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The PerformanceéAnalysis of an Improved PSOIW
for Multi-objective Optimization

Hong ZhangMember, IAENG

Abstract—In this paper, we investigate the search perfor- finding a group ofParetooptimal solutions simultaneously.
mance of an improved particle swarm optimizer with inertia  According to the distinguishing features of group search, the
weight (PSOIWea) for multi-objective optimization. The basic use of EC methods for dealing with MOO problems has

idea of the proposed PSOIW., here, is to introduce a localized . ifi " d has b f dtob ful
random search into the original PSOIW to reinforce its search signimcantly grown and has been found o be successiul over

ability for improvement of search performance. To demonstrate the last decade [4], [14].
the eﬁectiveness and_ search eff_ect_of the_pr_opqsal, computer As a new member of EC, particle swarm optimization
experiments on a suite of 2-objective optimization problems (PSO) [13] is an adaptive, stochastic, and population-based

are carried out by an aggregation-based manner. We show L . I .
the distribution status of the resulting Pareto-optimal solutions optimization technique. Based on the special information

corresponding to each given problem by respectively using three €xchange, intrinsic memory, and directional search of the
kinds of dynamically weighted aggregations, point out which technique, it has higher search ability in optimization com-
one is the most suitable for acquiring good search result among pared to the other members such as genetic algorithms and
them, and clarify the search characteristics and performance genetic programming [16], [17], [28], [29]. Although the
effect of the PSOIW. search performance and effect of some PSO methods in
Index Terms—multi-objective optimization, swarm intellin-  MOO has been studied and investigated [22], [23], there are
gence, particle swarm optimizer with inertia weight, hybrid hgfficient results for systematically solving MOO problems
search, weighted sum method, dynamically weighted aggrega- b . . .
tion. y an aggregation-based manner, and analyzing the potential
characteristics in details from the obtained experimental
I. INTRODUCTION results py using different dynamically weighted aggregations,
HE process of optimizing simultaneously two and mor[aeSpeCtNely'
b b 9 y For resolving the above situation, in this paper we in-

conflicting objectives subject to certain constraints i\‘7’esti ate the search performance of an imoroved particle
called multi-objective optimization (MOO) [1], [3]. The 9 P P P

; . ; L .~ swarm optimizer with inertia weight (PSOIWdo MOO.
treatment technique is very important to indicate ration he basic idea of the proposed PSOIVWere, is to introduce
potentiality factors in a given MOO problem even if any prop :

. . . a localized random search (LRS) [30] into the original
complicated constitution and evaluation. So far, MOO h SOIW [18] to reinforce its search ability for improvement

been widely applied in various areas of science, technology, . .
y app ¥fsearch performance. The construction and execution of the

industry, finance, automobile design, aeronautical enginee[- : . N .
: AN algorithm are the most simple and easy-to-operation in which
ing, daily living and so on [5], [21].

Traditional optimization methods such as many gradiena[‘- hybrid search (i.e. a compound made up of the PSOIW

based methods are difficult to treat with the true multf'f‘nOl LRS) IS |mplem_ented to finBaretooptimal solutions
. ; cohrespondlng to a given MOO problem.
objective case, because they were not designed to seafc

multiple optimal solutions. Normally, a MOO problem hag To ?err?on;tggtlav\;he effectiveness gnd performance. ef-
to be converted to a single-objective optimization (SO %Ct of the G computer experiments on a suite

problem before the optimization. Thus the search genera SZ—ptgecélve opt|m|iat(|jonwprobrlems hare d.ca.rtr)le(_j out by
a single Pareto optimum for each run of the optimization,a weighted sum method. We show the distribution status

and that the obtained solutions are highly sensitive to tf% the obtainedParetooptimal solutions corresponding to

weight vector used in the converting process. Neverthelegé,Ch given problem by respectively using three kinds of

the issue of adopting the way is to how to ensure that trqé(namically weighted aggregations (ie. Iipear Weighted ag-
obtained solutions satisfigareto optimality®. gregation, bang—ba_ng we|ghted aggregation, and S|qu§0|dal
Since the optimization methods of evolutionary computé(‘—“a'gmed aggregatid), clarify the search charapterlstlcs
tion (EC) can obtain plural candidate solutions, i.e. indivig2nd performance effec_t of the '.DS_OlWD/ comparing th_e
als in a population, it seems naturally to use them in MOO f&earch performar_lce with the orlglnal PSOIW, a_n_d indicate
that which one is the most suitable for acquiring better
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respondingto a suite of 2-objective optimization problemsto a single scalaf’ (criterion) with some prescribed weights
and analyzes the potential characteristics of the PSOIW as follows.

the technical details. Finally, the concluding remarks appear ! .
in Section V. F= ; ¢, fi(Z) 3)

wherec,(i = 1,2, ---,I) is the non-negative weight. During

the optimization, usually, these weights are fixed by the
For understanding the whole process of treating wiikonstraint ofzleci = 1, and prior knowledge is also

MOO by a fitness assignment manner, in this section, weeded to specify these weights for efficiently obtaining good

gradually describe some basic concepts and definitions ogdlutions.

general MOO problemPareto optimality, front distance, a Because all of values of the weights in Eq.(3) are con-

weighted sum method and three kinds of the used dynarsiants, it is clear that only orRaretooptimal solution can be

Il. BASIC CONCEPTS

cally weighted aggregations. obtained with one run of the optimization. This matter means
that an experimenter who has to implement an optimizer
A. MOO Problem many times for obtaining differeraretc-optimal solutions

. corresponding to the given MOO problem.
In general, the formulation of a MOO problem can be 14 thoroughly overcome the disadvantage of the CWA

defined by method, some dynamically weighted aggregations are ap-
oL q S T plied to MOO in practice. For explaining how to deal
Mm?m% (f1<x)’ fo(Z), -+, f,(x)) with a 2-objective optimization problem, as an example, the
st. g;(%) =0, j=12---,J (1) definitions of three kinds of the used dynamically weighted
b (@) =0, m=1,2,---, M aggregations are expressed as follows.
Ty € [Ty Tpa]s n € (1,2, N) « Linear weighted aggregation (LWA):
where f,(%) is the i-th objective, g;(7) is the j-th in- . t
equality constrainth,, (%) is the m-th equality constraint, { ci(t) = mOd(f’ 1)’ (4)
T = (x,,29,--,xy) € RV (= Q search space) is the c(t)y=1-cl(t)
vector of decision variabley,, and z,, are the superior ) i ; .
boundary value and the inferior boundary value of each Bang-bang weighted aggregation (BWA):
componentz,, of the vectorz, respectively. by sign(sin(2mt/T))+1
Due to the basic condition of > 2, as experiential cr(t) = 2 ’ (5)
knowledge, thel-objectives may be conflicting with each c3(t) =1—ci(t)
other. Under this circumstance, it is difficult to obtain the , gjnuspidal weighted aggregation (SWA):
global optimum corresponding to each objective at the same
time. Consequently, the goal of handling the MOO problem ci(t) = ‘Sm(ﬂ)’, ©)
is effectively to achieve a set of solutions that satB&reto ) =1— ij(;)

optimality for improvement of mental capacity.
where T is a period of the variable weights, ands the

time-step in Egs. (4){(5), and (6).
According to the change characteristics of the dynamically
A solution z* € Q is said to beParetcoptimal solution weighted aggregations in Figure 1, as usual, the value of the
if and only if there does not exist another solutiére €2 so criterion F' of the used LWA or SWA smoothly changes with
that f,(Z) is dominated byf;(Z*). The formula of the above the growth of time-steg in the period, 7 = 20. Contrast
relationship is expressed as to this, the value of the criteriort’ of the used BWA
. s L - . . changes discontinuously. Moreover, such abrupt movement
fi@) £ fi(@) Yie I if fi(@) £ f;(Z7) Ji€l () g just only one time in the same period. Through the above
In other words, this definition says that* is Pareto observation, it is considered that different characteristics and

optimal solution if there exists no feasible solution (vectofjrocess of variations in the criteria with the growth of time-

# which would decrease some criteria without causing sfept will greatly reflect the search performance and effect

simultaneous increase in at least one other criterion. of using each aggregation corresponding to a given MOO
Furthermore, all of theParetooptimal solutions for a Problem.

given MOO problem constitute thBaretooptimal solution

B. Pareto Optimality

set (7) or the Paretofront (PF). D. Front Distance
Front distance is expressed as a metric of checking how far
C. Weighted Sum Method the elements are in the set of non-dominated solutions found

So . here e many iness assignment mamners suo{ 81,1052 1 18 ELeReoopie Souton oo el
aggregation-based one, criterion-based one, and domina g- y P ' Y.

based one which are used for treating with MOO problergﬁe definition of front distance (s expressed by

[4], [10]. As to be generally known, a conventional weighted L le
sum (CWS) method is a straightforward approach applied for rp = — ng’ d, = f;(Z;) — f;(8), Viel (7)
MOO [9]. In this case, the different objectives are summed up Q a=1

(Advance online publication: 27 February 2012)
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TOF X value, i.e.[f,(Z)™™, f,(Z)™*], and, € (0, 1) indicates the
0sf ° : ' el status of existence of the obtain®dretooptimal solutions
cost o~ /o~ in the [-th subdivision for thei-th objective.
§ ‘ ) It is obvious that the higher value of CR means the bigger
D4t of dominated volume in the objective space. However, the
o2l divided number to a designated objective space is given by
) / . an experimenter, so it goes without saying that is just a
00EL X relative metric depending on the value Iof
0 10 20 30 40t
{a) LWa
R [ [1l. ALGORITHMS
08t ohto For the convenience of the following description to the
2 06} N used each particle swarm optimizer, let the search space be
@ 0al | ©2® N-dimensional, the number of particles of a swarmiyghe
' position of thei-th particle ber’ = (zi,z,---,24)T € Q,
02} and its velocity bei® = (vi,vi, - vi,)T € Q, respectively.
1]1] P Lo S
0 10 20 a0 40t
{b) BWA A. The PSOIW
10R / - /\ : As to be generally known, the weak convergence is a
08ty /,./ 8 ; \ ' S disadvantage of the original PSO [25], [2]. To cope with
/ \ - \ ! this difficulty, Shi et al. modified the update rule of thé¢h
o06F »f \/ L B e L, . . . . .
3 / ¥ { X B0 pgrtlcle S vglocny by constant reduction of the inertia goefﬂ—
04f /- I AN A\ cient over time-step [6], [18]. Concretely, the formulation of
0zl ;/ B the particle swarm optimizer with inertia weight (PSOIW) is
B A Y R defined as
00k ¥ S \ _ o
0 10 20 30 40 t {f,gﬂzf,ﬁﬁ,gﬂ
{c) SWA i - . i =i . .
Fig.1. The change characteristics of three types of the adopted dynamically Vet 7w(k) Ok T (pk mk) e (qk xkzlo)

weighted aggregations under the condition of peridd= 20. (a) Linear —_ S .
weighted aggregation, (b) Bang-bang weighted aggregation, (c) Sinusoi¥perew; and wy are coeff|C|en_ts for individual confidence
weighted aggregation. and swarm confidence, respectivety, 7, ¢ R are two ran-

dom vectors, each element of which is uniformly distributed
on the interval0, 1], and the symbok is an element-wise

where Q is the number of the elements in the set of norPerator for vector multiplicationi; (= arg kﬂ%{'{g(fi)}a

dominated solutions found, ant} is the Euclidean distancewhereg(f@ is the criterion value of the-th particle at time-

(measured in objective space) between each of these obtaigegk) is the local best position of thieth particle up to now,

optimal solutionsz?, and the nearest membet,, of the true ¢ (=arg mazx {g(7)}) is the global best position among
1=1,2,---

Paretooptimal solution set. the whole pé?ticles at time-stép w(k) is a variable inertia

weight which is linearly reduced from a starting value

E. Cover Rate to a terminal valuew, with the increment of time-step as
Cover rate (CR) is an other metric for showing théollows.
coverage of the elements being in the set of non-dominated w(k) = w +we—ws < k (11)
- %s

solutions found to th@aretofront. This is because the accu- K

racy of estimation is insufficiency to reveal the distribution . . .
of the obtainedPerato-optimal solutions and their possibilityWhere.K. is the number of iteration for the PSOIW run. In
for dealing with the given problem the original PSOIW, two boundary values, andw,, are
Here, the formulation of the CR is mathematically definetf! t(_) 0.9 a_nd 0.4, respe_ctlvely, ang =Wy = 2.0 are used.
by It is obvious that owing to the difference between the
I boundary values of the variable inertia weight, the search
CR = ZCRZ» (8) behavior of the PSOIW achieves a search shift which
=1

smoothly changes from exploratory mode to exploitative one
whereC R, is the partial cover rate corresponding to th in optimization. Hence, the manner is very simple and useful

objective, which is defined by for conquering the weakness of the PSO in convergence and
r enhancing the solution accuracy. However, the shortcoming

CR. — 2=1 ) of the PSOIW is that its search easily to fall into a local

! r minimum and hardly to escape from that place in dealing

whereI" is the number of dividing thei-th objective space with multidomal problems because the terminal value,
which is from the minimum to the maximum of the fitnesss set to small.

(Advance online publication: 27 February 2012)
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TABLE |
A SUITE OF 2-OBJECTIVE OPTIMIZATION PROBLEMS
problem objectve search range
N -
ZDT1  f1(@&) ==, g(&) =1+ N971Zm"’ f12(@) = g(£) <1— % ) Qefo, 1]V
n=2 } ,
DT2 (@) =y, fpal@) = 9(@) (1 - (@g) ) Qe N

DTS f3 (&) = 2y, f5o(E) = 9(2) (1 - le(g) - (le(g)> sin (107 £, (7)) ) Qelo, 1V

TABLE Il

B. The PSOIWy MAJOR PARAMETERS OF THEPSOIWox RUN
As a matter of common knowledge, random search meth- parameter value
ods are the simplest ones of stochastic optimization with the numberof particles,” 10
. . | h ffecti in h l the number of iterationgi 25
non-dlrectlor]a'segrc , and are effective in handling many the number of period]’ 2500
complex optimization problems [19], [20]. In order to alle- the number of random points] 20

viate the weakness of the PSOIW and to improve the search the search range of the LRS, 0.1

ability and search efficiency of the PSOIW, we introduce
the LRS [31] into the PSOIW (called PSOIWdo explore

fOI’ efﬁciently Obtaining an 0ptlma| SO|uti0n or near-optima| For understanding the search process of the PSONh

solutions. _ _ _ in which how to deal with a MOO problem by using a
. The PSOIWais a hybrid search method and its procedurgynamica”y We|ghted aggregation, as an examp|e, Figure 2
is implemented as follows. shows the changes of fithess values of the top-one particle

step-1: Give the terminating conditior/ (the number o dealing with theZDT3 problem by using the LWA.

of random data) of the PSOIWrun, and set the
counteruy = 1.

step-2: Implement PSOIW and determine the best solu <t
tion g, at time-stepk, and setg,, ., = g.

step-3: Generate a random datg, € R ~ N(0,02%)
(whereo is a small positive value given by user, -
which determines the small limited space). Check
whetherg, +z,, € Q2 is satisfied or not. 1§, +72, &

Q then adjust;, for moving g, + z,, to the nearest 00} | JJJLJ_H.LLL’
(i _4(_
K=25

T r — — T

terion, F
P

05¢F

Cr

ALL.LLM&MHIMHM

valid point within 2. Setg,.,, = ¢, + Z,,.
St@p'4: If g((fnew) >g(§now) then Setq'nowzqnew' -05¢ \_
step-5: Setu = u + 1. If uw < U then go to thestep-2. e . .
step-6: Setq, = ., 10 correct the solution found by 0 500 1000 1500 2000 2500

the particle swarm at time-stép Stop the search. Time-step t, k

Based on the complementary characteristics of the usgd > The tﬁrfgeszTcahgrnogbele?; tgp'l:’s”i‘:gpf‘gteict‘\*/\;x the search process of the
hybrid search (i.e. a kind of memetic algorithm [15]), the Y '
correctional function seems to be close to the HGAPSO [12]According to the definition of MOO in Section IIl-A. the
in search effect, which implements a plain GA [8] and thgmallerthefitness values are, the better the obtained solutions

PSO with the mixed operations for improving the adaptatio :
. . L re. W n clearl from Figure 2 that th nvergen f
to treat with various blended distribution problems. dle. We can clea y see fro gure althe convergence o

the PSOIW. run is faster in the whole optimization process.
The smooth variation of the best criterion (top-one particle)
IV. COMPUTEREXPERIMENTS suggests that the optimal solutio§ can be continuously
- ] . obtained during one short search cycle-£R5). The vibra-

To facilitate comparison and analysis of the search pgfpn of the best fitness occurs with the change of variable
formance of the proposed POSt\Vthe suite of 2-objective ¢riterion. And the vibration range of the fitness reflects the
optimization problems [34] in Table I is used in the followingnfiyence receiving from the change of the criterBroverall
computer experiments. The characteristics of ®&eto {ime step. Needless to say, the movement features of the

fronts of the given problems include the convexD'D, fitness in progress are not unique according to deal with the
concave £DT2), and discontinuous multimodal (ZDT3), regiven different problems.

spectively.
Table Il gives the major parameters of the PSOIW«a i
to solve the given problems in Table I. The choice of Performance Comparison
their values is referred to the results of partial preliminary Figure 3 shows the resulting solution distributions of
experiments. the PSOIWaand PSOIW by using the LWA, BWA, and

1 1 1
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The results of the PSOIWa run The results of the PSOIW run
£
i
Q0
2 I I
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—fs =
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£
Q
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g o~ o~ ’
~ 8 o < w0
= o ma 04 S,
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(c) (c)

Fig. 3. Solution distributions of the PSOI#Wand PSOIW by using the LWA, BWA and SWA, respectively. Notice: the distance between the experimental
data sets for each problem is 0.05 (shift only in horizontal direction).

SWA, respectively. By observing the distinction of eachumber of solutions obtained by using the LWA in the given
solution distribution corresponding to the given problemgroblems even for the ZDT2 one in where a large number
the analytical judgment can be described as follows. of Paretcoptimal solutions are in unstable position [11].
1) Regardless of the used methods either the PSOtwa Secondly, the solution accuracy of the PSOIWéosuperior
PSOIW, and the characteristic of each given problents, that of the PSOIW for each problem. Thirdly, the obtained
the resulting features and solution distribution areesults of using the LWA inCR is the best than that of
nearly same. using the BWA and SWA, respectively. Fourthly, the search
2) Regardless of the used methods and the characterisfiesformance of using the LWA is not only much better than
of the given problems, the solution distributions ofhat of using the BWA, but also is relatively better than that
using the BWA are relatively worse than that by usingf using the SWA as a whole.

the LWA and BWA. Based on the above analytical results, the effectiveness and

3) In comparison with the solution distributions of usin% . :
ood search ability of the PSOWVare roughly confirmed.

Ezgng@) for;tgg:‘:st?ﬁezz:—rﬁe(rc(i)sn\i/r?)t%eagid thDe-Ir—éitFurthermore, better solution distribution and higher solution

. .p " ) 9 iccuracy can be observed as well by using either the LWA

. qu quantitative analysns to these expenm.ental resud? swa. This fact gives an example, i.e. smooth change of

in Figure 3, Table Ill gives the performance indexes, §heir criteria with the growth of time-step can make that the

the number of the obtained optimal solution®, and the o A . .
" robability of finding good solutions greatly goes up in the
corresponding=D andCR, of the PSOIW and PSOIW by game per>i/0dT:250go gas evidence g y g p

respectively using the LWA, BWA, and SWA for each given
problem. According to the above comparison and observation, the

From the resulting statistical data shown in Table Ill, weelationship of domination reflecting the search ability of the
can see the following features: Firstly, there is the moBtSOIWa with the used dynamically weighted aggregations

(Advance online publication: 27 February 2012)
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TABLE IlI
PERFORMANCE COMPARISON OF BOTH THEPSOIWo, AND PSOIWBY USING THE LWA, BWA, AND SWA, RESPECTIVELY(I" IS SET T0100).
_ PSOIWe PSOIW
problem  aggreation solution FD CR (%) solution FD CR (%)
LWA 422 3.7047x 107 89.5 418 7.5439x 107 90.0
ZDT1 BWA 78 4.1231x10~* 48.0 63 4.3378x10~* 40.0
SWA 405 2.1356x107° 81.0 334 2.7462x 105 78.0
LWA 102 4.3382x10°8 60.0 101 1.3421x 10~ % 60.0
ZDT2 BWA 71 5.4060 x 10— 4 525 76 6.3600x 104 55.0
SWA 75 5.2670x 105 50.0 81 2.2592x 104 51.5
LWA 423 6.7482x10~° 455 413 7.5439x10~° 415
ZDT3 BWA 165 1.7861x 104 30.0 137 2.2592x 104 27.0
SWA 321 2.1958 x 104 39.0 322 4.6655x10~% 405

# The values in bold signify the best result for each given problem.

ey ' ' ' U' ] B. Effect of the LRS
08} <01 1 For investigating the search effect of the LRS used in
. 005 the PSOIWq the range of the parameter was adjusted
Losr . in the following computer experiments. Figure 4 shows the
"~ oal _— resulting search results of the PSQiWy using the LWA
' "'~._‘:::&. under the condition of the fixed the number of random
02t . | points with tuning the parameter value,= 0.05,0.1,0.2,
‘-'?.*‘»Q-.;..\ respectively. However, the remarkable features of the LRS
00t Bl run cannot be observed with tuning the parametdrom
o . e a8 08 10 the solution distributions shown in Figure 4.
(a) ZDT1 problem 9
e s— - ; — TABLE IV
"-“':'-'?.':.. o THE PERFORMANCE COMPARISON OF THPSOIWa BY USING THE
08} R _ LWA WITH TUNING THE PARAMETER 0.
. \-\V = 01
e ~ . 005 problem o solution FD CR (%)
06| e 1 01 422  37742x107 895
B 2 e+ 02 ZDT1 0.05 406 2.3279 x10~° 92.0
04} A R 0.2 373 9.1633x10~8  90.0
v 01 102  4.3382x10° 60.0
02k AR ZDT2 0.05 106 4.6589 x10~8 63.0
" 0.2 125  4.4246 x10~8 685
00 B 0.1 423 6.7482x10°° 455
s . ZDT3  0.05 420 3.2998x10~6 38.5
00 02 04 06 08 10 /a1 -5
(b ZDT2 problem 0.2 453  7.1231 x 10 44.0
10F " " " ]
\\\\ 7 Furthermore,Table IV gives the search performance in-
05t .o dexes of the PSOIWin Figure 4. By comparing these statis-
tical data, we cannot decide that whether which case is good
& or not as yet. This matter means that the random property on
0or the search performance is clearly certified according to the
uncertain rule found from the obtained best search results. In
-05 other words, this fact suggests that the adopted value of the
parameterg = 0.1, is still suitable for dealing with the given
00 02 02 08 08 problems, and parameter selection to obtain an opportune

(c) ZDT3 problem parametew is necessary.

Fig. 4. The solution distributions of the PSOWby using the LWA with
tuning the parameter.

C. Computation Cost

To compare the computation costs of both the PS@IW
and PSOIW run, as an example, the computer experifhents
LWA >~ SWA > BWA were carried out by using the LWA with increasing the

The relationship of domination means that the uniforndlm]ensn)m;II number, of the variable vector for th&DT1

change of the weights can make the moving process %2%5\'2'?” I':I'ih(lajrzgasured running times (RT) of them are
variable criterion to be equalization which raises the proE?— g : . .

e i . ) Furthermore, the conformity of thBT' with respect to the
ability finding the Perato-optimal solution to the maximum

under the condition of implementing the same optimizer. Dudémensmnal numben for both is shown as follows.

to t.hIS reason, more good solutions can be easily ObtalnedComputing environment: Intel(R) Xeon(TM) CPU 3.40GHz, 2.00GB
during the short search cycle. RAM; Computing tool: Mathematica 8.0.

can be expressed as follows.

(Advance online publication: 27 February 2012)



TAENG International Journal of Computer Science, 39:1, [JCS 39 1 04

e T — T | LWA is better than that of using the BWA and SWA for the
IIB given problems. Therefore, it is no exaggeration to say that
300

F— PSOIWa PSOIW — obtained experimental results offer an important evidence for
_ choosing the dynamically linear weighted sum method to
efficiently deal with MOO problems.
It is left for further study to apply the PSOIWw complex
MOO problems in the real-world and to compare the search

Running Time (Sec.)
[~
=1

100 - i performance with other EC methods. In order to enhance
the adaptability, efficiency, and solution accuracy of the
!lﬂ A ]ET A -IET 2Bl IAE PSOIWq the search strategies and attempts on prediction,
Oc i - B = 5 n intelligent and powerful cooperative PSO algorithms [24],
Dimension [7], [32] will be discussed for MOO in near future.
Fig. 5. Running time of both the PSOI#Wand PSOIW for dealing with
the ZDT'1 problem in different-dimensiomn;. ACKNOWLEDGMENT
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