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Abstract—The n-dimensional hypercube network Qn is one
of the most popular interconnection networks since it has
simple structure and is easy to implement. The n-dimensional
augmented cube AQn, an important variation of the hypercube,
possesses several embedding properties that hypercubes and
other variations do not possess. The advantages of AQn are
that the diameter is only about half of the diameter of Qn and
it is node-symmetric. Recently, some interesting properties of
AQn have been investigated in the literature. The presence
of edge-disjoint Hamiltonian cycles provides an advantage
when implementing algorithms that require a ring structure
by allowing message traffic to be spread evenly across the
interconnection network. A network G contains two-equal path
cover and is called two-equal path coverable if for any two
distinct pairs of nodes 〈µs, µt〉 and 〈υs, υt〉 of G, there exist
two node-disjoint paths P and Q satisfying that (1) P joins µs

and µt, and Q joins υs and υt, (2) |P | = |Q|, and (3) every
node of G appears in P ∪ Q exactly once. In this paper, we
first prove that the augmented cube AQn contains two edge-
disjoint Hamiltonian cycles for n � 3. We then prove that
AQn, with n � 2, is two-equal path coverable. Based on the
proofs of existences, we further present linear time algorithms
to construct two edge-disjoint Hamiltonian cycles and two-equal
path cover in an n-dimensional augmented cube AQn.

Index Terms—two edge-disjoint Hamiltonian cycles, two-
equal path cover, augmented cubes, interconnection networks,
parallel computing.

I. INTRODUCTION

PARALLEL computing is important for speeding up
computation. The design of an interconnection network

is the first thing to be considered. Many topologies have
been proposed in the literature [4], [9], [10], [11], [12],
and the desirable properties of an interconnection network
include symmetry, relatively small degree, small diameter,
embedding capabilities, scalability, robustness, and efficient
routing. Among the proposed interconnection networks, the
hypercube is a popular interconnection network with many
attractive properties such as regularity, symmetry, small di-
ameter, strong connectivity, recursive construction, partition
ability, and relatively low link complexity [30]. The architec-
ture of an interconnection network is usually modeled by a
graph, where the nodes represent the processing elements and
the edges represent the communication links. In this paper,
we will use graphs and networks interchangeably.

The n-dimensional augmented cube, denoted by AQn,
was first proposed by Choudum et al. [7] and possesses
some properties superior to the hypercube. The diameter
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of n-dimensional augmented cube is only about half of
the diameter of n-dimensional hypercube, and augmented
cubes are node-symmetric [7]. Recently, some interesting
properties, such as conditional link faults, of the augmented
cube AQn have been investigated in the literature. Choudum
and Sunitha [7] proved AQn, with n � 2, is pancyclic; that
is, AQn contains cycles of arbitrary length. Wang et al. [33]
showed that AQn, with n � 4, remains pancyclic provided
faulty vertices and/or edges do not exceed 2n − 3. Hsieh
and Shiu [13] proved that AQn is node-pancyclic, in which
for every node u and any integer � � 3, the graph contains
a cycle of length � such that u is in the cycle. Hsu et al.
[16] proved that AQn is geodesic pancyclic and balanced
pancyclic. Recently, Chan et al. [6] improved the results in
[16] to obtain a stronger result for geodesic pancyclic and
fault-tolerant panconnectivity of the augmented cube AQn.
In [25], Ma et al. proved that AQn contains paths between
any two distinct vertices of all lengths from their distance to
2n−1; and that AQn still contains cycles of all lengths from
3 to 2n when any (2n − 3) edges are removed from AQn.
Xu et al. [34] determined the vertex and the edge forwarding
indices of AQn as 2n/9 + (−1)n+1/9 + n2n/3 − 2n + 1
and 2n−1, respectively. Recently, Chan [5] computed the
distinguishing number of the augmented cube AQn.

A Hamiltonian cycle in a graph is a simple cycle that
passes through every node of the graph exactly once. The
ring structure is important for distributed computing, and
its benefits can be found in [21]. Two Hamiltonian cycles
in a graph are said to be edge-disjoint if they do not share
any common edge. The edge-disjoint Hamiltonian cycles can
provide advantage for algorithms that make use of a ring
structure [32]. Consider the problem of all-to-all broadcasting
in which each node sends an identical message to all other
nodes in the network [32]. There is a simple solution for
the problem using an n-node ring that requires n − 1 steps,
i.e., at each step, every node receives a new message from
its ring predecessor and passes the received message to its
ring successor. If the network admits edge-disjoint rings,
then messages can be divided and the parts broadcast along
different rings without any edge contention. If the network
can be decomposed into edge-disjoint Hamiltonian cycles,
then the message traffic will be evenly distributed across
all communication links (edges). Edge-disjoint Hamiltonian
cycles also form the basis of an efficient all-to-all broad-
casting algorithm for networks that employ wormhole or
cut-through routing [23]. Further, edge-disjoint Hamiltonian
cycles provide the edge-fault tolerant hamiltonicity of an
interconnected network; that is, when a Hamiltonian cycle of
an interconnected network contains one faulty edge, then the
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other edge-disjoint Hamiltonian cycle can be used to replace
it for transmission. In addition, two edge-disjoint Hamilto-
nian cycles of an interconnection network can be applied to
logical dual-ring topology [31]. A dual-ring topology allows
traffic to flow in opposite directions, with one ring counter-
rotating to the other. Normally in a dual-ring network one
ring is the primary path while the secondary ring is the
secondary path (or backup path). SONET is an example of
a network that may use a dual-ring topology. On the other
hand, if one ring experiences a failure, the other one provides
operability. Thus, a dual-ring topology provides edge-fault
tolerance. In this paper, we use a recursive construction to
show that, for any integer n � 3, there are two edge-disjoint
Hamiltonian cycles in the n-dimensional augmented cube
AQn.

Finding node-disjoint paths is one of the important issues
of routing among nodes in various interconnection networks.
Node-disjoint paths can be used to avoid communication
congestion and provide parallel paths for an efficient data
routing among nodes. Moreover, multiple node-disjoint paths
can be more fault-tolerant of nodes or link failures and
greatly enhance the transmission reliability. A path cover of
a graph G is a family of node-disjoint paths that contain all
nodes of G. For an embedding of linear arrays in a network,
the path cover implies every node can be participated in a
pipeline computation. Finding a minimum path cover and its
variants of a graph have been investigated [17], [18], [26],
[27], [28]. In this paper, we will study a variation of path
cover, called two-equal path cover. A graph G contains two-
equal path cover and is called two-equal path coverable if
for any two distinct pairs of nodes 〈µs, µt〉 and 〈υs, υt〉
of G, there exists a path cover {P,Q} of G such that
(1) P joins µs and µt, (2) Q joins υs and υt, and (3)
|P | = |Q|. Finding two-equal path cover in an interconnected
network can be applied to the routing problem in which
the network is decomposed into two disjoint sub-networks
with the same number of nodes such that each sub-network
contains a Hamiltonian path. In this paper, we will show
that the augmented cube AQn, with n � 2, is two-equal
path coverable. Based on the proof of existence, we present
a recursive algorithm to construct two-equal path cover of an
n-dimensional augmented cube AQn given any two distinct
pairs of nodes 〈µs, µt〉 and 〈υs, υt〉 of AQn.

Related areas of investigation are summarized as follows.
The edge-disjoint Hamiltonian cycles in k-ary n-cubes has
been constructed in [2]. Barden et al. [3] constructed the
maximum number of edge-disjoint spanning trees in a hyper-
cube. Petrovic et al. [29] characterized the number of edge-
disjoint Hamiltonian cycles in hyper-tournaments. Hsieh et
al. [14] constructed edge-disjoint spanning trees in locally
twisted cubes. The existence of a Hamiltonian cycle in
augmented cubes has been shown in [7], [15]. However, there
has been no work reported so far on edge-disjoint properties
in augmented cubes. Hsu et al. [15] considered the fault
hamiltonicity and the fault hamiltonian connectivity of the
augmented cube AQn. Lee et al. [24] studied the Hamil-
tonian path problem on AQn with a required node being
the end node of a Hamiltonian path. Abuelrub [1] studied
the robustness capability of crossed cubes in constructing a
Hamiltonian cycle despite the presence of faulty nodes or
edges. Lai et al. [22] showed that crossed cubes and twisted

cubes contain two-equal path cover. A preliminary version of
this paper has appeared in [19]. Recently, we present a linear
time algorithm to construct two edge-disjoint Hamiltonian
cycles in locally twisted cubes [20].

The rest of this paper is organized as follows. In Section
II, the structure of augmented cubes is introduced, and some
definitions and notations used in the paper are given. Section
III first shows the existence of two edge-disjoint Hamiltonian
cycles in augmented cubes. We then present a recursive
algorithm to construct two edge-disjoint Hamiltonian cycles
of an augmented cube using the proof of existence. In
Section IV, we prove that augmented cubes are two-equal
path coverable. We then give a linear time algorithm for
constructing two-equal path cover of an augmented cube
using the proof of existence. Finally, we conclude this paper
in Section V.

II. PRELIMINARIES

We usually use a graph to represent the topology of an
interconnection network. A graph G = (V,E) is a pair of
the node set V and the edge set E, where V is a finite set
and E is a subset of {(u, v)|(u, v) is an unordered pair of
V }. We will use V (G) and E(G) to denote the node set and
the edge set of G, respectively. If (u, v) is an edge in a graph
G, we say that u is adjacent to v and u, v are incident to
edge (u, v). A neighbor of a node v in a graph G is any node
that is adjacent to v. Moreover, we use NG(v) to denote the
set of neighbors of v in G. The subscript ‘G’ of NG(v) can
be removed from the notation if it has no ambiguity.

Let G = (V,E) be a graph with node set V and edge set
E. A path P of length � in G, denoted by v0 → v1 →
· · · → v�−1 → v�, is a sequence v0, v1, · · · , v�−1, v� of
nodes such that (vi, vi+1) ∈ E for 0 � i � � − 1. The
first node v0 and the last node v� visited by P are called
the path-start and path-end of P , denoted by start(P ) and
end(P ), respectively, and they are called the end nodes of
P . Path v� → v�−1 → · · · → v1 → v0 is called the
reversed path, denoted by Prev, of path P . That is, path
Prev visits the nodes of path P from end(P ) to start(P )
sequentially. In addition, P is a cycle if |V (P )| � 3 and
end(P ) is adjacent to start(P ). A path P = v0 → v1 →
· · · → v�−1 → v� may contain another subpath Q, denoted as
v0 → v1 → · · · → vi−1 → Q → vj+1 → · · · → v�−1 → v�,
where Q = vi → vi+1 → · · · → vj , start(Q) = vi, and
end(Q) = vj for 0 � i � j � �. A path (or cycle) in
G is called a Hamiltonian path (or Hamiltonian cycle) if
it contains every node of G exactly once. A graph G is
Hamiltonian connected if, for any two distinct nodes u, v,
there exists a Hamiltonian path with end nodes u, v. Two
paths (or cycles) P1 and P2 connecting a node u to a node v
are said to be edge-disjoint if and only if E(P1)∩E(P2) = ∅.
Two paths (or cycles) Q1 and Q2 of graph G are called node-
disjoint if and only if V (Q1)∩V (Q2) = ∅. Two node-disjoint
paths Q1 and Q2 can be concatenated into a path, denoted
by Q1 ⇒ Q2, if end(Q1) is adjacent to start(Q2).

Definition 1. A graph G contains two-equal path cover and
is called two-equal path coverable if for any two distinct
pairs of nodes 〈µs, µt〉 and 〈υs, υt〉 of G, there exist two
node-disjoint paths P and Q satisfying that (1) start(P ) =
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Fig. 1. (a) The 2-dimensional augmented cube AQ2, and (b) the 3-
dimensional augmented cube AQ3 containing AQ0

2, AQ1
2

µs and end(P ) = µt, (2) start(Q) = υs and end(Q) = υt,
(3) |P | = |Q|, and (4) V (P ) ∪ V (Q) = V (G).

Now, we introduce augmented cubes. The node set of the
n-dimensional augmented cube AQn is the set of binary
strings of length n. A binary string b of length n is denoted
by bn−1bn−2 · · · b1b0, where bn−1 is the most significant
bit. We denote the complement of bit bi by bi = 1 − bi

and the leftmost bit complement of binary string b by
b = bn−1bn−2 · · · b1b0. We then give the recursive definition
of the n-dimensional augmented cube AQn, with integer
n � 1, as follows.

Definition 2. [7] Let n � 1. The n-dimensional augmented
cube, denoted by AQn, is defined recursively as follows.
(1) AQ1 is a complete graph with the node set {0, 1}.
(2) For n � 2, AQn is built from two disjoint copies
AQn−1 according to the following steps. Let AQ0

n−1 denote
the graph obtained by prefixing the label of each node
of one copy of AQn−1 with 0, let AQ1

n−1 denote the
graph obtained by prefixing the label of each node of
the other copy of AQn−1 with 1. Then, adding 2n edges
between AQ0

n−1 and AQ1
n−1 by the following rule. A node

b = 0bn−2bn−3 · · · b1b0 of AQ0
n−1 is adjacent to a node

a = 1an−2an−3 · · · a1a0 of AQ1
n−1 if and only if either

(i) ai = bi for all n−2 � i � 0 (in this case, (b, a) is called
a hypercube edge), or
(ii)ai = bi for all n− 2 � i � 0 (in this case, (b, a) is called
a complement edge).

It was proved in [7] that AQn is node transitive, (2n−1)-
regular, and has diameter 	n

2 
. By Definition 2, AQn con-
tains 2n nodes and (2n − 1) · 2n−1 edges. In addition,
AQn can be decomposed into two sub-augmented cubes
AQ0

n−1 and AQ1
n−1, where for each i ∈ {0, 1}, AQi

n−1

consists of those nodes b = bn−1bn−2 · · · b1b0 with leading
bit bn−1 = i. For each i ∈ {0, 1}, AQi

n−1 is isomorphic to
AQn−1. For example, Fig. 1(a) shows AQ2 and Fig. 1(b)
depicts AQ3 consisting of two sub-augmented cubes AQ0

2,
AQ1

2. The following proposition can be easily verified from
Definition 2.

Proposition 1. Let AQn be the augmented cube decomposed
into AQ0

n−1 and AQ1
n−1. For any b ∈ V (AQi

n−1) and i ∈
{0, 1}, b ∈ V (AQ1−i

n−1) and b ∈ N(b).

Let b is a binary string b�−1b�−2 · · · b1b0 of length �. We
denote bτ the new binary string obtained by repeating b string
τ times. For instance, (10)2 = 1010 and 03 = 000.

The following Hamiltonian connected property of the
augmented cube can be proved by induction.

Lemma 2. For any integer n � 2, AQn is Hamiltonian
connected.

Proof: We prove this lemma by induction on n, the
dimension of the augmented cube AQn. Obviously, AQ2 is
Hamiltonian connected since it is a complete graph with 4
nodes. Assume that AQk, with k � 2, is Hamiltonian con-
nected. We will prove that AQk+1 is Hamiltonian connected.
We first decompose AQk+1 into two sub-augmented cubes
AQ0

k and AQ1
k. Let u, v be any two distinct nodes of AQk+1.

There are two cases:
Case 1: u, v ∈ V (AQi

k), for i ∈ {0, 1}. By inductive
hypothesis, there is a Hamiltonian path P in AQi

k with end
nodes u, v. Let P = u → P ′ and let start(P ′) = w. By
inductive hypothesis, there is a Hamiltonian path Q in AQ1−i

k

such that start(Q) = u and end(Q) = w. By Proposition
1, u ∈ N(u) and w ∈ N(w). Then, u ⇒ Q ⇒ P ′ is a
Hamiltonian path of AQk+1 with end nodes u, v.

Case 2: u ∈ V (AQi
k) and v ∈ V (AQ1−i

k ), for i ∈ {0, 1}.
Let w be a node in AQi

k such that w �= u and w �= v. By
inductive hypothesis, there is a Hamiltonian path P in AQi

k

such that start(P ) = u and end(P ) = w. In addition, there
is a Hamiltonian path Q in AQ1−i

k such that start(Q) = w
and end(Q) = v. By Proposition 1, w ∈ N(w). Then, P ⇒
Q is a Hamiltonian path of AQk+1 with end nodes u, v.

In either case, AQk+1 is Hamiltonian connected. By
induction, AQn, with n � 2, is Hamiltonian connected.

III. TWO EDGE-DISJOINT HAMILTONIAN CYCLES

In this section, we first show the existence of two edge-
disjoint Hamiltonian cycles in augmented cubes. Based on
the proof of existence, we design a recursive algorithm
to construct two edge-disjoint Hamiltonian cycle of an n-
dimensional augmented cube.

Obviously, AQ2 contains no two edge-disjoint Hamilto-
nian cycles since each node is incident to only three edges.
For any integer n � 3, we will show that there exist
two edge-disjoint Hamiltonian paths, P and Q, in AQn

such that start(P ) = 0(0)n−300, end(P ) = 1(0)n−300,
start(Q) = 0(0)n−310, and end(Q) = 1(0)n−310. By
Proposition 1, start(P ) ∈ N(end(P )) and start(Q) ∈
N(end(Q)). Thus, AQn, n � 3, contains two edge-disjoint
Hamiltonian cycles. In the following, we will show how to
construct two such edge-disjoint Hamiltonian cycles. We first
show that AQ3 contains two such edge-disjoint Hamiltonian
paths as follows.

Lemma 3. There are two edge-disjoint Hamiltonian paths
P and Q in AQ3 such that start(P ) = 000, end(P ) = 100,
start(Q) = 010, and end(Q) = 110.

Proof: We prove this lemma by constructing two such
paths. Let
P = 000 → 010 → 011 → 001 → 101 → 111 → 110 →
100, and let
Q = 010 → 001 → 000 → 011 → 111 → 100 → 101 →
110.
Fig. 2 depicts the construction of P and Q. Clearly, P and
Q are edge-disjoint Hamiltonian paths in AQ3.

Using Lemma 3, we prove the following lemma by induc-
tion.
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Fig. 2. Two edge-disjoint Hamiltonian paths (cycles) in AQ3, where the
solid arrow lines indicate a Hamiltonian path P and the dashed arrow lines
indicate the other edge-disjoint Hamiltonian path Q
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Fig. 3. The construction of two edge-disjoint Hamiltonian paths in AQk+1,
with k � 3, where the dashed arrow lines indicate the paths and the solid
arrow lines indicate concatenated edges

Lemma 4. For any integer n � 3, there are two edge-disjoint
Hamiltonian paths P and Q in AQn such that start(P ) =
0(0)n−300, end(P ) = 1(0)n−300, start(Q) = 0(0)n−310,
and end(Q) = 1(0)n−310.

Proof: We prove this lemma by induction on n, the
dimension of the augmented cube. It follows from Lemma
3 that the lemma holds true when n = 3. Assume that
the lemma is true for the case of n = k � 3. Consider
AQk+1. We first partition AQk+1 into two sub-augmented
cubes AQ0

k and AQ1
k. By the induction hypothesis, there

are two edge-disjoint Hamiltonian paths P i and Qi, for
i ∈ {0, 1}, in AQi

k such that start(P i) = i0(0)k−300,
end(P i) = i1(0)k−300, start(Qi) = i0(0)k−310, and
end(Qi) = i1(0)k−310. By Proposition 1, we have that

end(P 0) ∈ N(end(P 1)) and end(Q0) ∈ N(end(Q1)).

Let P = P 0 ⇒ P 1
rev and let Q = Q0 ⇒ Q1

rev, where P 1
rev and

Q1
rev are the reversed paths of P 1 and Q1, respectively. Then,

P and Q are two edge-disjoint Hamiltonian paths in AQk+1

such that start(P ) = 0(0)k−200, end(P ) = 1(0)k−200,
start(Q) = 0(0)k−210, and end(Q) = 1(0)k−210. Fig. 3
depicts the construction of two such edge-disjoint Hamil-
tonian paths in AQk+1. Thus, the lemma holds true when
n = k + 1. By induction, the lemma holds true.

By Proposition 1, nodes start(P ) = 0(0)n−300 and
end(P ) = 1(0)n−300 are adjacent, nodes start(Q) =
0(0)n−310 and end(Q) = 1(0)n−310 are adjacent, and the
two edges (start(P ), end(P )) and (start(Q), end(Q)) are
distinct. Thus the following two theorems hold true.

Theorem 5. There exist two edge-disjoint Hamiltonian paths
in AQn for any integer n � 3.

Theorem 6. There exist two edge-disjoint Hamiltonian cy-
cles in AQn for any integer n � 3.

Based on the proofs of Lemmas 3 and 4, we design
a recursive algorithm to construct two edge-disjoint
Hamiltonian paths of an n-dimensional augmented cube.

The algorithm typically follows a divide-and-conquer
approach [8] and is sketched as follows. It is given by an
n-dimensional augmented cube AQn with n � 3. If n = 3,
then the algorithm constructs two edge-disjoint Hamiltonian
paths according to the proof of Lemma 3. Suppose that
n > 3. It first decomposes AQn into two sub-augmented
cubes AQ0

n−1 and AQ1
n−1, where for each i ∈ {0, 1},

AQi
n−1 consists of those nodes b = bn−1bn−2 · · · b1b0 with

leading bit bn−1 = i. Then, the algorithm computes two
edge-disjoint Hamiltonian paths of AQ0

n−1 and AQ1
n−1

recursively. Finally, it concatenates these computed four
cycles into two edge-disjoint Hamiltonian paths of AQn

according to the proof of Lemma 4, and outputs two such
concatenated paths. The algorithm is formally presented as
follows.

Algorithm CONSTRUCTING-2EDHP
Input: AQn, an n-dimensional augmented cube with n � 3.
Output: Two edge-disjoint Hamiltonian paths P and Q
in AQn such that start(P ) = 0(0)n−300, end(P ) =
1(0)n−300, start(Q) = 0(0)n−310, and end(Q) =
1(0)n−310.
Method:

1. if n = 3, then
2. let P = 000 → 010 → 011 → 001 → 101 → 111→

110 → 100;
3. let Q = 010 → 001 → 000 → 011 → 111 → 100→

101 → 110;
4. output “P and Q” as two edge-disjoint Hamiltonian

paths of AQ3;
5. decompose AQn into two sub-augmented cubes AQ0

n−1

and AQ1
n−1 such that AQi

n−1, i ∈ {0, 1}, consists of
those nodes b = bn−1bn−2 · · · b1b0 with leading bit
bn−1 = i;

6. call Algorithm CONSTRUCTING-2EDHP given AQ0
n−1

to compute two edge-disjoint Hamiltonian paths P 0

and Q0 of AQ0
n−1, where start(P 0) = 00(0)n−400,

end(P 0) = 01(0)n−400, start(Q0) = 00(0)n−410,
end(Q0) = 01(0)n−410;

7. call Algorithm CONSTRUCTING-2EDHP given AQ1
n−1

to compute two edge-disjoint Hamiltonian paths P 1

and Q1 of AQ1
n−1, where start(P 1) = 10(0)n−400,

end(P 1) = 11(0)n−400, start(Q1) = 10(0)n−410,
end(Q1) = 11(0)n−410;

8. compute P = P 0 ⇒ P 1
rev and Q = Q0 ⇒ Q1

rev, where
P 1

rev and Q1
rev are the reversed paths of P 1 and Q1,

respectively;
9. output “P and Q” as two edge-disjoint Hamiltonian

paths of AQn.

For example, Fig. 4 shows two edge-disjoint Hamilto-
nian paths of AQ4 consisting of two sub-augmented cubes
AQ0

3 and AQ1
3, constructed by Algorithm CONSTRUCTING-

2EDHP. The correctness of Algorithm CONSTRUCTING-
2EDHP immediately follows from Lemmas 3 and 4. Now,
we analyze its time complexity. Let m be the number of the
nodes in AQn. Then, m = 2n. Let T (m) be the running
time of Algorithm CONSTRUCTING-2EDHP given AQn. It
is easy to verify from lines 2 and 3 that T (m) = O(1) if
n = 3. Suppose that n > 3. By visiting every node of AQn

once, decomposing AQn into AQ0
n−1 and AQ1

n−1 can be
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Fig. 4. Two edge-disjoint Hamiltonian paths (cycles) in AQ4, where the
solid arrow lines indicate a Hamiltonian path P and the dashed arrow lines
indicate the other edge-disjoint Hamiltonian path Q

done in O(m) time, where each node in AQi
n−1, i ∈ {0, 1},

is labeled with leading bit i. Thus, line 5 of the algorithm
can be done in O(m) time. Then, the decomposition of
the problem yields two subproblems, each of which is 1/2
the size of the original. It takes time T (m/2) to solve one
subproblem, and so it takes time 2 ·T (m/2) to solve the two
subproblems. In addition, concatenating four paths into two
paths (line 8) can be easily done in O(m) time. Thus, we
obtain the following recurrence equation:

T (m) =
{

O(1) , if n = 3;
2 · T (m/2) + O(m) , if n > 3.

The solution of the above recurrence is T (m) =
O(m log m) = O(n2n). Thus, the running time of Algorithm
CONSTRUCTING-2EDHP given AQn is O(n2n). Since an
n-dimensional augmented cube AQn contains 2n nodes and
(2n−1)·2n−1 edges, the algorithm is a linear time algorithm.

Let P and Q be two edge-disjoint Hamiltonian paths
output by Algorithm CONSTRUCTING-2EDHP given AQn.
By Definition 2, start(P ) ∈ N(end(P )) and start(Q) ∈
N(end(Q)). In addition, the edge connecting start(P ) with
end(P ) is different from the edge connecting start(Q) with
end(Q). Thus, P and Q are two edge-disjoint Hamiltonian
cycles of AQn. We hence conclude the following theorem.

Theorem 7. Algorithm CONSTRUCTING-2EDHP correctly
constructs two edge-disjoint Hamiltonian cycles (paths) of
an n-dimensional augmented cube AQn, with n � 3, in
O(n2n)-linear time.

IV. TWO-EQUAL PATH COVER

In this section, we first show that, for any n � 2,
the n-dimensional augmented cube AQn is two-equal path
coverable. That is, for any two distinct pairs of nodes 〈µs, µt〉
and 〈υs, υt〉 of AQn, there exist two node-disjoint paths
P and Q of AQn satisfying that (1) start(P ) = µs and
end(P ) = µt, (2) start(Q) = υs and end(Q) = υt,
(3) |P | = |Q|, and (4) V (P ) ∪ V (Q) = V (AQn). Using
the proof of existence, we design a recursive algorithm to
construct two-equal path cover of AQn given any two pairs
of nodes 〈µs, µt〉 and 〈υs, υt〉 of AQn.

We will prove the existence of two-equal path cover by
induction on n, the dimension of AQn. Initially, AQ2 clearly
contains two-equal path cover since it is a complete graph
with four nodes.

Lemma 8. AQ2 is two-equal path coverable.

Lemma 9. For any integer n � 2, AQn is two-equal path
coverable.

Proof: We prove this lemma by induction on n, the
dimension of the augmented cube. It follows from Lemma 8
that the lemma holds true for the case of n = 2. Now, assume
that AQk, with k � 2, contains two-equal path cover. We will
prove that AQk+1 contains two-equal path cover. First, we
decompose AQk+1 into two sub-augmented cubes AQ0

k and
AQ1

k. Let 〈µs, µt〉 and 〈υs, υt〉 be any two pairs of distinct
nodes in AQk+1. We will construct two node-disjoint paths
P and Q of AQk+1 such that P joins µs and µt, Q joins υs

and υt, and |P | = |Q| = 2k. There are the following four
cases:

Case 1: µs, µt, υs, υt are in the same sub-augmented
cube. Without loss of generality, assume that µs, µt, υs, υt

are in AQ0
k. By inductive hypothesis, there is a path cover

{P 0, Q0} of AQ0
k such that |P 0| = |Q0|, start(P 0) = µs,

end(P 0) = µt, start(Q0) = υs, and end(Q0) = υt.
Let P 0 = µs → P ′ and Q0 = υs → Q′. Let wP =
start(P ′) and let wQ = start(Q′). Let 〈µs, wP 〉 and
〈υs, wQ〉 be two pairs of distinct nodes in AQ1

k. By inductive
hypothesis, there are two node-disjoint paths P 1 and Q1

of AQ1
k such that |P 1| = |Q1| = 2k−1, start(P 1) = µs,

end(P 1) = wP , start(Q1) = υs, and end(Q1) = wQ. By
Proposition 1, µs ∈ N(µs), wP ∈ N(wP ), υs ∈ N(υs),
and wQ ∈ N(wQ). Let P = µs ⇒ P 1 ⇒ P ′ and let
Q = υs ⇒ Q1 ⇒ Q′. Then, {P,Q} is a path cover of
AQk+1 such that P joins µs and µt, Q joins υs and υt, and
|P | = |Q| = 2k. The construction of two such paths in this
case is shown in Fig. 5(a).

Case 2: µs, µt, υs are in the same sub-augmented cube,
and υt is in another sub-augmented cube. Without loss of
generality, assume that µs, µt, υs are in AQ0

k. Let x be a node
in AQ0

k such that x ∈ V (AQ0
k)−{µs, µt, υs} and x �= υt. By

inductive hypothesis, there is a path cover {P 0, Q0} of AQ0
k

such that |P 0| = |Q0|, start(P 0) = µs, end(P 0) = µt,
start(Q0) = υs, and end(Q0) = x. Let P 0 = µs → P ′

and let wP = start(P ′). Consider that wP �∈ {x, υt}. Let
〈µs, wP 〉 and 〈x, υt〉 be two pairs of distinct nodes in AQ1

k.
By inductive hypothesis, there are two node-disjoint paths P 1

and Q1 of AQ1
k such that |P 1| = |Q1| = 2k−1, start(P 1) =

µs, end(P 1) = wP , start(Q1) = x, and end(Q1) = υt. By
Proposition 1, µs ∈ N(µs), wP ∈ N(wP ), and x ∈ N(x).
Let P = µs ⇒ P 1 ⇒ P ′ and let Q = Q0 ⇒ Q1. Then,
{P,Q} is a path cover of AQk+1 such that P joins µs and
µt, Q joins υs and υt, and |P | = |Q| = 2k. The construction
of two such paths in this case is shown in Fig. 5(b). On the
other hand, consider that wP ∈ {x, υt}. Since |V (AQ0

k)| =
|V (AQ1

k)| = 2k � 4, we can easily choose wP and x such
that wP �∈ {x, υt}. Then, we can build two node-disjoint
paths P and Q of AQk+1 by the same construction.

Case 3: µs, µt are in the same sub-augmented cube, and
υs, υt are in another sub-augmented cube. Without loss of
generality, assume that µs, µt are in AQ0

k. By Lemma 2,
there are Hamiltonian paths P and Q of AQ0

k and AQ1
k,

respectively, such that P joins µs, µt and Q joins υs, υt.
Thus, {P,Q} is a path cover of AQk+1 with |P | = |Q| = 2k.
Fig. 5(c) depicts the construction of two such paths in this
case.

Case 4: µs, υs are in the same sub-augmented cube, and
µt, υt are in another sub-augmented cube. Without loss of
generality, assume that µs, υs are in AQ0

k. Let x, y be two
distinct nodes of AQ0

k such that x, y ∈ V (AQ0
k) − {µs, υs}
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Fig. 5. The constructions of two node-disjoint paths in AQk+1, with
k � 2, for (a) µs, µt, υs, υt ∈ AQ0

k , (b) µs, µt, υs ∈ AQ0
k and υt ∈

AQ1
k , (c) µs, µt ∈ AQ0

k and υs, υt ∈ AQ1
k , and (d) µs, υs ∈ AQ0

k and
µt, υt ∈ AQ1

k , where the dashed arrow lines indicate the paths, the solid
arrow lines indicate concatenated edges, and the symbol ‘×’ denotes the
destruction to an edge in a path

and x, y �∈ {µt, υt}. Let 〈µs, x〉 and 〈υs, y〉 be two pairs of
distinct nodes in AQ0

k, and let 〈x, µt〉 and 〈y, υt〉 be two
pairs of distinct nodes in AQ1

k. By inductive hypothesis,
there are two node-disjoint paths P 0 and Q0 of AQ0

k such
that |P 0| = |Q0| = 2k−1, start(P 0) = µs, end(P 0) = x,
start(Q0) = υs, and end(Q0) = y. In addition, there
are two node-disjoint paths P 1 and Q1 of AQ1

k such that
|P 1| = |Q1| = 2k−1, start(P 1) = x, end(P 1) = µt,
start(Q1) = y, and end(Q1) = υt. By Proposition 1,
x ∈ N(x) and y ∈ N(y). Let P = P 0 ⇒ P 1 and let
Q = Q0 ⇒ Q1. Then, {P,Q} forms a path cover of
AQk+1 such that P joins µs and µt, Q joins υs and υt,
and |P | = |Q| = 2k. The construction of two such paths in
this case is shown in Fig. 5(d).

It follows from the above cases that AQk+1 contains two-
equal path cover. By induction, AQn, with n � 2, contains
two-equal path cover, and, hence, AQn is two-equal path
coverable. Thus, the lemma holds true.

Given any two nodes u, v of AQn, we can use the
proof of Lemma 2 to obtain an algorithm, called Algorithm
CONSTRUCTING-HP, for constructing a Hamiltonian
path of AQn with end nodes u, v. Using the proof of
Lemma 9 and Algorithm CONSTRUCTING-HP, we design
a recursive algorithm to construct two-equal path cover
of an n-dimensional augmented cube. The algorithm also
uses a divide-and-conquer approach [8] and is sketched
as follows. It is given by an n-dimensional augmented
cube AQn, with n � 2, and any two distinct pairs of
nodes 〈µs, µt〉 and 〈υs, υt〉. If n = 2, then the algorithm
constructs two paths such that one path consists of one
edge connecting µs and µt, and the other path consists of
one edge connecting υs and υt. Suppose that n > 2. It first
decomposes AQn into two sub-augmented cubes AQ0

n−1

and AQ1
n−1, where for each i ∈ {0, 1}, AQi

n−1 consists
of nodes b = bn−1bn−2 · · · b1b0 with leading bit bn−1 = i.
Consider the possible cases of µs, µt, υs, υt appeared in
the divided sub-augmented cubes (in the proof of Lemma
9). The algorithm then computes two-equal path covers
of AQ0

n−1 and AQ1
n−1 recursively. It finally concatenates

the paths in the computed two-equal path covers to

form two equal path cover of AQn according to the proof
of Lemma 9. The algorithm is formally presented as follows.

Algorithm CONSTRUCTING-2EPC
Input: AQn, an n-dimensional augmented cube with n � 2,
and two distinct pairs of nodes 〈µs, µt〉 and 〈µs, υt〉.
Output: Two-equal path cover {P,Q}.
Method:

1. if n = 2, then
2. let P = µs → µt;
3. let Q = υs → υt;
4. output “{P,Q}” as two-equal path cover of AQ2;
5. decompose AQn into two sub-augmented cubes AQ0

n−1

and AQ1
n−1 such that AQi

n−1, i ∈ {0, 1}, consists of
nodes b = bn−1bn−2 · · · b1b0 with leading bit bn−1 = i;

6. Consider the following four cases:
7. Case 1: µs, µt, υs, υt are in the same sub-augmented

cube AQi
n−1, i ∈ {0, 1}.

8. call Algorithm CONSTRUCTING-2EPC given
AQi

n−1 and two pairs of nodes 〈µs, µt〉 and 〈υs, υt〉
to compute two equal path cover {P i, Qi}, where
start(P i) = µs, end(P i) = µt, start(Qi) = υs,
end(Qi) = υt;

9. let P i = µs → P ′ and Qi = υs → Q′, where
wP = start(P ′) and wQ = start(Q′);

10. call Algorithm CONSTRUCTING-2EPC given
AQ1−i

n−1 and two pairs of nodes 〈µs, wP 〉
and 〈υs, wQ〉 to compute two-equal path cover
{P 1−i, Q1−i}, where start(P 1−i) = µs,
end(P 1−i) = wP , start(Q1−i) = υs, end(Q1−i) =
wQ;

11. compute P = µs ⇒ P 1−i ⇒ P ′ and Q = υs ⇒
Q1−i ⇒ Q′;

12. output “{P,Q}” as two-equal path cover of AQn;
13. Case 2: µs, µt, υs are in the same sub-augmented cube

AQi
n−1, i ∈ {0, 1}, and υt is in another sub-augmented

cube.
14. let x ∈ V (AQi

n−1)−{µs, µt, υs} such that x �= υt;
15. call Algorithm CONSTRUCTING-2EPC given

AQi
n−1 and two pairs of nodes 〈µs, µt〉 and 〈υs, x〉

to compute two equal path cover {P i, Qi}, where
start(P i) = µs, end(P i) = µt, start(Qi) = υs,
end(Qi) = x;

16. let P i = µs → P ′, where wP = start(P ′) and
wP �= υt;

17. call Algorithm CONSTRUCTING-2EPC given
AQ1−i

n−1 and two pairs of nodes 〈µs, wP 〉 and 〈x, υt〉
to compute two-equal path cover {P 1−i, Q1−i},
where start(P 1−i) = µs, end(P 1−i) = wP ,
start(Q1−i) = x, end(Q1−i) = υt;

18. compute P = µs ⇒ P 1−i ⇒ P ′ and Q = Qi ⇒
Q1−i;

19. output “{P,Q}” as two-equal path cover of AQn;
20. Case 3: µs, µt are in the same sub-augmented cube

AQi
n−1, i ∈ {0, 1}, and υs, υt are in another sub-

augmented cube.
21. call Algorithm CONSTRUCTING-HP given

AQi
n−1 and nodes µs, µt to compute a Hamiltonian

path P of AQi
n−1 with start(P ) = µs and

end(P ) = µt;
22. call Algorithm CONSTRUCTING-HP given AQ1−i

n−1
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and nodes υs, υt to compute a Hamiltonian path Q
of AQ1−i

n−1 with start(Q) = υs and end(Q) = υt;
23. output “{P,Q}” as two-equal path cover of AQn;
24. Case 4: µs, υs are in the same sub-augmented cube

AQi
n−1, i ∈ {0, 1}, and µt, υt are in another sub-

augmented cube.
25. let x, y ∈ V (AQi

n−1) − {µs, υs} such that x, y ∈
V (AQ1−i

n−1) − {µt, υt};
26. call Algorithm CONSTRUCTING-2EPC given

AQi
n−1 and two pairs of nodes 〈µs, x〉 and 〈υs, y〉

to compute two equal path cover {P i, Qi}, where
start(P i) = µs, end(P i) = x, start(Qi) = υs,
end(Qi) = y;

27. call Algorithm CONSTRUCTING-2EPC given
AQ1−i

n−1 and two pairs of nodes 〈x, µt〉 and 〈y, υt〉
to compute two equal path cover {P 1−i, Q1−i},
where start(P 1−i) = x, end(P 1−i) = µt,
start(Q1−i) = y, end(Q1−i) = υt;

28. compute P = P i ⇒ P 1−i and Q = Qi ⇒ Q1−i;
29. output “{P,Q}” as two-equal path cover of AQn.

The correctness of Algorithm CONSTRUCTING-2EPC fol-
lows from the proofs of Lemmas 2, 8 and 9. Now, we analyze
its time complexity. Let m be the number of the nodes in
AQn. Then, m = 2n. Let T (m) be the running time of
Algorithm CONSTRUCTING-2EPC given AQn and two pairs
of nodes 〈µs, µt〉 and 〈µs, υt〉. It is easy to verify from lines
2 and 3 that T (m) = O(1) if n = 2. Suppose that n > 2.
By visiting every node of AQn once, decomposing AQn

into AQ0
n−1 and AQ1

n−1 can be done in O(m) time, where
each node in AQi

n−1, i ∈ {0, 1}, is labeled with leading
bit i. Thus, line 5 of the algorithm can be done in O(m)
time. Then, the decomposition of the problem yields two
subproblems, each of which is 1/2 the size of the original.
For each case in the algorithm, it takes time T (m/2) to solve
one subproblem, and so it takes time 2 ·T (m/2) to solve the
two subproblems. It is not difficult to see that the other lines
in each case can be easily done in O(m) time. Thus, we get
the following recurrence equation:

T (m) =
{

O(1) , if n = 2;
2 · T (m/2) + O(m) , if n > 2.

The solution of the above recurrence is T (m) =
O(m log m) = O(n2n). Thus, the running time of Algorithm
CONSTRUCTING-2EPC given AQn is O(n2n). Since an n-
dimensional augmented cube AQn contains 2n nodes and
(2n−1)·2n−1 edges, the algorithm is a linear time algorithm.
Thus, we conclude the following theorem.

Theorem 10. Given an n-dimensional augmented cube
AQn, with n � 2, and two pairs of nodes 〈µs, µt〉 and
〈µs, υt〉 in AQn, Algorithm CONSTRUCTING-2EPC cor-
rectly constructs two-equal path cover of AQn in O(n2n)-
linear time.

V. CONCLUDING REMARKS

In this paper, we present a linear time algorithm to
construct two edge-disjoint Hamiltonian cycles (paths) of an
n-dimensional augmented cube AQn, for any integer n � 3.
We then show that there exists two-equal path cover of AQn

with n � 2. Using the proof of existence, we propose a linear

time algorithm to construct two-equal path cover of AQn

given two pairs of nodes 〈µs, µt〉 and 〈µs, υt〉 in AQn. It is
interesting to see if the proposed technique can be applied
to the other popular interconnection networks.
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