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Abstract— The conflict between achieving good performance, 

in terms of time etc., and achieving high quality of security 
protection introduces new challenges in security critical grid 
scheduling. Extensive study indicates that the scheduling 
performance is affected by the heterogeneities of security and 
computational power of resources. Different jobs may have 
varied security requirement and even the same security 
requirement may exhibit different security overhead on 
different nodes. This paper proposes a GA based dual objective 
scheduling algorithm, Dual Objective Security Driven 
Scheduling using Genetic Algorithm (DO-SDSG). 
Maximization of security offered to tasks with minimization of 
security overhead are the two objectives of DO-SDSG. Being a 
dual objective scheduling problem, it alternatively optimizes 
the objectives. When one objective is optimized the other one is 
taken as a constraint and vice-versa. The simulation study 
demonstrates that the proposed algorithm delivers better 
makespan, better security with less security overhead in 
comparison to other such algorithms viz. MinMin, MaxMin, 
SPMinMin and SPMaxMin. 

 
Index Terms- Grid computing, Job scheduling, Genetic 
algorithm, Security, Security overhead. 

I. INTRODUCTION 

    A computational grid is a collection of geographically 
dispersed heterogeneous computing resources, giving the 
image of a single large virtual computing system to users [1] 
[2] [3]. Scheduling on such platform is an important and 
complex task more so being grid a heterogeneous system. 
The main challenge for job scheduling in grid is its highly 
dynamic environment, in which computing resources have 
their own access policies, security, availability etc. At the 
same time, resources are of greater heterogeneity in terms of 
their architectural design that includes desktop PCs to 
supercomputers. Thus, grid which is privately owned, 
heterogeneous, non dedicated network of computers utilizes 
the idle time of thousands of computing devices to harness 
the high performance computing power. From the users’ 
point of view, the objective of the grid computing is to 
simplify distributed heterogeneous computing in the manner 
the World Wide Web has simplified information sharing 
over the Internet [4]. The key factors in making the grid 
computing feasible are: the evolution of standards such as 
TCP/IP and Ethernet; the ever-increasing bandwidth of 
networks; the increasing availability of idle CPU cycles on  
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networked machines, and the emergence of Web services as 
a logical and open choice for software computing 
tasks[5][6]. Quite often, grid computing extensively 
supports collaborative projects on the internet. Most of these 
projects have stringent security requirements. Sometimes, 
the application itself imbibes security up to some extent, but 
more often it is to be supported and ensured by the grid 
environment. The dynamic and multi-institutional nature of 
the grid introduces challenging security threats that warrant 
the development of the new technical approaches towards 
this problem. In a security aware grid environment, 
responsibility is delegated to the scheduler for allocating the 
computational jobs on those resources that gives best 
possible security, while keeping in mind the computational 
and security heterogeneity of the resources.  
   The motivation of the grid computing is to aggregate the 
power of widely distributed resources to provide non-trivial 
Quality of Service (QoS) to users in which security is an 
important QoS parameter. To offer security as QoS, security 
choices must be offered to the user/application in form of 
Security Level (SL) and in turn user/application may request 
a certain level of security in form of Security Demand (SD). 
The underlying mechanism must be equipped to enter into 
an agreement for the services delivery at the requested 
security level. The notion of variant security requirement 
and security ranges at first seem strange, as the feeling was 
either to have security or ignore it at all. This is true at a 
gross scale since without some minimum level of security, a 
system will be considered inadequate for user’s 
requirements. But if the user’s minimum requirements are 
met, there may be some choices as to what is adequate. The 
second argument for the variant security would be; why a 
user would require anything less than the highest level of 
security. The answer lies in the associated cost which may 
be in form of monetary charges or even system performance 
degradation. There are many applications that specify their 
security demands and the service provider support them. 
Thus security services are quantified. Irvine and Levin, in 
their work, have emphasized the importance of quantifying 
the security services [7]. Sypropoulou and Agar [8] have 
worked on the quantification of the IPSec Protocol. 
 Task scheduling in grid is an NP-hard optimization 
problem, so many heuristic and meta-heuristic algorithms 
are in use aiming for suboptimal solutions. Meta-heuristics 
like Simulated Annealing (SA) [9], Genetic Algorithm (GA) 
[10][11], Ant Colony Optimization (ACO) [12], Particle 
Swarm Optimization (PSO) [13], etc. are also used for grid 
scheduling as they generally produce higher quality results 
than simple heuristics. Though these techniques may take a 
bit longer as they have to generate and evaluate many 
solutions not just one. These nature based meta-heuristics 
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follow the Darwin’s natural selection principle i.e. only the 
fittest can survive. GA, a population-based meta-heuristic, 
was proposed by John Holland [11]. It is inspired by 
evolutionary biology and follows most of their 
characteristics such as inheritance, mutation, crossover, and 
selection. GA considers a solution as an organism, thus 
better the quality of the solution higher its survival 
probability. Solution evolves by applying genetic operators 
such as crossover (also called recombination) and mutation. 
GA can escape from the local optimal in search for the 
global optimal. In this paper, we use genetic algorithm for 
job scheduling to address the heterogeneity of security 
mechanism in a computational grid. The proposed Dual 
objective Security Driven Scheduling using Genetic 
algorithm (DO-SDSG) schedules the tasks in a way which 
improves the security of the heterogeneous grid with 
minimal security overhead.     
   This paper is organized in the following manner. Next 
section discusses some related works in this field. 
Scheduling strategy is described in section 3. Section 4 
briefs the proposed security model of this work. Proposed 
model DO-SDSG is analyzed in section 5. Experimental 
results and observations for DO-SDSG and the compared 
heuristics are presented in section 6 epitomizing the work in 
the last section.  

II.   RELATED WORK 

In order to achieve the promising potential of underlying 
distributed resources in the grid, effective scheduling 
algorithms are fundamentally important. Scheduling has 
three phases: resource discovery, system selection and job 
execution [14].Effective grid computing is possible only if 
the resources are scheduled well. Scheduling tasks for the 
grid is an NP-hard problem as grid is a geographically 
dispersed heterogeneous multiprocessing environment. 
Consequent to this is the emergence of many heuristic and 
evolutionary approaches towards the scheduling problem 
[15] [16] [17] [18] [19] [20]. Some well known heuristic 
based grid scheduling algorithms, proposed in the literature, 
are as follows.  

Casanova et al. [21] proposed an adaptive grid scheduling 
algorithm for parameter sweep applications, where tasks can 
share input files. It was extended to Sufferage heuristics as 
XSufferage. DFPLTF (Dynamic Fastest Processor to 
Largest Task First) is a scheduling heuristic which gives 
highest priority to the largest task [22]. Fujimoto and 
Hagihara [23] have proposed Round Robin (RR) grid 
scheduling algorithm for parameter sweep applications. 
MinMin and MaxMin are well known algorithms used in 
real world distributed resource management systems such as 
SmartNet [24]. MinMin gives highest priority to the task 
that can be completed first. In MinMin, the grid site offering 
the earliest completion time is tagged and the task that has 
the minimum earliest completion time is allocated to the 
respective site. MaxMin also tags the grid site that offers the 
earliest completion time but highest priority is given to the 
task that has maximum earliest completion time. All the 
above mentioned algorithms are not security aware and 
hence unsuitable for security aware applications. 

The goal of a security aware scheduler is to meet the 
desired security requirements and at the same time offer a 
high level of performance with respect to one or more 
parameters e.g. makespan, average response time, site 
utilization etc. [25][26][27]. Further, security heterogeneity 

and the grid dynamism makes security aware grid 
scheduling more challenging as the security overhead is 
node dependent. Some of the security-aware schedulers 
discussed in the literature are as follows. Song, Kwok and 
Hwang [28] envision a secure scheduling framework with 
the risk involved while dispatching the jobs to the remote 
nodes. They proposed three scheduling strategies based on 
different risk levels and modified the MinMin and Sufferage 
heuristics in three modes; a) Secure mode (jobs were only 
scheduled to those nodes which can ensure security) b) 
Risky mode (jobs were scheduled to any available nodes 
without considering the risks between jobs and nodes), and 
c) F-risky mode (jobs were scheduled to available nodes to 
take at most F risks). SPMinMin and SPMaxMin [29] [30] 
are an improvement over the secure mode suggested by 
Song. In SPMinMin and SPMaxMin security requirement is 
the guiding parameter for scheduling decision and they 
guarantee the security of the job while minimizing the 
makespan. All above algorithms are security aware but 
makes no effort to optimize the security beyond the 
minimum security requirement. 

SATS, suggested by Xie and Qin [31], takes into account 
heterogeneities in security and computation. SATS also 
provides a means of measuring overhead incurred by 
security services. It tries to improve security and minimize 
makespan.  Xiaoyong et al. [32] incorporated security into 
inter-task dependency and proposed a security driven 
scheduling algorithm (SDS) to improve security of HDS 
(Heterogeneous distributed systems) while minimizing the 
makespan, risk probability and speedup. Proposed DO-
SDSG works towards optimizing security similar to SATS, 
but being a GA based scheduler searches for the global 
optimum escaping local optimum.  

Chao-Chin and Ren-Yi [33] proposed a GA based 
scheduling, addressing the heterogeneities of fault tolerant 
mechanism in the computational grid. They improved upon 
the job failure rate optimizing the makespan, whereas the 
proposed algorithm improves the total security value 
minimizing the security overhead.  

The proposed work, DO-SDSG is an extension of earlier 
work, SDSG (Security Driven Scheduling using Genetic 
Algorithm) [39]. SDSG aims at maximizing security, 
restricting security overhead under a certain limit. DO-
SDSG is a GA based dual objective scheduling algorithm, 
where the two considered objectives are; maximize the 
security offered to the tasks and minimize the security 
overhead. Being a dual objective scheduling problem, it 
alternatively optimizes the objectives. When one objective is 
optimized the other one is taken as a constraint and vice-
versa.  

III. SCHEDULING STRATEGY 

The proposed model considers a grid consisting of 
number of non dedicated processing nodes which, in turn, 
may have a single processor or a group of heterogeneous or 
homogeneous processors. A job is comprised of “n” 
independent tasks with different computational size and 
security level. The tasks have soft deadlines and are 
independent i.e. without any precedence constraint. The list 
of terminologies, used in this paper, is as follows. 

 A task Ti is characterized as Ti= (Szi, SLi,) where, Szi is 
the computational size in terms of millions of instructions 
and SLi is the security level assigned to the ith task.  
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 Processing node Nj of the grid is characterized as Nj= 
(SPj, BTj) where, SPj is the speed of node in MIPS and BTj is 
the begin time of the node (time to execute already assigned 
tasks to the node). 

 A schedule of the job is depicted as the set of 5 tuples    
<Ti, Pj, BTj, SOij ,CTij> in which, Ti is ith task, Pj is jth 
processing node, BTj is Begin Time at jth processing node, 
SOij is the Security Overhead of ith task on jth node and CTij 
is the completion time of the ith task on the jth processing 
node. CTij is calculated as in equation 1. 

 
CTij= BTj + ETij + SOij        (1) 

 
Here, ETij is Execution Time of ith task on jth processing 

node and SOij is the Security Overhead of ith task on jth node. 
Begin time of every node at the start of schedule is assumed 
to be zero but once the execution start, it will be affected.  

IV. SECURITY STRATEGY 

A. Security Model 

 One of the key factors behind the growing interest in grid 
computing is the evolution of standards such as TCP/IP and 
Ethernet in networking. For the TCP networking model, 
IPsec, TLS/SSL and SSH are the popularly used security 
protocols operating on its network, transport and application 
layer respectively [34] [35] [36] [37]. These protocols offer 
security to any grid application by the common security 
services of key exchange, authentication, confidentiality and 
integrity. Each protocol is further configured to match 
differing security requirements through cipher suite 
negotiations where cipher suite, is a named combination of 
key exchange, authentication, encryption, and integrity 
algorithms used to negotiate the security settings for a 
network connection. In the present work, SSL V3 protocol is 
considered and security levels are assigned for the cipher 
suites supported by it. SL for each cipher-suite is based on 
the weighted sum of security services involved in the cipher-
suite. Cipher-suite offering more security (algorithms with 
longer keys) has more computational cost and therefore is 
assigned a higher security level. The security level also 
provides a mechanism for calculating the security overhead 
expenses. Subset of cipher suites supported by SSL V3 
protocol is given in Table 1. The third row SSLCipherSpec 
SSL_RSA_WITH_DES_CBC_SHA indicates use of DES 
with 56-bit encryption. The fourth row SSL CipherSpec 
SSL_RSA_WITH_3DES_ EDE_ CBC_SHA indicates use 
of 3DES with 168-bit encryption. Among the six cipher 
suites, mentioned in the Table 1, the first one provides the 
weakest security and the last one provides the strongest 
security.  

B. Security Overhead Computation 

  Security overhead is calculated as suggested by Tao Xie 
and Xiao Qin [38] (equation 2), where, SLi is in the range 
[1, 2, 3…..R] and 1 and R are the lowest and highest 
security level. For the experiments, shown in this paper, R is 
set to be 15. The rationale behind this security overhead 
model is based on the observation that the security overhead 
of a particular application tends to be proportional to the 
execution time of the application. In other words, security 
overhead depends upon the amount of data to be secured 

and thus is the product of the execution time (which depends 
upon data size) and relative security required as shown in 
equation 2. Xie Tao [30] and Xiaoyong Tang [31] have 
proposed more precise model for calculating security 
overhead in which they calculate security overhead for each 
security service namely authentication, integrity and 
confidentiality. Simpler security overhead calculation has 
been effectuated in all the algorithms since for the 
comparison purposes; the result will not be affected. Total 
computation time considering security overhead is shown in 
equation 3. 

 

    
 ij ij iSO ET SL R                       (2) 

 
CTij= BTj +  ETij( 1+ SLi /R)                  (3) 

 
TABLE 1  

 THE SUBSET OF CIPHER SUITES SUPPORTED BY SSL V3 PROTOCOL 
 

SSLCipherSpec  SSL_RSA_WITH_ 
RC4_128_MD5 

Security Level  1 

SSLCipherSpec  SSL_RSA_WITH_ 
RC4_128_SHA 

Security Level  2 

SSLCipherSpec  SSL_RSA_WITH_ 
DES_CBC_SHA 

Security Level  3 

SSLCipherSpec  SSL_RSA_WITH_3
DES_EDE_CBC_SH
A 

Security Level  4 

SSLCipherSpec  SSL_RSA_EXPORT
_WITH_RC4_40_M
D5 

Security Level  5 

SSLCipherSpec  SSL_RSA_EXPORT
_WITH_RC2_CBC_
40_MD5 

Security Level  6 

 

V. THE PROPOSED WORK 

    This work proposes a dual objective genetic algorithm, 
DO-SDSG, which aims at maximizing the security value of 
the job with minimal total security overhead. An important 
decision in such dual objective optimization is how to 
evaluate the quality of solutions since the conflicting and 
incommensurable nature of some of the criteria makes this 
process more complicated. The possible alternatives are as 
follows. 
 Combine the objectives: This is one of the classical 

methods to evaluate the solution fitness in multi-objective 
optimization. It refers to converting the multi-objective 
problem into a single-objective by combining the various 
criteria into a single scalar value. The most common way 
of doing this is by setting weights to each criterion and 
add them all together using an aggregating function. 

 Pareto-based evaluation: In this approach, a vector 
containing all the objective values represents the solution 
fitness and the concept of dominance is used to establish 
preference between solutions. A solution x is said to be 
non inferior or non-dominated if there is no other solution 
that is better that x in all the criteria. 

 Alternating the objective: This is also an approach that 
has been used for quite some time. It refers to optimizing 
one criterion at a time while imposing constraints on the 
others. The most challenging task in such optimization 
problem is to decide upon the value of constraints. 
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    The proposed GA based scheduler, DO-SDSG, alternates 
the two objectives: total security offered and security 
overhead. It works in two phases. Each phase performs the 
crossover, mutation and selection operations to produce new 
solutions. Each solution is associated with a fitness value, 
used to evaluate the quality of that particular solution. The 
three operations are repeated number of times, called 
generations, until the termination condition is reached. In 
the first phase we optimize (maximize) the security offered 
considering security overhead as a constraint. The 
constrained value of security overhead for the first phase is 
the average security overhead over randomly created 500 
schedules. After a fixed number of generations the algorithm 
terminates yielding the best possible schedule. In the second 
phase, security overhead is optimized (minimized) while 
total security offered is the constraint. The total security 
achieved by the best solution of the first phase is used as the 
constrained value of the security in this phase, i.e. the 
solutions having total security less than the constrained 
value are allowed to survive. The steps followed in the two 
phases are elaborated below. 
 

DO-SDSG─Phase 1 
    This is the first phase where we optimize (maximize) the 
security offered considering security overhead as a 
constraint. The various steps involved in it are discussed 
below. 

A. Coding of Solutions 

 The encoding of individuals (also known as 
chromosome, solution string etc.) of the population is a key 
issue in genetic algorithm. In DO-SDSG, a fixed length 
integer number encoding is used where feasible solution is 
encoded in a vector called schedule. Chromosome is of the 
size equal to the number of jobs to be scheduled.  

Each element of the vector is an ordered pair (NodeID, 
SecurityLevel) as shown in Fig. 1. The ith entry, in the 
schedule, indicates that the ith task is scheduled on the node 
with identity equal to NodeID and will be executed with the 
security having value equal to SecurityLevel. For example, 
3rd entry (4, 6) in the schedule (Figure 1) indicates that the 
3rd task is scheduled on the node with NodeID 4 and offered 
SecurityLevel value equal to 6.  For each schedule Node ID 
is randomly generated within the permissible range of 
nodes. Security level is randomly generated between the 
ranges as shown in equation 4.  

 

                (4) 
 
Here, SLi is the security offered to the ith task, SDMini is 

the minimum security demanded by the ith task and SLMaxj 
is the max security which the jth node can offer. 

 
Task  ID    1           2            3           4            5          6 

2,3 3,5 4,6 3,1 4,3 2,8 
 

Fig.1 The fixed length integer number encoding pattern of 
chromosomes 

B. Population 

For initial population, we keep on generating random 
schedules till we fetch 100 schedules having total security 

overhead within constrained value denoted as SOctr. It is 
obtained by averaging the security overhead from randomly 
generated 500 schedules and is calculated as shown in 
equation 5 and 6.   

 

                                         (5) 

                             (6) 

 
    Here, SOk is the total security overhead of the kth 
schedule, m is total number of schedules and n is the number 
of tasks comprising the schedule. 

  
C.  Fitness function and Selection 
     Fitness function is one of the important components of 
GA to measure the quality of solution and is problem 
dependent. In the first phase of DO-SDSG, we maximize the 
security of the solution with security overhead as a 
constraint. If the constraint is violated the solution is 
infeasible and has no fitness. Thus fitness of the schedule is 
measured as the total security realized by the tasks. Equation 
7 shows the fitness function. 

                                                                             

Maximize Fit(f(x)) =                  (7) 

subject to  

where  

 Here, SLi is the security level of ith task, SO(x) is the total 
security overhead of the entire schedule x, SOij is the 
security overhead of the ith task on the corresponding jth node 
and n is the total number of tasks to be scheduled.  
     Parents for the next generation are selected after 
computing the fitness, Fit(f(x)) of each chromosome in the 
current population. For selection, roulette wheel selection is 
used which is similar to the roulette in the gambling games. 
The selection operator allows the algorithm to take biased 
decision favoring good individuals through generations. To 
accomplish this, good individuals are replicated while bad 
individuals are removed. As a consequence, post selection 
population is likely to be dominated by good schedules. 
Each individual is assigned an interval proportional to its 
fitness and is selected if the randomly drawn number 
belongs to its interval. Better the fitness, better the 
possibility of its being selected. Selection procedure 
involves following steps. 

 Calculate the selection probability of schedule x 
denoted as P(x) using equation 8. 

 

    

  ,i=1,2,..,n                     (8) 

 Calculate partial sum of fitness values (equation 9). 
 

partSum(i) = partSum(i-1) + P(i), i = 1,2,…,n   (9) 
 

 Finally, generate a random number R between 0 
and 1. If partSum(i-1) < R < partSum(i),  then i is a 
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probable parent. The operation is repeated till we 
obtain N probable parents for the next generation. 

D.  Crossover and Mutation 

     Genetic algorithms are based on principles that crossing 
two individual can result in offspring’s normally better than 
both the parents. Crossover is a recombination operator that 
combines subparts of the two parent chromosomes to 
produce offspring that contain some parts of genetic 
material from both the parents. We have adopted single-
point crossover method with probability pc=0.7. Firstly, 
parents are selected based on the above mentioned selection 
scheme, then a crossover point is randomly selected, and we 
exchange chromosome beyond this point. Since the genes of 
our chromosome are ordered pair of Node ID and Security 
Level, crossover not only changes the task node relationship 
but also the security value associated with it and may result 
in a new schedule whose security overhead exceeds the 
SOctr. Thus only schedules whose security overhead does not 
exceed SOctr  are allowed to participate in  crossover. 
     After selection and crossover, mutation is performed to 
lead the search to get out of local optimum. The mutation 
operation randomly selects a gene in a chromosome, and 
then mutates its value. In our case the mutation operator 
changes the node and security value of a randomly selected 
task in an arbitrary chromosome with probability pm=0.06. 
The schedules whose security overhead exceeds SOctr post 
mutation is brought back to its pre mutation state.  

 

E.  Termination 

    The entire process of selection, crossover and mutation is 
repeated till the algorithm converges or 1000 generations are 
reached (whichever happens earlier), and candidates having 
best fitness in the final generation is considered as the best 
solution. 
 

DO-SDSG─ Phase II 
    In the second phase security overhead is optimized 
(minimized) while total security offered is kept as the 
constraint. The various steps involved in it are discussed 
below. The total security achieved by the best solution of the 
first phase is used as the constrained value of security for 
this phase. 
 

A. Coding of Solutions 

     The coding of solutions is same as used in the first phase. 
 

B.  Initial Population 

    The best schedule obtained from the first phase is taken as 
one of the candidates for the initial population in this phase. 
The remaining population is randomly generated till we get 
99 more schedules whose total security is within the 
constrained value (TSctr). The constrained value for the 
security is obtained from the first phase. It is the total 
security value attached with the best solution obtained from 
first phase and is calculated as shown in equation 10.  

, n=total number of tasks.       (10) 

 

C.  Fitness function and Selection 

     In the second phase of SDSG security overhead is 
minimized keeping total security as a constraint. The fitness 
of the schedule is the total security overhead incurred by all 
the tasks and is measured using equation 11. 
                                                           

     minimize Fit(f(x)) =               (11) 

 subject to  

where  

Here, SOij is the security overhead of ith task on the 
corresponding jth node, SL(x) is the total security of schedule 
x and SLi is Security level of ith task. After we compute the 
fitness Fit(f(x)) of each chromosome in the current 
population, parents for the  next generation are selected 
using roulette wheel as was done in the first phase. 
 

D.  Crossover and Mutation 

     The crossover and mutation operator for this phase are   
applied in the same way, as in the first phase. 
 

E.  Termination 

    The entire process of selection, crossover and mutation is 
repeated till the algorithm converges or 1000 generations are 
reached (whichever happens earlier), and candidates having 
best fitness in the final generation is considered as the best 
final solution. 
 

VI.   EXPERIMENTAL RESULTS AND OBSERVATIONS 

In this section, we describe the experimental settings, 
performance criterion and simulation results for the 
proposed and studied algorithms. The comparative 
performance study of DO-SDSG has been conducted with 
five more scheduling algorithms, i.e.  MinMin, MaxMin, 
SPMinMin, SPMaxMin and SDSG. A brief description of 
these algorithms is given below. 
 
 MinMin─ gives highest priority to the task that can be 

completed first. In this, for each task the grid site that 
offers the earliest completion time is tagged and the task 
that has the minimum earliest completion time is 
allocated to the respective node. MinMin executes 
shorter task in parallel whereas longer task follows the 
shorter one[24]. 

 MaxMin─ here the grid site that offers earliest 
completion time is tagged. Highest priority is given to 
the task with maximum earliest completion time. The 
idea behind Max-Min is overlapping long running task 
with short running ones. MaxMin executes many shorter 
tasks in parallel with the longer one [24]. 

 SPMinMin─ Security Prioritized MinMin(SPMinMin ) 
allocates highest security demanding tasks first on the 
faster resources. Tasks having same security requirement 
are then scheduled according to MinMin. 1
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 SPMaxMin─ Security Prioritized MaxMin (SPMaxMin) 
allocates highest security demanding tasks first on the 
faster resources. Tasks having same security requirement 
are then scheduled according to MaxMin(SA).  

 SDSG– is a security driven scheduling using genetic 
algorithm (SDSG) which aims at maximizing security 
while restricting security overhead under a certain limit. 

 
    The grid simulator, used for the study, is implemented in 
java. It consists of Grid-Generator and Task-Generator. Grid 
generator, based on some defined range, generates the grid. 
Task generator produces the task. Properties of resources in 
the simulations are random and uniformly distributed among 
a predefined range of resource parameters as depicted in 
Table 2. For random value generation, the random function 
of java API is used with current time as the seed value. 
Experimental study considers the complete heterogeneous 
environment in terms of security offered by the nodes, speed 
of the nodes, size of the task, and security demand of the 
task. Since MinMin and MaxMin are not security-offering 
scheduling algorithms; we imposed security overhead cost 
in their implementations for a fair comparison with DO-
SDSG, SDSG, SPMinMin and SPMaxMin. The aim of DO-
SDSG is to maximize the security offered to the tasks with 
minimal security overhead. Being a dual criterion 
scheduling problem, we alternatively optimized the criteria 
in two phases. The schedule offering the best solution in the 
final generation of the second phase is selected as the 
optimal schedule. DO-SDSG improves the security value 
over generations and finally settles for the best possible in 
the termination phase. For the comparisons to be fair, the 
other algorithms are made to perform for the same security 
values as used in DO-SDSG over the following performance 
metrics: 

 
 Security Overhead  (extra computational expenses 

for securing the data)  =  

       
 ij ij iSO ET SL R

  
 Makespan (completion time of the entire job) = 

Max [CTij,] i=1, 2,…n.  
 
 Average response time (time period between the 

task arrival and its completion time) =

.  

 
 Here, ETij is Execution Time of ith task on jth processing 

node and SOij is the Security Overhead of ith task on jth 
node.SLi is the security level offered to the ith task. CTij is the 
completion time of the ith task on the assigned jth processor= 
CTij= BTj + ETij + SOij  , ATi is the arrival time of the ith task 
and n is number of tasks in a schedule.     

 Makespan reflects the entire job efficiency whereas 
average response time indicates the performance of majority 
of the tasks within the schedule. A better makespan is an 
indication that the schedule does not suffer and a better 
average response time suggests that majority of tasks does 
not suffer.  

 
 

 

TABLE  2 
   INPUT PARAMETERS FOR THE SIMULATION EXPERIMENTS 

Parameter Value Range 

No of nodes                               30 

Speed of the processing 
node (SP)                                 

1, 2, 5, 10 (MIPS) 
 

Security level of the 
processing node (SL)               

1 to 15 
 

No. of tasks                              100 to 1500   (fixed 150)

Size of tasks                             10 to 1000 (MB)

Population size 100 

Max generations 1000 

Crossover probability(pc) 0.7 

Mutation probability(pm) 0.06 

  

A. Performance Impact by varying Number of Tasks  

 Security overhead, makespan and average response time of 
DO-SDSG is compared with other heuristics by varying 
scheduled number of tasks from 100 to 1500 on a grid with 
50 heterogeneous nodes. In fig 2, the experimental results 
show that when the number of tasks increases, the time for 
finishing the tasks also increases. It is also observed that 
DO-SDSG performs better than all other algorithms, 
achieving less security overhead and makespan for similar 
security values. Since MinMin and MaxMin are not security 
aware algorithm, making them run with higher security 
values resulted in much higher security overhead and 
makespan. Although SPMinMin and SPMaxMin are 
security aware algorithms and give priorities to higher 
security demanding tasks but they do not optimize security 
overhead. DO-SDSG considers the best solution of SDSG as 
one of the inputs in its second phase, thus the results of DO-
SDSG is atleast better than SDSG as shown in the result. 
The improvement of DO-SDSG over other algorithms, for 
makespan and security overhead is better with increase in 
the number of tasks as shown in fig. 2(a) and 2(b). Average 
response time measures the overall wait time for the entire 
task set. Since MinMin and SPMinMin gives priority to 
smaller tasks, they show better response time and DO-SDSG 
is the third best among all the algorithms compared for 
average response time metric (fig. 2(c)). 
 

B. Performance Impact by varying Number of Nodes  

DO-SDSG is compared with other algorithms by varying 
number of nodes from 10 to 100, for 1000 heterogeneous 
tasks. The parameters defining the nodes and tasks are 
randomly generated between the ranges defined in Table 2. 
It is observed that for all the models there is an improvement 
in makespan and security overhead when more nodes are 
available to schedule same number of tasks. It seems to be 
intuitive. It is further observed that even if the number of 
nodes is scaled, DO-SDSG gives better performance of 
makespan and security overhead as it has a better scheduling 
approach to schedule tasks to the appropriate computing 
nodes (fig. 3(a) and 3(b)). Average response time of 
MinMin is better than all other algorithms irrespective of 
number of nodes present in the grid. DO-SDSG and SDSG 
showed better response time than MaxMin, and SPMaxMin. 
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(a) Security Overhead     

 

 
(b) Makespan 

 

 
(c) Average response Time 

 
Fig.  2.   Performance comparisons varying the number of tasks 

 

C. Performance Impact by varying Security Demand  

     Next, we compared the security overhead, makespan and 
average response time of DO-SDSG with other heuristics 
when 500 tasks were scheduled on 30 heterogeneous nodes, 
while varying security from low to high. The configuration 
of low to high is done as shown in Table 3. Performance of 
DO-SDSG was found to be better than other algorithms for 
security overhead and makespan performance metric for all 
levels of security demand. It is further observed that with the 
increase in security demand DO-SDSG showed much 
improvement over other algorithms for security overhead 
and makespan (fig. 4(a) and 4(b)). The reason being: DO-
SDSG optimizes on security overhead by allowing only 
those solutions to survive which are within a constrained 
value of security overhead and tries to explore further for 
solutions having lesser security overhead.   

 
(a) Security Overhead     

 

 
(b) Makespan 

 

 
(c) Average response Time 

 
Fig.  3.   Performance comparisons varying the number of Nodes 

 

Table 3.  Security Value assignment 

Security Level Value 

1 to 5 low 

6 to 10 medium 

11 to 15 high 
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 (a) Security Overhead     
 

 
(b) Makespan 

 

 
 

(c) Average response Time 
Fig.  4.   Performance comparisons varying the Security Demand 

 

VII.    CONCLUSION 

    The paper proposes a GA based scheduling algorithm for 
large computational grid, which makes efforts to incorporate 
security into task scheduling. Non security aware algorithm 
do not consider security overhead and security constraints of 
a task and therefore possibly assign the task to a node that 
only result in small computation time but with a large total 
execution time (which is sum of computation time and 
security overhead). In most of the results obtained in the 
graph, it is obvious that DO-SDSG performs better than 
other similar algorithms. Moreover, it optimizes the security 
incurring lesser security overhead. GA, due to its very 
nature, is capable of exploiting and exploring in the whole 
range of solution search space globally and picking near 
optimal scheduling solution. The proposed DO-SDSG being 
security aware genetic algorithm makes effort to optimize 

quality of security and at the same time satisfy high level of 
performance metric i.e. security overhead. Experimental 
results confirm that DO-SDSG performs better than other 
compared heuristics giving better makespan and security 
overhead for same level of security.  
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