IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

Coalescing Swarms of Limited Capacity Agents:
Meeting and Staying Together (without trust)

Luther A. Tychonievich and James P. Cohoon

Abstract—We consider the coalescence or gathering problem:
a set of k mobile agents (robots) with distinct identifiers have
to locate one another and gather at a common location. Agents
may face several challenges: swarms of agent may be too large
to simultaneously observe one another, agent sensors may be
subject to noise, and some agents may be malicious.

For small swarms, we design an algorithm coalescing all trust-
worthy agents despite sensor noise and an arbitrary number
of malicious agents. This algorithm requires that all coalescing
agents be able to simultaneously observe a single agent, limiting
its practical scalability. For arbitrarily large swarms we design
an algorithm achieving coalescence as long as the number of
malicious agents near any given trustworthy agent is bounded.
In both cases, our algorithms work by reduction to black-
box solutions to well-studied problems, allowing them to be
used in any environment and for any type of agents for which
deterministic rendezvous, agent state estimation, and pair-wise
cohesion algorithms are available.

Keywords: Swarms, coalescence, gathering, rendezvous,
malicious agents

I. INTRODUCTION

We consider the coalescence problem defined as follows:
given a set of k£ independent mobile agents (robots) with
distinct identifiers, each agent shall move independently
into a state where all agents are connected in a single
network of mutual sensation. Coalescence is closely related
to the rendezvous problem which has pairs of agent meet
at a common location. In the situation where all agents are
trustworthy, coalescence can be reduced to rendezvous: when
agents meet, one agent follows the other. When some agents
may be faulty or malicious, this simple reduction no longer
achieves coalescence.

We solve the coalescence problem in the face of malicious
agents by reducing it to several problems that have received
significant attention in the literature. These include the
rendezvous problem; the cohesion constraint problem, which
requires that pairs of agents not move too far from one
another; and the estimation problem, which has one agent
determine conservative bounds on another agent’s state by
observing its actions.

It is common to distinguish between various classes
of environments in which an agent might operate; these
include structural classifications such as geometric spaces,
grids, and graphs, as well as classifications of the timing
information available to each agent. By utilizing existing
rendezvous, cohesion, and estimation processes in a black-
box manner, we are able to avoid all of these considerations
and provide coalescence algorithms that will work anywhere
the underlying processes are available.

Manuscript received March 18, 2012.

L. Tychonievich and J. Coohon are with the Department of Computer
Science, University of Virginia, Charlottesville, VA, 22903 USA e-mail:
{lat7h, jpc} @cs.virginia.edu.

The remainder of this paper is organized as follows.
Section II contains basic definitions and background theorems.
Section III describes coalescence for swarms small enough
to all observe a single agent; we arrive at an algorithm for
coalescing despite sensor noise and an arbitrary number of
malicious agents. Section IV describes coalescence for larger
swarms, presenting algorithms for limited-information global
cohesion and for maintaining trustworthy communication
in a swarm containing malicious agents as well as a large-
swarm coalescence algorithm. Section V contains a survey
of other approaches to coalescence and of existing methods
for achieving cohesion and rendezvous. We conclude with a
summary of results and some suggestions for future work.

II. TERMINOLOGY
A. Agents and Coalescence

We assume that an agent

e is autonomous,

e can move under its own power,

« can sense its local environment (up to distance r under
some distance function, which may depend on obstacles
and other environmental parameters),

« can sense other agents within distance r, and

e can perform computations according to a supplied
algorithm.

Definition 1 (Connected). Two agents are connected if
the distance between them is no greater than 7.

A set of agents is connected (or k-connected) if the graph
with edges between connected pairs of agents is a connected
(or k-connected) graph.

Recall that a k-connected graph is one in which every
vertex cut contains at least k vertices.

Definition 2 (Neighbors). An third agent is between two
agents if it is closer to each than the two are to each other.

Two agents are neighbors (or k-neighbors) if they are
connected and there are no (or fewer than k) agents between
them.

A graph of neighbor relationships corresponds to the
relative neighborhood graph with agents for nodes and all
edges longer than r removed.

We define a swarm of agents to be a set of agents that
are currently. We say that agents coalesce when they become
part of the same swarm.

A fundamental building-block to coalescence is cohesion,
or keeping the swarm connected while moving.

Definition 3 (Cohesion). A cohesion constraint between
two agents keeps them connected as they move.

A swarm exhibits local cohesion if no agent A will break
connection with an agent B unless A can see a connected
path to B that is no breaking.

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

A swarm exhibits global cohesion if no agent A will break
connection with an agent B unless there exists a connected
path to B that is no breaking.

A variety of cohesion algorithms have been published and
are reviewed in Section V. Section IV contains techniques
for achieving local and global cohesion from a cohesion
constraint as well as extensions that ensure k-connectivity
with k trustworthy agents in every cut.

Agents that can communicate with one another and have
a common reference frame for identifying locations can
coalesce by reaching consensus on a “home” location. For
other agents, coalescing requires the agents be able to
rendezvous.

Definition 4 (Rendezvous). An algorithm achieves ren-
dezvous if, for any two agents executing the algorithm, there
exists some time ¢ > 0 at which the agents are connected. It
achieves repeating rendezvous if for any time ¢, there exists
some t > to at which the agents are connected.

Some of our algorithms require that the worst-case runtime
of the underlying rendezvous algorithm be finite. A variety of
rendezvous algorithms, including repeating rendezvous algo-
rithms with finite worst-case runtimes, have been published
and are reviewed in Section V.

We assume agents can make estimates of various values
by processing their observations. We define the following
notation to refer to various levels of estimation.

Definition 5 (A[x]r). Let predicate A[z] be be true if
and only if agent A’s observations are sufficient to establish
the truth of predicate x. Define A[z] inductively as

Alz]s 2 { Af2] k=1
VX A[X[2]ka] k> 1

where X is taken from the set of agents that have observed
the same events A observed in establishing .

If A[x];31 # A[x]; then two agents having observed the
same events must be able to arrive at different conclusions,
implying there is noise in the observations. We thus say
observations of x are noise-free if A[z];11 = A[x]; for all
i > 0; otherwise they are noisy. An agent A has perfect
knowledge of x if AJz] = x.

B. Malice and Identity

Let the behavior' of an agent over a time window T be the
set of all pairs (¢ — s) where ¢ € T and s is the state of the
agent at time . Let G be the set behaviors agent A might
exhibit while following a specified algorithm in time window
T, g£ is a singleton set for fully deterministic synchronous
noise-free algorithms.

Definition 6 (Malice). Let A” be the behavior of agent A
over some time window T'. A is malicious in T if AT ¢ G7.
A is malicious if it is malicious for all T'. A is trustworthy
if it is not malicious.

We say B is k-sure that A is malicious if B[AT ¢ G 4] for
the 7" during which B observed A’s behavior. By definition 5
it follows that if any agent is k-sure A is malicious then any

I'We use “behavior” to formalize the notion of “what an agent does;” this
is not the same as a “behavior” in a behavior-based algorithm.

other agent also observing A” will be at least (k — 1)-sure
no more than (k + 1)-sure that A is malicious.

A finite observation can at most verify that an agent is
not malicious in some time window T'; this provides no
guarantee it will not be malicious after 7'. Thus, there is
no way to determine that an unknown agent or swarm is
trustworthy without external stimuli or a priori knowledge
about trustworth. This leads to the following theorem.

Theorem 1 (Identifiability). Coalesence in the presence of
an unbounded but finite number of malicious agents requires
that each agent can reliably identify each other agent and have
sufficient storage to remember the identity of all malicious
agents.

Proof: At least one agent must adjust its behavior
when agents rendezvous or they cannot coalesce. By the
pigeonhole principle, any change in behavior will delay the
time to rendezvous with some other agents. If the same
malicious agent can repeatedly rendezvous with an agent,
it can repeatedly delay that agent rendezvousing with other,
non-malicious agents.

Preventing repeatedly reacting to encounters with the same
malicious agent requires that each agent be able to identify
agents with which it rendezvous and to remember that it met
at least the malicious subset of the agents it encounters. M

We assume that every agent has a unique identity that is
visible to all other agents; this means malicious agents are
at most weakly Byzantine. An identity is communicable if
it can be serialized into the same form by every observer,
including the agent possessing the identity. Agent identities
are comparable if all agents agree on a total ordering of
identities. All of our algorithms assume comparable identities;
those for large swarms also assume communicable identities.

III. SMALL SWARMS

We define a small swarm to be a group of agents that all
simultaneously observe and remain connected with a single
leader agent. When all agents are capable of maintaining
a single small swarm, cohesion can be achieve despite an
arbitrary number of malicious agents. Our algorithm for doing
so requires comparable (but not necessarily communicable)
identities; repeating rendezvous; and either noise-free obser-
vations of other agents or the ability to broadcast messages
to other agents.

A. Full Trust

The simplest coalescence algorithm works for small swarms
with no noise or malice. When n agents rendezvous, the one
with the maximum identity becomes the leader. The leader
continues its rendezvous search uninterrupted, while the other
agents follow it. This general approach has been discussed
by several authors, often in the context of motivating the
rendezvous problem; we give it no further discussion here.

B. Noise-Free Malice

When observations of agents are noise-free, each agent in a
swarm will agree upon the malice of the leader provided they
have all observed a sufficient quantity of the leader’s actions.
The simplest extension of the full-trust rendezvous in this
case is to have each agent maintain a blacklist of agents it

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

(A
‘® 20
‘® 00—

(a) Leader blacklisting.

©
‘@@ ©
"0
® 00

(b) Follower blacklisting.

©
©
©

Fig. 1: Failure of two example approaches to individual
blacklisting where A > B > (' and A is malicious. If
agents don’t join swarms with blacklisted leaders (a) then
A plays nice with C to ensure B and C' don’t coalesce. If
agents join swarms with any nonblacklisted members (b) then
A pretends to lead B until C' comes along; then, when A
and B’s rendezvous searches differ, C' incorrectly thinks that
B maliciously left the swarm.

has observed acting maliciously. Individual blacklists, such as
those illustrated in Fig. 1, fail because a malicious agent can
manipulate different agents’ blacklists separately. Individual
blacklists that track entire swarms instead of individual agents
do work, but require exponential space.

We propose instead a shared-blacklist approach that makes
three guarantees: trustworthy agents never leave a swarm,
sufficiently malicious agents never lead a swarm for too long,
and each swarm increases in size between times a malicious
agent leads it.

Algorithm 1 (Noise-free Small Swarms). All agents are
initially leaders of their own swarms of one agent. Swarm
leaders execute a rendezvous search algorithm. We handle
the following events:

Agent leaves swarm: Other agents blacklists that agent.

Two swarms meet: If all of the agents in the other swarm are
blacklisted, ignore them. Otherwise clear all blacklists
and leader estimation information and follow the best
leader of the new, larger swarm.

Leader acts maliciously: Blacklist the old leader; the new
leader is the non-blacklisted agent with the greatest
identity.

Theorem 2. Algorithm 1 guarantees coalescence of small
swarms despite any number of malicious agents provide obser-
vations are noise-free, identities are comparable, rendezvous
is repeating, and any agent observing a malicious behavior
that would prevent rendezvous eventually becomes 1-sure it
has done so.

Proof: By clearing all estimation information each time a
new agent arrives, the swarm is guaranteed (by the noise-free
assumption) to agree on when a leader should be blacklisted.
By clearing the blacklists each time a new agent arrives,
the swarm is guaranteed all agents’ blacklists are identical.
By blacklisting agents that leave the swarm, malicious
agents cannot arbitrarily reset the estimation information
and blacklists unless they return with or after a new agent.

Thus, each malicious leader can delay coalescence by at
most one detectably-malicious act between each growth of
the swarm. If there are m malicious and ¢ trustworthy agents,
a given swarm can be delayed by at most mt detectably-

malicious acts before full coalescence. Since the underlying
rendezvous algorithm is repeating, finite delays cannot prevent
coalescence. [|

Algorithm 1 discards each swarm’s knowledge of malicious
agents when two swarms meet. This potential inefficiency
can be avoided if each agent keeps an individual blacklist as
well as the swarm blacklist. When swarms meet or agents
are blacklisted, the remaining agents use message passing
to establish the intersection of the individual blacklists and
add that intersection to the shared blacklist. Whether this
optimization improves the expected- or worst-case runtime
depends on the details of the underlying rendezvous algorithm;
a full investigation of runtime performance is left to future
work.

C. Noise and Malice

Algorithm 1 does not work when agents may disagree
on when to blacklist a leader. In such a noisy environment
we consider agents that can unambiguously share some
information. In particular, we consider agents that can
broadcast the k£ by which they are k-sure that the leader
of the swarm is malicious.

If every agent is at least 1-sure that the leader is malicious
then the leader may be blacklisted by the entire swarm and
a new leader selected.

An agent that is k-sure that the leader is malicious should
not desert an agent that is (k — 1)-sure, who in turn should
not desert an agent that is (k — 2)-sure, etc. We define the
surety-chain of an agent broadcasting k recursively as the
agents broadcasting k and the surety-chains of any agents
broadcasting k£ + 1 or kK — 1. Agents cannot convince a surety
chain to separate.

Algorithm 2 (Noisy Small Swarms). All agents are initially
leaders of their own swarms of one agent. Swarm leaders
execute a rendezvous search algorithm. Agent A should
handle the following events:

B leaves swarm: A adds B to its private blacklist.

Two swarms meet: If all of the agents in the other swarm
are in either A’s private or shared blacklist, A ignores
them. Otherwise, A clears both of its blacklists and
follows the best leader of the new, larger swarm.

A is k-sure that the leader is malicious: A broadcasts k.

B broadcasts: A updates its surety-chain. Agents outside
the surety-chain are added to A’s shared blacklist.

A’s surety-chain contains no 0-sure agents: A adds the
swarm leader to its shared blacklist.

The leader is blacklisted: Begin following the next-best
agent that is not on the shared blacklist.

Theorem 3. Algorithm 2 guarantees coalescence of small
swarms despite any number of malicous agents provided
identities are comparable, rendezvous is repeating, and any
agent observing a behavior that would prevent rendezvous
eventually becomes k-sure that it has done so for arbitrary k.

Proof: All agents within a surety-chain agree on which
other agents are within it and that it contains all of the
trustworthy agents. Because surety-chains stay with a leader
until all agree the leader is malicious, no surety chain will
ever leave a trustworthy leader. Because swarms contain a
finite number of agents, there is some & at which an agent

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

(c) General

(a) Open

Fig. 2: Several swarms; neighbors are displayed in bold solid
lines, connections in dashed lines. While open configurations
(a) can change into rings (b) freely, and both may change
to and from general swarms (c), rings cannot readily change
into open configurations.

that is k-sure the leader is malicious must be part of a chain
containing no O-sure agents.

Agents might not agree on the definition of “leave the
swarm;” hence, agents that leave cannot be added to the
shared blacklist and excluded from leadership. However, any
agent noticing a malicious agent leaving will ignore its return,
and any agent not noticing its departure won’t be aware of
its return. Hence, leaving-and-returning agents do not reset
any agent’s information.

The rest of the proof mirrors the proof of Theorem 2. M

One antecedent to Theorem 3 is that any agent observing a
behavior that would prevent rendezvous eventually becomes
k-sure it has done so for arbitrary k. Most rendezvous algo-
rithms can be made to handle finite errors by decreasing the
perception radius used in the algorithm below that available
to the agent. For any asymptotically-accurate estimation filter,
this finite buffer will provide the requisite k-surety.

IV. LARGE SWARMS

We define a large swarm to be a set of connected agents
(see Definition 1) that cannot all simultaneously observe a
single leader. For large swarms, coalescence requires both
rendezvous and cohesion. We first discuss coalescence of
trustworthy agents; we then discuss how to extend it for
swarms with some malicious agents. In both cases we require
that agents are able to broadcast messages to their neighbors
and that each agent has a communicable, comparable identity.

A. Trustworthy Agents

Large swarm coalescence differs from small swarm coales-
cence principally in handling cohesion. As in small-swarms,
it is sufficient to have the agent with the maximum identity
(as determined by message passing) continue with rendezvous
while the others follow along. What differs is how the other
follow.

The core of swarm cohesion is the cohesion constraint,
which ensures that a pair of agents not separate from one
another while moving. By applying the cohesion constraint
to every pair of neighbors in a swarm we achieve local
cohesion; locally cohesive swarms can reconfigure themselves,
but cannot break redundant connections in non-local loops
(see Fig. 2). However, these loops can be formed by the
same process that allows swarms to merge. This irreversible
creation of loops leads to a trapping behavior in the presence
of obstacles, as illustrated in Fig. 3.

o o ®

(a) one swarm (b) trapped (c) two swarms
before trap before trap

Fig. 3: A swarm becoming trapped around an obstacle. Local
cohesion prevents the the swarm from leaving the obstacle.

The simplest technique for preventing trapping behaviors
is to forbid irreversible events within a swarm: only already-
connected agents may move into a neighboring configuration.
This technique may be implemented by having agents that
become neighbors without first being connected share their
swarm leaders’ identities and move apart if they are part of
the same swarm. However, such an approach does not prevent
trapping when two swarms meet in multiple locations (see
Fig.3(c)). Overcoming simultaneous joins through distributed
mutual exclusion is possible, but is beyond the scope of this
work.

An alternative technique to preventing trapping allows
agents to break neighborhood connectivity whenever doing
so does not break swarm connectivity; these breaks result in
global rather than local cohesion.

Algorithm 3 (Global Cohesion). Each agent may move freely
provided it does not break connection with any neighbor. If an
agent desires to break with a neighbor, it broadcasts a message
seeking an alternate connection to that neighbor within
the swarm. This takes the form (from, source, destination,
timestamp). When A wishes to separate from neighbor B it
broadcasts (ia,i4,ip,t = now + dt) and waits to receive
(ip,ia,ip,t) before t arrives.

When agent A receives message (if,is,iq4,t) it sends
message (i4,is,1q,t) unless any of the following are true:

1) A and f are not connected;

2) t < now (messages expire);

3) iy =1, and iq = 4 (edges can’t approve themselves);

4) A already sent (i4,is,%4,t) (messages don’t cycle);

5) A has received (if,if,94,t1 > now) and iy > i or

6) A has sent (ia,%4,i5,t1 > now) and i4 > i,
(Items 5 and 6 together prevent higher-priority edges request-
ing a break from forwarding lower-priority messages.)

When an agent sends a message with timestamp ¢, it is
not permitted to initiate a new message until after ¢ expires.

Algorithm 3 makes explicit reference to a timestamp,
implying a globally-synchronized clock. Asynchronous clocks
may be used instead if communication across the entire
network of agents has an known upper time bound 7'. In
that case, timestamps may be omitted and agent should not
initiate any messages until 7" after sending a message.

Theorem 4. Algorithm 3 allows only breaks that do not split
the swarm into disconnected pieces. If messages do not time
out, it forbids only one break for each set of requests that
would split the swarm in two.

Proof: Let N = (V, E) be the graph with edges between
connected agents. It is never the case that, for e;,e; € E,

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

4 4
6 6
1 1
5 9 5)
\ 3 3

Fig. 4: Illustration of Theorem 4. On the left is N with break
requests in red dashed lines. In the center, e; is a bridge on
N so it cannot break. On the right es is not a bridge in
N3 so it can break. The forbidden breaks are precisely those
required to connect the graph.

both break request ¢ crosses edge e; and break request j
crosses edge e; unless either ¢ or j has expired.

Consider break request e;. Let N; = (V, E\{e; : j > i})
be the graph containing only edges that will forward break
request ¢;. If e; is a bridge on NV;, the break request will be
denied and e; will be a bridge after all break requests are
resolved. Otherwise, the break request will be approved and
not break the graph. [|

Undiscussed by Algorithm 3 is how to determine when to
send a message and with what initial timestamp. Timestamp
doubling can be used to ensure that eventually messages
last long enough to reach their destinations; alternatively,
old timestamps can be forwarded so that edges realize their
message expired rather than being blocked. The frequency
with which messages are initiated is limited only by the
communication medium utilized; heuristics for selecting
message initiations and durations are left to future work.

B. Limited Malice

When some agents cannot observe other agents directly,
they are dependent on intermediaries to convey information
about the swarm status. We require some portion of each
swarm to be trustworthy so that this conveyance can be
trusted.

Communication within a swarm is interrupted if a vertex cut

of the swarm is malicious. Swarms with malicious vertex cuts
of can be constructed for k-connected graphs with arbitrary
k, and may be created with only k£ malicious agents and
with an arbitrary minimum path length between malicious
agents; one such construction is illustrated in Fig. 5 We thus
require that in any vertex cut of the graph there be at least
m + 1 trustworthy agents, and that each trustworthy agent
is connected to no more than m malicious agents. These
requirements mean that if messages forwarded by any agent
that hears it from at least m+-1 agents, then all such messages
can be trusted and will reach all trustworthy agents in the
graph.
Theorem 5. 1If there are no more than m malicious agents
connected to each trustworthy agent then applying a cohesion
constraint between each pair of (2m + 1)-neighbors ensures
there are m + 1 trustworthy agents per vertex cut in the
connectivity graph.

Proof: Consider any vertex cut in the graph. Consider
two agents, one on each side of the cut, who are connected
to the same agent in the cut. All of the agents between those
two agents are in the cut. By the local cohesion constraint the
agents would never have agreed to fewer than 2m + 1 agents
between them. Since a malicious agent cannot impact the

Fig. 5: Example construction of a four-vertex cut using four
widely separated agents in a four-connected graph. Wide
gray curves represent arbitrarily long four-connected paths
of agents.

neighbor relationship of agents with which it is not connected,
one malicious agent is required per missing intermediary.
Thus, at most m of those 2m + 1 agents could be missing or
malicious, leaving at least m + 1 that must be trustworthy. W
The following modification of Algorithm 3 also maintains
m + 1 trustworthy agents per cut provided no more than m
malicious agents are connected to any given agent.

Algorithm 4 (Non-local Trustworthy Cuts). Each agent may
move freely provided it does not break connection with any
(2m + 1)-neighbor. Agents seeking to break with a neighbor
broadcast a message as in Algorithm 3.

When agent A receives message (if,is,%q,t) it ignores
messages per items 1-6 in Algorithm 3; non-ignored messages
are added to an internal set of non-expired messages. If the
set now contains either (2m + 1) entries (ix,is,%4,t) with
distinct ix or a single entry (is,s,%4,t) then A broadcasts
(tA,%s,%d,1).

Agents A and B may break when B sends mes-
sage (ip,i4,ip,t) provided A had earlier sent message
(ia,ia,ip8,1).

When an agent sends a message with timestamp ¢, it is
not permitted to initiate a new message until after ¢ expires.

We assume that agents are not able to lie about their own
identity when sending messages.

Theorem 6. Breaks permitted by Algorithm 4 will never
introduce cuts with fewer than m + 1 trustworthy agents.

Proof: Consider a cut C introduce when Algorithm 4
approved a break between agents A and B; assume the break
request was initiated by A.

Suppose either A or B is malicious. Since both C U {A}
and C U {B} were cuts before the break, each had m + 1
trustworthy agents; since either A or B is malicious, C must
contain m + 1 trustworthy agents.

Suppose both A and B are trustworthy. An agent will only
have approved the break if it received the request from 2m-+1
connected agents. Since each agent is connected to at most
m malicious agents, each agent that approved the break must
have received the request from m + 1 trustworthy agents.
Since neither A nor B would have transfered the message
across C, for B to have approved the message some agent
X on Bs side of C must have received the message from at
least m + 1 trustworthy agents in C. Thus, C must contain
m + 1 trustworthy agents.]

Given trustworthy communication and a trustworthy quo-
rum observing a leader agent, coalescence for swarms
with limited trust is relatively straightforward. The agents

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

Fig. 6: Illustration of proof to Theorem 6. A break request is
sent by A and propagates through A’s side of vertex cut C.
If the request is to make it to B, it must reach some arbitrary
first node X on B’s side of C, requiring m + 1 trustworthy
requests from agents in C.

observing the leader broadcast when they notice the leader
behaving maliciously; once m + 1 agents make this broadcast
it will propagate to the entire swarm and the entire swarm
can blacklist the previous leader. Election of a new leader and
recognition of new members of the swarm can be handled
via similar trustworthy broadcasts. The blacklist reset, etc.,
can be handled per Algorithm 1.

V. RELATED WORK

Coalescing trustworthy agents in a graph with malicious
agents has been investigate in [1]. They provide algorithms
for noiseless agents to coalesce in the presence of a minority
of malicious agents. Their algorithms also allow the agents
to detect that they have completed coalescing by having
a priori information about the number of trustworthy and
malicious agents. Our algorithms extend theirs in the number
of malicious agents we can handle, the types of (possibly
noisy) environments the agents can inhabit, and the practical
size of the swarms. These advances are gained at the expense
of handling only weakly Byzantine agents and of not detecting
when coalescence has been achieved.

The problem of coalescing, also called gathering or
aggregating, is often presented as a reduction to rendezvous;
we outline this common approach in Section III-A.

The rendezvous problem was introduced in [2] and has been
investigated in many settings. In interest of space we mention
only deterministic algorithms for agents without a priori
knowledge of one another’s location or the quantity of agents
involved. See [3] for a survey of randomized rendezvous
algorithms; see also [4]-[7] for asymptotic analysis of
coalescence based on randomized rendezvous algorithms. On
a line or ring, tight bounds are known and both deterministic
and randomized coalescence algorithms are known to achieve
them (e.g., [7]-[10]). A tight O(logn) space-bound was
demonstrated for deterministic rendezvous in a tree in [11].
Rendezvous in a graphs or networks has been extensively
studied and deterministic algorithms developed for partial and
full asynchrony, for indistinguishable agents in visibly-distinct
starting locations, and for agents with distinct identities (e.g.,
[11, [10], [12]-[15]). In a geometric setting, deterministic ap-
proaches have been posed using several approaches including
landmarks [16], stigmergy [17], reduction to a graph [14],
and repeated deterministic exploration [13]. Variable-speed
clocks, position noise, and position drift have also been
investigated [10], [13], [14].

Cohesion of groups of moving agents has been investigated
in many contexts. In addition to many flocking and formation

algorithms, local cohesion has been provided using switching
laws that alternate between mission objectives and connection
reinforcement (e.g., [18]-[20]); using potential fields to
combine mission objectives and cohesion (e.g., [21], [22]);
and using algebraic approximations of arbitrary geometric
constraints (e.g., [23]). Global cohesion has been added in
[20], [21] by communicating the entire network connectivity
to each agent and then selecting a set of cuts to be made;
[21] also discusses market-based consensus algorithms for
selecting cuts. Our approach to global cohesion is based on
comparable identities instead of market-based decisions, and
only requires each agent to recall a set of messages received in
a finite time window: no agent needs to accumulate knowledge
of the connectivity graph. We also handle cohesion in the
presence of malicious agents in both a local and global sense.

Estimating bounds on agent state based on observed
behavior has been widely studied for many classes of agents;
entire fields of research are devoted to signal processing and
estimation and are not reviewed here.

VI. CONCLUSION

We investigated the coalescence problem and show that it
can be solved in finite time no matter how many malicious
agents are present as long as all agents are able to simul-
taneously observe a single leader. For larger swarms where
decentralized activities are essential, we demonstrated that
global cohesion can be achieved using only a simple message-
passing protocol without any agent modeling the structure of
the connectivity graph. We also proved that we can ensure
that trustworthy communication is available within a swarm
only if the number of trustworthy agents in an arbitrary vertex
cut of the swarm is subject to a lower bound. We showed how,
if the number of malicious agents in the neighborhood of
each agent is bounded, local cohesion constraints and simple
message passing protocols can to keep trustworthy agents in
every vertex cut.

Several theoretical questions remain open. While we
showed that our message passing protocols for global cohesion
is tight in the sense that it will approve any break request
that does not violate connectivity, we have not demonstrated
similar tightness for the trustworthy vertex cut version of the
protocol. Likewise, while we demonstrated that trustworthy
vertex cuts are required for large-group message passing,
we do not know if message passing itself is necessary for
large-group cohesion.

Other work has investigated a stronger notion of malice
in noise-free graphs with known numbers of agents [1]. It
would be interesting to see if that model of strongly-Byzantine
agents can be adapted to noisy geometric environments and/or
swarms too large to be simultaneously observed.

While the theory of rendezvous, cohesion, and coalescence
improve, there remains significant work to be done before
these algorithms become practical for real robots. Among the
issues to be investigated before such tests can be made are
details of message passing frequency, models of agent state
estimation, and budgeting of physical resources.

We have made significant steps in improving the theoretic
bounds on coalescence in the presence of malicious agents,
observation noise, and swarm size constraints. We look
forward to further advances in this unfolding field of inquiry.

(Advance online publication: 28 August 2012)

IAENG International Journal of Computer Science, 39:3, IJCS 39 3 04

REFERENCES

[1]1 Y. Dieudonné, A. Pelc, and D. Peleg, “Gathering despite mischief,” in
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2012), 2012, pp. 527-534.

[2] T. Schelling, The strategy of conflict. Oxford, England, UK: Oxford
University Press, 1960.
[3] S. Alpern and S. Gal, The theory of search games and rendezvous, ser.

International Series in Operations Research and Management Science,
2002.

[4] P. Dykiel, “Asymptotic properties of coalescing random walks,”
Uppasala University, Tech. Rep. 2005:15, December 2005.

[5] S. Poduri and G. S. Sukhatme, “Achieving connectivity through
coalescence in mobile robot networks,” in RoboComm ’07: Proceedings
of the Ist international conference on Robot communication and
coordination. Piscataway, NJ, USA: IEEE Press, 2007, pp. 1-6.

[6] ——, “Latency analysis of coalescence in robot groups,” in [EEE
International Conference on Robotics and Automation, 2007, pp.
3295-3300.

[71 E.J. Anderson and S. Essegaier, “Rendezvous search on the line with
indistinguishable players,” SIAM Journal on Control and Optimization,
vol. 33, pp. 1637-1642, 1995.

[8] S. Alpern, “The rendezvous search problem,” SIAM Journal of Control
and Optimization, vol. 33, no. 3, pp. 673-683, 1995.

[9] S. Alpern and S. Gal, “Rendezvous search on the line with distinguish-
able players,” SIAM Journal on Control and Optimization, vol. 33, pp.
1270-1276, 1995.

[10] G. D. Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and
U. Vaccaro, “Asynchronous deterministic rendezvous in graphs,”
Theoretical Computer Science, no. 335, pp. 315-326, 2006.

[11] P. Fraigniaud and A. Pelc, “Deterministic rendezvous in trees with
little memory,” in Proceedings of the 22nd International Symposium
on Distributed Computing (DISC 2008), ser. Springer Lecture Notes
in Computer Science, vol. 5218, 2008, pp. 242-256.

[12] D. Kowalski and A. Malinowski, “How to meet in anonymous network,”
in 13th International Colloquium on Structural Information and
Communication Complexity (SIROCCO 2006), ser. Springer Lecture
Notes in Computer Science, vol. 4056, pp. 44-58.

[13] L. A. Tychonieivch and J. P. Cohoon, “Guaranteeing rendezvous of
oblivious limited-capability mobile agents,” University of Virginia,
Tech. Rep. CS-2012-04, 2012.

[14] J. Czyzowicz, A. Labourel, and A. Pelc, “How to meet asynchronously
(almost) everywhere,” in Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2010), 2010, pp. 22-30.

[15] J. Czyzowicz, A. Kosowski, and A. Pelc, “How to meet when you
forget: Log-space rendezvous in arbitrary graphs,” in Proceedings of the
29th Annual ACM Symposium on Principles of Distributed Computing
(PODC 2010), 2010, pp. 450-459.

[16] N. Roy and G. Dudek, “Collaborative exploration and rendezvous:
Algorithms, performance bounds and observations,” Autonomous
Robots, vol. 11, no. 2, pp. 117-136, September 2001.

[17] A. Shiloni, N. Agmon, and G. A. Kaminka, “Of robot ants and
elephants,” in AAMAS ’09: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems. Richland,
SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2009, pp. 81-88.

[18] G. A. S. Pereira, A. K. Das, and V. Kumar, “Decentralized motion
planning for multiple robots subject to sensing and communication
constraints,” in Proceedings of the 2003 International Workshop on
Multi-Robot Systems, 2003, pp. 267-278.

[19] M. A. Hsieh, A. Cowley, V. Kumar, and C. J. Taylor, “Maintaining
network connectivity and performance in robot teams,” Journal of Field
Robotics.

[20] J. Vazquez and C. Malcom, “Distributed multirobot exploration
maintaining a mobile network,” in Proceedings of the 2nd International
IEEE Conference on Intelligent Systems, vol. 3, 2004, pp. 113-118.

[21] M. M. Zavlanos and G. J. Pappas, “Distributed connectivity control of
mobile networks.”

[22] X. Li, D. Su, J. Yang, and S. Liu, “Connectivity constrained multirobot
navigation with considering physical size of robots,” in Proceedings of
the International Conference on Automation and Logistics, Chongquing,
China, August 2011, pp. 24-29.

[23] L. A. Tychonieivch and J. P. Cohoon, “Cohesion: Keeping
independently-moving agents close together,” University of Virginia,
Tech. Rep. CS-2012-04, 2012.

(Advance online publication: 28 August 2012)

