
 

  
Abstract— In this paper, the channel capacity for different 

models of Poisson optical communication channels has been 
derived. The closed form expression for the single input single 
output (SISO) Poisson channel -derived by Kabanov in 1978, 
and Davis in 1980- will be investigated. In addition, we derive 
closed form expressions for the capacity of the parallel Poisson 
channel and the capacity of the multiple access Poisson 
Channel (MAC) under the assumption of constant shot noise.  
The optimum power allocation is also derived for the different 
models; results have been analyzed in the context of 
information theory and optical communications. We then 
provide a set of simulation results establishing a comparison 
between Gaussian channels and Poisson Channels. 
 

Index Terms—Gaussian channels, MAC, Parallel Channels, 
Poisson Channels, Power Allocation, SISO. 
 

I. INTRODUCTION 

NFORMATION THEORY provides one of its strongest 
developments via the notion of maximum bit rate or 

channel capacity.  If the capacity can be found, then the goal 
of the engineer is to design an architecture which achieves 
that capacity.  The seminal work of Shannon published in 
1948 [1] gave birth to information theory. Shannon 
determined the capacity of memoryless channels, including 
channels impaired by additive white Gaussian noise 
(AWGN) for a given signal-to-noise ratio (SNR). Currently, 
the majority of worldwide data and voice traffic is 
transported using optical communication channels. As the 
demand for bandwidth continues to increase, it is of great 
importance to find closed form expressions of the 
information capacity for the optical communications 
applications at the backbone as well as the access networks. 
In particular, the capacity expressions of Poisson channels 
that model the application.  However, applying concepts of 
information theory to the optical communications channels 
encounters major challenges. The most important difficulty 
is dealing with the simultaneous interaction of three 
phenomena in the optical channel: noise, filtering, and Kerr 
nonlinearity. These three phenomena are distributed along 
the propagation path, and influence each other leading to 
deterministic as well as stochastic impairments [2].  
Therefore, in this paper, we accomplish an information-
theoretic approach to derive the closed form expressions for: 
the SISO Poisson channel already found by Kabanov [3] and 
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Davis [4], the parallel multiple input multiple output 
(MIMO) Poisson channels, as well as for the MAC Poisson 
channel using a direct detection or photon counting receiver 
and under constant noise; therefore, we simplify the 
framework of derivation. Several contributions have been 
done using information theoretic approaches to derive the 
capacity of Poisson channels under constant and time 
varying noise via martingale processes [3-7], or via 
approximations using Bernoulli processes [8], to define 
upper and lower bounds for the capacity and the rate regions 
of different models [9-10], to define relations between 
information measures and estimation measures [11], in 
addition to deriving optimum power allocation for such 
channels [6] [12]. However, this paper introduces a simple 
framework similar to [6] for deriving the capacity of Poisson 
channels for any model of consideration, with the 
assumption of constant stochastic martingale noise, i.e. for 
the sake of simplicity,  we didn’t model the noise as 
Gaussian within the stochastic intensity rate process. In 
addition, it builds upon derivations for the optimal power 
allocation for SISO, Parallel, and MAC models, or any other 
Poisson channel model of consideration. 

In Poisson channels, the shot noise is the dominant noise 
whenever the power received at the photodetector is high; 
such noise is modeled as a Poisson random process. In fact, 
such framework has been investigated in many researches, 
see [3-7], [9-13]. Capitalizing on the expressions derived on 
[3-4], [6] and on the results by [6], [11], we re-investigate 
the derivation process in a simple step by step way; we then 
determine the optimal power allocation that maximizes the 
information rates.  

The remainder of the paper is organized as follows; 
Section II introduces preliminary definitions and the 
communication framework. Section III introduces the SISO 
Poisson channel, as well as the optimal power allocation that 
maximizes the capacity. Section VI introduces the Parallel 
Poisson channel capacity expression as a normal 
generalization of the SISO setup, as well as the optimal 
power allocation. Section V introduces the MAC Poisson 
channel capacity as well as the optimal power allocation. 
Finally, we conclude the paper by some simulations and 
analytical results. 

II. PRELIMINARIES 

A. The Communication Framework 
In a communication framework, the information source 
inputs a message to a transmitter. The transmitter couples 
the message onto a transmission channel in the form of a 
signal which matches the transfer properties of the channel. 
The channel is the medium that bridges the distance between 
the transmitter and the receiver. This can be either a guided 
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transmission such as a wire or wave guide, or it can be an 
unguided free space channel. A signal traverses the channel 
will suffer from attenuation and distortion.  For example, 
electric power can be lost due to heat generation along a 
wire, and optical power can be attenuated due to scattering 
and absorption by air molecules in a free space.  
Therefore, channels are characterized by a transfer function 
which models the input-output process. The input-output 
process statistics is dominated by the noise characteristics 
the modulated input experiences during its propagation 
along the communication medium, in addition to the 
detection procedure experienced at the channel output. 
In particular, when the noise ��(�) is a zero-mean Gaussian 
process with double-sided power spectral density N0/2, the 
channel is called an Additive White Gaussian Channel 
(AWGN). However, when the electrical input is modulated 
by a light source, like a laser diode, the channel will be an 
optical channel with the dominant shot noise	��(�)  arising 
from the statistical nature of the production and collection of 
photoelectrons when an optical signal is incident on a 
photodetector, such statistics characterized by a Poisson 
random process.  
Fig. 1. illustrates both the AWGN and the Poisson optical 
channels. In this paper, we focus on the Poisson optical 
communication channel shown in Fig. 1. (b)  and we derive 
capacity expressions for three different channel models, the 
SISO channel, the parallel MIMO, and the MAC Poisson 
channels.  
 
 
 

 

 

(a) 

 
 

 
 
 
 

 
 
(b) 

Fig.1. (a) The AWGN channel. (b) The Poisson optical 
channel. 
 

B. Channel Capacity 
Determining an ultimate limit to the rate at which we can 
reliably transmit information over a physical medium 
in a given environment is an earnest attempt of fundamental 
and practical consideration. Such a limit is referred to as the 
channel capacity and the process of evaluating this limit 
leads to an understanding of the technical solutions required 
to approach it. Capacity evaluations require information 
theory that must be adapted to the specific characteristics of 
the channel under study. 
The capacity of a channel is the maximum mutual 
information, where the maximization is performed over all 
possible input distributions, i.e.,  
 � = 	max�(�) 	 ���;�	                                        (1) 

Where � corresponds to the channel input, and � 
corresponds to the channel output. And the mutual 
information is defined by, 
 

	 ���;�	 = ∬�(�,�)�
� � ���,��
�����(�)� ����                         (2) 

 
With �(�,�) as the joint disctribution of � and �, and the 
input distribution is �(�) and the output distribution is ���	. Using Baye’s rule, we can re-write (2) as follows, 
 

	 ���;�	 = ∬�(�,�)�
� ����|���(�) � ����                            (3) 

 
Where ���|�	 corresponds to the channel conditional 
probability which corresponds to the distribution of the 
noise, therefore, the channel will be considered as an 
AWGN if the conditional probability follows a Gaussian 
distribution, or cit will be considered as a Poisson channel if 
the conditional distribution follows a Poisson process. 
We can simply write (3) in a more compact form, i.e., 
 

	 ���;�	 = � ��
� ����|���(�) ��                                                (4) 

 
With �[. ] being the expectation operator over the joint 
distribution �(�,�) of the random variables � and �. 
 

C. Constrained Optimization Setup 
To derive the optimal power allocation for different channel 
frameworks, it’s worth to notice that different optimization 
criteria could be relevant. In particular, the optimization 
criteria could be the peak power, the average optical power, 
or the average electrical power. The average electrical 
power is the standard power measure in digital and wireless 
communications and it helps in assessing the power 
consumption in optical communications, while the average 
optical power is an important measure for safety 
considerations and helps in quantifying the impact of shot 
noise in wireless optical channels. In addition, the peak 
power, whether electrical or optical, gives a measure of 
tolerance against the nonlinearities in the system, for 
example the Kerr nonlinearity which is identified by a 
nonlinear phase delay in the optical intensity or in other 
words as the change in the refractive index of the medium as 
a function of the electric field intensity. 
Therefore, in the context of AWGN channels, the 
constrained optimization setup relevant to single-user and 
multi-user systems usually takes the form, 
 
 max	 ���;�	                                                                       (5) 
 
Subject to the average electrical power constraint, 
 ��|�|�� ≤ 	�.                                                                      (6) 
 
However, in the context of Poisson optical channels the 
constrained optimization setup takes the form,  
 
 max	 ���	;�		                                                                   (7) 
 
Subject to the average optical power and peak power 
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constraints, 
 


	 � ��  ��		��		

� � ≤ 	!�                                (8) 

0 ≤  ��	 ≤ �.                       (9)  
 
  � is the peak power and the ratio of average to peak power ! is used with 0 ≤ ! ≤ 1. 

II I. THE SISO POISSON CHANNEL 

Consider the SISO Poisson channel PPPP  shown in Fig.2. Let 
���	 represent the channel output, which is the number of 
photoelectrons counted by a direct detection device (photo-
detector) in the time interval [0, T]. ���	 has been shown to 
be a doubly stochastic Poisson process with instantaneous 
average rate  ��	 + �	. The input  ��	 is the rate at which 
photoelectrons are generated at time � in units of photons 
per second. And � is a constant representing the photo-
detector dark current and background noise.  
 

 
 
 
 
 
Fig. 2. The SISO Poisson channel model 
 

A. Derivation of the Capacity of SISO Poisson 
Channels  

Let �(�	) be the sample function density of the 
compound regular point process ���	 and �(�	|�	) be the 
conditional sample function of ���	 given the message 
signal process ���	 in the time interval [0,T]. Then we have, 

 

���	|�		 = "�
 (�������
�

)	���
 �������������(�)�
�

	            (10) 

���		 = "�
 (��������
� )	���
 ��������������(�)�

� 	                 (11) 
 
We use the following consistent notation in the paper, 

 ��	#  is the estimate of the input  ��	. �[. ] is the expectation 
operation over time.  Therefore, the mutual information is 
defined as follows, 

 

���	;�		 = 	� ��
� �����|���
�����

��                                    (12) 

 
Theorem1 (Kabanov’78[3]-Davis’80 [4]): 

The capacity of the SISO Poisson channel is given by: 

� = 	�� �� + �	 log�� + �	+ 	 �1 −
�
����
���	 −															�$ + �	log	($ + �)                                            (13) 

 
Proof:  

Substitute (10) and (11) in (12), we have, 

���	;�		 = 	� %−& ( ��	 −  ��	#	

�
)	��

+& log ' ��	+ �
 ��	# + �(��(�)	

�
) 

Since �* ��	# + = 	�*�� ��	|�	�+ = 	�� ��	�, it follows that, 

���	;�		 = 	� %& log ' ��	+ �
 ��	# + �(��(�)	

�
) 

And ���	 − � log� ��	 + �		
�  is a martingale1 from 

theorems of stochastic integrals, see [6], [11], and [15] 
therefore,  

���	;�		 = 		� %& ( ��	 + �) log ' ��	 + �
 ��	# + �(��

	

�
) 

= 		& �,� ��	 + �	 log� ��	 + �	-	

�
− 		�.� ��	 + �	 log/ ��	# + �0��1 

= 		& �,� ��	 + �	 log� ��	 + �	-	

�
− 		�.��� ��	 + �	� log/ ��	# + �0|�	 	1�� 

= 		& �,� ��	 + �	 log� ��	 + �	-	

�
 

−		�,��� ��	+ �	|�	�- log/ ��	# + �0	 �� 
= 		& �,� ��	 + �	 log� ��	 + �	-	

�
 

−�./ ��	# + �0 log/ ��	# + �01	��	                                   (14) 
 
See [6] for similar steps. In [11], it has been shown that the 
derivative of the input–output mutual information of a 
Poisson channel with respect to the intensity of the dark 
current is equal to the expected error between the logarithm 
of the actual input and the logarithm of its conditional mean 
estimate, it follows that, 
 
�����;���

����� = � ��
� �������
���������                                              (15) 

 
The right hand side term of (15) is the derivative of the 
mutual information corresponding to the integration of the 
estimation errors. This plays as a counter part to the well 
known relation between the mutual information and the 
minimum mean square error (MMSE) in Gaussian channels 
in [14]. 
The capacity of the SISO Poisson channel given in 
Theorem1 (13) is defined as the maximum of (14) solving 
the following optimization problem,  
 	max	 ���	;�		                                                           (16)  
 
Subject to average and peak power constraints, 


	 � ��  ��		��		

� � ≤ 	!�                                             

0 ≤  ��	 ≤ �                                                                    (17) 
 

With � is the maximum power and the ratio of average to 
peak power ! is used with 0 ≤ ! ≤ 1. 
We can easily check that the mutual information is strictly 
convex via its second derivative with respect to  ��	 as 
follows, 
 

	������;���
������ = �
� �������

�������� > 0.  
 

 
Therefore, the mutual information is convex with respect  
to  ��	. Now solving: 

 

1In probability theory, a martingale is a stochastic process such that the 
conditional expected value of an observation at some time t, given all 
observations up to some  earlier time s, is equal to the observation at that 
earlier time s, therefore, ������� � = 	���
����|���� = 	�
����� , see [15]. 

PPPP     

 

 ��	 
� 

���	
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max �� �,� ��	 + �	 log� ��	 + �	- − �./ ��	# +
	
�

	�	 log/ ��	# + �01− �
	 �� ��	�	�,  

with 2 as the lagrangian multiplier.  
 
The possible values of �,� ��	 + �	 log� ��	 + �	- must lie 
in the set of all y-coordinates of the closed convex hull of 
the graph y=�� + �	 log�� + �	. Hence, the maximum 
mutual information achieved using the distribution	�� =�	 = 1 − �� = 0	 = 3.	 Where 0 ≤ 3 ≤ 1, so that �� ��	� = $.  
So, we must have � ��	� = ∑ ��	�( ) . It follows that, 

$ = ��� = �	 = �3. Then, 3 =
�
�. And then the capacity 

in (13) is proved.  

B. Optimum Power Allocation for SISO Poisson 
channels 

We need to solve the following optimization problem, 

max ��� �� + �	 log�� + �	 + 	 �1 −
�
�� ��
���	 −

	�$ + �	 log�$ + �	 − �
	$�                                   (18) 

 
Since (18) is concave with respect to K, i.e. the second 
derivative of (18) with respect to K is negative. Using the 
Lagrangian corresponding to the derivative of the objective 
with respect to $, and the Karush–Kuhn–Tucker (KKT) 
conditions, the optimal power allocation is the following, 

$∗ = �� + �	"� 
��

�
!�	�

�
��� 
��

�
!
− �                               (19) 

IV. THE PARALLEL POISSON CHANNEL  

Consider the Parallel Poisson channel shown in Fig.3. 
 
 
 
 
 

. 

. 
 
 
 
Fig. 3. The Parallel Poisson channel model 
 
Consider a 2-fold parallel Poisson channel, then, �
��	 

and ����	 are doubly stochastic Poisson processes with 
instantaneous average rates  1��	 + �	and  2��	 + � 
respectively.  

A. Derivation of the Capacity of Parallel Poisson 
Channels  

Let �(�
,��) and �(�
,��|�
 ,��) be the joint density 
and conditional sample function of the compound regular 
point processes �
��	 and ����	 respectively, given the 
message signal processes �
��	 and ����	 in the time 
interval [0, T]. Then we have, 

 ���
,��|�
, ��	 = ���
|�
	����|��	                             (20) ���
,��	 = ���
)�(��	                                                 (21) 
 ���
|�
	, ����|2	, ���
	, and �(��) are given by (10) and 

(11) respectively for each input  5��	. Therefore, the mutual 
information is defined as follows, 

 

���	;�		 = 	� ��
� �����|�������|���
����)�(���

��                             (22)                      

 
Theorem2:  
The capacity of the 2-input parallel Poisson channel is given 
by the sum capacity of the independent SISO Poisson 
channels as follows: 

� =
�

�
 ��1 + �	 log��1 + �	 + 	�1 −

�

�
���
���	 −										�$1 + �	 log�$1 + �	 + ��

�� ��2 + �	 log��2 + �	                                         
							+ �1 −

��
�����
���	 − �$2 + �	log	($2 + �)          (23) 

 
Proof: 

Substitute (20) and (21) in (22), we have, 

���	;�		 = 	� %& log ' 1��	 + �
 1��	6 + �(��1(�)

	

�
)

+ 	� %& log ' 2��	 + �
 2��	6 + �(��2(�)

	

�
) 

Following the same steps of the proof of theorem1, we can 
easily find that, 

���	;�		 = & �,� 1��	 + �	 log� 1��	 + �	-	

�
− �./ 1��	6 + �0 log/ 1��	6 + �01 

+	�,� 2��	 + �	 log� 2��	 + �	-	 
−�./ 2��	6 + �0 log/ 2��	6 + �01��         (24) 
 
The capacity of the Parallel Poisson channel given in 
Theorem2 (23) is defined as the maximum of (24) solving 
the following optimization problem,  
max	 ���	;�		                                                               (25)  
 
Subject to average and peak power constraints, 


	 � ��  1��		

� � ≤ 	!�1                                                              

 


	 � ��  2��		

� � ≤ 	!�2 

0 ≤  1��	 	≤ �1 ,  0 ≤  2��	 ≤ �2                                (26)    
 
With �1 and �2	 are the maximum power and the ratio of 
average to peak power ! is used with 0 ≤ ! ≤ 1. 
Hence, the maximum mutual information achieved using the 
distribution of any input	5 such that 	�� 5 = �5	 = 1 −�� 5 = 0	 = 35.	Where 0 ≤ 35 ≤ 1  so that �� 5��	� = $5. 
So, we must have � 5��	� = ∑ 5��	�( 5) . It follows that, 

$5 = �5�� 5 = �5	 = �35. Then, 35 = �"
�". Therefore, the 

capacity in (23) is proved.  

B. Optimum Power Allocation of Parallel Poisson 
Channels 

We need to solve the following optimization problem, 

max ��

�
 ��1 + �	 log��1 + �	 + 	 �1 −

�

�
� ��
���	 −										�$1 + �	 log�$1 + �	 + ��

�� ��2 + �	 log��2 + �	 	+
�1 −

��
��� ��
���	 − �$2 + �	 log�$2 + �	 − �

	 ($1 +

$2)�                                                                                  (27) 

Using the Lagrangian corresponding to the derivative of the 

PPPP     

 
 1��	 

� 

�
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� 
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objective with respect to K, and applying the Karush–Kuhn–
Tucker (KKT) conditions, the optimal power allocation 
follows the optimal power allocation for the SISO setup in 
(19).   Therefore, for an i-fold parallel Poisson channel, the 
optimal power allocation is the following, 

$5∗ = ��5 + �	"� 
��

�
!�	�

��
��� 
���

�
!
− �                          (28) 

 
See [12] for similar results related to optimum power 
allocation for a 2-fold Parallel Poisson channel where the 
power constraint was the sum of both average input powers.                   

V. THE MAC POISSON CHANNEL 

Consider the MAC Poisson channel shown in Fig. 4. 
 
 
 
. 
. 
 
Fig. 4. The MAC Poisson channel model 
 
Consider a 2-input MAC Poisson channel, then, �
��	 is a 

doubly stochastic Poisson processes with instantaneous 
average rates  1��	 +  2��	 + �.  

A. Derivation of the Capacity of MAC Poisson 
Channels  

Let �(�
) and �(�
|�
, ��) be the joint density and 
conditional sample function of the compound regular point 
processe �
��	 given the message signal processes �
��	 in 
the time interval [0, T]. Then we have, 

 ���
|�
, ��	 =
"�
 (�
������������

�
)	���
 �����
��������������(�)�

�
	                (29) ���
	 = 

"�
 (�
���� ������� ���
�

)	���
 �����
���� ������� �����(�)�
�

	                (30) 
 
Therefore, the mutual information is defined as follows, 

���	;�		 = 	� ��
� �����|��,���
�����

��                                     (31)                        

 
Theorem3: 

The capacity of the 2-input MAC Poisson channel is 
given by: 

� = 7$1� +
$2
� 8	�� + �	 log�� + �	

+ 		'1 − 7$1� +
$2
� 8(��
���	 

−�$1 + $2 + �	 log�$1 + $2 + �																													      (32) 
 
Proof:  

Substitute (29) and (30) in (31), we have, 

���	;�		 = 	� %−& ( 1��	 −  1��	6	

�
)	��

−& ( 2��	 −  2��	6	

�
)	��

+& log ' 1��	 +  2��	 + �
 1��	6 +  2��	6 + �(��(�)	

�
) 

 

Since �* 1��	6 +  2��	6 + = 	�*�� 1��	 +  2��	|�	�+ =	�� 1��	 +  2��	�, it follows that, 
 

���	;�		 = 	� %& log ' 1��	 +  2��	 + �
 1��	6 +  2��	6 + �(��(�)	

�
) 

 

And ���	 − � log� 1��	 +  2��	 + �		
�  is a martingale 

from theorems of stochastic integrals, see [6], [11], and [15] 
therefore,  

���	;�		 = 		� %& ( 1��	 +  2��		

�

+ �) log ' 1��	 +  2��	 + �
 1��	6 +  2��	6 + �(��) 

= 		& �,� 1��	 +  2��	 + �	 log� 1��	 +  2��	 + �	-	

�
− 		�.� 1��	 +  2��	
+ �	 log/ 1��	6 +  2��	6 + �0��1 

= 		& �,� 1��	 +  2��	 + �	 log� 1��	 +  2��	 + �	-	

�
− 		�.��� 1��	 +  2��	 + �	� log/ 1��	6
+  2��	6 + �	|�	 	1�� 

= 		& �,� 1��	 +  2��	 + �	 log� 1��	 +  2��	 + �	-	

�
 

−		�,��� 1��	 +  2��	+ �	|�	�- log/ 1��	6 +  2��	6
+ �		 �� 

= 		& �,� 1��	 +  2��	 + �	 log� 1��	 +  2��	 + �	-	

�
 

−�./ 1��	6 +  2��	6 + �0 log/ 1��	6 +  2��	6 + �01��    (33) 
                      
The capacity of the MAC Poisson channel given in 
Theorem3 (32) is defined as the maximum of (33) solving 
the following optimization problem subject to average 
power and peak power constraints, 
max	 ���	;�		                                                                 (34)  
 

Subject to average and peak power constraints,  

 


	 � ��  1��	 +  2��		��		

� � ≤ 	!�               

0 ≤  1��	 ≤ 	�1 
0 ≤  2��	 ≤ 	�2                                                              (35) 
 
With �1 and �2	 are the maximum power and the ratio of 
average to peak power ! is used with 0 ≤ ! ≤ 1. 
Now, solving: 

 max �� �,� 1��	 +  2��	 + �	 log� 1��	 +  2��	 +	
�

�	- − � 9� 1��	6 +  2��	66 + �� log � 1��	66 +  2��	6 + ��: −
�
	 �� 1��	 +  2��	��,  

with 2 as the lagrangian multiplier. The possible values of �,� 1��	 +  2��	+ �	 log� 1��	+  2��	 + �	- must lie in 
the set of all y-coordinates of the closed convex hull of the 
graph y=��1 + �2 + �	 log��1 + �2 + �	.  
Suppose that the maximum power for both inputs is �1 + �2 = !�.	 Hence, the maximum mutual information 
achieved using the distribution	�� = �	 = 1 − �� = 0	 =3.	 Where 0 ≤ 3 ≤ 1  so that �� 1��	� = $1, �� 2��	� =$2. So, we have �� 1��	 +  2��	� = ∑( 1��	�( 1) +

PPPP     

 

 1��	 � 

�
��	 
 5��	 
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 2��	)�( 2). It follows that, $1 = ��� 1 = �	 = �3. 
$2 = ��� 2 = �	 = �(1 − 3). Then, 3 =

�

�  and 1 − 3 =

��
�  and then the capacity in Theorem3 (32) is proved.  

It’s worth to note that we also have $3 = �1��0 ≤  1��	 ≤!�	 + �2��0 ≤  2��	 ≤ !�	 = 	�13 + �2(1 − 3), 
however, $3 is not considered in the capacity equations 
since we only need the maximum and the minimum powers 
for both  1��	 and  2��	 to get the maximum expected 
value.  

B. Optimum Power Allocation of MAC Poisson 
Channels 

We need to solve the following optimization problem, 

max 7��
� +
��
� �	�� + �	 log�� + �	+

		�1 −
�

� ���
���	 + �1 −

��
� � ��
���	 − �$1 + $2 +

�	log	($1 + $2 + �) − �
	 ($1 + $2)8                            (36) 

 
Using the Lagrangian corresponding to the derivative of the 
objective with respect to K, and the Karush–Kuhn–Tucker 
(KKT) conditions, the optimal power allocation is the 
solution of the following equation, 

$1∗ + $2∗ = �� + �	"� 
��

�
!�	�

�
��� 
��

�
!
− �           (37) 

 
The optimum power allocation solution introduces the fact 
that orthogonalizing the inputs via time or frequency sharing 
will achieve the capacity; therefore it follows the importance 
for interface solutions to aggregate different inputs to the 
Poisson channel.  
We can also differentiate (32) with respect to the maximum 
power � at which the capacity of the 2-input MAC Poisson 
channel is achieved with the optimal peak power �∗	with 
respect to the average power of both inputs is the solution 
of, 
�$1 + $2	�∗� + 	 �$1 + $2	��∗ + �$1 + $2	���∗ +

�	�
�	 � �
�∗��� = 0                                                            (38) 

VI.  DISCUSSION 

A. Mathematical Analysis  

The solutions provided in the paper show that the capacity 
of Poisson channels is a function of the average and peak 
power of the input. It can be easily seen that similar to the 
Gaussian Parallel channels; Poisson parallel channels have 
the characteristic that their throughput is the sum of their 
independent SISO channels. In [9] the authors studied the 
capacity regions and the maximum achievable mutual 
information, or we can call it the upper bound of the 
information rate of the two-user MAC Poisson channel with 
equal average input powers. However, they pointed out an 
interesting observation that we can also see here via 
Theorem3; that is; in contrary to the Gaussian MAC, in the 
Poisson MAC the maximum throughput is bounded in the 
number of inputs, and similar to the Gaussian MAC in terms 
of achieving the capacity via orthogonalizing the inputs. We 
can also see that the maximum power is a function of the 
average power through which both can be optimized to 
maximize the capacity. 

B. Simulation Analysis 

Fig.5. shows the capacity of the SISO, parallel, and MAC 
Poisson channels with respect to the average power and 
under a maximum power � = 10, and dark current � = 0.1, 
it can be easily noticed through the mathematical results as 
well as the simulations that the capacity of parallel Poisson 
channels is exactly double the capacity of the SISO Poisson 
channels if we consider the average power $1 = $2 = $ 
and the maximum power constraint is met and equal for 
both channels, i.e. �1 = �2 = �. However, on the one hand, 
it is clear that at the low average power regime, the MAC 
Poisson channel capacity under same conditions lie between 
both channels. While it decays as the average power 
increases if inputs are not orthogonal.  

 
Fig.5. Capacity of Poisson Channels (photons/sec) versus 
the average power $. 
 
On the other hand, for a different setup where one input 
average power is lowest and the other input power is 
maximum, i.e. a time or frequency shared inputs, it turns out 
that the MAC capacity is higher than that of Parallel 
channel, this is due to the fact that the dark noise is much 
more influencing the Parallel setup than that in the MAC 
setup. It can be easily verified that the MAC capacity can be 

maximized when 
�

� =

��
� =

�
�. However, when equal input 

maximum powers $1 = $2 = � are used the capacity 
decays to zero. Similarly, for the Gaussian MAC, at equal 
input powers or more precisely, when the arbitrary inputs to 
the Gaussian MAC lie in the null space or the Voronoi 
region of the channel matrix, the capacity faces a decay to 
zero in the total achievable rate of the MAC, while when 
they differ i.e. inputs are orthogonal, the capacity moves 
into maximum. 
Fig.6 shows the capacity of SISO, Parallel, and MAC 
Poisson channels with respect to the detector dark current, it 
shows that the capacity is a decreasing function with respect 
to	�; however, for the MAC the capacity increases after a 
certain point with respect to n. We can also see via Fig. 5 
and Fig. 6 that the two main factors in the MAC capacity is 
the orthognalization and the maximum power, while 
increasing the average power for one or the two inputs will 
not add positively to the capacity.  
Fig.7 shows the optimum power allocation results, it can be 
deduced via the mathematical formulas as well as the 
simulations that the power allocation is a decreasing value 
with respect to the dark current for all Poisson channels. It 
means that the power allocation for the Poisson channels in  
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Fig.6. Capacity of Poisson Channels versus the dark current 
n, (photons/sec). 
 
some way or another follows a waterfilling alike 
interpretation in the Gaussian setup where less power is 
allotted to the more noisy channels [16]. However, it is well 
known that the optimum power allocation is an increasing 
function in terms of the maximum power. 
 

A. General Analysis 
Here, we will introduce some important points about the 
capacity of Poisson channels in comparison to Gaussian 
channels within the context of this paper. Firstly, in 
comparison to the Gaussian capacity, the channel capacity 
of the Poisson channel is maximized with binary inputs, i.e. 
[0, 1], while the distribution that achieves the Gaussian 
capacity is a Gaussian input distribution. Secondly, the 
maximum achievable rates for the Poisson channel is a 
function of its maximum and average powers due to the 
nature of the Poisson processes that follows a stochastic 
random process with martingale characteristics, while in 
Gaussian channels, the processes are random and modeled 
by the normal distribution. Thirdly, the optimum power 
allocation for the Poisson channels is very similar for 
different models depending on the defined power 
constraints, and in comparison to the Gaussian optimum 
power allocation; it follows a similar interpretation to the 
waterfilling, at which more power is allocated to stronger 
channels, i.e. power allocation is inversely proportional to 
the more noisy channel. However, although the optimal 
inputs distribution for the Poisson channel is a binary input 
distribution, the optimal power allocation is a waterfilling 
alike, i.e. unlike the Gaussian channels with arbitrary inputs 
where it follows a mercury-waterfilling interpretation to 
compensate for the non-Gaussianess in the binary input [17]. 
 

VII.  CONCLUSION 

In this paper, we show via information theoretic approach 
that the capacity of optical Poisson channels is a function of 
the average and maximum power of the inputs, the capacity 
expressions have been derived as well as the optimal power 
allocation for different channel models. It is shown -through 
the limitation on users within the capacity of the Poisson 
MAC- that the interface solutions for the aggregation of 
multiple users/channels over a single Poisson channel are of 
great importance. However, a technology like orthogonal 
frequency division multiplexing (OFDM) for optical 
communications stands as one interface solution. While it  

 
Fig.7. Optimum Power Allocation versus the dark current n, 
(photons/sec). 
 
introduces attenuation via narrow filtering, etc. it therefore 
follows the importance of optimum power allocation which 
can mitigate such effects, hence, we build upon optimum 
power allocation derivations. 
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