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Abstract— A real coded genetic algorithm is applied for 

designing infinite impulse response (IIR) filter based on L1-
approximation error criterion. The proposed real coded genetic 
algorithm, which is a technique for optimization inspired by 
genetics and natural evolution method, enhances the search 
capability and provides a fast convergence for calculating the 
optimal filter coefficients. The filter designed based on L1-
approximation error possesses flat passbands and stopbands to 
that of the least square design. A comparison has been made with 
other design techniques, demonstrating that the real coded 
genetic algorithm obtains better or at least comparable results 
for designing digital IIR filters than the existing genetic 
algorithm based methods. 
 

Index Terms— Digital IIR filters, Real Coded Genetic 
Algorithm, L1-approximation error, Stability. 
 

I. INTRODUCTION 

IGITAL filters are broadly classified into two 
groups: infinite impulse response (IIR) and finite 

impulse response (FIR). An IIR filter requires less 
computation as compared to FIR filter for the same 
performance. IIR digital filters are effectual in wide range of 
applications, particularly where high selectivity and efficient 
processing of discrete signals are desirable. A reliable design 
method based on a global search procedure is required for 
designing IIR filter to overcome the problem of multi-modal 
error surface of IIR filter. The design task of IIR digital filters 
is to approximate a given ideal frequency response by a stable 
IIR digital filter under some design criterion. To implement 
optimization technique with some criteria, various 
optimization methods have been applied where p-error, mean-
square-error and ripple magnitudes (tolerances) of both pass-
band and stop-band are used to measure performance for the 
design of digital IIR filters [1-3]. Due to non-linear and 
multimodal nature of error surface of IIR filters, conventional 
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gradient-based design methods may easily get stuck in the 
local minima of error surface [4-5]. Therefore, researchers 
have developed design methods based on modern heuristics 
optimization algorithms such as genetic algorithms [6-14]. 

Genetic algorithm (GA) and Evolutionary Programming 
(EP) are general purpose search algorithms which use 
evolutionary ideas of natural selection and genetic dynamics 
[15-17] to find the global optimal solution of the problem. The 
ability of genetic algorithms to blend both exploration and 
exploitation in an optimal way is one of their main assets [18]. 
In many multidimensional and multimodal engineering design 
problems, the GA has been used as a robust and proficient 
search technique. GA requires less iterative computational 
equations as compared to traditional search algorithms like 
calculus based searches, dynamic programming, random 
searches and gradient methods, but it takes more convergence 
time to reach the solution. Out of various existing coding 
schemes used for coding of search space solutions, real coding 
technique seems particularly natural when tackling 
optimization problems. GA which uses real coding technique 
is called real coded genetic algorithm (RCGA) [19, 20]. 
Whenever a parameter is binary coded, there is always the 
danger of the reduced level of precision as it does not 
represent parameter values that produce the best solution 
values. The RCGA improves the final local tuning capabilities 
of a binary coded genetic algorithm, which is a must for high 
precision optimization problems. Real-coding of the genes 
eliminates concern that precision is not adequate to represent 
good values in the search space.  

The magnitude response of IIR filter is more important than 
phase response in real time applications. The intent of this 
paper is to apply a RCGA with arithmetic-average-bound-
blend crossover and wavelet mutation operator for the design 
of stable digital IIR filter. The values of the filter coefficients 
are optimized with RCGA approach to achieve minimum L1-
norm approximation error criterion. The paper is structured as 
follows: Section II describes the IIR filter design problem 
statement, RCGA for designing the optimal digital IIR filters 
is described in Section III, the performance of the proposed 
method has been evaluated and achieved results are compared 
with the design results given by Tsai and Chou [7] and Tang 
et al. [13] for the low-pass (LP), high-pass (HP), band-pass 
(BP) and band-stop (BS) filters in Section IV, finally, the 
conclusions and discussions are outlined in Section V.  
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II. FILTER DESIGN PROBLEM 

Digital filter design problem involves the determination of a 
set of filter coefficients which meet performance 
specifications such as pass-band width and corresponding 
gain, width of the stop-band and attenuation, band edge 
frequencies and tolerable peak ripple in the pass band and 
stop-band. The transfer function of IIR can be represented by 
cascading first and second order sections to avoid the 
coefficient quantization problem which causes instability. In 
cascade realization coefficient range is limited. The structure 
of cascading type digital IIR filter is: 
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where   is the gain, ip1  and iq1  are the first order 

coefficients, kr1 , kr2 , ks1  and ks2  are the second order 

coefficients. To generalize, vector x  represents the filter 
coefficients of dimension V×1 with V = 2M + 4N + 1. x  
vector is represented as: 

,,,,...,,,,,,,...,,[ 12121112111111111 srrssrrqpqpx NNNMM  

T
Ns ],2  . 

 The IIR filter is designed by optimizing the coefficients 
such that the approximation error function in L1-norm for 
magnitude is minimized. The frequency response is specified 
at K equally spaced discrete points in pass-band and stop-
band. The Lp-norm approximation error for the magnitude 
response is defined as [19]: 
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 In the IIR filter design problem fixed grid approach is used 
[19]. For p=1, the magnitude response error denotes the L1-
norm error and is defined as given below: 
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Desired magnitude response, )( idH   of IIR filter is given as: 
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 The design of causal recursive filters requires the inclusion 
of stability constraints. Therefore, the stability constraints 
given by Eq. (5a) to Eq. (5e) which are obtained by using the 
Jury method [22] on the coefficients of the digital IIR filter in 
Eq. (1) are included in the optimization process. 
 Mathematically, IIR filter problem is formulated as below: 
Minimize )()( xexf   (5) 

Subject to: Stability constraints 
)....,,2,1(01 1 Miq i   (5a) 
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 RCGA is applied and constraints are forced to satisfy by 
randomly updating them. 

III. REAL CODED GENETIC ALGORITHM 

RCGA searches for many points in the search space at 
once, and continually narrows the focus of the search to the 
areas of the observed best performance. RCGA possesses a lot 
of advantages than its binary coded counterpart when dealing 
with continuous search spaces with large dimensions and 
where great numerical precision is required. Using real values, 
the representation of the solutions is very close to the natural 
formulation of problem and it avoids the coding and decoding 
processes, thus increasing the GA’s speed, efficiency and 
precision. The basic elements of RCGA are reproduction, 
selection, crossover and mutation. In reproduction operation, 
the individuals possessing higher fitness values are selected 
from the existing population. In the crossover operation, two 
individuals are selected at random from the mating pool and a 
crossover is performed using mathematical relations. Mutation 
is an important part of genetic search, it helps to prevent the 
population from stagnating at any local optima. Mutation is 
intended to prevent the search falling into local optimum of 
the search space.  

In this paper, a RCGA with genetic operators including 
arithmetic-average-bound-blend (AABBX) crossover and 
wavelet mutation is applied for optimizing the coefficients of 
digital IIR filter in order to minimize the magnitude 
approximation error in L1-norm by employing stability 
constraints. The arithmetic-average-bound-blend crossover 
operator combines the arithmetic, average, bound and blend 
crossover operators. The arithmetic crossover operation 
produces some children with their parent’s features; average 
crossover manipulates the genes of the selected parents and 
the minimum and maximum possible values of the genes and 
bound crossover is capable of moving the offspring near the 
domain boundary. The offspring thus obtained spreads over 
the domain so that a higher chance of reaching the global 
optimum can be obtained. The wavelet mutation operation 
based on wavelet theory [23] is a powerful tool for fine tuning 
of the genes to search the solution space locally. This property 
of wavelet mutation operation enhances the searching 
performance and provides a faster convergence than 
conventional RCGA. 

 
Algorithm for Real Coded Genetic Algorithm 

1. Generate initial population strings randomly. 
2. Calculate fitness values of population members. 
3. Search for solution among the population? If ‘yes’ 

then GOTO Step 8. 
4. Using stochastic remainder roulette wheel selection 

choose highly fit member of population as parents and 
generate off-springs according to their fitness. 

5. Breed new strings by mating current off-springs. 
Apply AABBX crossover and wavelet mutation 
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operator to introduce variations and generate 
offsprings. 

6. Substitute existing offsprings with new offsprings by 
applying competition and selection. 

7. GOTO Step 3 and repeat. 
8. Stop. 

A.  Initialization 

Random search is applied to record the starting point. 
Global search is applied to explore the starting point and then 
the starting point is perturbed in local search space to record 
the best starting point. The search process is started by 

initializing the variable 0
jix  using Eq. (6) which is used to 

calculate objective function Eq. (5). 

)...,,2,1;...,,2,1()()( minmaxmin0 NVjVixxrandxx iiiji  (6) 

 where rand is a uniform random generated number 
having value between 0 and 1, t is number of generation, V is 
number of variables and NV is the population size. 

B. Fitness Function 

Expected fitness function, f is derived from the objective 
function and is used in successive genetic operations. The 
expected fitness function used to solve design of IIR filter 
based on L1-approximation error criterion problem is given 
below: 
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where )(xet
j  is obtained from Eq. (3) and is stated as: 





K

i
i

t
jid

t
j xHHxe

0

),()()(   

C. Constraint Handling 

The stability constraints given by Eq. (5a) to Eq. (5e) have 
been forced to satisfy by updating the coefficients with 
random variation as given below. The variation is given as 
small as possible so that the characteristic of population 
should not change. 
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where r is any uniform random number which is varied 
between [0,1]. Square term gives small increment. 

D. Reproduction 

The initial and most important genetic algorithm operator is 
reproduction. In reproduction good members from population 
are selected to form a mating pool. The reproduction operator 
is also known as selection operator. Many reproduction 
operators exist and they all essentially pick the strings of 
above average from the current population and insert their 
multiple copies in the mating pool in a probabilistic manner. 
The commonly used reproduction operator is the 
proportionate reproduction operator where a string is selected 
for the mating pool with a probability proportional to its 
fitness. The basic roulette wheel selection method is stochastic 
sampling with replacement (SSR). The segment size and 
selection probability remain the same throughout the selection 
phase and individuals are selected accordingly. Stochastic 
sampling with partial replacement (SSPR) extends upon SSR 
by resizing an individual's segment if it is selected. After the 
selection of each individual, the size of its segment is reduced 
by one. If the segment size becomes negative, then it is set to 
zero. Remainder sampling methods involve two distinct 
phases. In the integral phase, the individuals are selected 
deterministically according to the integer part of their 
expected trials. The remaining individuals are then selected 
probabilistically from fractional part of the individual’s 
expected values. In this paper the stochastic remainder roulette 
wheel selection has been applied [24]. 

E. Crossover Operators 

The arithmetic-average-bound-blend crossover operator has 
been used for the selection of chromosomes and is based on 
the stochastic remainder Roulette-wheel mechanism [24]. The 
AABBX operator is the combination of arithmetic crossover, 
average crossover, bound and blend crossovers. Suppose, two 
vectors are selected chromosomes in the tth iteration of the 
RCGA execution. Each chromosome has V genes, which are 
real numbers. The AABBX operator creates ten children from 
the parents t

vix and t

uix  as follows: 
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(ii) Average crossover 
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(iii) Bound crossover 
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(iv) Blend crossover 
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wa , wb and wc are constant weights. The values are adjusted 
such that 0 < wa , wb , wc > 1. wd is also constant weight such 
that 1< wd< 2. Two children having the highest fitness values 
are selected as the offspring chromosomes for the crossover 
operation. These two offspring chromosomes are added to the 
previous population including the parents. The enlarged 
population formed after the execution of the crossover 
operator is considered for the mutation. 

F. Mutation Operator 

Mutation is a genetic operator used to maintain genetic 
diversity from one generation of population of chromosomes 
to next. Mutation alters one or more gene values in a 
chromosome from its initial state. This can result in entirely 
new gene values being added to the gene pool. With the new 
gene values, the genetic algorithm may be able to arrive at 
better solution than was previously available. Each gene of the 
chromosome is given an opportunity to mutate, governed by 
the probability of the mutation pm. For each gene of the 
chromosome, a random number in the range of [0, 1] is 
generated. If the random number is less than pm, that gene is 
selected for the mutation, otherwise it is not selected. In this 
algorithm, pm is set at 0.2. The new gene, t

ijx  after mutation 

will be as follows: 
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where )...,,2,1;...,,2,1( NVjVi   

MAXIT is the maximum number of iterations of the RCGA 
and t is the current iteration number. 

Morlet wavelet as the mother wavelet shown in Fig. 1 can 
be rewritten as 
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where   is randomly generated in the range of [-4, 4] because 

this wavelet has [-4, 4] as its effective support. 
The dilation parameter d is set to vary with the value of 

(t/MAXIT), giving the adaptive search capability to the 
proposed real coded genetic algorithm. 
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Fig. 1 Morlet Wavelet 

where ξ is the shape parameter of the monotonic increasing 
function of d. g is the upper limit of the dilation parameter. 
The dilation parameter d is a function of t and MAXIT, and so 
∆ is really a function of ϕ, t and MAXIT. 

G. Competition and Selection 

Each individual in the combined population has to 
compete with some other individuals to have a chance to be 
copied to the next iteration. The score for each trial vector 
after stochastic competition is given by 

t
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NV is the population size or the number of competitors. t
mf  

is the fitness value of the randomly selected competitor from 

the combined population. t
if  is the fitness value of t

ix . u1 and 

u2 are randomly selected numbers from a uniform distribution 
set u (0,1) and m=int (2*NV*u2+1). After competing, the trial 
2NV solutions, including the parents and the offspring, are 
ranked in descending order of the score obtained in Eq. (21). 
The first NV trial solutions survive and are copied along with 
their objective functions into survivor set as the individuals of 
the next iteration. 

IV. DESIGN EXAMPLES AND COMPARISONS 

Low-pass, high-pass, band-pass and band-stop digital IIR 
filters have been designed by taking 200 equally spaced points 
within the frequency domain [0, π]. For the purpose of 
comparison, the lowest order of digital IIR filters is set exactly 
the same as that given by Tang et al. [13]. The intent of 
designing the digital IIR filters is to minimize the objective 
function given by Eq. (5) subject to stability constraints stated 
by Eq. (5a) to Eq. (5e). The prescribed design conditions for 
IIR filters are given in Table I.  

It is known fact that the values of control parameters such 
as population size, crossover and mutation rate have 
significant effect on the performance of RCGA. The control 
parameter values employed for the RCGA algorithm are given 
in Table II. 

The L1-norm approximation error in terms of magnitude 
response, pass-band ripples and stop-band ripples obtained 
with proposed RCGA approach for the LP, HP, BP and BS 
filters are presented in Tables III, Tables IV, Tables V and 
Tables VI, respectively. The magnitude response diagrams of 
LP, HP, BP and BS filters designed with RCGA approach are 
presented in figure 2, figure 3, figure 4 and figure 5 
respectively. It can be observed from the aforementioned 
results that the IIR filters designed by the RCGA approach 
have better performances than those designed by the genetic 
algorithm based methods given by Tsai and Chou [7] and 
Tang et al. [13]. 
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The pole-zero diagrams for LP, HP, BP and BS filters are 
presented in Figure 6. The maximum pole radius values of 
designed digital IIR filters are given in Table VII. It can be 
observed that the designed filters follow the stability 
constraints imposed in the design procedure as all the poles lie 
inside the unit circle. The position of poles away from the 
origin of the designed filters are given by (0.8655, ± 0.6293), 
(0.6655, 0) for LP, (0.8547, ± 2.4829), (0.6197, 3.1416) for 

HP, (0.8751, ± 1.2018), (0.8780, ± 1.9459), (0.7333, ± 
1.5778) for BP, and (0.7352, ± 0.9760), (0.7312, ± 2.1594) for 
BS. The first number in parentheses is the radius, and the 
second number is the angle in radians. The designed IIR filter 
models obtained by the RCGA approach for LP, HP, BP and 
BS are given by. Eq. (24), Eq. (25), Eq. (26) and Eq. (27), 
respectively. 
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TABLE I 
PRESCRIBED DESIGN CONDITIONS ON LP, HP, BP AND BS FILTERS. 

Filter type Pass-band Stop-band Maximum Value of ),( xH   

Low-Pass  2.00    3.0  1 

High-Pass  8.0   7.00   1 

Band-Pass  6.04.0   
 25.00   
 75.0  

1 

Band-Stop 
 25.00   
 75.0  

 6.04.0   1 

 

 
 
 
 

TABLE II 
VALUE OF CONTROL PARAMETERS 

Population Size 40 
Representation Real number representation 

Crossover Arithmetic-average-bound-blend crossover 
Crossover Rate 0.9 

Mutation Wavelet Mutation 
Mutation Rate 0.01 
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TABLE III 
DESIGN RESULTS FOR LOW PASS FILTER 

Method L1-norm error 
Pass-band performance 

(Ripple magnitude) 
Stop-band performance 

(Ripple magnitude) 

RCGA Approach 3.7578 
1.019)(0.9220  j

eH  

(0.0975) 

.15220)( j
eH  

(0.1522) 

TIA Approach[7] 3.8157 
0000.1)(8914.0  j

eH  

(0.1086) 

1638.0)( j
eH  

(0.1638) 

Method of Tang et 
al.[13] 

4.3395 
009.1)(8870.0  j

eH  

(0.1139) 

1802.0)( j
eH  

(0.1802) 
 

TABLE IV 
DESIGN RESULTS FOR HIGH PASS FILTER 

Method L1-norm error 
Pass-band performance 

(Ripple magnitude) 
Stop-band performance 

(Ripple magnitude) 

RCGA Approach 4.1519 
1.024)(0.9608  j

eH  

(0.0633) 

.14210)( j
eH  

(0.1421) 

TIA Approach[7] 4.1819 
000.1)(9229.0  j

eH  

(0.0771) 

1424.0)( j
eH  

(0.1424) 

Method of Tang et al. 
[13] 

14.5078 
003.1)(9224.0  j

eH  

(0.0779) 

1819.0)( j
eH  

(0.1819) 
 

 
TABLE V 

DESIGN RESULTS FOR BAND-PASS FILTER 

Method L1-norm error 
Pass-band performance 

(Ripple magnitude) 
Stop-band performance 

(Ripple magnitude) 

RCGA Approach 1.4188 
1.009)(0.9924  j

eH  

(0.0170) 

.06060)( j
eH  

(0.0606) 

TIA Approach[7] 1.5204 
000.1)(9681.0  j

eH  

(0.0319) 

0679.0)( j
eH  

(0.0679) 

Method of Tang et al. 
[13] 

5.2165 
000.1)(8956.0  j

eH  

(0.1044) 

1772.0)( j
eH  

(0.1772) 
 

TABLE VI 
DESIGN RESULTS FOR BAND-STOP FILTER 

Method L1-norm error 
Pass-band performance 

(Ripple magnitude) 
Stop-band performance 

(Ripple magnitude) 

RCGA Approach 3.0306 
1.012)(0.9385  j

eH  

(0.0735) 

.13190)( j
eH  

(0.1319) 

TIA Approach[7] 3.4750 
000.1)(9259.0  j

eH  

(0.0741) 

1178.0)( j
eH  

(0.1278) 

Method of Tang et al. 
[13] 

6.6072 
000.1)(8920.0  j

eH  

(0.1080) 

1726.0)( j
eH  

(0.1726) 
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TABLE VII 
MAXIMUM RADIUS OF POLES  

Filter Type Maximum Radius 
Low- Pass 0.8655 
High- Pass 0.8547 
Band- Pass 0.8780 
Band -Stop 0.7352 
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Fig. 2 Frequency responses of low pass filter using the RCGA approach and the method given in [7] and [13], respectively. 
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Fig. 3 Frequency responses of high pass filter using the RCGA approach and the method given in [7] and [13], respectively. 
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Fig. 4 Frequency responses of band pass filter using the RCGA approach and the method given in [7] and [13], respectively. 
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Fig. 5 Frequency responses of band stop filter using the RCGA approach and the method given in [7] and [13] respectively. 
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Fig.6 Pole-Zero plots of LP, HP, BP and BS filters using the RCGA approach. 

 

V. CONCLUSION 

This paper proposes a RCGA approach for the design of 
digital IIR filters based on L1-norm approximation error. As 
shown through experimental results, RCGA approach works 
well with an arbitrary random initialization and the designed 
digital IIR filters satisfy the prescribed amplitude 
specifications consistently. Therefore, the proposed algorithm 
is a useful tool for the design of IIR filters with complicated 
stability constraints. The design results for LP, HP, BP and BS 
digital IIR filters clearly depict that the proposed RCGA 
approach possesses the capacity for the local tuning of the 
solutions and is an efficient optimizer with fast convergence 
rate and robustness. It can be further implemented to optimize 
the structure and phase response of the digital IIR filters. 
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