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An Analysis of Multiple Particle Swarm
Optimizers with Inertia Weight for Multi-objective
Optimization

Hong ZhangMember, IAENG

Abstract—An improved particle swarm optimizer with inertia ~ the way is how to ensure that the obtained every optimal
weight (PSOIWa) was applied to multi-objective optimization  splution satisfiegareto optimality.

(MOO). For further improving its search performance, in Since the methods of evolutionary computation (EC) can
this paper, we propose to use a cooperative PSO method

called multiple particle swarm optimizers with inertia weight gengratg plural candidate solutions, i'e'_ individuals_in a pop-
(MPSOIWa) to search. The crucial idea of the MPSOIWy, Ulation, it seems naturally to use them in coping with MOO
here, is to reinforce the search ability of the PSOIWy by the  for finding a Paretooptimal solution set simultaneously.
union’s power of plural swarms, i.e. distributed processing. To According to the distinguishing features of group search, the

demonstrate the search performance and effect of the proposal, ;g6 of EC methods for dealing with MOO problems has
computer experiments on a suite of 2-objective optimization

problems are carried out by an aggregation-based manner. The S'gn'f'(.:antly grown over the last decade, and has achieved
resulting Pareto-optimal solution distributions corresponding to ~ valuation results [8], [11], [21].

each given problem indicate that the linear weighted aggre-  Particle swarm optimization (PSO), which was proposed
gation among the adopted three kinds of dynamic weighted py Kennedy and Eberhart in 1995, is an adaptive, stochastic,

aggregations is the most sujtable for.acquiring better search and population-based optimization technique [19]. Based on
results. Throughout quantitative analysis to experimental data, )

we clarify the search characteristics and performance effect th€ three unique features: information exchange, intrinsic
of the MPSOIW« contrast with that of the original PSOIW, memory, and directional search, the technique has higher la-
PSOIWq, and MPSOIW. tent search ability in optimization compared to other methods

Index Terms—particle swarm optimization, cooperative Ps0, ©f EC such as genetic algor.ithms_and genetic programming
swarm intelligence, hybrid search, multi-objective optimization, [25], [26], [36], [37]. Especially, in recent years, a large

Pareto optimality, weighted sum method. number of studies and investigations on cooperative PSO
in relation to symbiosis, group behavior, and synergy are in
|. INTRODUCTION the researcher’s spotlight. Consequently, various methods of

ULTI-objective optimization (MOO), also known ascooperative PSO, e.g. hybrid PSO, multi-layer PSO, multiple
multi-criteria. or multi- erformance’o timization iSPSO with decision-making strategy etc. were successively
P b | >published [3], [12], [23], [37], [41].

the processing of optimizing simultaneously two and mo Compared with those methods running a single particle

conflicting objectives subject to certain constraints [5], méwarm different attempts and strategies can be clearly per-
[30]. Since many practical problems are involved in MOG, '

which can be mainly found in different domains of sciencgeqte.d by |_mp_lement|ng_mu|t|p|e partlcle swarms for more
(%If_flmently finding an optimal solution or near-optimal solu-

technology, industry, finance, automobile design, aeronaufl- [4], [18], [23], [39]. Owing to the plain advantage

cal engineering etc. [1], [9], [31], how to efficiently deal ..~. , .
with MOO becomes a live issue, and is centered on ttlf(talllzmg the techniques of group searching, parallel and

) intelligent processing has become one of extremely important
development of the treatment technique. T o
. o approaches to optimization, and a lot of publications and
As to be generally known, traditional optimization meth- .
orts have been shown that the methods of cooperative

. ieps r
ods suph as many gra_dmpt-b«_ased methods are d|ff|cultlfé)o have better adaptability and higher search performance
treat with the true multi-objective case, because they were

; . . : than ones of uncooperative PSO in dealing with various
not designed to find plural optimal solutions. In effect, a . .~ = .
oeptlmlzatlon and practical problems [14], [24].

M roblem has t nverted t ingle-objectiv . ) L o . .
OO proble as to be converted (o a single-objec An improved particle swarm optimizer with inertia weight

optimization (SOO) one before the problem-solving. In th@DSOIWo) was applied to MOO [43], which can provide a

situation, the search generates a single optimal solution . . .
each run of the optimization, and that the obtained optim% sic structure and framework for testing different methods
of PSO. In order to further upgrade the search performance

solutions are highly sensitive to the WelghF vector used 'cr)}the PSOIW, in this paper, we propose to use a method of
the converting process. Nevertheless, the issue of adoptlrb% . . . -
cooperative PSO called multiple particle swarm optimizers
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i.e. distributed processing. In spite of the search behavioitsis difficult to obtain the global optimum corresponding
and performance of various PSO methods in MOO witto each objective by traditional optimization methods such
some fithess assignment manners such as criterion-bagedNewton’s method, steepest descent method, and BFGS
one or dominance-based one were studied and investigateethod etc. at the same time. Consequently, the major aim
[32], [33], however, there is a lack of detailed analysis anof handling the MOO problem is effectively to achieve a set
sufficient results for systematically solving MOO problemsf solutions that satisfyPareto optimality for improvement
by the methods of cooperative PSO using an aggregatiaf-mental capacity and interpretation of decision making.
based manner, and analyzing the potential characteristics in
details from the obtained experimental results [7], [20]. B. Pareto Optimality

To demonstrate the effectiveness and performance effect i ) ) ) .
of the MPSOIWqg computer experiments on a suite of 2- A Solutlo_n Z* € Q is said to_beParetooptlma_I solution
objective optimization problems are carried out by a wellf and only if there does not exist another solutiorE €2 so
known weighted sum method. For interpreting the informdPat /i (%) is dominated byf;(z*). The formula of the above
tion treatment and search effect of the method, we show tffdationship is expressed as
distribgtions of the gbtaineaaretooptimal so!utions corre- (@) £ f(7F) Vie I dif fi(@) £ f,(T) Jiel (2)
sponding to each given problem by respectively using three
kinds of dynamic weighted aggregations (i.e. linear weighted In other words, this definition says that is a Pareto
one, bang-bang weighted one, and sinusoidal weighte®) on@ptimal solution if there exists no feasible solution (vector)
point out that which one of them is the most suitable fof which would decrease some criteria without causing a
acquiring good search results to the given MOO problemgmultaneous increase in at least one other criterion.
and clarify the search characteristics, performance effectFurthermore, all of thePareto-optimal solutions for a
and computation cost of the MPSOMtompared with the given MOO problem constitute tharetcoptimal solution
search performance of the original PSOIW, PSOlWand set (7*), or theParetcoptimal front (PF).
MPSOIW.

Th_e res_t of the paper is organized as follows. _Se_gtiQ@' Front Distance
Il briefly introduces some basic concepts and definitions , , , i
for dealing with a general MOO problem. Section Il de- Front dlgtance is a metric for.checkmg hpw far the ele-
scribes the search methods of the PSOIW, PSQi\aad ments_ are in the set of n_on-domln_ated solutl_ons found from
MPSOIWa. Section IV provides the obtained experimente{hose in thg tru€aretooptimal solu_tlo_n set. It directly reflect
results corresponding to a suite of 2-objective optimizati e_e_sfumatlon accuracy of the opt|m|zer used. Concretely, the
problems, and analyzes the potential characteristics of ﬁ%ﬁnmon of front distance (D) is expressed as
MPSOIWa« in the technical details. Finally, the concluding

Q
remarks appear in Section V. FD = % ng’ d, = fi(Z7) — f;(£7), Yiel (3)
qg=1

q
Il. BASIC CONCEPTS where @) is the number of the elements in the set of non-
For finely explaining how to treat with MOO by a fitnessdominated solutions found, antj is the Euclidean distance
assignment manner, in this section, some basic concepts gndasured in objective space) between each of these obtained
definitions on a general MOO problerRareto optimality, optimal solutions,#°, and the nearest member of the
front distance, a weighted sum method, and three kinds Rdretooptimal solution set.
dynamic weighted aggregations are described.

D. Cover Rate

A. MOO Problem . Cover rate CR) is an other metric for checking the
Without loss of generality, a MOO problem can be excoverage of the elements being in the set of non-dominated

pressed as follows. solutions found to théaretooptimal front. This is because
Minimize ( FU@), fo@) o (f))T th_e e_stimation accuracy is_ insuffici_ency to r_eveal the dis_-
2 WS J2R s I tribution status of the obtained optimal solutions and their
st. g;(@)>0,7=1,2--,J (1) possibility for dealing with the given problem.
h(Z)=0, m=1,2,--- M Here, the formulation of CR is mathematically expressed
z, €[z, Th), ne(1,2,---,N) as ,
wheref; (%) is thei-th objective or criteriong; () is thej-th CR = 1 Z CR, (4)
inequality constrainth,, (%) is the m-th equality constraint, 1=
T = (21,29, -, z5)T € RY (= Q search space) is the

¢ decisi bl q h . “whereCR, is the partial cover rate corresponding to thi&a
vector of decision variablez,, and z,, are the superior %bjective, which is defined by

boundary value and the inferior boundary value of eac
componentz,, of the vectorz, respectively. CR. — erzl v 5
Due to the given condition of > 2, the I-objectives i T ®)

may be conflicting with each other. Under this circumstanc&nereT is the number of dividing thei-th objective space

PMany researchers call sinusoidal weighted aggregation (SWA) as (W—hiCh ?S from the minimum to the maXimum Of the fitness
namic weighted aggregation (DWA). value, i.e.[f;(£)™", f,(Z)™**], and~y, € (0, 1) indicates the

(Advance online publication: 26 May 2012)
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existencestatus of the obtained optimal solutions in thth 10 “‘.‘ /
subdivision for thei-th objective. 08 ° i / B / 1

Since the divided number to a designated objective space _ 06 N/ ./ / 6 ®
is given by an experimenter, it goes without saying at 5 4 L Cg(t)
is just a relative metric depending on the valuelof 04 yan '

02f /

E. Weighted Sum Method oot 'y

There are some fitness assignment manners, for example, 0 10 ( )20 30 0t
aggregation-based one, criterion-based one, and dominance- 2) LA
based one, which are used for MOO [8], [15]. It is well- L N e
known that a conventional weighted sum (CWS) method is 08 :
a straightforward approach applied to deal with MOO prob- .. et
lems [13]. Concretely, the different objectives are summed E% cb()
up to a single scalaF, (i.e. criterion) with some prescribed 04 2t
weights as follows. 02

I 11 P S
F () =Y ¢, fi(&) (6) 0 10 20 30 a0t
i=1 (b} BWA

wherec,(i = 1,2,---,1) is the i-th non-negative weight. 10f 7N\ ; N
During the optimization, generally, all of the weights are osf s ,,./ \\ O \.__
fixed by the constraint of ., ¢; = 1. s/ \ \ 5

As usual, prior knowledge is also needed to specify £ os 'y" , "zgj S
appropriate weights for obtaining good solutions. However, : 04f /% A S0
the following issues exist: (1) Result depends on the used / \ S\
weights, (2) Some solutions cannot be reached, (3) Multiple 1N \{:’
runs of the optimizer are required in order to obtain the 00k ¥ \
whole solutions. To thoroughly conquer the shortcoming of 0 10 (c)zgwp. a0 o
the CWS method, a dynamic weighted sum (DWS) method
is often used to MOO in practice [17], [45]. Fig. 1. The change characteristics of three kinds of the adopted dynamic

weighted aggregations under the condition of peribe-20. (a) Linear
weighted aggregation, (b) Bang-bang weighted aggregation, (c) Sinusoidal
weighted aggregation.

The criterionF; of the DWS method is expressed as

Fy(t, %) =Y ¢(t) f(%) (7)
i=1
wheret is the time-step to search, ang(t) > 0 is the weight values of the BWA change discontinuously. More-
dynamic weight satisfying the constraint bf’ _cl(t) — 1 over, such abrupt movement of them is just only one time in
at time-stepr. =t the same period. It is considered that different characteristics
In order to fully investigate the search effect of the Dw@nd process of variations in the criterfg,(¢, 7) with the
method, as an example, a 2-objective optimization proble@ﬁOWth of time-stept will greatly reflect the_search perfor-_
is employed. Hence, the definitions of three kinds of tH@ance and search effect of using each weighted aggregation
adopted dynamic weighted aggregations are expressed®@desponding to a given MOO problem [16].
follows.

o Linear weighted aggregation (LWA): lll. SEARCHMETHODS

For the convenience of the following description to the

t . . .
ch(t) = mod(T, 1), ch(t)y=1-cl(t) used every optimizer, let the search spacéVbdimensional,
) . the number of particles of a swarm B the position of the
- Bang-bang weighted aggregation (BWA): i-th particle ber® = (zf, 25, -+, 2%)7 € Q, and its velocity
=1 ) i \T i
sign(sin(2rt/T))+1 be v’ = (v{,v},---,vk)" € Q, respectively.
cb(ey = o CnCTIT)EL iy 1 - et
« Sinusoidal weighted aggregation (SWA): A. The PSOIW
Tt To overcome the weakness of the original PSO [2], [6] in
ci(t) = ‘Sm(?)‘? cs(t) =1 —ci(t) convergence, Shi et al. modified the update rule ofithte

h . iod of th iabl iahts in the ab garticle’s velocity by constant reduction of the inertia coef-
where T is a period of the variable weights in the abov@jent over time-step [10], [27]. Concretely, the formulation

equations. i _ _ i of the particle swarm optimizer with inertia weight (PSOIW)
For the sake of detailed observation, Fig. 1 |IIustratq§ defined as

the change characteristics of the above mentioned dynamic, _. i
weighted aggregations. We can clearly see that the weight Tt =T+ V1
vaIL_Jes of the I__WA or SWA smoothly change With the growth ﬁgﬂ =w(k) T 4+w, 7 @ (P — T} ) +w,Ty @ (F, — T}

of time-stept in the period7'=20. Contrast to this case, the (8)

(Advance online publication: 26 May 2012)
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wherew,; andw, are coeficients for individual confidence Concretely, the best solution of theth PSOIW«in the
and swarm confidence, respectivety, 7, € R are two ran- MPSOIWa run at time-stepk is obtained by

dom vectors, each element of which is uniformly distributed s | o e e o .
Y { arg max {9(Gi+2,)} if 9@ +7.) = (@)

~S

on the interval[0, 1], and the symbok is an element-wise qio1=
a5 otherwise

operator for vector multiplication; (= arg maz {g(Z})},
s o S (10)

Whereg_(x,g) is the crltenon_v_alue of'.[heth pgmcle attime- agar implementing each PSOIWdn parallel, the best

stepk) is the local best position of theth particle up to oW, gq)ion of the whole multi-swarm search at time-stes

Lo SNy i "

g, (=arg Z_g}%%“{g(pk)}) is the global best position amondyetermined by

the whole particles at time-step. w(k) is the following o s

variable inertia weight which is linearly reduced from a Ty =arg S:Tf?.vs{g(q’ﬂ)}

starting valuew, to a terminal valuav, with the increment

of time-stepk.

(11)

Then put the best solutiaf¥, into a solution set which is the
storage memory of the multi-swarm search.

w(k) = ws+we_ws <k 9) Owing _to the use of_ the _op_erations of parallel processing

K and maximum selection, it is self-explanatory the search
where K is the number of iteration for the PSOIW run. Inability of the MPSOIWais superior to that of the PSOIMW
the original PSOIW, two terminal values,, andw,, are set This is just the result by the use of union’s power of plural
to 0.9 and 0.4, respectively, ang, = w, = 2.0 are used.  swarms, i.e. each particle swarm cooperates with each other
This is a simple and useful way for conquering the weadn the decision of the best solution.

convergence and enhancing the solution accuracy of the PSCror understanding how to deal with a MOO problem by a
However, the shortcoming of the PSOIW search is easily éggregation-based DWS method, Fig. 2 illustrates a flowchart
fall into a local minimum and hardly to escape from thadf the MPSOIWx to show the operation processing and
solution in dealing with multimodal problems because thiaformation control in the whole MOO process.
terminal valuew, is set to small.

Set the number of maximum, KBand N;

B. The PSOIW Set the period Tto NxKB; K=§; @

As a matter of common knowledge, random search me Set k=0, t=k; Set a solution set to empty
Initialize each swarm

ods are the simplest ones of stochastic optimization w
non-directional search, and are effective in handling me @

complex optimization problems [28], [29].
For obtaining better search results, we introduce the L
[40] into the PSOIW to create a hybrid search optimiz

~

Set criterion Fyg

(called PSOIW{. Implementing the PSOIWahere, is to > N
enable a particle swarm search escapes from local minin t=T
sooner for efficiently finding an optimal solution or nea - x
optimal solutions. Concretely, the PSO# procedure is | Initialize N K< K
implemented as follows. Sach sveacm
step-1: Give the terminating conditioy of the PSOIW ¢
run, and set the counter= 1.
step-2: Implement PSOIW and determine the best solt e
tion ¢, at time-stepk, and setg,,,,,, = g,
step-3: Generate a random datg, € R ~ N(0,0?%)
(whereo is a small positive value given by user, m et m
which determines the small limited space). Chec
whetherg, + 7, € Q is satisfied or not. I, +Z,, ¢ I
Q then adjust,, for moving ¢, + 7, to the nearest - -
vald poit wifin . Set..., = + %, rvtienemmunsll I ot 3

step-5: Setu = u + 1. If uw < U then go to thestep-2. I T
step-6: Setq,, = G, 10 correct the solution found by
the particle swarm at time-stép Stop the search.

Fig. 2. A flowchart of the MPSOIW for dealing with MOO by a
aggregation-based DWS method.

C. The MPSOIW«

For further improving the search ability of the above men- Herg, it is to be noted that if the LRS in the MPSOIWO‘_
tioned PSOIWato MOO, we propose to use multiple particle's not implemented after each PSOIW run, the method wiill
swarm optimizers with inertial weight, called MPSOIWe P€ called as MPSOIW.
search. As a matter of course, the most difference between

the PSOIWa and MPSOIWa in composition is just to IV. COMPUTEREXPERIMENTS
implement the plural PSOIW{S >2) in parallel for finding ~ To facilitate comparison and analysis of the search perfor-
the most suitable solution or near-optimal solutions. mance of the proposed MPOSIWthe suite of 2-objective

(Advance online publication: 26 May 2012)
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TABLE |
A SUITE OF 2-OBJECTIVE OPTIMIZATION PROBLEMS
problem objectve search range
N
o " 9 o - i (@
ZDTL )y (#) =y, 9(@) =1+ Nflnzzf"’ F12(®) = a(@) <1— ;S)) Qe 0,1V
@
DT2 [y (Z) =z, [ () = 9(2) (1 - ( Zif) > ) Qefo,1V
- . . f31 (& 3@\ q
ZDT3  f3,(%) =z, f35(Z) = 9(%) (1 — 21(9(;):) — ( Zl(;)c ) szn(lOﬂfSI(x)) ) Qelo, 1V

30F° T T T T —

25

Criterion Fy
- - o
L o 3] o
L
Y

0 500 1000 1500 2000 2500

Time—step t, k
Fig. 3. The change of fitness values of the top-particles of three swarms in the search process of the MR&CW ZDT3 problem by using the
LWA.

optimization problems [46] in Table | is used in the nexthe LWA.
computer experiments. The characteristics of fPareto According to the definition of MOO mentioned in Section
fronts of these given benchmark problems include the conviA, the smaller the fitness values are, the better the obtained
(ZDT1 problem), concave (ZDT@roblem), and discontinu- solutions are. We can see from Fig. 3 that the convergence
ous multimodal (ZDT3roblem), respectively. of the MPSOIWx run is faster, and three particle swarms
Table Il gives the major parameters of the MPSOIW@lay complementary best fithess value with each other in the
for solving the given problems in Table I. The choice o#vhole optimization process. The smooth variation of the best
their values is referred to the results of some preliminagriterion (the best solution of the multi-swarm) suggests that
experiments, which can be satisfied to rapidly converge tate Paretooptimal solutions can be continuously obtained
certain solution during a short search cycle. during one short search cycle E25). The vibration of the
best fitness found by each swarm occurs with the change
of variable criterion. And the vibration range of the best
fitness reflects the influence receiving from the change of the

TABLE I
MAJOR PARAMETERS OF THEMPSOIWa RUN

parameter value L .
the numberof particles, P 10 criterion £, overall time-step. Needless to say, the movement
the number of iterationsls 25 features of the fitness in progress are not unique for the given
the number of period]’ 2500 i
the number of random pointg] 10 different problems.
the search range of the LR§, 0.1
the number of multiple particle swarms, 3 A. Performance Comparison

Due to observation, Fig. 4 shows the resulting solution
For investigating the search process and situation of tlakstributions of the MPSOIWaand MPSOIW by using the
MPSOIWa run in which how to deal with a MOO problem LWA, BWA, and SWA, respectively. Based on the distinction
by using a dynamic weighted aggregation, as an exampbé,each solution distribution corresponding to these given
Fig. 3 shows the change of fithess values of the top-particleoblems, the analytical judgment can be described as fol-
of three swarms for dealing with trEDT3 problem by using lows.

(Advance online publication: 26 May 2012)
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The results of the MPSOIWa run The results of the MPSODY run

= L\WA

= LWA
= BWA
« SWA

= BWA
« SWA

ZDT1 problem
ZDT1 problem

5 s
2 K
o 2
a a
= &
™~ ™~
0.0 0.2 0.4 0.6 0.3 10 f
(b}
I e e .
\ « LWA

£ == £
S 0sp \ " = BWA 5
0 . E
2 v SWA o

6 [} 2 (=8
2 ool 3 { g
o \ o
™~ ™~

\{

W A

T IS S SR SRS S S S 1

0.0 0.2 0.4 0.6 08 £ 0.0 0.2 0.4 0.6 08 fa
{c) {c')

Fig. 4. Solution distributions of the MPSOIW and MPSOIW by using the LWA (red-point), BWA (blue-point) and SWA (green-point), respectively.
Notice: the distance between the experimental data sets for each subgraph is 0.05 (shift only in horizontal direction).

TABLE Il
PERFORMANCE COMPARISON OF BOTH THIMPSOIWa AND MPSOIWBY USING THE LWA, BWA, AND SWA, RESPECTIVELY(I" IS SET T0100).
MPSOIWx MPSOIW
problem  aggregation g, o FD CR (%) solution FD CR (%)
LWA 1254 22341078 99.5 1191 3.94810°38 99.5
ZDT1 BWA 187 9.809<107° 52.0 227 1.10%10~* 53.0
SWA 988 4.51%10~8 99.5 1016 7.3551078 99.0
LWA 272 1.198<10°8 94.0 283  1.992x10~ " 94.0
ZDT2 BWA 259 3.69107 92.0 228 8.85210~ 7 915
SWA 229 7.60410~8 93.5 219 3.38%10~7 93.0
LWA 1231 8.96K10~" 46.0 1107 9.24%10~7 455
ZDT3 BWA 396 1.655¢10~* 40.5 421 6.55%10° 40.0
SWA 949 9.43%10~7 42.5 1018 1.09210~6 42.0

1)

2)

3)

# The values in bold signify the best result for each given problem.

Regardless of the used methods either the MPSQIW«a  cave) problems, the former is relatively in the higher
or MPSOIW, and the characteristic of each given prob-  density.

lems, the resulting features and solution distributions g, quantitative analysis to the experimental results of
are nearly same. the MPSOIWx and MPSOIW in Fig. 4, Table Il gives
Regardless of the used methods and the charactefi§s staistical data, i.e. the number of the obtained optimal
tics of the given problems, the conditions of solutioRq),tions 7, and the correspondingD and CR for each
distributions by using the BWA are worse than thaéiven problem.

by using the LWA or SWA special for thEDT1and ~ gy comparing with the performance indexes of two meth-
ZDT3 problems. ods, the following marked features can be observed. Firstly,

In comparison with the solution distributions of usm@lhere is the most number of solutions obtained by using
the LWA for both theZDT1 (convex) andZDT2 (con- the LWA for the given problems even for theDT2 one

(Advance online publication: 26 May 2012)
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ZDT1 problem ZDT1 problem
10 N T - T 1.0 o N - 9
. = MPSOIWa osk = MPSOIWo
o8 [ = PSOIWa “t = PSOIWa ]
06f {P=10) |1 08 L {(P=30) |1
& — & —
04r 04 ]
0.2 0.2 b
00k . . : 00k . . !
0.0 02 04 06 03 1.0 11 0.0 02 04 06 08 1.0 11
ZDT2 problem ZDT2 problem
1.0 Hommay . s ] 10 . T
ost - MPSOIWa | ] osh - MPSOIWo | }
: % -PSOIWa | ; - - PSOIWa
06f \2-.\ P=100 | oS} oL (P30 |
& \, — & - —
04F . - D4F . -
L “a ] L K\ ]
02f \\\.. ] 02f s
0.0k . . \\-- 0.0k . . ]

0.0 02 04 0.6 08 10 f 0.0 02 04 06 038 10 M

ZDT3 problem ZDT3 problem

10 . T T ] ' T ]
\\ .- - MPSOIWa |1 [ .. - MPSOIWa | 1
osf % -PSOWa |} 0sf Y -PSOWa | 1
: \\ P=10) |} i \\ / (P=30) |]

m~ [} * - L
<2 L ] = L T e 4
00 : 1.\ .y ] 00 : N . ]
\i ;
-05F \ \0\. _0.5: * \._
' ] i A
00 02 04 06 08 M 0.0 02 04 06 08 M

Fig. 5. The solution distributions of the MPSOIWand PSOIW (P =  Fig. 6. The solution distributions of the MPSOlWand PSOIV (P =
10) by using the LWA. Notice: the distance between the experimental daif) by using the LWA. Notice: the distance between the experimental data
sets for each subgraph is 0.05 (shift only in horizontal direction). sets for each subgraph is 0.05 (shift only in horizontal direction).

in where a large number d?aretooptimal solutions are in moving process of variable criterion to be equalization which
unstable position [16]. Secondly, the solution accuracy of thgises the probability finding thBaretooptimal solution to
MPSOIWais superior to that of the MPSOIW for each giverthe maximum under the condition of implementing the same
problem. Thirdly, the obtained results of using the LWA ipptimizer. Due to this reason and characteristics, more good
CRindex are the best than that of using BWA and SWhAsolutions can be easily obtained during the short search cycle,
respectively. Fourthly, the search performance of using the= 25.

LWA is not only much better than that of using the BWA,

\l?vtrj]to?:o is relatively better than that of using the SWA aslg Effect of Multi-swarm Search

According to the above consideration, the effectivenessFor identifying the effect and characteristics of multi-
and search ability of the MPSOIWare roughly demon- swarm search, the following computer experiments on con-
strated. Furthermore, better solution distribution and high#égsting the different number of the particles used in the
solution accuracy can be observed as well by using either tR8BOIWa are carried out.

LWA or SWA. The obtained experimental results indicate that 1) Unequal in Number of Particlesin this case, the
smooth change of their criteria with the growth of time-stepumber of particles used in the PSQIWk just set to one-
t can make that the probability finding good solutions greattpird of the total number of particles used in the MPSOIW«
goes up in the same period, = 2500, as evidence. P=10.

Based on the above mentioned comparison and obserAs an example, Fig. 5 shows the resulting solution dis-
vation, the relationship of domination reflecting the seardhibutions of both the MPSOIWaand PSOIWaby using
performance (SP) of the MPSOMWby using each dynamic the LWA. We can clearly see that the density of solution
weighted aggregation is expressed as follows. distributions of the MPSOIWaare higher than that of the
PSOIWafor each given problem under the condition of same
number of period{" = 2500.

The above relationship of dominance in SP plainly indi- 2) Equal in Number of ParticlesThe number of particles
cates that the uniform change of the weights can make theed in the PSOIW is set to the same to the total number

SPrwa > SPsywa = SPpya

(Advance online publication: 26 May 2012)
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of particlesused in the MPSOIWnP =30. As an example,

Fig. 6 shows the resulting solution distributions of both the 40— ﬂ:]D["D ]

MPSOIWa and PSOIWaby using the LWA. In this case, - PS/OIW L Mps\om,a T

we also can see that the density of solution distributions of ¢ 300F— psoma Mpsomw

the MPSOIWcaare higher than that of the PSOMWor each

given problem, in spite of the different results obtained by

the PSOIW(P=10) compared to the solution distribution in .

Fig. 5. — N

For quantitative analysis to the obtained experimental rd—r lr[[] [[r ﬂ‘i

results in Fig. 5 and Fig. 6, Table IV gives the performance OEE ! : .

indexes, i.e. the number of the optimal solutiaffsobtained 2 5 Dim‘eﬂm 15 a.n

by using the LWA, and the correspondifR® andCRfor the o ) )

given problems. By directly comparing the statistical resulfd?; KAps%m”?of'?eeaﬁﬁémvﬁ'tir?ﬁgtz"}%%qepffb?éxqv’vﬁmﬁrﬂ\%e

of the MPSOIWaand PSOIW, the big difference between dimensional numben.

the both experimental results can be confirmed. It clearly

indicates the strong points of the multi-swarm (MPSOIW«

search in dealing with the given MOO problems, and th&ccordingly, comparing with the values of the first-degree

method is applicable to cope with MOO, which is not onland second-degree coefficients in the above two pairs of

to efficiently find a large number dtaretooptimal solutions, approximate equations, all of the proportional rates between

but also to find them with high-accuracy. the MPSOIWaand PSOIW, and between MPSOIW and
PSOIW are more than double. On the basis of the wide

r

o

(=]
|

Running Time

sy
o
(=]

TABLE IV - oo ; ;
SEARCH PERFORMANCE OF BOTH THEMPSOIWa AND PSOI1Wx margl_n between ther_n’_ it I_S ea5|ly reminded of that the
(P = 10, 30) BY USING THE LWA (T IS SET T0100). experimental results fit in with “no free lunch” (NFL) theo-
Sroblem o <oliion 5 CR (%) rem [35]. As an application of meta-optimization technique,
MPSOMG 1254  2.234<10~ 995 for example, the method of evolutionary particle swarm
ZDT1  PSOIMk(P=10) 422 3.70410°7 89.5 optimizer with inertia weight (EPSOIW) [42] could be used
PSOIW(P=30) 522 6.66%10° 91.0 for improving the search performance of the original PSOIW
MPSOIVe 272 11984107 94.0 used in MPSOIW. This is because the computation cost of
ZDT2  PSOMA(P=10) 102  4.33&10-%  60.0 n A - TIS IS B puta
PSOIWA(P=30) 231  9.93810~8 615 an optimized PSOIW is similar to that of the original PSOIW
MPSOIWar 1231 8.961><10*; 46.0 except the computation cost of estimating appropriate param-
ZDT3  PSOMu(P=10) 423  6.74810" 45.0 eter values of the PSOIW to the given MOO problem.

PSOIWx(P=30) 432 4.49610—6 41.0
# The values in bold signify the best result for each given problem.

V. CONCLUSIONS
On the other hand, by directly comparing the performance

indexes of the PSOIWaun in Table IV, the increment of In this paper, multiple particle swarm optimizers with iner-
the number of particles can cause the improvement of perftia weight, called MPSOIWghas been presented to MOO. It
mance in the number of solutions and solution accuracy, bstthe most simple expansion of the existent PSO|Which

not in the cover rate for thEDT3 problem. This reflects the has the advantages of a hybrid search with easy-to-operation
basic feature of the PSOIWkun to MOO, i.e. the increment as a method of cooperative PSO.

of particles used is not in proportion to the increment of the Applications of the MPSOIWato the given suite of 2-

CR. objective optimization problems well demonstrated its ef-
fectiveness by the aggregation-based manner. Owing to the
C. Computation Cost obtained experiment results respectively by using three kinds

of dynamic weighted aggregations, it is observed that the

To investigate the computation costs of the MPSO"W%earch performance of the MPSOIWa superior to that
MPSOIW, PSOI.\M and PSOIW run, as an _example, theof both the PSOIW and MPSOIW, and the comparative
computer experimerftasvere carried out by using the LWA

with increasing the dimensional numberof the variable analysis of the MPSOIWshows that the search performance

: of using the LWA is better than that of using the BWA
vector for theZDT1 problem. The resulting average number . o
of running times (RT) for implementing these methods arg, SWA for the given MOO problems. Therefore, it is no
shown ingFig 7 P 9 exaggeration to say that our empirical analysis offers an

Furthermore, the conformity oR2T’ with respect to the important evidence, i.e. choosing the dynamic weighted sum

dimensional number for the used four methods is shownmethOd with the LWA for efficiently dealing with complex

as follows. OO problems.
Itis left for further study to apply the MPSOIWte com-
RTypsorwe = 120.864 + 8.1010n + 0.4959n> plex MOO problems in the real-world. Furthermore, in order
RTpgorwe = 35.0395 + 4.8905n + 0.0654n> to enhance the adaptability, efficiency, and solution accuracy
RTvpsorw = 63.2933 + 6.8871n + 0.1174n> of the MPSOIW,, the search strategies and attempts on
RTpgorw = 23.1463 +2.0206n + 0.0567n° prediction, intelligent, cooperativeness, and other powerful
¢Computing environment: Intel(R) Xeon(TM) CPU 3.40GHz, 2.OOGE>methOdS of cooperative PSO [3], [12], [41] will be discussed
RAM; Computing tool: Mathematica 8.0. for MOO in near future.

(Advance online publication: 26 May 2012)
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