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Abstract—An improved particle swarm optimizer with inertia
weight (PSOIWα) was applied to multi-objective optimization
(MOO). For further improving its search performance, in
this paper, we propose to use a cooperative PSO method
called multiple particle swarm optimizers with inertia weight
(MPSOIWα) to search. The crucial idea of the MPSOIWα,
here, is to reinforce the search ability of the PSOIWα by the
union’s power of plural swarms, i.e. distributed processing. To
demonstrate the search performance and effect of the proposal,
computer experiments on a suite of 2-objective optimization
problems are carried out by an aggregation-based manner. The
resulting Pareto-optimal solution distributions corresponding to
each given problem indicate that the linear weighted aggre-
gation among the adopted three kinds of dynamic weighted
aggregations is the most suitable for acquiring better search
results. Throughout quantitative analysis to experimental data,
we clarify the search characteristics and performance effect
of the MPSOIWα contrast with that of the original PSOIW,
PSOIWα, and MPSOIW.

Index Terms—particle swarm optimization, cooperative PSO,
swarm intelligence, hybrid search, multi-objective optimization,
Pareto optimality, weighted sum method.

I. I NTRODUCTION

M ULTI-objective optimization (MOO), also known as
multi-criteria or multi-performance optimization, is

the processing of optimizing simultaneously two and more
conflicting objectives subject to certain constraints [5], [7],
[30]. Since many practical problems are involved in MOO,
which can be mainly found in different domains of science,
technology, industry, finance, automobile design, aeronauti-
cal engineering etc. [1], [9], [31], how to efficiently deal
with MOO becomes a live issue, and is centered on the
development of the treatment technique.

As to be generally known, traditional optimization meth-
ods such as many gradient-based methods are difficult to
treat with the true multi-objective case, because they were
not designed to find plural optimal solutions. In effect, a
MOO problem has to be converted to a single-objective
optimization (SOO) one before the problem-solving. In this
situation, the search generates a single optimal solution by
each run of the optimization, and that the obtained optimal
solutions are highly sensitive to the weight vector used in
the converting process. Nevertheless, the issue of adopting
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the way is how to ensure that the obtained every optimal
solution satisfiesParetooptimality.

Since the methods of evolutionary computation (EC) can
generate plural candidate solutions, i.e. individuals in a pop-
ulation, it seems naturally to use them in coping with MOO
for finding a Pareto-optimal solution set simultaneously.
According to the distinguishing features of group search, the
use of EC methods for dealing with MOO problems has
significantly grown over the last decade, and has achieved
valuation results [8], [11], [21].

Particle swarm optimization (PSO), which was proposed
by Kennedy and Eberhart in 1995, is an adaptive, stochastic,
and population-based optimization technique [19]. Based on
the three unique features: information exchange, intrinsic
memory, and directional search, the technique has higher la-
tent search ability in optimization compared to other methods
of EC such as genetic algorithms and genetic programming
[25], [26], [36], [37]. Especially, in recent years, a large
number of studies and investigations on cooperative PSOa

in relation to symbiosis, group behavior, and synergy are in
the researcher’s spotlight. Consequently, various methods of
cooperative PSO, e.g. hybrid PSO, multi-layer PSO, multiple
PSO with decision-making strategy etc. were successively
published [3], [12], [23], [37], [41].

Compared with those methods running a single particle
swarm, different attempts and strategies can be clearly per-
fected by implementing multiple particle swarms for more
efficiently finding an optimal solution or near-optimal solu-
tions [4], [18], [23], [39]. Owing to the plain advantage,
utilizing the techniques of group searching, parallel and
intelligent processing has become one of extremely important
approaches to optimization, and a lot of publications and
reports have been shown that the methods of cooperative
PSO have better adaptability and higher search performance
than ones of uncooperative PSO in dealing with various
optimization and practical problems [14], [24].

An improved particle swarm optimizer with inertia weight
(PSOIWα) was applied to MOO [43], which can provide a
basic structure and framework for testing different methods
of PSO. In order to further upgrade the search performance
of the PSOIWα, in this paper, we propose to use a method of
cooperative PSO called multiple particle swarm optimizers
with inertia weight (MPSOIWα) to search. The crucial idea
of the MPSOIWα, here, is to reinforce the search ability
of the PSOIWαby the union’s power of plural swarms,

aCooperative PSO is generally considered as multiple swarms (or sub-
swarms) searching for a solution (serially or in parallel) and exchanging
some information during the search according to some communication
strategies.
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i.e. distributed processing. In spite of the search behaviors
and performance of various PSO methods in MOO with
some fitness assignment manners such as criterion-based
one or dominance-based one were studied and investigated
[32], [33], however, there is a lack of detailed analysis and
sufficient results for systematically solving MOO problems
by the methods of cooperative PSO using an aggregation-
based manner, and analyzing the potential characteristics in
details from the obtained experimental results [7], [20].

To demonstrate the effectiveness and performance effect
of the MPSOIWα, computer experiments on a suite of 2-
objective optimization problems are carried out by a well-
known weighted sum method. For interpreting the informa-
tion treatment and search effect of the method, we show the
distributions of the obtainedPareto-optimal solutions corre-
sponding to each given problem by respectively using three
kinds of dynamic weighted aggregations (i.e. linear weighted
one, bang-bang weighted one, and sinusoidal weighted oneb),
point out that which one of them is the most suitable for
acquiring good search results to the given MOO problems,
and clarify the search characteristics, performance effect,
and computation cost of the MPSOIWα compared with the
search performance of the original PSOIW, PSOIWα, and
MPSOIW.

The rest of the paper is organized as follows. Section
II briefly introduces some basic concepts and definitions
for dealing with a general MOO problem. Section III de-
scribes the search methods of the PSOIW, PSOIWα, and
MPSOIWα. Section IV provides the obtained experimental
results corresponding to a suite of 2-objective optimization
problems, and analyzes the potential characteristics of the
MPSOIWα in the technical details. Finally, the concluding
remarks appear in Section V.

II. BASIC CONCEPTS

For finely explaining how to treat with MOO by a fitness
assignment manner, in this section, some basic concepts and
definitions on a general MOO problem,Pareto optimality,
front distance, a weighted sum method, and three kinds of
dynamic weighted aggregations are described.

A. MOO Problem

Without loss of generality, a MOO problem can be ex-
pressed as follows.

Minimize
~x

(
f1(~x), f2(~x), · · · , fI(~x)

)T

s.t. gj(~x) ≥ 0, j = 1, 2, · · · , J
hm(~x) = 0, m = 1, 2, · · · ,M
xn ∈ [xnl, xnu], n ∈ (1, 2, · · · , N)

(1)

wherefi(~x) is thei-th objective or criterion,gj(~x) is thej-th
inequality constraint,hm(~x) is the m-th equality constraint,
~x = (x1, x2, · · · , xN )T ∈ <N (= Ω search space) is the
vector of decision variable,xnl and xnu are the superior
boundary value and the inferior boundary value of each
componentxn of the vector~x, respectively.

Due to the given condition ofI ≥ 2, the I-objectives
may be conflicting with each other. Under this circumstance,

bMany researchers call sinusoidal weighted aggregation (SWA) as dy-
namic weighted aggregation (DWA).

it is difficult to obtain the global optimum corresponding
to each objective by traditional optimization methods such
as Newton’s method, steepest descent method, and BFGS
method etc. at the same time. Consequently, the major aim
of handling the MOO problem is effectively to achieve a set
of solutions that satisfyPareto optimality for improvement
of mental capacity and interpretation of decision making.

B. Pareto Optimality

A solution ~x∗ ∈ Ω is said to bePareto-optimal solution
if and only if there does not exist another solution~x ∈ Ω so
thatfi(~x) is dominated byfi(~x

∗). The formula of the above
relationship is expressed as

fi(~x) 6≤ fi(~x∗) ∀i ∈ I iif fi(~x) 6< fi(~x
∗) ∃i ∈ I (2)

In other words, this definition says that~x∗ is a Pareto-
optimal solution if there exists no feasible solution (vector)
~x which would decrease some criteria without causing a
simultaneous increase in at least one other criterion.

Furthermore, all of thePareto-optimal solutions for a
given MOO problem constitute thePareto-optimal solution
set (P∗), or thePareto-optimal front (PF).

C. Front Distance

Front distance is a metric for checking how far the ele-
ments are in the set of non-dominated solutions found from
those in the truePareto-optimal solution set. It directly reflect
the estimation accuracy of the optimizer used. Concretely, the
definition of front distance (FD) is expressed as

FD =
1
Q

√√√√
Q∑
q=1

d2
q , dq = fi(~x

∗
q )− fi(~xoq ), ∀i ∈ I (3)

whereQ is the number of the elements in the set of non-
dominated solutions found, anddq is the Euclidean distance
(measured in objective space) between each of these obtained
optimal solutions,~xo, and the nearest member~x∗ of the
Pareto-optimal solution set.

D. Cover Rate

Cover rate (CR) is an other metric for checking the
coverage of the elements being in the set of non-dominated
solutions found to thePareto-optimal front. This is because
the estimation accuracy is insufficiency to reveal the dis-
tribution status of the obtained optimal solutions and their
possibility for dealing with the given problem.

Here, the formulation of CR is mathematically expressed
as

CR =
1
I

I∑

i=1

CRi (4)

whereCRi is the partial cover rate corresponding to thei-th
objective, which is defined by

CRi =
∑Γ
l=1 γl
Γ

(5)

whereΓ is the number of dividing thei-th objective space
which is from the minimum to the maximum of the fitness
value, i.e.[fi(~x)min, fi(~x)max], andγl ∈ (0, 1) indicates the
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existencestatus of the obtained optimal solutions in thel-th
subdivision for thei-th objective.

Since the divided number to a designated objective space
is given by an experimenter, it goes without saying thatCR
is just a relative metric depending on the value ofΓ.

E. Weighted Sum Method

There are some fitness assignment manners, for example,
aggregation-based one, criterion-based one, and dominance-
based one, which are used for MOO [8], [15]. It is well-
known that a conventional weighted sum (CWS) method is
a straightforward approach applied to deal with MOO prob-
lems [13]. Concretely, the different objectives are summed
up to a single scalarFs (i.e. criterion) with some prescribed
weights as follows.

Fs(~x) =
I∑

i=1

cifi(~x) (6)

where ci(i = 1, 2, · · · , I) is the i-th non-negative weight.
During the optimization, generally, all of the weights are
fixed by the constraint of

∑I
i=1 ci = 1.

As usual, prior knowledge is also needed to specify
appropriate weights for obtaining good solutions. However,
the following issues exist: (1) Result depends on the used
weights, (2) Some solutions cannot be reached, (3) Multiple
runs of the optimizer are required in order to obtain the
whole solutions. To thoroughly conquer the shortcoming of
the CWS method, a dynamic weighted sum (DWS) method
is often used to MOO in practice [17], [45].

The criterionFd of the DWS method is expressed as

Fd(t, ~x) =
I∑

i=1

ci(t)fi(~x) (7)

where t is the time-step to search, andci(t) ≥ 0 is the
dynamic weight satisfying the constraint of

∑I
i=1 ci(t) = 1

at time-stept.
In order to fully investigate the search effect of the DWS

method, as an example, a 2-objective optimization problem
is employed. Hence, the definitions of three kinds of the
adopted dynamic weighted aggregations are expressed as
follows.

• Linear weighted aggregation (LWA):

cl1(t) = mod
( t
T
, 1
)
, cl2(t) = 1− cl1(t)

• Bang-bang weighted aggregation (BWA):

cb1(t) =
sign

(
sin(2πt/T )

)
+1

2
, cb2(t) = 1− cb1(t)

• Sinusoidal weighted aggregation (SWA):

cs1(t) =
∣∣∣sin

(πt
T

)∣∣∣, cs2(t) = 1− cs1(t)

where T is a period of the variable weights in the above
equations.

For the sake of detailed observation, Fig. 1 illustrates
the change characteristics of the above mentioned dynamic
weighted aggregations. We can clearly see that the weight
values of the LWA or SWA smoothly change with the growth
of time-stept in the periodT=20. Contrast to this case, the

Fig. 1. The change characteristics of three kinds of the adopted dynamic
weighted aggregations under the condition of periodT = 20. (a) Linear
weighted aggregation, (b) Bang-bang weighted aggregation, (c) Sinusoidal
weighted aggregation.

weight values of the BWA change discontinuously. More-
over, such abrupt movement of them is just only one time in
the same period. It is considered that different characteristics
and process of variations in the criteriaFd(t, ~x) with the
growth of time-stept will greatly reflect the search perfor-
mance and search effect of using each weighted aggregation
corresponding to a given MOO problem [16].

III. SEARCH METHODS

For the convenience of the following description to the
used every optimizer, let the search space beN -dimensional,
the number of particles of a swarm beP , the position of the
i-th particle be~x i = (xi1, x

i
2, · · · , xiN )T ∈ Ω, and its velocity

be~v i = (v i1, v
i
2, · · · , v iN )T ∈ Ω, respectively.

A. The PSOIW

To overcome the weakness of the original PSO [2], [6] in
convergence, Shi et al. modified the update rule of thei-th
particle’s velocity by constant reduction of the inertia coef-
ficient over time-step [10], [27]. Concretely, the formulation
of the particle swarm optimizer with inertia weight (PSOIW)
is defined as{

~x ik+1 =~xik+~v ik+1

~v ik+1 =w(k) ~v ik+w1~r1⊗(~p ik−~x ik)+w2~r2⊗(~qk−~x ik)
(8)
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wherew1 andw2 are coefficients for individual confidence
and swarm confidence, respectively.~r1, ~r2 ∈ <N are two ran-
dom vectors, each element of which is uniformly distributed
on the interval[0, 1], and the symbol⊗ is an element-wise
operator for vector multiplication.~p ik (=arg max

k=1,2,···
{g(~x ik)},

whereg(~x ik) is the criterion value of thei-th particle at time-
stepk) is the local best position of thei-th particle up to now,
~qk(=arg max

i=1,2,···
{g(~p ik)}) is the global best position among

the whole particles at time-stepk. w(k) is the following
variable inertia weight which is linearly reduced from a
starting valuews to a terminal valuewe with the increment
of time-stepk.

w(k) = ws+
we−ws
K

× k (9)

whereK is the number of iteration for the PSOIW run. In
the original PSOIW, two terminal values,ws andwe, are set
to 0.9 and 0.4, respectively, andw1 = w2 = 2.0 are used.

This is a simple and useful way for conquering the weak
convergence and enhancing the solution accuracy of the PSO.
However, the shortcoming of the PSOIW search is easily to
fall into a local minimum and hardly to escape from that
solution in dealing with multimodal problems because the
terminal valuewe is set to small.

B. The PSOIWα

As a matter of common knowledge, random search meth-
ods are the simplest ones of stochastic optimization with
non-directional search, and are effective in handling many
complex optimization problems [28], [29].

For obtaining better search results, we introduce the LRS
[40] into the PSOIW to create a hybrid search optimizer
(called PSOIWα). Implementing the PSOIWα, here, is to
enable a particle swarm search escapes from local minimum
sooner for efficiently finding an optimal solution or near-
optimal solutions. Concretely, the PSOIWα’s procedure is
implemented as follows.

step-1: Give the terminating conditionU of the PSOIWα
run, and set the counteru = 1.

step-2: Implement PSOIW and determine the best solu-
tion ~qk at time-stepk, and set~qnow = ~qk.

step-3: Generate a random data,~zu ∈ <N ∼ N(0, σ2)
(whereσ is a small positive value given by user,
which determines the small limited space). Check
whether~qk+~zu ∈ Ω is satisfied or not. If~qk+~zu 6∈
Ω then adjust~zu for moving~qk+~zu to the nearest
valid point within Ω. Set~qnew = ~qk + ~zu.

step-4: If g(~qnew)>g(~qnow) then set~qnow=~qnew.
step-5: Setu = u+ 1. If u ≤ U then go to thestep-2.
step-6: Set ~qk = ~qnow to correct the solution found by

the particle swarm at time-stepk. Stop the search.

C. The MPSOIWα

For further improving the search ability of the above men-
tioned PSOIWαto MOO, we propose to use multiple particle
swarm optimizers with inertial weight, called MPSOIWα, to
search. As a matter of course, the most difference between
the PSOIWα and MPSOIWα in composition is just to
implement the plural PSOIWα(S ≥2) in parallel for finding
the most suitable solution or near-optimal solutions.

Concretely, the best solution of thes-th PSOIWα in the
MPSOIWα run at time-stepk is obtained by

~q sk+1 =

{
arg max

u=1,2,···
{g(~q sk +~zu)}, if g(~q sk +~zu) ≥ g(~q sk )

~q sk , otherwise
(10)

After implementing each PSOIWαin parallel, the best
solution of the whole multi-swarm search at time-stepk is
determined by

~xok =arg max
s=1,2,···,S

{g(~q sk )} (11)

Then put the best solution~xok into a solution set which is the
storage memory of the multi-swarm search.

Owing to the use of the operations of parallel processing
and maximum selection, it is self-explanatory the search
ability of the MPSOIWαis superior to that of the PSOIWα.
This is just the result by the use of union’s power of plural
swarms, i.e. each particle swarm cooperates with each other
on the decision of the best solution.

For understanding how to deal with a MOO problem by a
aggregation-based DWS method, Fig. 2 illustrates a flowchart
of the MPSOIWα to show the operation processing and
information control in the whole MOO process.

Fig. 2. A flowchart of the MPSOIWα for dealing with MOO by a
aggregation-based DWS method.

Here, it is to be noted that if the LRS in the MPSOIWα
is not implemented after each PSOIW run, the method will
be called as MPSOIW.

IV. COMPUTEREXPERIMENTS

To facilitate comparison and analysis of the search perfor-
mance of the proposed MPOSIWα, the suite of 2-objective
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TABLE I
A SUITE OF 2-OBJECTIVE OPTIMIZATION PROBLEMS

problem objective search range

ZDT1 f11(~x) = x1, g(~x) = 1 +
9

N − 1

N∑
n=2

xn, f12(~x) = g(~x)

(
1−
√

f11(~x)

g(~x)

)
Ω ∈ [0, 1]N

ZDT2 f21(~x) = x1, f22(~x) = g(~x)

(
1−
(
f21(~x)

g(~x)

)2
)

Ω ∈ [0, 1]N

ZDT3 f31(~x) = x1, f32(~x) = g(~x)

(
1−
√

f31(~x)

g(~x)
−
(
f31(~x)

g(~x)

)
sin
(
10πf31(~x)

) )
Ω ∈ [0, 1]N

Fig. 3. The change of fitness values of the top-particles of three swarms in the search process of the MPSOIWα for the ZDT3 problem by using the
LWA.

optimization problems [46] in Table I is used in the next
computer experiments. The characteristics of thePareto
fronts of these given benchmark problems include the convex
(ZDT1 problem), concave (ZDT2problem), and discontinu-
ous multimodal (ZDT3problem), respectively.

Table II gives the major parameters of the MPSOIWα
for solving the given problems in Table I. The choice of
their values is referred to the results of some preliminary
experiments, which can be satisfied to rapidly converge to a
certain solution during a short search cycle.

TABLE II
MAJOR PARAMETERS OF THEMPSOIWα RUN

parameter value
the numberof particles,P 10
the number of iterations,K 25

the number of period,T 2500
the number of random points,U 10
the search range of the LRS,σ 0.1

the number of multiple particle swarms,S 3

For investigating the search process and situation of the
MPSOIWα run in which how to deal with a MOO problem
by using a dynamic weighted aggregation, as an example,
Fig. 3 shows the change of fitness values of the top-particles
of three swarms for dealing with theZDT3problem by using

the LWA.
According to the definition of MOO mentioned in Section

II-A, the smaller the fitness values are, the better the obtained
solutions are. We can see from Fig. 3 that the convergence
of the MPSOIWα run is faster, and three particle swarms
play complementary best fitness value with each other in the
whole optimization process. The smooth variation of the best
criterion (the best solution of the multi-swarm) suggests that
the Pareto-optimal solutions can be continuously obtained
during one short search cycle (K=25). The vibration of the
best fitness found by each swarm occurs with the change
of variable criterion. And the vibration range of the best
fitness reflects the influence receiving from the change of the
criterionFd overall time-step. Needless to say, the movement
features of the fitness in progress are not unique for the given
different problems.

A. Performance Comparison

Due to observation, Fig. 4 shows the resulting solution
distributions of the MPSOIWαand MPSOIW by using the
LWA, BWA, and SWA, respectively. Based on the distinction
of each solution distribution corresponding to these given
problems, the analytical judgment can be described as fol-
lows.
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Fig. 4. Solution distributions of the MPSOIWα and MPSOIW by using the LWA (red-point), BWA (blue-point) and SWA (green-point), respectively.
Notice: the distance between the experimental data sets for each subgraph is 0.05 (shift only in horizontal direction).

TABLE III
PERFORMANCE COMPARISON OF BOTH THEMPSOIWα AND MPSOIW BY USING THE LWA, BWA, AND SWA, RESPECTIVELY(Γ IS SET TO100).

MPSOIWα MPSOIW
problem aggregation solution FD CR (%) solution FD CR (%)

LWA 1254 2.234×10−8 99.5 1191 3.948×10−8 99.5
ZDT1 BWA 187 9.809×10−5 52.0 227 1.107×10−4 53.0

SWA 988 4.511×10−8 99.5 1016 7.355×10−8 99.0
LWA 272 1.198×10−8 94.0 283 1.992×10−7 94.0

ZDT2 BWA 259 3.692×10−7 92.0 228 8.852×10−7 91.5
SWA 229 7.604×10−8 93.5 219 3.381×10−7 93.0
LWA 1231 8.961×10−7 46.0 1107 9.245×10−7 45.5

ZDT3 BWA 396 1.655×10−4 40.5 421 6.551×10−5 40.0
SWA 949 9.433×10−7 42.5 1018 1.092×10−6 42.0

# The values in bold signify the best result for each given problem.

1) Regardless of the used methods either the MPSOIWα,
or MPSOIW, and the characteristic of each given prob-
lems, the resulting features and solution distributions
are nearly same.

2) Regardless of the used methods and the characteris-
tics of the given problems, the conditions of solution
distributions by using the BWA are worse than that
by using the LWA or SWA special for theZDT1 and
ZDT3 problems.

3) In comparison with the solution distributions of using
the LWA for both theZDT1 (convex) andZDT2 (con-

cave) problems, the former is relatively in the higher
density.

For quantitative analysis to the experimental results of
the MPSOIWα and MPSOIW in Fig. 4, Table III gives
the statistical data, i.e. the number of the obtained optimal
solutions~xo, and the correspondingFD and CR for each
given problem.

By comparing with the performance indexes of two meth-
ods, the following marked features can be observed. Firstly,
there is the most number of solutions obtained by using
the LWA for the given problems even for theZDT2 one
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Fig. 5. The solution distributions of the MPSOIWα and PSOIWα (P =
10) by using the LWA. Notice: the distance between the experimental data
sets for each subgraph is 0.05 (shift only in horizontal direction).

in where a large number ofPareto-optimal solutions are in
unstable position [16]. Secondly, the solution accuracy of the
MPSOIWα is superior to that of the MPSOIW for each given
problem. Thirdly, the obtained results of using the LWA in
CR index are the best than that of using BWA and SWA,
respectively. Fourthly, the search performance of using the
LWA is not only much better than that of using the BWA,
but also is relatively better than that of using the SWA as a
whole.

According to the above consideration, the effectiveness
and search ability of the MPSOIWαare roughly demon-
strated. Furthermore, better solution distribution and higher
solution accuracy can be observed as well by using either the
LWA or SWA. The obtained experimental results indicate that
smooth change of their criteria with the growth of time-step
t can make that the probability finding good solutions greatly
goes up in the same period,T = 2500, as evidence.

Based on the above mentioned comparison and obser-
vation, the relationship of domination reflecting the search
performance (SP) of the MPSOIWα by using each dynamic
weighted aggregation is expressed as follows.

SPLWA � SPSWA � SPBWA

The above relationship of dominance in SP plainly indi-
cates that the uniform change of the weights can make the

Fig. 6. The solution distributions of the MPSOIWα and PSOIWα (P =
30) by using the LWA. Notice: the distance between the experimental data
sets for each subgraph is 0.05 (shift only in horizontal direction).

moving process of variable criterion to be equalization which
raises the probability finding thePareto-optimal solution to
the maximum under the condition of implementing the same
optimizer. Due to this reason and characteristics, more good
solutions can be easily obtained during the short search cycle,
K= 25.

B. Effect of Multi-swarm Search

For identifying the effect and characteristics of multi-
swarm search, the following computer experiments on con-
trasting the different number of the particles used in the
PSOIWαare carried out.

1) Unequal in Number of Particles:In this case, the
number of particles used in the PSOIWα is just set to one-
third of the total number of particles used in the MPSOIWα,
P =10.

As an example, Fig. 5 shows the resulting solution dis-
tributions of both the MPSOIWαand PSOIWαby using
the LWA. We can clearly see that the density of solution
distributions of the MPSOIWαare higher than that of the
PSOIWαfor each given problem under the condition of same
number of period,T =2500.

2) Equal in Number of Particles:The number of particles
used in the PSOIWα is set to the same to the total number
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of particlesused in the MPSOIWα, P =30. As an example,
Fig. 6 shows the resulting solution distributions of both the
MPSOIWα and PSOIWαby using the LWA. In this case,
we also can see that the density of solution distributions of
the MPSOIWαare higher than that of the PSOIWα for each
given problem, in spite of the different results obtained by
the PSOIWα(P=10) compared to the solution distribution in
Fig. 5.

For quantitative analysis to the obtained experimental
results in Fig. 5 and Fig. 6, Table IV gives the performance
indexes, i.e. the number of the optimal solutions~xo obtained
by using the LWA, and the correspondingFD andCR for the
given problems. By directly comparing the statistical results
of the MPSOIWαand PSOIWα, the big difference between
the both experimental results can be confirmed. It clearly
indicates the strong points of the multi-swarm (MPSOIWα)
search in dealing with the given MOO problems, and the
method is applicable to cope with MOO, which is not only
to efficiently find a large number ofPareto-optimal solutions,
but also to find them with high-accuracy.

TABLE IV
SEARCH PERFORMANCE OF BOTH THEMPSOIWα AND PSOIWα

(P = 10, 30) BY USING THE LWA (Γ IS SET TO100).

problem method solution FD CR (%)
MPSOIWα 1254 2.234×10−8 99.5

ZDT1 PSOIWα(P=10) 422 3.704×10−7 89.5
PSOIWα(P=30) 522 6.661×10−8 91.0

MPSOIWα 272 1.198×10−8 94.0
ZDT2 PSOIWα(P=10) 102 4.338×10−8 60.0

PSOIWα(P=30) 231 9.938×10−8 61.5
MPSOIWα 1231 8.961×10−7 46.0

ZDT3 PSOIWα(P=10) 423 6.748×10−6 45.0
PSOIWα(P=30) 432 4.496×10−6 41.0

# The values in bold signify the best result for each given problem.

On the other hand, by directly comparing the performance
indexes of the PSOIWαrun in Table IV, the increment of
the number of particles can cause the improvement of perfor-
mance in the number of solutions and solution accuracy, but
not in the cover rate for theZDT3 problem. This reflects the
basic feature of the PSOIWαrun to MOO, i.e. the increment
of particles used is not in proportion to the increment of the
CR.

C. Computation Cost

To investigate the computation costs of the MPSOIWα,
MPSOIW, PSOIWα and PSOIW run, as an example, the
computer experimentsc were carried out by using the LWA
with increasing the dimensional numbern of the variable
vector for theZDT1 problem. The resulting average number
of running times (RT) for implementing these methods are
shown in Fig. 7.

Furthermore, the conformity ofRT with respect to the
dimensional numbern for the used four methods is shown
as follows.



RTMPSOIWα = 120.864 + 8.1010n+ 0.4959n2

RTPSOIWα = 35.0395 + 4.8905n+ 0.0654n2

RTMPSOIW = 63.2933 + 6.8871n+ 0.1174n2

RTPSOIW = 23.1463 + 2.0206n+ 0.0567n2

cComputing environment: Intel(R) Xeon(TM) CPU 3.40GHz, 2.00GB
RAM; Computing tool: Mathematica 8.0.

Fig. 7. Running time of implementing the PSOIW, PSOIWα, MPSOIW,
and MPSOIWα for dealing with theZDT1 problem with increasing the
dimensional numbern.

Accordingly, comparing with the values of the first-degree
and second-degree coefficients in the above two pairs of
approximate equations, all of the proportional rates between
the MPSOIWαand PSOIWα, and between MPSOIW and
PSOIW are more than double. On the basis of the wide
margin between them, it is easily reminded of that the
experimental results fit in with “no free lunch” (NFL) theo-
rem [35]. As an application of meta-optimization technique,
for example, the method of evolutionary particle swarm
optimizer with inertia weight (EPSOIW) [42] could be used
for improving the search performance of the original PSOIW
used in MPSOIWα. This is because the computation cost of
an optimized PSOIW is similar to that of the original PSOIW
except the computation cost of estimating appropriate param-
eter values of the PSOIW to the given MOO problem.

V. CONCLUSIONS

In this paper, multiple particle swarm optimizers with iner-
tia weight, called MPSOIWα, has been presented to MOO. It
is the most simple expansion of the existent PSOIWα, which
has the advantages of a hybrid search with easy-to-operation
as a method of cooperative PSO.

Applications of the MPSOIWαto the given suite of 2-
objective optimization problems well demonstrated its ef-
fectiveness by the aggregation-based manner. Owing to the
obtained experiment results respectively by using three kinds
of dynamic weighted aggregations, it is observed that the
search performance of the MPSOIWαis superior to that
of both the PSOIWα and MPSOIW, and the comparative
analysis of the MPSOIWαshows that the search performance
of using the LWA is better than that of using the BWA
or SWA for the given MOO problems. Therefore, it is no
exaggeration to say that our empirical analysis offers an
important evidence, i.e. choosing the dynamic weighted sum
method with the LWA for efficiently dealing with complex
MOO problems.

It is left for further study to apply the MPSOIWαto com-
plex MOO problems in the real-world. Furthermore, in order
to enhance the adaptability, efficiency, and solution accuracy
of the MPSOIWα, the search strategies and attempts on
prediction, intelligent, cooperativeness, and other powerful
methods of cooperative PSO [3], [12], [41] will be discussed
for MOO in near future.
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