaneous increase in at least one other criterion.

Furthermore, all of thePareto-optimal solutions for a
given MOO problem constitute thePareto-optimal solution
set (P∗) or thePareto front (PF ).

C. Weighted Sum Method

So far, there are many fitness assignment manners such as
aggregation-based one, criterion-based one, and dominance-
based one which are used for treating with MOO problems
[4], [10]. As to be generally known, a conventional weighted
sum (CWS) method is a straightforward approach applied for
MOO [9]. In this case, the different objectives are summed up

to a single scalarF (criterion) with some prescribed weights
as follows.

F =
I∑

i=1

cifi(~x) (3)

whereci(i = 1, 2, · · · , I) is the non-negative weight. During
the optimization, usually, these weights are fixed by the
constraint of

∑I
i=1 ci = 1, and prior knowledge is also

needed to specify these weights for efficiently obtaining good
solutions.

Because all of values of the weights in Eq.(3) are con-
stants, it is clear that only onePareto-optimal solution can be
obtained with one run of the optimization. This matter means
that an experimenter who has to implement an optimizer
many times for obtaining differentPareto-optimal solutions
corresponding to the given MOO problem.

To thoroughly overcome the disadvantage of the CWA
method, some dynamically weighted aggregations are ap-
plied to MOO in practice. For explaining how to deal
with a 2-objective optimization problem, as an example, the
definitions of three kinds of the used dynamically weighted
aggregations are expressed as follows.

• Linear weighted aggregation (LWA):
{

cl1(t) = mod
( t
T
, 1
)
,

cl2(t) = 1− cl1(t)
(4)

• Bang-bang weighted aggregation (BWA):




cb1(t) =
sign

(
sin(2πt/T )

)
+1

2
,

cb2(t) = 1− cb1(t)
(5)

• Sinusoidal weighted aggregation (SWA):
{

cs1(t) =
∣∣∣sin

(πt
T

)∣∣∣,
cs2(t) = 1− cs1(t)

(6)

where T is a period of the variable weights, andt is the
time-step in Eqs. (4)，(5), and (6).

According to the change characteristics of the dynamically
weighted aggregations in Figure 1, as usual, the value of the
criterionF of the used LWA or SWA smoothly changes with
the growth of time-stept in the period,T = 20. Contrast
to this, the value of the criterionF of the used BWA
changes discontinuously. Moreover, such abrupt movement
is just only one time in the same period. Through the above
observation, it is considered that different characteristics and
process of variations in the criteria with the growth of time-
stept will greatly reflect the search performance and effect
of using each aggregation corresponding to a given MOO
problem.

D. Front Distance

Front distance is expressed as a metric of checking how far
the elements are in the set of non-dominated solutions found
from those in the truePareto-optimal solution set. It reflects
the accuracy of estimation of the optimizer used. Concretely,
the definition of front distance (FD) is expressed by

FD =
1
Q

√√√√
Q∑
q=1

d2
q , dq = fi(~x

∗
q )− fi(~xoq ), ∀i ∈ I (7)
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Fig. 1. The change characteristics of three types of the adopted dynamically
weighted aggregations under the condition of periodT = 20. (a) Linear
weighted aggregation, (b) Bang-bang weighted aggregation, (c) Sinusoidal
weighted aggregation.

whereQ is the number of the elements in the set of non-
dominated solutions found, anddq is the Euclidean distance
(measured in objective space) between each of these obtained
optimal solutions,~xo, and the nearest member,~x∗, of the true
Pareto-optimal solution set.

E. Cover Rate

Cover rate (CR) is an other metric for showing the
coverage of the elements being in the set of non-dominated
solutions found to theParetofront. This is because the accu-
racy of estimation is insufficiency to reveal the distribution
of the obtainedPerato-optimal solutions and their possibility
for dealing with the given problem.

Here, the formulation of the CR is mathematically defined
by

CR =
1
I

I∑

i=1

CRi (8)

whereCRi is the partial cover rate corresponding to thei-th
objective, which is defined by

CRi =
∑Γ
l=1 γl
Γ

(9)

whereΓ is the number of dividing thei-th objective space
which is from the minimum to the maximum of the fitness

value, i.e.[fi(~x)min, fi(~x)max], andγl ∈ (0, 1) indicates the
status of existence of the obtainedPareto-optimal solutions
in the l-th subdivision for thei-th objective.

It is obvious that the higher value of CR means the bigger
of dominated volume in the objective space. However, the
divided number to a designated objective space is given by
an experimenter, so it goes without saying thatCR is just a
relative metric depending on the value ofΓ.

III. A LGORITHMS

For the convenience of the following description to the
used each particle swarm optimizer, let the search space be
N -dimensional, the number of particles of a swarm beP , the
position of thei-th particle be~x i = (xi1, x

i
2, · · · , xiN )T ∈ Ω,

and its velocity be~v i = (v i1, v
i
2, · · · , v iN )T ∈ Ω, respectively.

A. The PSOIW

As to be generally known, the weak convergence is a
disadvantage of the original PSO [25], [2]. To cope with
this difficulty, Shi et al. modified the update rule of thei-th
particle’s velocity by constant reduction of the inertia coeffi-
cient over time-step [6], [18]. Concretely, the formulation of
the particle swarm optimizer with inertia weight (PSOIW) is
defined as
{
~x ik+1 =~xik + ~v ik+1

~v ik+1 =w(k) ~v ik + w1~r1⊗(~p ik−~x ik) + w2~r2⊗(~qk−~x ik)
(10)

wherew1 andw2 are coefficients for individual confidence
and swarm confidence, respectively.~r1, ~r2 ∈ <N are two ran-
dom vectors, each element of which is uniformly distributed
on the interval[0, 1], and the symbol⊗ is an element-wise
operator for vector multiplication.~p ik (=arg max

k=1,2,···
{g(~xik)},

whereg(~xik) is the criterion value of thei-th particle at time-
stepk) is the local best position of thei-th particle up to now,
~qk(=arg max

i=1,2,···
{g(~p ik)}) is the global best position among

the whole particles at time-stepk. w(k) is a variable inertia
weight which is linearly reduced from a starting valuews
to a terminal valuewe with the increment of time-stepk as
follows.

w(k) = ws+
we−ws
K

× k (11)

whereK is the number of iteration for the PSOIW run. In
the original PSOIW, two boundary values,ws andwe, are
set to 0.9 and 0.4, respectively, andw1 = w2 = 2.0 are used.

It is obvious that owing to the difference between the
boundary values of the variable inertia weight, the search
behavior of the PSOIW achieves a search shift which
smoothly changes from exploratory mode to exploitative one
in optimization. Hence, the manner is very simple and useful
for conquering the weakness of the PSO in convergence and
enhancing the solution accuracy. However, the shortcoming
of the PSOIW is that its search easily to fall into a local
minimum and hardly to escape from that place in dealing
with multidomal problems because the terminal value,we,
is set to small.
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TABLE I
A SUITE OF 2-OBJECTIVE OPTIMIZATION PROBLEMS

problem objective search range

ZDT1 f11(~x) = x1, g(~x) = 1 +
9

N − 1

N∑
n=2

xn, f12(~x) = g(~x)

(
1−
√

f11(~x)

g(~x)

)
Ω ∈ [0, 1]N

ZDT2 f21(~x) = x1, f22(~x) = g(~x)

(
1−
(
f21(~x)

g(~x)

)2
)

Ω ∈ [0, 1]N

ZDT3 f31(~x) = x1, f32(~x) = g(~x)

(
1−
√

f31(~x)

g(~x)
−
(
f31(~x)

g(~x)

)
sin
(
10πf31(~x)

) )
Ω ∈ [0, 1]N

B. ThePSOIWα

As a matter of common knowledge, random search meth-
ods are the simplest ones of stochastic optimization with
non-directional search, and are effective in handling many
complex optimization problems [19], [20]. In order to alle-
viate the weakness of the PSOIW and to improve the search
ability and search efficiency of the PSOIW, we introduce
the LRS [31] into the PSOIW (called PSOIWα) to explore
for efficiently obtaining an optimal solution or near-optimal
solutions.

The PSOIWαis a hybrid search method and its procedure
is implemented as follows.

step-1: Give the terminating condition,U (the number
of random data) of the PSOIWα run, and set the
counteru = 1.

step-2: Implement PSOIW and determine the best solu-
tion ~qk at time-stepk, and set~qnow = ~qk.

step-3: Generate a random data,~zu ∈ <N ∼ N(0, σ2)
(whereσ is a small positive value given by user,
which determines the small limited space). Check
whether~qk+~zu ∈ Ω is satisfied or not. If~qk+~zu 6∈
Ω then adjust~zu for moving~qk+~zu to the nearest
valid point within Ω. Set~qnew = ~qk + ~zu.

step-4: If g(~qnew)>g(~qnow) then set~qnow=~qnew.
step-5: Setu = u+ 1. If u ≤ U then go to thestep-2.
step-6: Set~qk = ~qnow to correct the solution found by

the particle swarm at time-stepk. Stop the search.

Based on the complementary characteristics of the used
hybrid search (i.e. a kind of memetic algorithm [15]), the
correctional function seems to be close to the HGAPSO [12]
in search effect, which implements a plain GA [8] and the
PSO with the mixed operations for improving the adaptation
to treat with various blended distribution problems.

IV. COMPUTEREXPERIMENTS

To facilitate comparison and analysis of the search per-
formance of the proposed POSIWα, the suite of 2-objective
optimization problems [34] in Table I is used in the following
computer experiments. The characteristics of thePareto
fronts of the given problems include the convex (ZDT1),
concave (ZDT2), and discontinuous multimodal (ZDT3), re-
spectively.

Table II gives the major parameters of the PSOIWα
to solve the given problems in Table I. The choice of
their values is referred to the results of partial preliminary
experiments.

TABLE II
MAJOR PARAMETERS OF THEPSOIWα RUN

parameter value
the numberof particles,P 10
the number of iterations,K 25

the number of period,T 2500
the number of random points,U 20
the search range of the LRS,σ 0.1

For understanding the search process of the PSOIWαrun
in which how to deal with a MOO problem by using a
dynamically weighted aggregation, as an example, Figure 2
shows the changes of fitness values of the top-one particle
for dealing with theZDT3 problem by using the LWA.

Fig. 2. The fitness change of top-one particle in the search process of the
PSOIWα for the ZDT3 problem by using the LWA.

According to the definition of MOO in Section II-A, the
smaller the fitness values are, the better the obtained solutions
are. We can clearly see from Figure 2 that the convergence of
the PSOIWα run is faster in the whole optimization process.
The smooth variation of the best criterion (top-one particle)
suggests that the optimal solutions~xo can be continuously
obtained during one short search cycle (K=25). The vibra-
tion of the best fitness occurs with the change of variable
criterion. And the vibration range of the fitness reflects the
influence receiving from the change of the criterionF overall
time-step. Needless to say, the movement features of the
fitness in progress are not unique according to deal with the
given different problems.

A. Performance Comparison

Figure 3 shows the resulting solution distributions of
the PSOIWαand PSOIW by using the LWA, BWA, and
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Fig. 3. Solution distributions of the PSOIWα and PSOIW by using the LWA, BWA and SWA, respectively. Notice: the distance between the experimental
data sets for each problem is 0.05 (shift only in horizontal direction).

SWA, respectively. By observing the distinction of each
solution distribution corresponding to the given problems,
the analytical judgment can be described as follows.

1) Regardless of the used methods either the PSOIWαor
PSOIW, and the characteristic of each given problems,
the resulting features and solution distribution are
nearly same.

2) Regardless of the used methods and the characteristics
of the given problems, the solution distributions of
using the BWA are relatively worse than that by using
the LWA and BWA.

3) In comparison with the solution distributions of using
the LWA for both the ZDT1 (convex) and ZDT2
(concave) problems, the former is in the high density.

For quantitative analysis to these experimental results
in Figure 3, Table III gives the performance indexes, i.e.
the number of the obtained optimal solutions,~xo, and the
correspondingFD andCR, of the PSOIWα and PSOIW by
respectively using the LWA, BWA, and SWA for each given
problem.

From the resulting statistical data shown in Table III, we
can see the following features: Firstly, there is the most

number of solutions obtained by using the LWA in the given
problems even for the ZDT2 one in where a large number
of Pareto-optimal solutions are in unstable position [11].
Secondly, the solution accuracy of the PSOIWαis superior
to that of the PSOIW for each problem. Thirdly, the obtained
results of using the LWA inCR is the best than that of
using the BWA and SWA, respectively. Fourthly, the search
performance of using the LWA is not only much better than
that of using the BWA, but also is relatively better than that
of using the SWA as a whole.

Based on the above analytical results, the effectiveness and
good search ability of the PSOIWα are roughly confirmed.
Furthermore, better solution distribution and higher solution
accuracy can be observed as well by using either the LWA
or SWA. This fact gives an example, i.e. smooth change of
their criteria with the growth of time-step can make that the
probability of finding good solutions greatly goes up in the
same period,T =2500, as evidence.

According to the above comparison and observation, the
relationship of domination reflecting the search ability of the
PSOIWαwith the used dynamically weighted aggregations
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TABLE III
PERFORMANCE COMPARISON OF BOTH THEPSOIWα AND PSOIWBY USING THE LWA, BWA, AND SWA, RESPECTIVELY(Γ IS SET TO100).

PSOIWα PSOIW
problem aggregation solution FD CR (%) solution FD CR (%)

LWA 422 3.7047×10−7 89.5 418 7.5439×10−7 90.0
ZDT1 BWA 78 4.1231×10−4 48.0 63 4.3378×10−4 40.0

SWA 405 2.1356×10−5 81.0 334 2.7462×10−5 78.0
LWA 102 4.3382×10−8 60.0 101 1.3421×10−4 60.0

ZDT2 BWA 71 5.4060×10−4 52.5 76 6.3600×10−4 55.0
SWA 75 5.2670×10−5 50.0 81 2.2592×10−4 51.5
LWA 423 6.7482×10−6 45.5 413 7.5439×10−5 41.5

ZDT3 BWA 165 1.7861×10−4 30.0 137 2.2592×10−4 27.0
SWA 321 2.1958×10−4 39.0 322 4.6655×10−4 40.5

# The values in bold signify the best result for each given problem.

Fig. 4. The solution distributions of the PSOIWα by using the LWA with
tuning the parameterσ.

can be expressed as follows.

LWA � SWA � BWA

The relationship of domination means that the uniform
change of the weights can make the moving process of
variable criterion to be equalization which raises the prob-
ability finding thePerato-optimal solution to the maximum
under the condition of implementing the same optimizer. Due
to this reason, more good solutions can be easily obtained
during the short search cycle.

B. Effect of the LRS

For investigating the search effect of the LRS used in
the PSOIWα, the range of the parameterσ was adjusted
in the following computer experiments. Figure 4 shows the
resulting search results of the PSOIWα by using the LWA
under the condition of the fixed the number of random
points with tuning the parameter value,σ = 0.05, 0.1, 0.2,
respectively. However, the remarkable features of the LRS
run cannot be observed with tuning the parameterσ from
the solution distributions shown in Figure 4.

TABLE IV
THE PERFORMANCE COMPARISON OF THEPSOIWα BY USING THE

LWA WITH TUNING THE PARAMETERσ.

problem σ solution FD CR (%)
0.1 422 3.7742×10−7 89.5

ZDT1 0.05 406 2.3279×10−5 92.0
0.2 373 9.1633×10−8 90.0
0.1 102 4.3382×10−8 60.0

ZDT2 0.05 106 4.6589×10−8 63.0
0.2 125 4.4246×10−8 68.5
0.1 423 6.7482×10−6 45.5

ZDT3 0.05 420 3.2998×10−6 38.5
0.2 453 7.1231×10−5 44.0

Furthermore,Table IV gives the search performance in-
dexes of the PSOIWαin Figure 4. By comparing these statis-
tical data, we cannot decide that whether which case is good
or not as yet. This matter means that the random property on
the search performance is clearly certified according to the
uncertain rule found from the obtained best search results. In
other words, this fact suggests that the adopted value of the
parameter,σ = 0.1, is still suitable for dealing with the given
problems, and parameter selection to obtain an opportune
parameterσ is necessary.

C. Computation Cost

To compare the computation costs of both the PSOIWα
and PSOIW run, as an example, the computer experiments3

were carried out by using the LWA with increasing the
dimensional numbern of the variable vector for theZDT1
problem. The measured running times (RT) of them are
shown in Figure 5.

Furthermore, the conformity of theRT with respect to the
dimensional numbern for both is shown as follows.

3Computing environment: Intel(R) Xeon(TM) CPU 3.40GHz, 2.00GB
RAM; Computing tool: Mathematica 8.0.
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Fig. 5. Running time of both the PSOIWα and PSOIW for dealing with
theZDT1 problem in different-dimension,n.

{
RTPSOIWα = 69.951 + 7.641n+ 0.448n2

RTPSOIW = 35.646 + 2.701n+ 0.183n2

Accordingly, comparing with the values of the first-degree
and second-degree coefficients in the above two approximate
equations, all of the proportional rates between the PSOIWα
and PSOIW are more than double.

On the basis of the wide margin between them, it is
easily reminded of that the experimental result fits in with
“no free lunch” (NFL) theorem [27]. As an application of
meta-optimization technique, for example, the method of
evolutionary particle swarm optimizer with inertia weight
(EPSOIW) [33] can be used to improve the search perfor-
mance of the original PSOIW. This is because the com-
putation cost of an optimized PSOIW is similar to the
original PSOIW except the computation cost of estimating
appropriate parameter values of the PSOIW to the give
problem.

On the other hand, we can also say that although the
computation cost of the PSOIWαextremely depends on
the numberU of random points, the computation cost is
not proportion to the search performance in direct. For
interpreting the issue, carrying a lot of experiments out to
determine a suitable number to explore is necessary. This
is a hot topic to make the use of stochastic optimization
methods for efficient search. For the sake of whole structural
ingredient, more detailed inspection and analysis on it is
omitted here.

V. CONCLUSIONS

In this paper, an improved particle swarm optimizer with
inertia weight, called PSOIWα, has been presented to multi-
objective optimization, MOO. Based on the composition of
the PSOIWα, it is the most simple expansion of the original
PSOIW, which has the advantages of easy-to-operation to
realize a hybrid search.

Applications of the PSOIWαto the given suite of 2-
objective optimization problems well demonstrated its ef-
fectiveness by the aggregation-based manner. Owing to the
resulting experimental data by using three kinds of dynami-
cally weighted aggregations, respectively, it is observed that
the search performance of the proposed PSOIWαis superior
to the original PSOIW, and the comparative analysis of the
PSOIWα shows that the search performance of using the

LWA is better than that of using the BWA and SWA for the
given problems. Therefore, it is no exaggeration to say that
obtained experimental results offer an important evidence for
choosing the dynamically linear weighted sum method to
efficiently deal with MOO problems.

It is left for further study to apply the PSOIWαto complex
MOO problems in the real-world and to compare the search
performance with other EC methods. In order to enhance
the adaptability, efficiency, and solution accuracy of the
PSOIWα, the search strategies and attempts on prediction,
intelligent and powerful cooperative PSO algorithms [24],
[7], [32] will be discussed for MOO in near future.
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