


Abstract—A clustering-based topology generation approach

is proposed to construct Network-on-Chip (NoC) topologies for
given applications. By exploiting communication requirements
of the given application and characteristics of the router
architectures, the approach constructs custom irregular NoC
topology in four phases with design constraints specific to the
application. Specially, a recursion based link construction
algorithm embedded in the topology generation is proposed to
construct links between routers. The proposed approach
together with the recursive algorithm significantly reduces the
network communication latency, power consumption, routers
area and resource costs. The evaluation performed on various
multimedia benchmark applications confirms the efficiency of
the proposed approach. Experimental results show that the
approach saves about 60% of the communication latency,
power consumption and router area as compared to those using
regular Mesh topology. Significant network resource
improvement is also achieved. Moreover, the approach
performs well for two multimedia applications compared to
existing algorithms.

Index Terms—Cluster, network on chip, recursive link
construction algorithm, topology generation

I. INTRODUCTION

HE rapid advancement of semiconductor technologies
makes it possible to integrate dozens of cores on a single

chip. With more and more cores, the on-chip communication
architecture design encounters more challenges in various
aspects including the throughput, latency, power
consumption, signal integrity, and clock synchronization.
Traditional bus-based interconnect architectures are
inherently non-scalable, which constitutes a bottleneck for
the on-chip communication. The emerging Network on Chip
(NoC) provides an effective, reliable and flexible
infrastructure for system modules based on data packet
transmission scheme. It has become an effective solution to
overcome difficulties associated with global interconnections

Manuscript received January 29, 2012. This work was supported by the

Natural Science Foundation of China under Grant 61076019 and 61106018,
the Aeronautical Science Foundation of China under Grant 20115552031,
the China Postdoctoral Science Foundation under Grant 20100481134, and
the NUAA Scientific Research Foundation for talent introduction.

F. Ge, N. Wu and Y. Zhang are with the College of Electronic and
Information Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjng 210016, P.R.China (e-mail: gefen@nuaa.edu.cn;
wunee@nuaa.edu.cn; tracy403@nuaa.edu.cn).

X. Qin are with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjng 210016,
P.R.China (e-mail: qinxcs@nuaa.edu.cn).

and communications in complex System on Chip (SoC)
designs [1].

NoC architectures are constructed using topologies. A
topology describes the overall connection forms between
routers and resource nodes. The floorplan of a topology
determines the length and complexity of the on-chip
connections, and as a result, significantly affects the network
latency, throughput, area cost and power consumption.
Network topologies of NoC can be classified into two
categories, regular and irregular architectures. Regular
topologies, as used in most NoC designs (e.g., mesh and
torus), have the advantage of reusability and low design
complexity. However, with regular topologies, applications
cannot be well optimized. This may lead to large-scale
redundant routers, low link utilization rate, and local
congestion. For example, the number of routers on a mesh
architecture is fixed irrespective of how many of them are
actually used. The same happens to the links between routers.
Even if unused routers and links can be shut down, they still
occupy area on the chip. Irregular topologies, on the other
hand, are designed to be application specific and therefore,
are tailorable for each design. Compared to regular
topologies, they usually use fewer routers and links, while
offering better system performance and lower cost [2].

In this paper, we focus on network topology generation for
the custom irregular architecture. Specifically, we propose a
clustering-based topology generation approach for
application-specific NoC. Parts of our work have been
presented in [3] to minimize the network communication
power consumption and resource costs. This paper expands
the previous work with a further analysis of the impact of
topology generation on network communication latency and
area cost.

The rest of the paper is organized as follows: section II
summarizes related work; section III describes the problem
formulation and definitions; section IV presents our topology
generation approach with an example; experimental results
are discussed in section V, and finally the conclusion is made
in section VI.

II. RELATED WORK

Regular topologies are compared and evaluated with
respect to network throughput, average latency, power
consumption and area in [4]. Different algorithms, such as
EPAM [5], NMAP [6] and MOCA [7], are proposed to map
arbitrary applications onto these regular topologies and
determine the routing path between the communication core

Performance- and Cost-Aware Topology
Generation Based on Clustering for

Application-Specific Network on Chip

Fen Ge, Ning Wu, Xiaolin Qin and Ying Zhang

T

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

pairs.
There are many advantages of using irregular topologies

over regular topologies for application-specific NoC [8].
However, generation of irregular topologies calls for scalable
topology generation algorithms [9]-[15]. In [9], the authors
present a technique for constraint driven communication
architecture synthesis of point to point links. The technique
results in network topologies that have only two routers
between each source and sink, and does not address routing
for each communication trace. The work in [10] presents the
mixed integer linear programming (MILP) based topology
generation. However, this method is constrained by the
exponentially increasing solution times for large
communication trace graphs. Different optimization
techniques have been proposed to address the problem of
topology generation within reasonable time [11]-[14]. In [11]
and [12], genetic algorithm based topology generation
approaches are proposed, which obtain better results and less
runtimes compared to the MILP technique. The author of [14]
proposes a combination of the depth first search and the AO*
algorithm to generated a near-optimal topology. However,
these techniques have greater computational complexity due
to a sufficient number of iterations.

In [15], a three-step topology generation algorithm called
PATC is presented, which includes core cluster, core cluster
optimizing and physical router mapping. The author of [16]
proposes another simpler method called TopGen to cluster
the given application based on the communication
characteristic, and thereafter, construct the topology by
connecting the clusters to each other one by one.

In this paper, we propose a four-phase approach of
topology generation analogous to those used in [15] and [16],
but completely different in the algorithm design. The
proposed approach is tested and compared to those using
regular NoC topology and existing algorithms on multimedia
benchmarks, which shows that our approach achieves better
results.

III. PROBLEM FORMULATION AND DEFINITIONS

An NoC architecture consists of interconnected routers
that are responsible for routing data packets on the
communication architecture. As shown in Fig. 1a, a router is
composed of switch fabrics, a routing and arbiter unit, an
input port and output port module. Every resource node (IP
core) should be connected to a router through input and
output port channels, which consist of two unidirectional
links. Each link can connect to a core by a network interface
(NI) implemented with open core protocol (OCP), or connect
to other routers directly to expand the architecture [15], as
shown in Fig. 1b. In this case, designers can construct
different regular or irregular NoC topologies based on the
requirements and design constraints.

The topology generation problem can be formulated as
follows.

Given a core communication graph denoted by CCG(C, A),
where each vertex ci∈C represents an IP core, and each
directed edge ai,j∈A represents the communication trace
from IP ci to IP cj. Every edge has two attributes, denoted by
b(ai,j) and l(ai,j), which represent the bandwidth requirement

Routing&
Arbiter
Module

Crossbar
Switch

bu
ffe

r

buffer

buffer
buffer

（a）The router structure of NoC

（b）NoC architecture

Fig. 1. The router structure and NoC architecture

in bits per second (Mbps) and the latency constraint in hops
respectively.

Given a characterized library £ of the router architectures,
with η denoting the number of input and output ports of the
router, and Ω denotes denoting the peak bandwidth that can
be supported by the router on any one port.

Find a NoC topology T(R, E), where R £ represents the
set of routers chosen to use from library £ in the topology
generation, and E represents the set of links between the
routers.

Such that:
(1) Each IP core c can be mapped onto a port of a router r

by finding a mapping function Map(c), and the maximum
number of cores mapped on a router should less than η, i.e.,

: (), ,i i i iMap C R r Map c c C r R      

1

, ,
0

,
i

k i k l
l c C

r R NR





  

    (1)

where NRi,k,l is a {0,1} variable. If core ci is mapped onto port
pk,l of router rk, NRi,k,l =1, otherwise, NRi,k,l =0.

(2) For each ai,j∈A, there exists a unique path pi,j={(ri, rk),
(rk, rm), … (rn, rj)} ∈P in T, which satisfies the latency
constraint:

, , (), ()() ()
i ji j i j Map c Map ca A l a d p  ， (2)

where (ri, rk) represents the router connection ei,k generated
by input/output ports between router ri and rk, and constructs
physical link lk; d(pi,j) represents the routing distance between
router ri and rj along the path pi,j.

The path pi,j also should satisfy the bandwidth constraint
on any port of the router, i.e.,

,

, (), ()() (,)
i j

i j

i j k Map c Map c
a A

b a f l p
 

  (3)

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

(), ()

(), ()
(), ()

0 :
(,)

1:
i j

i j

i j

k Map c Map c

k Map c Map c
k Map c Map c

l p
f l p

l p

  

Note that equation (2) means the communication traffic
(workload) of the link constructed by router ports cannot
exceed the supported bandwidth Ω of any one port.

(3) The total communication power consumption is
minimized:

,

,

,min () () i j

i j

c c

i j bit
a A

E A b a E
 

  (4)

where

(), () (), ()

,

(), () (), ()(() 1) ()

i j

Map c Map c Map c Map ci j i j

i j i j

c c

bit Rbit Lbit
r p e p

Map c Map c Rbit Map c Map c Lbit

E E E

d p E d p E

 

 

    

 

,i jc c

bitE represents the energy consumed when one bit of data is

transported through the routing path (), ()i jMap c Map cp ; RbitE and

LbitE are the energy consumed on the router and the link

respectively [15].
Since RbitE and LbitE are constants, the NoC power

consumption varies linearly with the communication amount
and routing distance, which can be represented by:

, (), ()

,

min () () ()
i ji j Map c Map c

i j

E A b a d p
a A

 
 

 (5)

(4) The network communication latency is minimized.

The traffic from any source core is subject to three types of

latency in its routing path to the destination core. These are
the latency through routers, the propagation latency along the
links, and the packetization/de-packetization latency through
NIs [17]. Since the latency through NIs is the same for all
generated topologies, it is not a metric of comparison. In the
average zero-load latency mode, which assumes a
uncongested network condition, routers and links latency are
expressed in terms of the average internode distance µ [8].
The model is a fast and efficient one to check the effect of
different topologies on NoC latency [17]. Therefore, we can
use the average internode distance as a metric to evaluate the
network communication latency. Mathematically, the
average internode distance, in hops, could be expressed as
[18]:

, (), ()

,

,

,

() ()

()

i ji j Map c Map c

i j

i j

i j

b a d p
a A

b a
a A




 




 

 (6)

The above equation (5) and (6) indicate that minimizing
the average internode distance yields the same results as
minimizing the communication power consumption and
network latency.

Therefore, we try to cluster high communicative cores into
the same router so that data exchanges among these cores
consume minimized communication power consumption and
network latency as calculated by (5) and (6) respectively.

 (5) The network resource costs and the NoC area are
minimized.

Since the final generated NoC topology T consists of
routers and links, the network resource costs mainly
determined by the number of used routers and links.

TABLE I

ROUTER AREA WITH DIFFERENT NUMBER OF PORTS

Number of Ports Area
2 3 4 5

µm2 50,200 66,800 83,400 100,000

The NoC area is found to be mainly determined by router

area [18], whereas the major percentage of any router area is
constituted by port modules with buffers [19]. Therefore, the
less the number of ports for the routers used in generated
topology, the lower the NoC area. Table I shows the area of
input-queue router with different number of ports, including
the local port [18]. All the ports have the same buffer size and
each consists of two channels for packets reception and
transmission.

IV. TOPOLOGY GENERATION APPROACH

The main idea of our proposed approach is to assign high
communicative cores to the same routers or nearby routers,
and subsequently, determine the optimal connection between
routers. The goal is to minimize the total number of
communication hops for communication IP core pairs, as
well as to reduce the number of used routers and links in the
NoC topology. The approach consists of four phases: 1) core
clustering, 2) cluster and router mapping, 3) router
connection construction, and 4) topology optimization. Each
phase of the approach is described in detail as follows.

A. Core Clustering

In the first phase, we partition the IP core set for a given
application into several clusters under the design constraints.
The flowchart of the clustering algorithm is shown in Fig. 2.

Step 1: Algorithm Preparation. We define a variable Nmax,
which denotes the maximum number of cores in each cluster.
Since IP cores in the same cluster will be mapped to different
ports of the same router in a topology, and each router must

S1: Algorithm Preparation

S2: Clusters Initialization

S3: Clustering

S4: Calculatating inter-cluster
 communication amount

minimum inter-cluster
communication amount？

S5: Results Output

Yes

No

Fig. 2. The flowchart of the clustering algorithm

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

(a) Core communication graph

(b) Clustering result

Fig. 3. Core clustering example

Fig. 4. Cluster and router mapping

be connected to the topology on at least one port, Nmax =η-1.
Then, we sort each communication trace ai,j in descending
order according to the communication weight b(ai,j).

Step 2: Clusters Initialization. Clustering is to partition
vertices of CCG(C, A) into k non-empty sets C1, C2, ..., Ck.
Each cluster Ci (i = 1, 2 , ..., k) contains Nmax cores at most. In
the initialization, each vertex of CCG(C, A) forms a cluster
partition, that is CP={C1, C2, ..., Cn}, where Ci = {ci}, i = 1,
2 , ..., N, N is the number of vertices of CCG.

Step 3&4: Clusters Merging. According to the order of
communication traces in step 1, we first process the edge ai,j
with highest communication weight. Let ai,j=(ci, cj), if ci and
cj belong to different clusters, and if the core number in the
new cluster is not greater than Nmax after merging, calculate
the inter-cluster communication amount among clusters after
merging. If the calculated amount is less than the previous
one, merge the clusters, otherwise not.

Step 5: Results Output. When all the edges have been
processed in sequence, we obtain the best number of clusters
with minimum inter-cluster communication amount.

For example, we give a core communication graph CCG in

Fig. 3a, in which the labels of the edges in CCG denote the
bandwidth requirement. Assuming the number of router ports
η is 4, each partitioned cluster contains Nmax =4-1=3 cores at
most. According to the above clustering algorithm, the CCG
can be divided into four clusters C1, C2, C3, C4, as shown in
Fig. 3b.

B. Cluster and Router Mapping

In the second phase, we map each cluster to a router. The
router number used in the generated topology is equal to the
number of clusters. Every IP core in the cluster is mapped to a
port of a router randomly.

For the core clustering results shown in Fig. 3b, the
clusters need to be mapped to four routers, denoted by r1, r2,
r3, r4 respectively. As shown in Fig. 4, the core c1 in the
cluster C1 is mapped to port 0 in the router r1, and the cores in
the cluster C2 are mapped to three ports in the router r2.

C. Router Connection Construction

In the third phase, the routers mapped with IP cores are
connected to form the initial topology. We sort the clusters in
ascending order according to their number of cores. For
clusters with the same number of cores, we sort them in
descending order according to their communication amount.
Then, we use a recursion based link construction algorithm to
generate router connections.

Before describing the recursion based link construction
algorithm, it is worth pointing out that, the communication
amount of a certain cluster is calculated as the sum of the
inter-cluster communication amounts between this cluster
and all others. Such sort will make the communication trace
with high communication weight get shortest communication
path in advance, and as a result, minimize the communication
power consumption.

The idea of our proposed recursion based link construction
algorithm is as follows. First, the source and destination
routers for each communication trace are obtained according
to current router selection and port mapping results; then,
under the bandwidth and latency constraints, the following
three ways are attempted to recursively search the path from
the source router to the destination router:

(1) Use the existing links between source and destination
routers;

(2) Use the empty port of routers without placing IP core
between the source and destination router to build new links;

(3) Use the links built by previous communication trace
from the source or destination router to other routers.

Through the above recursively search process, we can
construct router connections by allocating a routing path for
each communication trace.

The pseudo code of the recursion based link construction
algorithm is shown in Fig. 5. The return value of the routine
get_next_rtr(ri) is rnext which is connected to the router ri. The
constructed link between router ri and rnext should satisfy the
bandwidth and latency constraints. The adjacency matrix
RAdj[MR][MR] represents the interconnection relation among
routers, where MR is the number of used routers in the
topology generation. The initial value of the matrix elements
is 0, and the value is between 0 and ∞ if there exists a link
among routers. After allocating paths for all the
communication traces, each element in RAdj[MR][MR] is
checked to ensure that its value does not exceed the
supported bandwidth Ω. The port information list PortList is
used to record the status of each router port. The status
indicates whether the port is empty or connected with IP
cores or other routers.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

Fig. 6. Initial topology

Fig. 7. Final topology

As an example, the number of cores in cluster C1 and C4 is

identical as shown in Fig.3b, and the communication amount
of cluster C1 is 5 which is larger than that of cluster C4. As a
result, the routing path for communication trace between
cluster C1 and C2 is allocated first, and port 3 is connected to

port 5 to construct a routing path. Then, the routing paths for
other two communication traces between C4 and C2, C3 and
C2 can be allocated. Eventually, after completing path
allocations for all the communication traces, connection
among routers can be constructed. The initial topology of the
mapping results in Fig. 4 is shown in Fig. 6.

D. Topology Optimization

 The last phase is to merge adjacent routers with empty
ports until no adjacent routers can be merged. This further
reduces communication power consumption and resources
costs. As an example shown in Fig. 6, there exist empty ports
in router r1 and r4, thus router r1 can be merged with router r4,
leading to the final NoC topology as is shown in Fig.7.

In order to evaluate the time complexity of our proposed

approach, let n be the number of vertices in the core
communication graph, and a be the number of edges in the
core communication graph CCG. Since each cluster contains
at most n elements and there exists a maximum of n clusters,
the complexity of inter-cluster communication amount
calculation is O(n2). All the edges should be traversed, so the
time complexity of cluster partitioning is O(a×n2).
Consequently, the overall time complexity of the algorithm is
estimated to be O(a×n2).

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results
obtained by executing the proposed approach on various
multimedia benchmark applications. We generated custom
irregular NoC topologies for seven combinations of four
multimedia benchmarks: MP3 audio encoder, MP3 audio
decoder, H.263 video encoder, and H.263 video decoder [5].
In addition, we obtained results for three other benchmarks:
MPEG4 decoder, video object plane decoder (VOPD), and
multi-window display (MWD) [2]. Table II lists the graph
IDs and sizes of the CCG of the various benchmarks.

In order to evaluate the efficiency of the proposed
approach, we compared the results produced by our
clustering-based topology generation approach (Cluster-TG)
against the solution of mapping benchmark applications onto
regular Mesh topology. The selection of Mesh topology for
comparison is due to the fact that, Mesh topology is proved to
outperform other regular NoC topologies with respect to
power consumption and area costs, and it can be easily
implemented on chips. The number of router ports η is set to
be 4, and the supported bandwidth Ω is set to be 1GB/s.

TABLE II

GRAPH CHARACTERISTICS

Graph Graph ID Nodes Edges
MP3 decoder G1 6 6
H.263 decoder G2 7 8
MP3 encoder G3 7 8
H.263 encoder G4 8 11
MWD G5 12 13
VOPD G6 12 15
MPEG4 decoder G7 12 26
H.263 enc MP3 dec G8 12 17
H.263 enc MP3 enc G9 14 19
H.263 enc H.263 dec G10 15 19

Algorithm Input：the corresponding source router rsrc and destination

router rdest for each communication trace ai,j=(ci, cj).

Algorithm Output：the routing path p rsrc, rdest={(rsrc, rnext), … (rn, rdest)}.

Recursive terminative condition：if rsrc==rdest or find no path for the

communication trace.

Recursive function：route_construction(rsrc, rdest)

{ if (rsrc==rdest) exit;

 if (no link between rsrc and rdest)

{ if (existing empty port porti and portj in rsrc and rdest)

 {construct link between porti and portj, let rsrc=rdest, add b(ai,j)to

RAdj[rsrc][rdest], and update PortList, exit;}

else if (no empty port in rsrc)

 { rnext = get_next_rtr(rsrc);

 if (rnext != NULL)

 { let rsrc=rnext, add b(ai,j)to RAdj[rsrc][rnext];

 route_construction(rsrc, rdest);}

 else add ai,j to PathUnAssignedSet, exit;}

else if (no empty port in rdest)

 { rnext = get_next_rtr(rdest);

 if (rnext != NULL)

 { let rdest=rnext, add b(ai,j)to RAdj[rnext][rdest];

 route_construction(rsrc, rdest);}

 else add ai,j to PathUnAssignedSet, exit;};}

else if (existing link between rsrc and rdest)

{ if (RAdj[rsrc][rdest]+ b(ai,j)≤Ω && d(p rsrc, rdest) ≤l(ai,j))

{ let rsrc=rdest , add b(ai,j)to RAdj[rsrc][rdest], exit;}

 else {

rnext = get_next_rtr(rsrc);

if (rnext != NULL && rnext != rdest)

{ let rsrc=rnext, add b(ai,j)to RAdj[rsrc][rnext];

 route_construction(rsrc, rdest);}

else if (existing empty port porti and portnext in rsrc and rnext)

 { construct link between porti and portnext;

 let rsrc= rnext, add b(ai,j)to RAdj[rsrc][rnext];

update PortList;

route_construction(rsrc, rdest);}

else add ai,j to PathUnAssignedSet, exit;};}

}

Fig. 5. The pseudo code of the link construction algorithm

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

TABLE III
THE AVERAGE INTERNODE DISTANCES AND ROUTER AREA COMPARISON

Average Internode Distance (hops) Router Area (µm2) Graph ID
Optimal-Mesh(1) Cluster-TG(2)

Ratio(2/1)
Optimal-Mesh(3) Cluster-TG(4)

Ratio(4/3)

G1 1 0.09 0.090 651,000 166,800 0.256
G2 1.03 0.06 0.058 667,600 233,600 0.350
G3 1.10 0.22 0.200 651,000 233,600 0.359
G4 1.00 0.35 0.350 684,200 250,200 0.366
G5 1.37 0.71 0.518 1,284,600 417,000 0.325
G6 1.43 0.54 0.378 1,268,000 417,000 0.329
G7 0.66 0.64 0.970 1,268,000 467,200 0.368
G8 1.27 0.56 0.440 1,268,000 417,000 0.329
G9 1.26 0.54 0.429 1,301,200 550,600 0.423

G10 1.13 0.39 0.345 1,317,800 567,200 0.430

Fig.8 presents the results of the comparison in

communication power consumption of NoC topology
generated by Random-Mesh, Optimal-Mesh and Cluster-TG.
‘Random-Mesh’ represents the solution of mapping IP cores
in benchmark applications onto regular Mesh topology
randomly. ‘Optimal-Mesh’ represents the solution of
mapping IP cores onto optimized regular Mesh topology by
the genetic algorithm based approach in [20]. Fig. 9 shows
the comparison of router and link utilities. Total router area
of the generated topologies for these benchmark applications
is listed in Table III.

As is seen from the figures, much better results in
communication power consumption and resource costs have
been achieved using our approach compared to that of the
regular Mesh topology. On average, our approach saves
about 61.5% of communication power consumption
compared to Optimal-Mesh. The router area is reduced by
about 64.6% with respect to Optimal-Mesh. As an example,
the CCG, the optimal mapping result and the generated
irregular topology of the MPEG4 decoder are illustrated in
Fig.10. As shown in Fig. 10b, three 2-port, two 3-port, seven
4-port and four 5-port routers are needed in the generated
topology by Optimal-Mesh. However, only two 3-port and
four 4-port routers are needed by our Cluster-TG approach.
Therefore, our proposed approach is expected to perform
better than using regular Mesh topology from the network
cost point of view.

The impact of our approach on the network
communication latency can be seen in Table III, where the
average internode distance  is calculated by (6). As is shown
in the table, about 62.2% reduction in  is achieved as
compared to Optimal-Mesh. Therefore, our proposed
approach is expected to perform better than using regular
Mesh topology from the network performance point of view.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Graph ID

P
ow

er
 C

on
su

m
pt

io
n

R
at

io Random-Mesh Optimal-Mesh Cluster-TG

Fig. 8. Communication power consumption comparison

0
2
4
6
8

10
12
14
16
18

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
Graph ID

R
ou

te
r

N
um

be
r

Mesh
Cluster-TG

（a）The number of routers

0
5

10
15
20
25
30
35
40
45

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Graph ID

L
in

k
N

um
be

r

Mesh
Cluster-TG

（b）The number of links

Fig. 9. Resource costs comparison

(a) The CCG of MPEG4 decoder

(b) The optimal mapping result (c) The generated topology by Cluster-TG

Fig. 10. The CCG and generated topologies of MPEG4 decoder

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

TABLE IV
THE AVERAGE INTERNODE DISTANCES AND ROUTER AREA COMPARISON FOR DIFFERENT APPROACH

Average Internode Distance Router Area
Application

Topology
Generation
Approach

hops % Cluster-TG µm2 % Cluster-TG

Cluster-TG 0.540 100 417,000 100
TopGen 0.540 100 417,000 100 VOPD
PATC 0.541 100.2 417,000 100

Cluster-TG 0.714 100 417,000 100
TopGen 0.714 100 417,000 100 MWD
PATC 0.829 116.1 417,000 100

Another experiment is conducted to compare the results

generated by Cluster-TG, TopGen [16] and PATC [15] in two
multimedia applications, VOPD and MWD. The resource
costs of the applications using different approaches turn out to
be about the same, so is the router area as listed in Table IV.
The power consumptions of different approaches are
compared in Fig. 11, and the average internode distances are
compared in Table IV. It can be seen that our proposed
approach achieves results that are better than PATC and
commensurate with TopGen. As an example, the CCGs and
the generated irregular topologies of the VOPD and MWD
benchmarks are illustrated in Fig. 12 and Fig. 13 respectively.

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

1.1
1.12

VOPD MWD

P
ow

er
 C

on
su

m
pt

io
n

R
at

io

Cluster-TG
TopGen

PATC

Fig.11. Power consumption comparison for different approach

(a) The CCG of VOPD

(b) The CCG of MWD

Fig. 12. The CCG of application VOPD and MWD

(a) The topology of VOPD (b) The topology of MWD

Fig. 13. The final irregular topology of application VOPD and MWD

VI. CONCLUSION AND FUTURE WORK

This paper presents a four-phase clustering-based
topology generation approach for application-specific NoC.
The aim is to reduce the network communication latency
from the performance point of view, and the communication
power consumption, router area and resource costs from the
cost point of view. Under the constraints of the bandwidth
and latency, the approach designs custom irregular NoC
topologies according to the communication requirements of
the given application and characteristics of router
architectures. Specially, a recursion based link constructing
algorithm embedded in the topology generation is proposed
to construct links between routers. Applying our approach on
various multimedia benchmark applications gives
experimental results showing significantly improved
performance as compared to those using regular Mesh
topology and existing algorithms.

The advent and increasing viability of 3D silicon
integration technology make it possible to scale NoC over the
third dimension. As a result, 3D NoC is arousing more and
more research interest. Future work will focus on an
extension of our approach to application-specific 3D
topology generation with metrics of 3D NoC taken into
consideration.

REFERENCES
[1] L. Benini and G. De Micheli, “Networks on chips: a new SoC

paradigm,” IEEE Computer, vol.35, no.1, pp. 70-78, Jan. 2002.
[2] D. Bertozzi, A. Jalabert, S. Murali, et al., “NoC synthesis flow for

customized domain specific multiprocessor systems-on-chip,” IEEE
Trans. on Parallel and Distributed Systems, vol. 16, no. 2, pp. 113-129,
Feb. 2005.

[3] F. Ge, N. Wu, X. Qin, and Y. Zhang, “Clustering-based topology
generation approach for application-apecific network on chip,” in
Lecture Notes in Engineering and Computer Science: Proceedings of
the Word Congress on Engineering and Computer Science 2011,
WCECS 2011, October 19-21, 2011, San Francisco, USA, pp.
753-757.

[4] P. P. Pande, C. Grecu, M. Jones, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect
architectures,” IEEE Trans. on Computers, vol. 54, no. 8, pp.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

1025-1040, Aug. 2005.
[5] J. Hu and R. Marculescu, “Energy- and performance-aware mapping

for regular NoC architectures,” IEEE Trans. on computer-aided design
of integrated circuits and systems, vol. 24, no. 4, pp. 551-562, April.
2005.

[6] S. Murali and G. De. Micheli, “Bandwidth- constrained mapping of
cores onto NoC architecture,” in Proc. Design, Automation and Test in
Europe Conference and Exhibition, 2004, pp. 896-901.

[7] K. Srinivasan and K. S. Chatha, “A technique for low energy mapping
and routing in network-on-chip architectures,” in Proc. Int. Sympo.
Low Power Electronics and Design, 2005, pp. 387-392.

[8] U. Ogras and R. Marculescu, “It’s a small word after all: NoC
performance optimization via long-rang link insertion,” IEEE Trans.
on Very Large Scale Integration Systems, vol. 14, no. 7, pp. 693-706,
Jul. 2006.

[9] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Efficient
synthesis of networks on chip,” in Proc. Int. Conf. Computer Design,
2003, pp. 146-150.

[10] K. Srinivasan, K. S. Chatha, and G. Konjevod,
“Linear-programming-based techniques for synthesis of
network-on-chip architectures,” IEEE Trans. on Very Large Scale
Integration Systems, vol. 14, no. 4, pp. 407-420, 2006.

[11] K. Srinivasan and K. S. Chatha, “ISIS: a genetic algorithm based
technique for custom on-chip interconnection network synthesis,” in
Proc. Int. Conf. VLSI Design, 2005, pp. 623-628.

[12] G. Leary, K. Srinivasan, K. Mehta, and K. S. Chatha, “Design of
network on chip architectures with a genetic algorithm-based
technique,” IEEE Trans. on Very Large Scale Integration Systems, vol.
17, no. 5, pp. 674-687, 2009.

[13] N. Choudhary, M. S. Gaur, V. Laxmi, and V. Singh, “Genetic
algorithm based topology generation for application specific
network-on-chip,” in Proc. IEEE Int. Sympo. Circuits and Systems
(ISCAS), 2010, pp. 3156-3159.

[14] Z. Liu, J. Cai, L. Yao, and M. Du, “Application-aware generation and
optimization for NoC topology,” in Proc. IEEE Youth Conf.
Information, Computing and Telecommunication, 2009, pp. 259-262.

[15] K. C. Chang and T. F. Chen, “Low-power algorithm for automatic
topology generation for application- specific networks on chips,” IET
Computers & Digital Techniques, vol. 2, no. 3, pp. 239-249, 2008.

[16] Y. Ar, S. Tosun, and H. Kaplan, “TopGen: a new algorithm for
automatic topology generation for network on chip architectures to
reduce power consumption,” in Proc. AICT, 2009, pp.1-5.

[17] V. Pavlidis and E. Friedman, “3-D topologies for networks-on-chip,”
IEEE Trans. on Very Large Scale Integration Systems, vol. 15, no.10,
pp. 1081-1090, Oct. 2007.

[18] A. A. Morgan, H. Elmiligi, M. Watheq El-Kharashi, and F. Gebali,
“Network-on-chip topology generation techniques: area and delay
evaluation,” in Proc. 3rd Int. Design and Test Workshop, 2008, pp.
33-38.

[19] M. Coenen, S. Murali, A. Radulescu, K. Goossens, and G. D. Micheli,
“A buffer-sizing algorithm for networks on chip using TDMA and
credit-based end-to-end flow control,” in Proc. Third IEEE/ACM/IFIP
Int. Conf. Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Oct. 22-25, 2006, Seoul, Korea, pp. 130-135.

[20] F. Ge and N. Wu, “Genetic algorithm based mapping and routing
approach for network on chip architectures,” Chinese Journal of
Electronics, vol.19, no.1, pp. 91-96, Jan. 2010.

IAENG International Journal of Computer Science, 39:1, IJCS_39_1_10

(Advance online publication: 27 February 2012)

__

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

