


Abstract— The conflict between achieving good performance,

in terms of time etc., and achieving high quality of security
protection introduces new challenges in security critical grid
scheduling. Extensive study indicates that the scheduling
performance is affected by the heterogeneities of security and
computational power of resources. Different jobs may have
varied security requirement and even the same security
requirement may exhibit different security overhead on
different nodes. This paper proposes a GA based dual objective
scheduling algorithm, Dual Objective Security Driven
Scheduling using Genetic Algorithm (DO-SDSG).
Maximization of security offered to tasks with minimization of
security overhead are the two objectives of DO-SDSG. Being a
dual objective scheduling problem, it alternatively optimizes
the objectives. When one objective is optimized the other one is
taken as a constraint and vice-versa. The simulation study
demonstrates that the proposed algorithm delivers better
makespan, better security with less security overhead in
comparison to other such algorithms viz. MinMin, MaxMin,
SPMinMin and SPMaxMin.

Index Terms- Grid computing, Job scheduling, Genetic
algorithm, Security, Security overhead.

I. INTRODUCTION

 A computational grid is a collection of geographically
dispersed heterogeneous computing resources, giving the
image of a single large virtual computing system to users [1]
[2] [3]. Scheduling on such platform is an important and
complex task more so being grid a heterogeneous system.
The main challenge for job scheduling in grid is its highly
dynamic environment, in which computing resources have
their own access policies, security, availability etc. At the
same time, resources are of greater heterogeneity in terms of
their architectural design that includes desktop PCs to
supercomputers. Thus, grid which is privately owned,
heterogeneous, non dedicated network of computers utilizes
the idle time of thousands of computing devices to harness
the high performance computing power. From the users’
point of view, the objective of the grid computing is to
simplify distributed heterogeneous computing in the manner
the World Wide Web has simplified information sharing
over the Internet [4]. The key factors in making the grid
computing feasible are: the evolution of standards such as
TCP/IP and Ethernet; the ever-increasing bandwidth of
networks; the increasing availability of idle CPU cycles on

R. Kashyap is with Lal Bahadur Shastri Institute of Management, Delhi,
India (phone: 91-11-25307700; fax: 91-11-24522474; e-mail:
rekhakashyap@lbsim.ac.in).

D. P. Vidyarthi is with School of Computer and Systems Sciences,
Jawaharlal Nehru University, Delhi, India (dpv@jnu.ac.in).

networked machines, and the emergence of Web services as
a logical and open choice for software computing
tasks[5][6]. Quite often, grid computing extensively
supports collaborative projects on the internet. Most of these
projects have stringent security requirements. Sometimes,
the application itself imbibes security up to some extent, but
more often it is to be supported and ensured by the grid
environment. The dynamic and multi-institutional nature of
the grid introduces challenging security threats that warrant
the development of the new technical approaches towards
this problem. In a security aware grid environment,
responsibility is delegated to the scheduler for allocating the
computational jobs on those resources that gives best
possible security, while keeping in mind the computational
and security heterogeneity of the resources.
 The motivation of the grid computing is to aggregate the
power of widely distributed resources to provide non-trivial
Quality of Service (QoS) to users in which security is an
important QoS parameter. To offer security as QoS, security
choices must be offered to the user/application in form of
Security Level (SL) and in turn user/application may request
a certain level of security in form of Security Demand (SD).
The underlying mechanism must be equipped to enter into
an agreement for the services delivery at the requested
security level. The notion of variant security requirement
and security ranges at first seem strange, as the feeling was
either to have security or ignore it at all. This is true at a
gross scale since without some minimum level of security, a
system will be considered inadequate for user’s
requirements. But if the user’s minimum requirements are
met, there may be some choices as to what is adequate. The
second argument for the variant security would be; why a
user would require anything less than the highest level of
security. The answer lies in the associated cost which may
be in form of monetary charges or even system performance
degradation. There are many applications that specify their
security demands and the service provider support them.
Thus security services are quantified. Irvine and Levin, in
their work, have emphasized the importance of quantifying
the security services [7]. Sypropoulou and Agar [8] have
worked on the quantification of the IPSec Protocol.
 Task scheduling in grid is an NP-hard optimization
problem, so many heuristic and meta-heuristic algorithms
are in use aiming for suboptimal solutions. Meta-heuristics
like Simulated Annealing (SA) [9], Genetic Algorithm (GA)
[10][11], Ant Colony Optimization (ACO) [12], Particle
Swarm Optimization (PSO) [13], etc. are also used for grid
scheduling as they generally produce higher quality results
than simple heuristics. Though these techniques may take a
bit longer as they have to generate and evaluate many
solutions not just one. These nature based meta-heuristics

Dual Objective Security Driven Scheduling
Model for Computational Grid using GA

R. Kashyap, D.P. Vidyarthi

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

follow the Darwin’s natural selection principle i.e. only the
fittest can survive. GA, a population-based meta-heuristic,
was proposed by John Holland [11]. It is inspired by
evolutionary biology and follows most of their
characteristics such as inheritance, mutation, crossover, and
selection. GA considers a solution as an organism, thus
better the quality of the solution higher its survival
probability. Solution evolves by applying genetic operators
such as crossover (also called recombination) and mutation.
GA can escape from the local optimal in search for the
global optimal. In this paper, we use genetic algorithm for
job scheduling to address the heterogeneity of security
mechanism in a computational grid. The proposed Dual
objective Security Driven Scheduling using Genetic
algorithm (DO-SDSG) schedules the tasks in a way which
improves the security of the heterogeneous grid with
minimal security overhead.
 This paper is organized in the following manner. Next
section discusses some related works in this field.
Scheduling strategy is described in section 3. Section 4
briefs the proposed security model of this work. Proposed
model DO-SDSG is analyzed in section 5. Experimental
results and observations for DO-SDSG and the compared
heuristics are presented in section 6 epitomizing the work in
the last section.

II. RELATED WORK

In order to achieve the promising potential of underlying
distributed resources in the grid, effective scheduling
algorithms are fundamentally important. Scheduling has
three phases: resource discovery, system selection and job
execution [14].Effective grid computing is possible only if
the resources are scheduled well. Scheduling tasks for the
grid is an NP-hard problem as grid is a geographically
dispersed heterogeneous multiprocessing environment.
Consequent to this is the emergence of many heuristic and
evolutionary approaches towards the scheduling problem
[15] [16] [17] [18] [19] [20]. Some well known heuristic
based grid scheduling algorithms, proposed in the literature,
are as follows.

Casanova et al. [21] proposed an adaptive grid scheduling
algorithm for parameter sweep applications, where tasks can
share input files. It was extended to Sufferage heuristics as
XSufferage. DFPLTF (Dynamic Fastest Processor to
Largest Task First) is a scheduling heuristic which gives
highest priority to the largest task [22]. Fujimoto and
Hagihara [23] have proposed Round Robin (RR) grid
scheduling algorithm for parameter sweep applications.
MinMin and MaxMin are well known algorithms used in
real world distributed resource management systems such as
SmartNet [24]. MinMin gives highest priority to the task
that can be completed first. In MinMin, the grid site offering
the earliest completion time is tagged and the task that has
the minimum earliest completion time is allocated to the
respective site. MaxMin also tags the grid site that offers the
earliest completion time but highest priority is given to the
task that has maximum earliest completion time. All the
above mentioned algorithms are not security aware and
hence unsuitable for security aware applications.

The goal of a security aware scheduler is to meet the
desired security requirements and at the same time offer a
high level of performance with respect to one or more
parameters e.g. makespan, average response time, site
utilization etc. [25][26][27]. Further, security heterogeneity

and the grid dynamism makes security aware grid
scheduling more challenging as the security overhead is
node dependent. Some of the security-aware schedulers
discussed in the literature are as follows. Song, Kwok and
Hwang [28] envision a secure scheduling framework with
the risk involved while dispatching the jobs to the remote
nodes. They proposed three scheduling strategies based on
different risk levels and modified the MinMin and Sufferage
heuristics in three modes; a) Secure mode (jobs were only
scheduled to those nodes which can ensure security) b)
Risky mode (jobs were scheduled to any available nodes
without considering the risks between jobs and nodes), and
c) F-risky mode (jobs were scheduled to available nodes to
take at most F risks). SPMinMin and SPMaxMin [29] [30]
are an improvement over the secure mode suggested by
Song. In SPMinMin and SPMaxMin security requirement is
the guiding parameter for scheduling decision and they
guarantee the security of the job while minimizing the
makespan. All above algorithms are security aware but
makes no effort to optimize the security beyond the
minimum security requirement.

SATS, suggested by Xie and Qin [31], takes into account
heterogeneities in security and computation. SATS also
provides a means of measuring overhead incurred by
security services. It tries to improve security and minimize
makespan. Xiaoyong et al. [32] incorporated security into
inter-task dependency and proposed a security driven
scheduling algorithm (SDS) to improve security of HDS
(Heterogeneous distributed systems) while minimizing the
makespan, risk probability and speedup. Proposed DO-
SDSG works towards optimizing security similar to SATS,
but being a GA based scheduler searches for the global
optimum escaping local optimum.

Chao-Chin and Ren-Yi [33] proposed a GA based
scheduling, addressing the heterogeneities of fault tolerant
mechanism in the computational grid. They improved upon
the job failure rate optimizing the makespan, whereas the
proposed algorithm improves the total security value
minimizing the security overhead.

The proposed work, DO-SDSG is an extension of earlier
work, SDSG (Security Driven Scheduling using Genetic
Algorithm) [39]. SDSG aims at maximizing security,
restricting security overhead under a certain limit. DO-
SDSG is a GA based dual objective scheduling algorithm,
where the two considered objectives are; maximize the
security offered to the tasks and minimize the security
overhead. Being a dual objective scheduling problem, it
alternatively optimizes the objectives. When one objective is
optimized the other one is taken as a constraint and vice-
versa.

III. SCHEDULING STRATEGY

The proposed model considers a grid consisting of
number of non dedicated processing nodes which, in turn,
may have a single processor or a group of heterogeneous or
homogeneous processors. A job is comprised of “n”
independent tasks with different computational size and
security level. The tasks have soft deadlines and are
independent i.e. without any precedence constraint. The list
of terminologies, used in this paper, is as follows.

 A task Ti is characterized as Ti= (Szi, SLi,) where, Szi is
the computational size in terms of millions of instructions
and SLi is the security level assigned to the ith task.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

 Processing node Nj of the grid is characterized as Nj=
(SPj, BTj) where, SPj is the speed of node in MIPS and BTj is
the begin time of the node (time to execute already assigned
tasks to the node).

 A schedule of the job is depicted as the set of 5 tuples
<Ti, Pj, BTj, SOij ,CTij> in which, Ti is ith task, Pj is jth
processing node, BTj is Begin Time at jth processing node,
SOij is the Security Overhead of ith task on jth node and CTij
is the completion time of the ith task on the jth processing
node. CTij is calculated as in equation 1.

CTij= BTj + ETij + SOij (1)

Here, ETij is Execution Time of ith task on jth processing

node and SOij is the Security Overhead of ith task on jth node.
Begin time of every node at the start of schedule is assumed
to be zero but once the execution start, it will be affected.

IV. SECURITY STRATEGY

A. Security Model

 One of the key factors behind the growing interest in grid
computing is the evolution of standards such as TCP/IP and
Ethernet in networking. For the TCP networking model,
IPsec, TLS/SSL and SSH are the popularly used security
protocols operating on its network, transport and application
layer respectively [34] [35] [36] [37]. These protocols offer
security to any grid application by the common security
services of key exchange, authentication, confidentiality and
integrity. Each protocol is further configured to match
differing security requirements through cipher suite
negotiations where cipher suite, is a named combination of
key exchange, authentication, encryption, and integrity
algorithms used to negotiate the security settings for a
network connection. In the present work, SSL V3 protocol is
considered and security levels are assigned for the cipher
suites supported by it. SL for each cipher-suite is based on
the weighted sum of security services involved in the cipher-
suite. Cipher-suite offering more security (algorithms with
longer keys) has more computational cost and therefore is
assigned a higher security level. The security level also
provides a mechanism for calculating the security overhead
expenses. Subset of cipher suites supported by SSL V3
protocol is given in Table 1. The third row SSLCipherSpec
SSL_RSA_WITH_DES_CBC_SHA indicates use of DES
with 56-bit encryption. The fourth row SSL CipherSpec
SSL_RSA_WITH_3DES_ EDE_ CBC_SHA indicates use
of 3DES with 168-bit encryption. Among the six cipher
suites, mentioned in the Table 1, the first one provides the
weakest security and the last one provides the strongest
security.

B. Security Overhead Computation

 Security overhead is calculated as suggested by Tao Xie
and Xiao Qin [38] (equation 2), where, SLi is in the range
[1, 2, 3…..R] and 1 and R are the lowest and highest
security level. For the experiments, shown in this paper, R is
set to be 15. The rationale behind this security overhead
model is based on the observation that the security overhead
of a particular application tends to be proportional to the
execution time of the application. In other words, security
overhead depends upon the amount of data to be secured

and thus is the product of the execution time (which depends
upon data size) and relative security required as shown in
equation 2. Xie Tao [30] and Xiaoyong Tang [31] have
proposed more precise model for calculating security
overhead in which they calculate security overhead for each
security service namely authentication, integrity and
confidentiality. Simpler security overhead calculation has
been effectuated in all the algorithms since for the
comparison purposes; the result will not be affected. Total
computation time considering security overhead is shown in
equation 3.

 ij ij iSO ET SL R (2)

CTij= BTj + ETij(1+ SLi /R) (3)

TABLE 1

 THE SUBSET OF CIPHER SUITES SUPPORTED BY SSL V3 PROTOCOL

SSLCipherSpec SSL_RSA_WITH_
RC4_128_MD5

Security Level 1

SSLCipherSpec SSL_RSA_WITH_
RC4_128_SHA

Security Level 2

SSLCipherSpec SSL_RSA_WITH_
DES_CBC_SHA

Security Level 3

SSLCipherSpec SSL_RSA_WITH_3
DES_EDE_CBC_SH
A

Security Level 4

SSLCipherSpec SSL_RSA_EXPORT
_WITH_RC4_40_M
D5

Security Level 5

SSLCipherSpec SSL_RSA_EXPORT
_WITH_RC2_CBC_
40_MD5

Security Level 6

V. THE PROPOSED WORK

 This work proposes a dual objective genetic algorithm,
DO-SDSG, which aims at maximizing the security value of
the job with minimal total security overhead. An important
decision in such dual objective optimization is how to
evaluate the quality of solutions since the conflicting and
incommensurable nature of some of the criteria makes this
process more complicated. The possible alternatives are as
follows.
 Combine the objectives: This is one of the classical

methods to evaluate the solution fitness in multi-objective
optimization. It refers to converting the multi-objective
problem into a single-objective by combining the various
criteria into a single scalar value. The most common way
of doing this is by setting weights to each criterion and
add them all together using an aggregating function.

 Pareto-based evaluation: In this approach, a vector
containing all the objective values represents the solution
fitness and the concept of dominance is used to establish
preference between solutions. A solution x is said to be
non inferior or non-dominated if there is no other solution
that is better that x in all the criteria.

 Alternating the objective: This is also an approach that
has been used for quite some time. It refers to optimizing
one criterion at a time while imposing constraints on the
others. The most challenging task in such optimization
problem is to decide upon the value of constraints.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

 The proposed GA based scheduler, DO-SDSG, alternates
the two objectives: total security offered and security
overhead. It works in two phases. Each phase performs the
crossover, mutation and selection operations to produce new
solutions. Each solution is associated with a fitness value,
used to evaluate the quality of that particular solution. The
three operations are repeated number of times, called
generations, until the termination condition is reached. In
the first phase we optimize (maximize) the security offered
considering security overhead as a constraint. The
constrained value of security overhead for the first phase is
the average security overhead over randomly created 500
schedules. After a fixed number of generations the algorithm
terminates yielding the best possible schedule. In the second
phase, security overhead is optimized (minimized) while
total security offered is the constraint. The total security
achieved by the best solution of the first phase is used as the
constrained value of the security in this phase, i.e. the
solutions having total security less than the constrained
value are allowed to survive. The steps followed in the two
phases are elaborated below.

DO-SDSG─Phase 1
 This is the first phase where we optimize (maximize) the
security offered considering security overhead as a
constraint. The various steps involved in it are discussed
below.

A. Coding of Solutions

 The encoding of individuals (also known as
chromosome, solution string etc.) of the population is a key
issue in genetic algorithm. In DO-SDSG, a fixed length
integer number encoding is used where feasible solution is
encoded in a vector called schedule. Chromosome is of the
size equal to the number of jobs to be scheduled.

Each element of the vector is an ordered pair (NodeID,
SecurityLevel) as shown in Fig. 1. The ith entry, in the
schedule, indicates that the ith task is scheduled on the node
with identity equal to NodeID and will be executed with the
security having value equal to SecurityLevel. For example,
3rd entry (4, 6) in the schedule (Figure 1) indicates that the
3rd task is scheduled on the node with NodeID 4 and offered
SecurityLevel value equal to 6. For each schedule Node ID
is randomly generated within the permissible range of
nodes. Security level is randomly generated between the
ranges as shown in equation 4.

 (4)

Here, SLi is the security offered to the ith task, SDMini is

the minimum security demanded by the ith task and SLMaxj
is the max security which the jth node can offer.

Task ID 1 2 3 4 5 6

2,3 3,5 4,6 3,1 4,3 2,8

Fig.1 The fixed length integer number encoding pattern of
chromosomes

B. Population

For initial population, we keep on generating random
schedules till we fetch 100 schedules having total security

overhead within constrained value denoted as SOctr. It is
obtained by averaging the security overhead from randomly
generated 500 schedules and is calculated as shown in
equation 5 and 6.

 (5)

 (6)

 Here, SOk is the total security overhead of the kth
schedule, m is total number of schedules and n is the number
of tasks comprising the schedule.

C. Fitness function and Selection
 Fitness function is one of the important components of
GA to measure the quality of solution and is problem
dependent. In the first phase of DO-SDSG, we maximize the
security of the solution with security overhead as a
constraint. If the constraint is violated the solution is
infeasible and has no fitness. Thus fitness of the schedule is
measured as the total security realized by the tasks. Equation
7 shows the fitness function.

Maximize Fit(f(x)) = (7)

subject to

where

 Here, SLi is the security level of ith task, SO(x) is the total
security overhead of the entire schedule x, SOij is the
security overhead of the ith task on the corresponding jth node
and n is the total number of tasks to be scheduled.
 Parents for the next generation are selected after
computing the fitness, Fit(f(x)) of each chromosome in the
current population. For selection, roulette wheel selection is
used which is similar to the roulette in the gambling games.
The selection operator allows the algorithm to take biased
decision favoring good individuals through generations. To
accomplish this, good individuals are replicated while bad
individuals are removed. As a consequence, post selection
population is likely to be dominated by good schedules.
Each individual is assigned an interval proportional to its
fitness and is selected if the randomly drawn number
belongs to its interval. Better the fitness, better the
possibility of its being selected. Selection procedure
involves following steps.

 Calculate the selection probability of schedule x
denoted as P(x) using equation 8.

 ,i=1,2,..,n (8)

 Calculate partial sum of fitness values (equation 9).

partSum(i) = partSum(i-1) + P(i), i = 1,2,…,n (9)

 Finally, generate a random number R between 0
and 1. If partSum(i-1) < R < partSum(i), then i is a

i i jSDMin SL SLMax 

1

m

K
ctr kSO SO m


 

1

,
n

i

k ijSO SO j


 

1

n

i

i

SL



,() 1, 2,...,ctrSO x SO i n 

1

() ,
n

ij j

i

SO x SO


 

1

(())
()

()
N

i

Fit f i
P i

f x






IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

probable parent. The operation is repeated till we
obtain N probable parents for the next generation.

D. Crossover and Mutation

 Genetic algorithms are based on principles that crossing
two individual can result in offspring’s normally better than
both the parents. Crossover is a recombination operator that
combines subparts of the two parent chromosomes to
produce offspring that contain some parts of genetic
material from both the parents. We have adopted single-
point crossover method with probability pc=0.7. Firstly,
parents are selected based on the above mentioned selection
scheme, then a crossover point is randomly selected, and we
exchange chromosome beyond this point. Since the genes of
our chromosome are ordered pair of Node ID and Security
Level, crossover not only changes the task node relationship
but also the security value associated with it and may result
in a new schedule whose security overhead exceeds the
SOctr. Thus only schedules whose security overhead does not
exceed SOctr are allowed to participate in crossover.
 After selection and crossover, mutation is performed to
lead the search to get out of local optimum. The mutation
operation randomly selects a gene in a chromosome, and
then mutates its value. In our case the mutation operator
changes the node and security value of a randomly selected
task in an arbitrary chromosome with probability pm=0.06.
The schedules whose security overhead exceeds SOctr post
mutation is brought back to its pre mutation state.

E. Termination

 The entire process of selection, crossover and mutation is
repeated till the algorithm converges or 1000 generations are
reached (whichever happens earlier), and candidates having
best fitness in the final generation is considered as the best
solution.

DO-SDSG─ Phase II
 In the second phase security overhead is optimized
(minimized) while total security offered is kept as the
constraint. The various steps involved in it are discussed
below. The total security achieved by the best solution of the
first phase is used as the constrained value of security for
this phase.

A. Coding of Solutions

 The coding of solutions is same as used in the first phase.

B. Initial Population

 The best schedule obtained from the first phase is taken as
one of the candidates for the initial population in this phase.
The remaining population is randomly generated till we get
99 more schedules whose total security is within the
constrained value (TSctr). The constrained value for the
security is obtained from the first phase. It is the total
security value attached with the best solution obtained from
first phase and is calculated as shown in equation 10.

, n=total number of tasks. (10)

C. Fitness function and Selection

 In the second phase of SDSG security overhead is
minimized keeping total security as a constraint. The fitness
of the schedule is the total security overhead incurred by all
the tasks and is measured using equation 11.

 minimize Fit(f(x)) = (11)

 subject to

where

Here, SOij is the security overhead of ith task on the
corresponding jth node, SL(x) is the total security of schedule
x and SLi is Security level of ith task. After we compute the
fitness Fit(f(x)) of each chromosome in the current
population, parents for the next generation are selected
using roulette wheel as was done in the first phase.

D. Crossover and Mutation

 The crossover and mutation operator for this phase are
applied in the same way, as in the first phase.

E. Termination

 The entire process of selection, crossover and mutation is
repeated till the algorithm converges or 1000 generations are
reached (whichever happens earlier), and candidates having
best fitness in the final generation is considered as the best
final solution.

VI. EXPERIMENTAL RESULTS AND OBSERVATIONS

In this section, we describe the experimental settings,
performance criterion and simulation results for the
proposed and studied algorithms. The comparative
performance study of DO-SDSG has been conducted with
five more scheduling algorithms, i.e. MinMin, MaxMin,
SPMinMin, SPMaxMin and SDSG. A brief description of
these algorithms is given below.

 MinMin─ gives highest priority to the task that can be

completed first. In this, for each task the grid site that
offers the earliest completion time is tagged and the task
that has the minimum earliest completion time is
allocated to the respective node. MinMin executes
shorter task in parallel whereas longer task follows the
shorter one[24].

 MaxMin─ here the grid site that offers earliest
completion time is tagged. Highest priority is given to
the task with maximum earliest completion time. The
idea behind Max-Min is overlapping long running task
with short running ones. MaxMin executes many shorter
tasks in parallel with the longer one [24].

 SPMinMin─ Security Prioritized MinMin(SPMinMin)
allocates highest security demanding tasks first on the
faster resources. Tasks having same security requirement
are then scheduled according to MinMin. 1

n

ctr i

i

TS SL




1

,
n

ij j

i

SO




() ctrSL x TS

1

()
n

i

i

SL x SL




IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

 SPMaxMin─ Security Prioritized MaxMin (SPMaxMin)
allocates highest security demanding tasks first on the
faster resources. Tasks having same security requirement
are then scheduled according to MaxMin(SA).

 SDSG– is a security driven scheduling using genetic
algorithm (SDSG) which aims at maximizing security
while restricting security overhead under a certain limit.

 The grid simulator, used for the study, is implemented in
java. It consists of Grid-Generator and Task-Generator. Grid
generator, based on some defined range, generates the grid.
Task generator produces the task. Properties of resources in
the simulations are random and uniformly distributed among
a predefined range of resource parameters as depicted in
Table 2. For random value generation, the random function
of java API is used with current time as the seed value.
Experimental study considers the complete heterogeneous
environment in terms of security offered by the nodes, speed
of the nodes, size of the task, and security demand of the
task. Since MinMin and MaxMin are not security-offering
scheduling algorithms; we imposed security overhead cost
in their implementations for a fair comparison with DO-
SDSG, SDSG, SPMinMin and SPMaxMin. The aim of DO-
SDSG is to maximize the security offered to the tasks with
minimal security overhead. Being a dual criterion
scheduling problem, we alternatively optimized the criteria
in two phases. The schedule offering the best solution in the
final generation of the second phase is selected as the
optimal schedule. DO-SDSG improves the security value
over generations and finally settles for the best possible in
the termination phase. For the comparisons to be fair, the
other algorithms are made to perform for the same security
values as used in DO-SDSG over the following performance
metrics:

 Security Overhead (extra computational expenses

for securing the data) =

 ij ij iSO ET SL R

 Makespan (completion time of the entire job) =

Max [CTij,] i=1, 2,…n.

 Average response time (time period between the

task arrival and its completion time) =

.

 Here, ETij is Execution Time of ith task on jth processing

node and SOij is the Security Overhead of ith task on jth
node.SLi is the security level offered to the ith task. CTij is the
completion time of the ith task on the assigned jth processor=
CTij= BTj + ETij + SOij , ATi is the arrival time of the ith task
and n is number of tasks in a schedule.

 Makespan reflects the entire job efficiency whereas
average response time indicates the performance of majority
of the tasks within the schedule. A better makespan is an
indication that the schedule does not suffer and a better
average response time suggests that majority of tasks does
not suffer.

TABLE 2
 INPUT PARAMETERS FOR THE SIMULATION EXPERIMENTS

Parameter Value Range

No of nodes 30

Speed of the processing
node (SP)

1, 2, 5, 10 (MIPS)

Security level of the
processing node (SL)

1 to 15

No. of tasks 100 to 1500 (fixed 150)

Size of tasks 10 to 1000 (MB)

Population size 100

Max generations 1000

Crossover probability(pc) 0.7

Mutation probability(pm) 0.06

A. Performance Impact by varying Number of Tasks

 Security overhead, makespan and average response time of
DO-SDSG is compared with other heuristics by varying
scheduled number of tasks from 100 to 1500 on a grid with
50 heterogeneous nodes. In fig 2, the experimental results
show that when the number of tasks increases, the time for
finishing the tasks also increases. It is also observed that
DO-SDSG performs better than all other algorithms,
achieving less security overhead and makespan for similar
security values. Since MinMin and MaxMin are not security
aware algorithm, making them run with higher security
values resulted in much higher security overhead and
makespan. Although SPMinMin and SPMaxMin are
security aware algorithms and give priorities to higher
security demanding tasks but they do not optimize security
overhead. DO-SDSG considers the best solution of SDSG as
one of the inputs in its second phase, thus the results of DO-
SDSG is atleast better than SDSG as shown in the result.
The improvement of DO-SDSG over other algorithms, for
makespan and security overhead is better with increase in
the number of tasks as shown in fig. 2(a) and 2(b). Average
response time measures the overall wait time for the entire
task set. Since MinMin and SPMinMin gives priority to
smaller tasks, they show better response time and DO-SDSG
is the third best among all the algorithms compared for
average response time metric (fig. 2(c)).

B. Performance Impact by varying Number of Nodes

DO-SDSG is compared with other algorithms by varying
number of nodes from 10 to 100, for 1000 heterogeneous
tasks. The parameters defining the nodes and tasks are
randomly generated between the ranges defined in Table 2.
It is observed that for all the models there is an improvement
in makespan and security overhead when more nodes are
available to schedule same number of tasks. It seems to be
intuitive. It is further observed that even if the number of
nodes is scaled, DO-SDSG gives better performance of
makespan and security overhead as it has a better scheduling
approach to schedule tasks to the appropriate computing
nodes (fig. 3(a) and 3(b)). Average response time of
MinMin is better than all other algorithms irrespective of
number of nodes present in the grid. DO-SDSG and SDSG
showed better response time than MaxMin, and SPMaxMin.

)

1

(/
n

ij

i

iCT TA n




IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

(a) Security Overhead

(b) Makespan

(c) Average response Time

Fig. 2. Performance comparisons varying the number of tasks

C. Performance Impact by varying Security Demand

 Next, we compared the security overhead, makespan and
average response time of DO-SDSG with other heuristics
when 500 tasks were scheduled on 30 heterogeneous nodes,
while varying security from low to high. The configuration
of low to high is done as shown in Table 3. Performance of
DO-SDSG was found to be better than other algorithms for
security overhead and makespan performance metric for all
levels of security demand. It is further observed that with the
increase in security demand DO-SDSG showed much
improvement over other algorithms for security overhead
and makespan (fig. 4(a) and 4(b)). The reason being: DO-
SDSG optimizes on security overhead by allowing only
those solutions to survive which are within a constrained
value of security overhead and tries to explore further for
solutions having lesser security overhead.

(a) Security Overhead

(b) Makespan

(c) Average response Time

Fig. 3. Performance comparisons varying the number of Nodes

Table 3. Security Value assignment

Security Level Value

1 to 5 low

6 to 10 medium

11 to 15 high

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

Se
cu
ri
ty
 O
ve
rh
e
ad

 in
 S
e
cs

Nos of Nodes

MinMin

SPMinMin

MaxMin

SPMaxMin

SDSG

DO‐SDSG

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

M
ak
e
sp
an

 in
 S
e
cs

Nos of Nodes

MinMin

SPMinMin

MaxMin

SDSG

DO‐SDSG

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge

 R
e
sp
o
n
se
 T
im

e

Nos of Nodes

MinMin

SPMinMin

MaxMin

SPMaxMin

SDSG

DO‐SDSG

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

Se
cu
ri
ty
 O
ve
rh
e
ad

 in
 S
e
cs

Nos of Nodes

MinMin

SPMinMin

MaxMin

SPMaxMin

SDSG

DO‐SDSG

0

200

400

600

800

1000

10 20 30 40 50 60 70 80 90 100

M
ak
e
sp
an

 in
 S
e
cs

Nos of Nodes

MinMin

SPMinMi
n

MaxMin

SPMaxMi
n

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge

 R
e
sp
o
n
se
 T
im

e

Nos of Nodes

MinMin

SPMinMi
n
MaxMin

SPMaxMi
n

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

 (a) Security Overhead

(b) Makespan

(c) Average response Time
Fig. 4. Performance comparisons varying the Security Demand

VII. CONCLUSION

 The paper proposes a GA based scheduling algorithm for
large computational grid, which makes efforts to incorporate
security into task scheduling. Non security aware algorithm
do not consider security overhead and security constraints of
a task and therefore possibly assign the task to a node that
only result in small computation time but with a large total
execution time (which is sum of computation time and
security overhead). In most of the results obtained in the
graph, it is obvious that DO-SDSG performs better than
other similar algorithms. Moreover, it optimizes the security
incurring lesser security overhead. GA, due to its very
nature, is capable of exploiting and exploring in the whole
range of solution search space globally and picking near
optimal scheduling solution. The proposed DO-SDSG being
security aware genetic algorithm makes effort to optimize

quality of security and at the same time satisfy high level of
performance metric i.e. security overhead. Experimental
results confirm that DO-SDSG performs better than other
compared heuristics giving better makespan and security
overhead for same level of security.

REFERENCES
[1] Foster I. Kesselman C. Tsudik G. Tuecke S. Security Architecture for

Computational Grids. ACM Conference on Computers and
Security 1998; 83-91.

[2] Foster I. Kesselman C. Tuecke S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of High
Performance Computing Applications 2001; pp. 200-222.

[3] Foster I. “What is Grid? A three point checklist, Paper (Grid
Today,1(6).)” http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
[2002].

[4] Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I.,Dennis
Gannon, L. J., Kennedy, K., Kesselman, C., Reed,D., Torczon, L.,
and Wolski, R.(2001). ‘The GrADSproject: Software support for
high-level grid application development’. International Journal of
High PerformanceComputing Applications 15(4): pp 327–344.

[5] Naedele, M. (2003) ‘Standards for XML and Web Services Security,
Computer’ vol.36, No.4, pp 96-98.

[6] Prabhakar, S., Ribbens, C. & Bora, P.(2002) ‘Multifaceted web
services: An approach to secure and scalable grid scheduling
Scheduling’. Proceedings of UROWEB..

[7] Irvine, C. E. and Levin, T. E.(1999) ‘Toward a Taxonomy and
Costing Method for Security Services’, Proceedings of the 15th
Computer Security Application Conference, Phoenix, AZ. (1999).

[8] Sypropoulou, E., Agar, C., Levin, T. E., and Irvine, C. E.(2002)
‘IPsec Modulation for Quality of Security Service’, Proceedings of
the International System Security Engineering Association
Conference, Orlando Florida.

[9] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, ”Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-
680,May 1983.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems.
AnnArbor, MI: Univ. of Michigan Press, 1975.

[11] Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison Wesley, 1989.

[12] E. Bonabeau, M. Dorigo and G. Theraulaz, ”Inspiration for
Optimizationfrom Social Insect Behavior,” Nature, vol. 406, pp. 39-
42,Jul. 2000.

[13] J. Kennedy and R. C. Eberhart, ”Particle Swarm Optimization,”Proc.
IEEE Int’l Conf. Neural Networks (ICNN 95), Perth, Australia,pp.
1942-1948, Nov. 1995.

[14] Schopf, J. M.(2004) ‘Ten Actions When Grid Scheduling — The User
as a Grid Scheduler’. In Grid Resource Management — State of the
Art and Future Trends, J. Nabrzyski, J. Schopf, and J. Weglarz
(eds.), pp. 15–23. Kluwer Academic Publishers

[15] Doulamis, N. Doulamis A. Varvarigos E. Varvarigou T.(2007) ‘Fair
scheduling algorithms in grids’, IEEE Transactions on Parallel and
Distributed Systems 18 (11), pp 1630-1648.

[16] Hai, Z., Yuping, W.(2008) ‘Security-Driven Task Scheduling Based
on Evolutionary Algorithm. International Conference on
Computational Intelligence and Security’.

[17] Braun, T., Hensgen, D,. Freund, R., Siegel, H., Beck, N., Boloni,
L., Maheswaran, M., Reuther, A., Robertson, J., Theys, M., Yao,
B.(2001). ‘A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing
systems’, Journal of Parallel and Distributed Computing, pp 810-
837.

 [18] Abawajy, J. An efficient adaptive scheduling policy for high
performance Computing, Future Generation Computer Systems 25
(3), 364-370., (2009).

[19] Kalantari, M., Akbari, M. K.(2009) A parallel solution for scheduling
of real time applications on grid environments, Future Generation
Computer Systems 25 (7), pp704-716.

[20] Kun-Ming, Y., Cheng-Kwan, C.(2008) ‘An Adaptive Scheduling
Algorithm for Scheduling Tasks in Computational Grid’, Seventh
International Conference on Grid and Cooperative Computing .

[21] Casanova, H. and Dongara, J.(1996) ‘ NetSolve: A Network Server
for Solving Computational Science Problems’. In Proceedings of
the 1996 ACM/IEEE Supercomputing Conference’.

[22] Paranhos, D., Cirne, W., & Brasileiro, F.(2003) ‘Trading cycles for
information: Using replication to schedule bag-of-tasks applications
on computational grids’. In International Conference on Parallel and

0
20
40
60
80

100
120
140
160

low medium high

A
ve
ra
ge

 R
e
sp
o
n
se
 T
im

e
 in

Se
cs

Security demand

MinMin

SPMinMin

MaxMin

SPMaxMin

SDSG

DO‐SDSG

0

200

400

600

800

1000

1200

1400

low medium high

M
ak
e
sp
an

 in
 S
e
cs

Security Demand

MinMin

SPMinMin

MaxMin

SPMaxMin

SDSG

DO‐SDSG

0
20
40
60
80

100
120
140
160

low medium high

A
ve
ra
ge

 R
e
sp
o
n
se
 T
im

e
 in

Se
cs

Security demand

MinMin

SPMinMin

MaxMin

SPMaxMin

SDSG

DO‐SDSG

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

Distributed Computing (Euro-Par), Lecture Notes in Computer
Science, volume 2790, pp169–180.

[23] Fujimoto, N., & Hagihara, K.(2003) ‘Near-optimal dynamic task
scheduling of independent coarse-grained tasks onto a
computational grid’. In 32nd Annual International Conference on
Parallel Processing (ICPP-03), pp. 391–398.

[24] Freund, R. F., Gherrity, R. M., Ambrosius, S., Campbell, M.

Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, , Lima, J.
D., Mirabile, F. L., Moore, L., Rust, B., & Siegel, H. J.(1998)
‘Scheduling resources in multi-user, heterogeneous, computing
environments with smartnet’, In the 7th IEEE Heterogeneous
Computing Workshop (HCW’98),pp. 184–199.

[25] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K.,
Gawor, J., Kesselman, C., Meder, S., Pearlman, L., Tuecke,
S.(2003) ‘Security for Grid Services, Proc. Int’l Symp. High
Performance Distributed Computing (HPDC-12).

[26] Xie, T., Qin, X. (2005) “Enahancing Security of Real-Time
Applications on Grids through Dynamic Scheduling”, Proc. 11th
Workshop Job Scheduling Strategies for Parallel Processing JSSPP;
pp146-158.

[27] Xie, T., Qin, X.(2008) ‘Security-Aware Resource Allocation for
RealTime Parallel jobs on Homogeneous and Heterogeneous
Clusters’. In IEEE Transactions on Parallel and Distributed systems,
Vol. 19, No. 5.

[28] Song, S., Kwok, Y., K. & Hwang, K.(2005) “Trusted Job Scheduling
in Open Computational Grids: Security-Driven Heuristics and A
Fast Genetic Algorithms,” Proc. Int’l Symp. Parallel and Distributed
Processing.

[29] Kashyap, R., Vidyarthi, D. P. (2009) ‘Security Prioritized
Computational Grid Scheduling Model: An Analysis. International
Journal of Grid and High Performance Computing’, 1(3), pp. 73-84
(2009).

[30] Kashyap, R., Vidyarthi, D. P.(2009) ‘A Security Prioritized
Scheduling Model for Computational Grid’. In International
conference at HPC Asia. pp 416-424.

[31] Xie, T., Qin, X.(2007) ‘Performance Evaluation of a New Scheduling
Algorithm for Distributed Systems with Security Heterogeneity’.
J. Parallel Distributed. Computing ; pp1067– 1081.

[32] Xiaoyong, T., Kenli, L., Zeng, Z., Bharadwaj, V.(2010) ‘A Novel
Security-Driven Scheduling Algorithm for Precedence Constrained
Tasks in Heterogeneous Distributed Systems’, IEEE Transaction on
computers Vol. 6, No. 1.

[33] Chao-Chin W. Ren-Yi S.(2010) ‘An integrated security-aware
scheduling strategy for large-scale computational grids’. Future
Generation Computer Systems, pp198-206.

[34] Luo Q. Lin Y. Analysis and Comparison of Several Algorithms in
SSL/TLS Handshake Protocol . Proceedings of the International
Conference on Information Technology and Computer Science
2009.

[35] Stallings W. Cryptography and Network Security: Principles and
Practice, 4/E. Prentice Hall: 2008.

[36] Salter M. Rescorla E. Housley R. RFC 5430 Suit B Profile for
Transport layer Security and TLS version 1.2.
http://tools.ietf.org/html/rfc5430 [March 2009].

[37] Dierks T. Rescorla E RFC 4346 The Transport layer Security (TLS)
Protocol Version 1.1. http://tools.ietf.org/pdf/rfc4346.pdf [April
2006].

[38] Xie, T., Sung, A., Qin, X.(2005) ‘Dynamic Task Scheduling with
Security Awareness in Real-Time Systems’, Proceedings of the 19th
International Parallel and Distributed Processing Symposium
(IPDPS'05), the 4th Int’l Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed Systems,
IEEE/ACM, Denver, CO.

[39] Kashyap R., Vidyarthi, D.P. , Security-Driven Scheduling Model for
Computational Grid using Genetic Algorithm , Lecture Notes in
Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2011, WCECS 2011,
19-21 October, 2011, San Francisco, USA, pp 382-387.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_08

(Advance online publication: 27 February 2012)

__

