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The Poisson Optical Communication Channels:
Capacity and Optimal Power Allocation

Samah A. M. GhanenMember, IAENG, Munnujahan AraMember, IAENG

Davis [4], the parallel multiple input multiple output
Abstract— In this paper, the channel capacity for different (MIMO) Poisson channels, as well as for the MAC Poisson
models of Poisson optical communication channels has beenchannel using a direct detection or photon counting receiver
derived. The closed form expression for the single input single and under constant noise; therefore, we simplify the
output (SISO) Poisson channel -derived by Kabanov in 1978, framework of derivation. Several contributions have been
and Davis in 1980- will be investigated. In addition, we derive done using information theoretic approaches to derive the
closed form expressions for the capacity of the parallel Poisson capacity of Poisson channels under constant and time

channel and the capacity of the multiple access Poisson . . . i | 3.7 .
Channel (MAC) under the assumption of constant shot noise. varying noise via martingale processes [3-7], or via

The optimum power allocation is also derived for the different @PProximations using Bernoulli processes [8], to define
models; results have been analyzed in the context of Upper and lower bounds for the capacity and the rate regions

information theory and optical communications. We then of different models [9-10], to define relations between
provide a set of simulation results establishing a comparison information measures and estimation measures [11], in
between Gaussian channels and Poisson Channels. addition to deriving optimum power allocation for such
channels [6] [12]. However, this paper introduces a simple
Index Terms—Gaussian channels, MAC, Parallel Channels, framework similar to [6] for deriving the capacity of Poisson
Poisson Channels, Power Allocation, SISO. channels for any model of consideration, with the
assumption of constant stochastic martingale noise, i.e. for
the sake of simplicity, we didn't model the noise as
Gaussian within the stochastic intensity rate process. In
NFORMATION THEORY provides one of its strongestaddition, it builds upon derivations for the optimal power
developments via the notion of maximum bit rate oallocation for SISO, Parallel, and MAC models, or any other
channel capacity. If the capacity can be found, then the g&aisson channel model of consideration.
of the engineer is to design an architecture which achievesin Poisson channels, the shot noise is the dominant noise
that capacity. The seminal work of Shannon published iehenever the power received at the photodetector is high;
1948 [1] gave birth to information theory. Shannorsuch noise is modeled as a Poisson random process. In fact,
determined the capacity of memoryless channels, includiggch framework has been investigated in many researches,
channels impaired by additive white Gaussian noisge [3-7], [9-13]. Capitalizing on the expressions derived on
(AWGN). fqr a given signa}l-to-noise ratio (SNR). Curr.ently,[3_4]’ [6] and on the results by [6], [11], we re-investigate
the majority of worldwide data and voice traffic iSthe gerivation process in a simple step by step way; we then

transported using optical communication channels. AS Rgyermine the optimal power allocation that maximizes the
demand for bandwidth continues to increase, it is of gregl o mation rates

Importance - to f'n.d closed form _ EXpressions Of. the The remainder of the paper is organized as follows;
information - capacity for the optical communlcatlonsﬁ ction 1l introduces preliminary definitions and the
applications at the backbone as well as the access netwo & ication f FI)< Secti ym introd the SISO
In particular, the capacity expressions of Poisson chann&fynmunication framework. section Til introduces the

isson channel, as well as the optimal power allocation that

that model the application. However, applying concepts e X A k
information theory to the optical communications channef@@ximizes the capacity. Section VI introduces the Parallel

encounters major challenges. The most important difficulfyisson  channel ~capacity expression as a normal
is dealing with the simultaneous interaction of thre§eneralization of the SISO setup, as well as the optimal
phenomena in the optical channel: noise, filtering, and Kepewer allocation. Section V introduces the MAC Poisson
nonlinearity. These three phenomena are distributed aloggannel capacity as well as the optimal power allocation.
the propagation path, and influence each other leading Rinally, we conclude the paper by some simulations and
deterministic as well as stochastic impairments [2]. analytical results.

Therefore, in this paper, we accomplish an information-

theoretic approach to derive the closed form expressions for: II. PRELIMINARIES

the SISO Poisson channel already found by Kabanov

I. INTRODUCTION

3] an —
3l % The Communication Framework
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transmission such as a wire or wave guide, or it can be Where X corresponds to the channel input, aid
unguided free space channel. A signal traverses the chancetesponds to the channel output. And the mutual
will suffer from attenuation and distortion. For exampleinformation is defined by,

electric power can be lost due to heat generation along a

wire, and optical power can be attenuated due to scatteri VY = p(XY)

and absorption by air molecules in a free space. 1) = [[p(x,V)log (P(X)P(Y)) dxdy @)
Therefore, channels are characterized by a transfer function S

which models the input-output process. The input-outpf¥ith p(X,Y) as the joint disctribution of andY, and the
process statistics is dominated by the noise characteristiggut distribution isp(X) and the output distribution is
the modulated input experiences during its propagatigr(Y). Using Baye's rule, we can re-write (2) as follows,
along the communication medium, in addition to the

detectipn procedure expe(ienced. at the channel output.  j(x.y) = If p(X,V)log (M) dxdy 3)

In particular, when the noise; (t) is a zero-mean Gaussian r()

process with double-sided power spectral dens2, the

channel is called an Additive White Gaussian ChanndVhere p(Y|X) corresponds to the channel conditional
(AWGN). However, when the electrical input is modulatedrobability which corresponds to the distribution of the
by a light source, like a laser diode, the channel will be &@ise, therefore, the channel will be considered as an
optical channel with the dominant shot naiggt) arising AWGN if the conditional probability follows a Gaussian
from the statistical nature of the production and collection efistribution, or cit will be considered as a Poisson channel if
photoelectrons when an optical signal is incident on the conditional distribution follows a Poisson process.
photodetector, such statistics characterized by a Poisste can simply write (3) in a more compact form, i.e.,
random process.

Fig. 1. illustrates both the AWGN and the Poisson optica}
channels. In this paper, we focus on the Poisson optical
communication channel shown in Fig. 1. (b) and we derive
capacity expressions for three different channel models, tiéth E[.] being the expectation operator over the joint
SISO channel, the parallel MIMO, and the MAC PoissodistributionP (X, Y) of the random variable$ andY'.

channels.

(V) =E [10g (2X2)] (@)

p(¥)

u(t)

Modulator

X(t)

_

Light source Photodetector

5() C. Constrained Optimization Setup

ac To derive the optimal power allocation for different channel

criteria could be relevant. In particular, the optimization

criteria could be the peak power, the average optical power,
power is the standard power measure in digital and wireless

communications and it helps in assessing the power

optical power is an important measure for safety

u() considerations and helps in quantifying the impact of shot
power, whether electrical or optical, gives a measure of

tolerance against the nonlinearities in the system, for

frameworks, it's worth to notice that different optimization
@) or the average electrical power. The average electrical
consumption in optical communications, while the average
noise in wireless optical channels. In addition, the peak
example the Kerr nonlinearity which is identified by a

(b) nonlinear phase delay in the optical intensity or in other
Fig.1. (a) The AWGN channel. (b) The Poisson opticaWOde as the change in the refractive index of the medium as
channel a function of the electric field intensity.

Therefore, in the context of AWGN channels, the
constrained optimization setup relevant to single-user and

B. Channel Capacity multi-user systems usually takes the form,
Determining an ultimate limit to the rate at which we can
reliably transmit information over a physical mediummax I(X;Y) (5)

in a given environment is an earnest attempt of fundamental

and practical consideration. Such a limit is referred to as tiStibject to the average electrical power constraint,

channel capacity and the process of evaluating this limit

leads to an understanding of the technical solutions requirgfx|2] < p. (6)

to approach it. Capacity evaluations require information

theory that must be adapted to the specific characteristics,.%wever, in the context of Poisson optical channels the

the channel under study. , , ﬁonstrained optimization setup takes the form,
The capacity of a channel is the maximum mutual

information, where the maximization is performed over all

possible input distributions, i.e., max I(Sr; Nr) )

€ = max,, 1(X;Y) ) Subject to the average optical power and peak power
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constraints, And N(t)—fOTlog(A(t)+n) is a martingate from
L r theorems of stochastic integrals, see [6], [11], and [15]
FE[fo A dt] < oP (8) therefore,
T A) +
0<A(t) < P. ©) 15 ny) = EU (A(t)+n)1og< ® n)dt]
0 At) +n

P is the peak power and the ratio of average to pealep T
o is used with) < o < 1. = [ EG@© + m10ga@ + ]
0
Ill. THE SISOPOISSONCHANNEL . — E[Q®) +n) log(A(®) +n)dt]
Consider the SISO Poisson chantkhown in Fig.2. Let = f E[(A(8) + n) log(A(t) + n)]
N(t) represent the channel output, which is the number of 0 —
photoelectrons counted by a direct detection device (photo- - E[E[(A(t) +n)] log(/l(t) + n)lNT ]dt
detector) in the time iptervgl [0, TN(t) has b.eer? shown to _ f E[(A(t) + n) log(A(t) + n)]
be a doubly stochastic Poisson process with instantaneous J,
average ratél(t) + n. The inputA(t) is the rate at which — E[E[(A(t) + n)|N]] 10g(,1ﬁ) + n) dt
photoelectrons are generated at timén units of photons T
pe second. Andn is a constant representing the photo= f E[(A(t) + n) log(A(t) + n)]
detector dark current and background noise. 0

—E[(A(t) + n)log(A(t) +n)] dt (14)
l " See [6] for similar steps. In [11], it has been shown that the
A() N(t) derivative of the input—output mutual information of a
) P Ly Poisson. channel with respect to the intensity of the o!ark
current is equal to the expected error between the logarithm
Fig. 2. The SISO Poisson channel model of t'he actqal input and the logarithm of its conditional mean
estimate, it follows that,
A. Derivation of the Capacity of SISO Poisson dI(ST;NT) _ A()+n
Channels ) E [l (T(F)+n)] (15)

Let p(N;) be the sample function density of therpe ont hand side term of (15) is the derivative of the
compound regular point proced&(t) andp(Nr|Sr) be the  tal information corresponding to the integration of the

conditional sample function ofV(t) given the message estimation errors. This plays as a counter part to the well
signal process(t) in the time interval [0,T]. Then we have, known relation between the mutual information and the
minimum mean square error (MMSE) in Gaussian channels

p(Ny|Sp) = e~ lo AO+m) dt+ [ log@®+man (o) (10) in[4. _ o
The capacity of the SISO Poisson channel given in
Theoreml (13) is defined as the maximum of (14) solving

) ) o the following optimization problem,
We use the following consistent notation in the paper,

p(NT) =e" f;(m+n) dt+f:log()T(_F)+n)dN(t) (ll)

A(t) is the estimate of the inpi(t). E[.] is the expectation max 1(Sy; Ny) (16)
operation over time. Therefore, the mutual information is
defined as follows, Subject to average and peak power constraints,
1 T
—IE[f A(t)dt] < oP
. - PWNTIST) 7 o
157 Np) = E [log (50| 12) o <2 <p (17)
Theorem1 (Kabanov'78[3]-Davis'80 [4]): With P is the maximum power and the ratio of average to
The capacity of the SISO Poisson channel is given by: peak powers is used with) < ¢ < 1.
C= E(P +n)log(P +n) + (1 _ 5) nlog(n) — We can e_a3|_ly check that the mutua! information is strictly
P p convex via its second derivative with respectli@) as
(K + n)log (K +n) (13) follows,
Proof: d21(ST;NT) A+
. . NT) _ n
Substitute (10) and (11) in (12), we have, sl = log (mm) >0

T
I(Sp;Np) = E|— | () — A(t)) dt
(Sri Nr) [ fo @a® ) Therefore, the mutual information is convex with respect
T Alt) +n to A(t). Now solving:
+f log dN(t)
0

) +n . . ) ) i
. . . In probability theory, a martingale is a stochastic process such that the
SmceE[A(t)] = E[E[A(tMNT]] = E[A(t)], it follows that,  conditional expected value of an observation at some tingven all

T A(t) +n observations up to some earlier time s, is equal to the observation at that
I(S;;Np) = E [f log <[(-E) n > dN(t)] earlier times, therefore E[A(t)] = E[E[A(t)|N7]] = E[A(8)], see [15].
0 n
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max (fT E[(A(t) + n) log(A(6) + n)] — IE[(A/(E) + (11) respectively for each inpai(t). Therefore, the mutual
o : information is defined as follows,
m log(A) + )] - LE(®] ),
ith the | i ltiplier. . — P(N1|S1)p(N2|S2)
with & as the lagrangian multiplier 1(Sy; Ny [E[log (773%);’(1\/2) )] 22

The possible values @&[(A(t) + n) log(A(t) + n)] must lie
in the set of all y-coordinates of the closed convex hull
the graph y£x + n)log(x +n). Hence, the maximum
mutual information achieved using the distributjofd =
P)=1-p(A=0)=a. Where 0<a<1, so that

Theorem2:

0Ithe capacity of the 2-input parallel Poisson channel is given
by the sum capacity of the independent SISO Poisson
channels as follows:

E[A(t)] = K. C = % (P1+n)log(P1+n) + (1 — g) nlog(n) —
Sg we must havgA(t)] = X A(t)p(A) . It follows that, (K1 +n)log(K1+n) + %(PZ +n) log(P2 +n)
k .

K = Pp(A=P) = Pa. Then,a = > And then the capacity n (1 _%) nlog(n) — (K2 + n)log (K2 + n) (23)
in (13) is proved.

B. Optimum Power Allocation for SI SO Poisson Proof:

channels Substitute (20) and (21) in (22), we have,
We nt;z(ed to solve the following op;imization problem, IS Ny) = E UTlog </1i(i) + n) le(t)]
max (— (P +n)log(P+n)+ (1 - —) nlog(n) — 0 A1(t) +n

. ¢ ’ + IEUTI <—/12(t)+n>dN2(t)]
_5 og| ==

(K +n)log(K +n) TK) (18) | g o

] ] ) ) Fdlowing the same steps of the proof of theoreml, we can
Since (18) is concave with respect to K, i.e. the secorg;is”y find that,

derivative of (18) with respect to K is negative. Using the T
Lagrangian corresponding to the derivative of the objectiviéSy; N) = f E[(A1(t) + n) log(A1(t) +n)]
with respect toK, and the Karush—Kuhn-Tucker (KKT) 0 J— —
conditions, the optimal power allocation is the following, [(—/1[E([()/11(t))-1|- ng;"?()u(t)ﬂ"' n)|
* _ _1+{+£]0g1+£ o +]E Zijn og 2(t +n
K= (4 me () (19) _E[(2200) + n) log(22(D) + n)]dt (24)

IV. THEPARALLEL POISSONCHANNEL : . . .
} . o The capacity of the Parallel Poisson channel given in
Consider the Parallel Poisson channel shown in Fig.3.  Theorem2 (23) is defined as the maximum of (24) solving

l n the following optimization problem,
max I(Sy; Np) (25)
> P —>
A1(t) M(® Subject to average and peak power constraints,
1 T
l . LE[fy 1w)] < oP1
2E[fy 22(0)] < oP2
Ai(t) —) P —>  Na2(t) 0<1(t) <P1, 0<22(t) < P2 (26)

With P1 and P2 are the maximum power and the ratio of
awverage to peak power is used with) < o < 1.

. . Hence, the maximum mutual information achieved using the
Consider a 2-fold parallel Poisson channel, theér(t) ﬁj]istribution of any input such that p(di = Pi) = 1 —

ard N,(t) are doubly stochastic Poisson processes wit]

. p(di = 0) = ai. Where0 < ai <1 so thatE[Ai(t)] = Ki.
:2;1”;;‘3;3“3 average ratedl(t) +nand A2()+n g0 e must havdai(t)] = X Ai(E)p(Ai) . It follows that,

Ki = Pip(li = Pi) = Pai. Then, ai = g Therefore, the
capacity in (23) is proved.

Fig. 3. The Parallel Poisson channel model

A. Derivation of the Capacity of Parallel Poisson
Channels

Let p(Ny, N,) and p(Ny, N,|S;,S,) be the joint density ~B. Optimum Power Allocation of Parallel Poisson
ard conditional sample function of the compound regular Channels
point processesV;(t) and N,(t) respectively, given the We need to solve the following optimization problem,
message signal processeg(t) and S,(t) in the time max (% (P1+n)log(P1 +n) + (1 — %) nlog(n) —
interval [0, T]. Then we have, K2
(K14 n)log(K1 +n) + E(PZ +n)log(P2 +n) +
PNy, N2|S1,S2) = p(N1|S1)p(N2S2) (20) (1 - %) nlog(n) — (K2 +n)log(K2 + n) — ;(Kl +

Ni, N,) = p(N)p(N 21
PNy, Np) = p(N1)p(N2) ( )KZ)) @7

p(N11S.), p(N,|2), p(N,), andp(NV,) are given by (10) and Using the Lagrangian corresponding to the derivative of the
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objective with respect to K, and applying the Karush—KuhnginceE[,ﬁ'(?) + ﬁ(\t)] = E[E[AL(t) + A2(t)|N7]] =
Tucker (KKT) conditions, the optimal power allocation g[41(¢) + A2(¢)], it follows that,
follows the optimal power allocation for the SISO setup in

(19). Therefore, for ainfold parallel Poisson channel, the T A1(E) + A2(t) + n

optimal power allocation is the following, I(S;Np) = E U log <T> dN(t)]
&, n Pi 0 AL(t) + 22(t) +n

Ki* = (Pi +n)e () alos(145) _ oy (28)

And N(t) — [] log(A1(t) + A2(t) +n) is a martingale

See [1.2] for similar_results reIaFed to_optimum POWEL: o m theorems of stochastic integrals, see [6], [11], and [15]
allocation for a 2-fold Parallel Poisson channel where t ﬁerefore

power constraint was the sum of both average input powers.

T
I(S;;Np) = E U QA1(t) +22(t)
V. THEMAC POISSONCHANNEL 0

Consider the MAC Poisson channel shown in Fig. 4. +n)log <w> dt]
A1) +22(t) +n
n T
AL1(t) l = f E[(A1(t) + 22(t) + n) log(A1(t) + A2(t) + n)]
0

2 —> N, (D) — E[Q1() +A2(¢)
+n) log(}ﬁ—(?) + 2200 + n)dt]

Ai(t) T
Fig. 4. The MAC Poisson channel model = f E[(A1(t) + 22(t) + n) log(A1(¢t) + A12(¢t) + n)]
0
Consider a 2-input MAC Poisson channel, thé(t) is a — E[E[(A1(2) + A2(t) + n)] log(A1(E)
doubly stochastic Poisson processes with instantaneous +12(t) + n)|Ny ]dt

average rates1(t) + A2(t) + n.

T
= f E[(A1(t) + 22(t) + n) log(A1(t) + A2(t) + n)]
A. Derivation of the Capacity of MAC Poisson 0

Channels — E[E[(A1(E) + A2(t) + n)|Ny]11og(A1(E) + A2(t)
Let p(N;) and p(N,|S;,S,) be the joint density and +n) dt
conditional sample function of the compound regular point (T
processeV, (t) given the message signal proces$gs) in -~ = fo E[(A1(t) 4 22(t) + n) log(A1(t) + A2(t) + n)]
the time interval [0, T]. Then we have, —E[(m) + 1200 + n) log(m + 1200 + n)]dt (33)
p(N1|S1, 52) = The capacity of the MAC Poisson channel given in
T T
e Jo A1@+22(0)+m) de+ [, log(R1()+A2(D)+m)dN () (29) Theorem3 (32) is defined as the maximum of (33) solving
p(N;) = the following optimization problem subject to average
o~ Jo GI@+A2(®)+n) de+ [ 10g(AT(D+A2(0)+n)dN(t) (30) Power and peak power constraints,
max I(Sy; Np) (34)
Therefore, the mutual information is defined as follows, Subject to average and peak power constraints
N = P(1S; 5) ,
I(Sr; ) = Ellog (P05 G LE[f 2100 +22(0) dt | < oP
0<A1(t) < P1
Theorem3: _ _ 0<22(t) < P2 (35)
The capacity of the 2-input MAC Poisson channel is
given by: With P1 andP2 are the maximum power and the ratio of
C = (E + E) (P +n)log(P +n) average to peak poweris used witl) <o < 1.
p P K1 K2 Now, solving:
+ (1 - (? + F)) nlog(n) max ( [ EJA1(6) + 22(2) +n) log(A1.(6) + A2(6) +
—(K1+ K2 +n)log(K1+ K2 +n) (32) I —E|(Z1(® + 12(6) + n)log (11(®) + A2(0) +n)| -
¢
Proof- B+ 201, |
Substitute (29) and (30) in (31), we have, with ¢ as the lagrangian multiplier. The possible values of
T o E[(A1(t) + 22(t) + n) log(A1(t) + A2(t) + n)] must lie in
I(S7;Np) = E [—f (A1(t) — 21(t)) dt the set of all y-coordinates of the closed convex hull of the
o . graph y<£x1 + x2 + n) log(x1 + x2 + n).
— f (A2(t) — 12(1)) dt Swpose that the maximum power for both inputs is
oT P1+ P2 = oP. Hence, the maximum mutual information
+ f Io AL(8) +22() +n AN () achieved using the distributionl = P) = 1 —p(1 = 0) =
0 1) + 12(t) + n a. Where0 < a <1 so thatE[A1(t)] = K1, E[A2(¢)] =

K2. So, we haveE[A1(t) + 12(t)] = X (A1 (H)p(11) +
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A2(t))p(A2). It follows that, K1 = Pp(A1 = P) = Pa. B. Simulation Analysis

K2 =Pp(12 = P) = P(1 - a). Then,a = % and1—a = Fig.5. shows the capacity of the SISO, parallel, and MAC

Poisson channels with respect to the average power and
’ under a maximum powet = 10, and dark current = 0.1,

It's worth to note that we also hai@ = P1p(0 < A1(t) < it can be easily noticed through the mathematical results as
oP) + P2p(0 < 22(t) < oP) = Pla + P2(1 - a), ~well as the simulations that the capacity of parallel Poisson
hawever, K3 is not considered in the capacity equationghannels is exactly double the capacity of the SISO Poisson
since we only need the maximum and the minimum powegannels if we consider the average poWdr= K2 = K

for both 21(t) and A2(t) to get the maximum expected s the maximum power constraint is met and equal for

% and then the capacity in Theorem3 (32) is proved.

value. both channels, i.e?1 = P2 = P. However, on the one hand,
B. Optimum Power Allocation of MAC Poisson it is clear that at the low average power regime, the MAC
Channels Poisson channel capacity under same conditions lie between

both channels. While it decays as the average power

We need to solve the following optimization problem, . o
increases if inputs are not orthogonal.

max ((% + %) (P +n)log(P+n)+

7 T T T T T T f
(1 — E) nlog(n) + (1 — E) nlog (n) - (Kl + K2 + XSE;;%?;?::;?S;Z&W %l
P P *€9-MAC Poisson Capacity 1
n)log (K1 +K2 +n) — (K1 + KZ)) (36)

&

Using the Lagrangian corresponding to the derivative of the
objective with respect to K, and the Karush—Kuhn-Tucker
(KKT) conditions, the optimal power allocation is the
solution of the following equation,

o %t‘é@ TS Q@“g -
&\, n P S
K1*+ K2* = (P + n)e'(”?)*Fl"g(“E) —n (37) "f eee, |

. ,‘5

Capacity of Poisson Channels
B>

The optimum power allocation solution introduces the fact e Avrage Input Power KekL-K2

that orthogonalizing the inputs via time or frequency shariqgig_S_ Capacity of Poisson Channels (photons/sec) versus
will achieve the capacity; therefore it follows the importancg, o average powet

for interface solutions to aggregate different inputs to the

Poisson channel. _ _ On the other hand, for a different setup where one input
We can also differentiate (32) with respect to the maxmug\lerage power is lowest and the other input power is
power P at which the capacity of the 2-input MAC P0issOn,ayimum, i.e. a time or frequency shared inputs, it turns out
channel is achieved with the optimal peak powemwith o the MAC capacity is higher than that of Parallel
respect to the average power of both inputs is the solutieannel, this is due to the fact that the dark noise is much

of, 5 more influencing the Parallel setup than that in the MAC

(K1+ K2)P** + (K1 + K2)nP* + (K1 + K2)n(P* + setup. It can be easily verified that the MAC capacity can be
n)log (P:in) =0 (38)  maximized whert> = =2 = Z. However, when equal input
maximum powersK1l = K2 =P are used the capacity

VI. DISCUSSION decays to zero. Similarly, for the Gaussian MAC, at equal

A. Mathematical Analysis input powers or more precisely, when the arbitrary inputs to

. . . the Gaussian MAC lie in the null space or the Voronoi
The solutions provided in the paper show that the capacity . . )
: . . region of the channel matrix, the capacity faces a decay to
of Poisson channels is a function of the average and peak . . .
zero in the total achievable rate of the MAC, while when

power of the input. It can be easily seen that similar to trgﬁe differ i.e. inputs are orthogonal, the capacity moves
Gaussian Parallel channels; Poisson parallel channels have . '

the characteristic that their throughput is the sum of th [I}to maximum.

. . ig.6 shows the capacity of SISO, Parallel, and MAC
|ndepgndent .SISO channels. In [.9] the authors studied t isson channels with respect to the detector dark current, it
capacity regions and the maximum achievable mutug’1

. . . ows that the capacity is a decreasing function with respect
information, or we can call it the upper bound of th pactty g P

: ' - _“?o n; however, for the MAC the capacity increases after a
information rate of the two-user MAC Poisson channel W”Eertain point with respect to n. We can also see via Fig. 5

equal average input powers. However, they pointed out 8Rq Fig. 6 that the two main factors in the MAC capacity is
|nterest|ng Obsel‘vation that we can a|SO see hel‘e \ﬁ% orthognalization and the maximum power, while

Theorem3; that is; in contrary to the Gaussian MAC, in th@creasing the average power for one or the two inputs will
Poisson MAC the maximum throughput is bounded in thgot add positively to the capacity.

number of inputs, and similar to the Gaussian MAC in ternfig.7 shows the optimum power allocation results, it can be
of achieving the capacity via orthogonalizing the inputs. Weeduced via the mathematical formulas as well as the
can also see that the maximum power is a function of tisemulations that the power allocation is a decreasing value
average power through which both can be optimized with respect to the dark current for all Poisson channels. It
maximize the capacity. means that the power allocation for the Poisson channels in

(Advance online publication: 27 February 2012)
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Fig.6. Capacity of Poisson Channels versus the dark currefig.7. Optimum Power Allocation versus the dark current n,
n, (photons/sec). (photons/sec).

some way or another follows a waterfilling alikeintroduces attenuation via narrow filtering, etc. it therefore
interpretation in the Gaussian setup where less power figlows the importance of optimum power allocation which
allotted to the more noisy channels [16]. However, it is wetlan mitigate such effects, hence, we build upon optimum
known that the optimum power allocation is an increasingower allocation derivations.
function in terms of the maximum power.
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