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Abstract—In this paper we present and test an algorithm
for constructing SO(3) configuration spaces. It is capable of
handling polyhedral scenes (triangulated) as well as ball-only
scenes (sphere-trees). Without loss of generality we consider
objects rotating around the zero point. In a scene, consisting of
n triangular faces (or balls) of obstacles and m triangular faces
(or balls) of a rotating object, the complexity of the presented al-
gorithm is O(n3m3log(nm)). The algorithm is output-sensitive,
which means that it discards all unnecessary geometry and
takes only a minimum number of geometry needed to obtain
a correct final configuration space. Configuration spaces are
represented as graphs of intersections on the border of free
configuration space. This algorithm is a generalization of a few
previous related works: the case of a rotating and translating
polygon on a plane and the case of a rotating and translating
segment (or a cigar-like object) in 3-space.

Index Terms—motion planning, exact algorithm, rotations in
3-space, rotating polyhedron, rotating sphere-tree

I. INTRODUCTION

MOTION planning is currently a common task in
robotics. It has been reconsidered since the 80s.

There are two categories of algorithms: approximate and
exact. In this paper we consider the exact category. Exact
(or combinatorial) algorithms are usually slower and more
involved, but always give a correct answer. For a survey on
motion planning algorithms, including combinatorial ones,
the reader can refer to [1] or [2].

In this paper, the author presents a research on those cases
of determining a free space of motion planning problem,
where 3-dimensional rotations are involved. The simplest
such case is a motion planning in a purely rotational space
SO(3). An introduction to the research of this case is also
presented in the paper [3].

A near-optimal algorithm was developed. Given an arbi-
trary rotating polyhedron in a polyhedral scene or a ball
approximated object in a ball-scene, it determines the exact
configuration space of the rotating object. An important
feature of the proposed algorithm is its output-sensitivity.
It means that it is not possible to reduce the number of
considered geometry predicates because it is already min-
imal. In practical scenes, even if the asymptotic complexity
of the algorithm is O(n3m3log(nm)), the algorithm works
in acceptable times. Having computed a configuration space,
one can perform motion planning for arbitrary begin and
end rotations. There exist a few exact motion planners with
rotations. In the case of a planar movements, these include:
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needle movement [4], convex polygon movement [5] and
arbitrary polygon movement [6]. In 3-space an algorithm for
planning movement of a needle and a cigar-like object was
proposed by Koltun [7].

The paper is organised as follows. In the first section we
introduce basic definitions and properties. On top of that,
we give a concept of a collision predicate, which is a basic
tool for combinatorial motion planning. In the next section,
collision predicates are used to define collision surfaces in a
configuration space. The crucial part of the proposed algo-
rithm is the intersection algorithm. It creates an arrangement
of all surfaces. With the precomputed arrangement, one can
easily execute motion planning queries. This is discussed in
the last section, along with some performance results.

A. Problem description and motivation

The new algorithm is expected to be useful in some areas.
Firstly, it increases the number of different topologies in
which we can do exact motion planning. Secondly, it can
be used to create a hybrid motion planning algorithms of
new class. Hybrid algorithms, mix different motion planning
algorithms in order to achieve better practical performance
and output quality. There exist hybrid algorithms like [8], [9],
[10], [11] or [12], but none of them uses exact description
of rotational part. All referred hybrid algorithms use some
kind of rotational space approximation, like slicing in [12]
or ACD tree in [9], which is only resolution-complete. In
[10] different PRM methods are mixed, while in [11] authors
combine a PRM planner and a ACD tree together. The
algorithm, proposed in [8] differers from all above. It is based
on a Voronoi roadmap and utilizes a concept of a bridge.
Author’s own research on complete motion planning showed
that it would be possible to create a rigid body planner in
R3, assuming that there exist an method of creating an exact
description of SO(3) configuration space.

B. Three dimensional space of rotations

The space of rotations SO(3) of a three dimensional
Cartesian space is three dimensional, but not homeomorphic
to R3. In fact, it is homeomorphic to a 3-sphere where each
pair of antipodal points are identified. Due to non-Cartesian
nature of the space of rotations, algorithms are usually more
involved that those operating in a Cartesian space.

C. SO(3) configuration space

During the research, a new result was obtained - a com-
plete description of the configuration space of rotations of
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a polyhedron in a polyhedral scene. We will now introduce
definitions that are used in the new algorithm.

In case of the SO(3), a configuration (placement, orien-
tation) is a rotation. Configuration space is the set of all
configurations. By convention, we mark it with C. A subset
Cforbidden of C that cause the rotating polyhedron to collide
with any of the obstacles, is called a forbidden subset of
rotations. A complementary subset Callowed of rotations is
called an allowed (free) subset of rotations.

A configuration in a configuration space is represented by
a spinor s ∈ Spin(3). A spinor representation of rotations
is quite new in computational geometry, but in mechanics
it has already been used for a few decades. A spinor is an
element of the geometric algebra. It has already been proven
practically that the geometric algebra can be quite useful
[13]. This is because of its generality and great insight in all
operations. For an introduction into the geometric algebra
one can refer to [14] or [13]. A spinor is a number of the
form: s = s0 + s12e12 + s23e23 + s31e31. The numbers
s0, s12, s23, s31 ∈ R are called coefficients and satisfy the
identity:

s2
0 + s2

12 + s2
23 + s2

31 = 1

The three base elements: e12, e23, e31 satisfy a number of
identities, similar to quaternion algebra:

e12e12 = e23e23 = e31e31 = −1

e12e23 = −e31, e23e31 = −e12, e31e12 = −e23

e12 = −e21, e23 = −e32, e31 = −e13

e12e23e31 = 1

In the paper we use the following notation:

• scalars: a, b, c, ...
• vectors: U , V , A, B, K, L, ...
• spinor: s

A vector is a number of the form: V = Vxe1+Vye2+Vze3.
The scalar product is denoted by · symbol. In geometric
algebra we have: U · V = 1

2 (UV + V U) for vectors U
and V . The exterior product is related to the cross product
of two vectors by the identity: U ∧ V = e123U × V .
Finally, the exterior product of two vectors is defined as:
U ∧ V = 1

2 (UV − V U).

Basically, it can be assumed that spinors are closely related
to unit quaternions via a simple isomorphism:

i = −e23, j = −e31, k = −e12

In geometric algebra, it is a Clifford multiplication that
rotates a vector. Let s be a spinor, and V = Vxe1 + Vye2 +

Vze3 vector being rotated. The explicit rotation formula is:

Rs(V ) = s−1V s

=(s0 − s12e12 − s23e23 − s31e31)

(Vxe1 + Vye2 + Vze3)

(s0 + s12e12 + s23e23 + s31e31)

=((s0s0 − s12s12 + s23s23 − s31s31)Vx+

2(Vy(s0s12 + s23s31) + Vz(s12s23 − s0s31)))e1+

((s0s0 − s12s12 − s23s23 + s31s31)Vy+

2(Vx(s23s31 − s0s12) + Vz(s12s31 + s0s23)))e2+

((s0s0 + s12s12 − s23s23 − s31s31)Vz+

2(Vx(s12s23 + s0s31) + Vy(s12s31 − s0s23)))e3

With a spinor representation one gets a common toolbox
for handling rotations on a plane and in the space. This is
because spinors are defined for an arbitrary dimension and
obey the same transformation rules.

There are few identities for the rotation formula, which
are used frequently. For any pair of vectors A and B and
scalars α and β, we have:

Rs(αA+ βB) = αRs(A) + βRs(B) (1)
Rs(A×B) = Rs(A)×Rs(B)

Rs(A) ·Rs(B) = A ·B
Rs(A) = R−s(A)

Each of the above identities is easy to prove. The last
identity states that a rotation about a spinor s is equal to a
rotation about a spinor −s.

Our new algorithm is an exact algorithm. In particular, it
means that all results are mathematically correct. To achieve
this, we use arbitrary precision rational numbers from GMP
[15] library. The required interface is provided by CGAL’s
[16] arithmetic module. Clifford algebra is generated by
a vector space. We use vectors to describe corresponding
points.

II. THE PROPOSED ALGORITHM

Our new algorithm constructs a graph of intersections on
the border of free configuration space. This is enough to
effectively trace a motion path in configuration space. Nev-
ertheless, we also give an information about the possibility of
expanding the algorithm to support the complete arrangement
of cells.

The overall algorithm is presented in pseudo-code 1.
Each step is discussed separately in the following sections.

A. Collision predicates
A collision predicate or shortly a predicate is a formula

which takes a rotation argument and yields a positive value
for collision, a negative when there is no collision and zero
when two objects are touching. In general, a predicate is:

Ps : Spin(3) −→ R

We distinguish three subsets of Spin(3) depending on the
sign of the predicate:

F (P) := {s ∈ Spin(3) : Ps > 0}
A(P) := {s ∈ Spin(3) : Ps < 0}
B(P) := {s ∈ Spin(3) : Ps = 0}
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Algorithm 1 Compute graph of SO(3) configuration space
Require: R - rotating objects, O - stationary objects
P ← PredicateListFromScene(R,O)
Q← SpinQuadricListFromPredicateList(P )
Q← RemoveDuplicateSpinQuadrics(Q)
QSIC ← ∅
for pair(q1, q2) ∈ Q do
QSIC ← IntersectSpinQuadrics(q1, q2)

end for
QSIP ← ∅
for pair(q, qsic) ∈ (Q,QSIC) do
QSIP ← IntersectSpinQuadricSpinQSIC(q, qsic)

end for
G← ComposeGraph(QSIC,QSIP )

All rotations that cause a collision are usually called for-
bidden and denoted by F . The other subset A is a subset of
allowed rotations, which do not cause collision. The subset of
rotations which cause touching between the rotating object
and the obstacle is called a border subset of rotations B .
In practical usages the subset B is usually considered as a
colliding one. Despite that, it is important to distinguish this
scenario for the consistency of the theory presented in this
paper.

A predicate introduce an oriented surface in a config-
uration space. Configurations that cause a collision, are
on one side of the surface. On the other side, there are
configurations that do not cause a collision. The surface
is a set of configurations that ”touch” an obstacle, but not
penetrate it. In combinatorial method we consider a set of
predicates, created from a given scene. Historically, the first
to use a term collision predicate was Canny [17]. A concept
of a predicate is also known under different names, such as
a ”contact” in [6] or a ”basic contact”, as in [18]. Although
the general idea is similar, the detailed theory presented in
this paper is new.

We say that two predicates are equivalent if and only
if they have the same subsets of allowed and forbidden
rotations.

Definition 1 (Equivalent predicate). Two predicates P and
P ′ are equivalent if and only if the following holds:

(A(P) = A(P ′)) ∧ (F (P) = F (P ′))

Equivalent predicates are denoted by: P ≡ P ′

For example, we can multiply a predicate by a positive
scalar value and get an equivalent predicate. From the
definition, it immediately follows that:

P ≡ P ′ −→ B(P) = B(P ′)

The definition 1 contains an equal sign - it can be shown that
the predicate equivalence is indeed an equivalence relation,
as the name suggests. For all applications, we can take any
equivalent predicate from the same equivalence class.

A predicate is opposite to a given if and only if their
allowed and forbidden subsets of rotations are interchanged.
Note, that the border sets are the same.

Fig. 1. A predicate of type H

Definition 2 (Opposite predicate). A predicate P is opposite
to a predicate P ′ if and only if the following holds:

(A(P) = F (P ′)) ∧ (F (P) = A(P ′))

A predicate which is opposite to P is denoted by −P .

The operation is symmetrical:

P ≡ −P ′ ⇐⇒ P ′ ≡ −P

Minus operator is suggestive. In fact, a predicate can be
multiplied by −1 to get an opposite predicate.

Now, we introduce two basic predicates:

Definition 3 (A half-space predicate H). Assume that H =
(U, d) is a half-space with a normal vector U and the
distance d from the zero. Let V be a non-zero rotating vector.
The formula:

Hs(U, d, V ) = U ·Rs(V ) + d (2)

is called a half-space predicate.

The above formula yields a positive or a negative value
depending on whether the rotated vector v has it end on
positive or negative side of the half-plane. We assume that
v’s start point is at 0. A schematic view of H predicate is
shown in figure 1.

The general half-space equation is (U, d) := U ·X+d. For
an arbitrary point X the formula (U, d) yields a positive value
when X is in the half-space. A given V point is rotating, so
X = Rs(V ) and thus Hs(U, d, V ) = U ·Rs(V ) + d.

Definition 4 (A screw predicate S). Assume that K and L
are ends of a stationary segment and A and B are ends of a
rotating segment. The formula:

Ss(K,L,A,B) =

(K × L) ·Rs(A−B) + (K − L) ·Rs(A×B) (3)

is called a screw predicate.

The above formula yields a positive or a negative value
depending on whether the rotating vector is oriented clock-
wise or counter-clockwise in respect to the stationary vector.
A schematic view of S is shown in figure 2.

The S predicate is not an obvious construction like H
predicate. One can compare S predicate to a similar phe-
nomenon is an orientation of magnetic field due to moving
charges. The construction of S predicate is originally based
on an observation made in [19] by Devillers and Guigue. In
the paper, the authors introduce matrix, whose determinant is
an orientation test. This test reveals, whether a screw directed
along a given ray turns in the direction of a second ray. From
this statement, we took the name of the S predicate (screw).
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Fig. 2. A predicate of type S

Construction of S predicate
In the following equations we omit rotation operator R for

increased readability: A := Rs(A) and B := Rs(B). First,
we define a plane, which normal vector is N and which
contains the AB segment:

P = N ·X + d = N ·X −N ·A = N · (X −A)

The normal vector N depends on the rotating points A and
B and is equal to:

N = (B −A)× (L−K)

It cannot be guaranteed that N is non-zero. We leave this
case for later discussion. Assuming, that N is a non-zero
vector, the orientation test is a ”point on plane side” test for
point X = K:

P = ((B −A)× (L−K)) · (K −A) =

((A−B)× (K − L)) · (K −A) =

(A−B) · ((K − L))× (K −A)) =

(A−B) · (K ×K + L×A−K ×A− L×K) =

(A−B) · (−L×K) + (A−B) · ((L−K)×A) =

(A−B) · (K × L) + (−B) · ((L−K)×A) =

(A−B) · (K × L)− ((L−K)×A) ·B =

(A−B) · (K × L)− (L−K) · (A×B) =

(K × L) · (A−B) + (K − L) · (A×B)

which is a definition of S predicate. In the above calculations
we used the identities (1).

A S predicate features some symmetries of the arguments.
They are useful, when T T predicate is introduced:

Lemma 1 (Equivalent and opposite S predicates). Let
S(K,L,A,B) be a predicate. The following identities hold:

S(K,L,A,B) ≡ S(L,K,B,A) (4)
≡ −S(L,K,A,B)

≡ −S(K,L,B,A)

Proof: All three identities are similar. We prove the first
and the second one:

S(K,L,A,B) =

(K × L) ·Rs(A−B) + (K − L) ·Rs(A×B) =

−(L×K) · −Rs(B −A) +−(L−K) · −Rs(B ×A) =

(L×K) ·Rs(B −A) + (L−K) ·Rs(B ×A) =

S(L,K,B,A)

The second identity:

S(K,L,A,B) =

(K × L) ·Rs(A−B) + (K − L) ·Rs(A×B) =

−(L×K) ·Rs(A−B) +−(L−K) ·Rs(A×B) =

−((L×K) ·Rs(A−B) + (L−K) ·Rs(A×B)) =

−S(L,K,A,B)

In the definition of an S predicate, we assumed that
the normal vector is non-zero. When the normal vector
is zero, the predicate value is undefined. This corresponds
to a situation when the rotating segment is parallel to
the stationary one. The subset of rotations which have the
described property is called an associated singular surface
for a S predicate.

Definition 5 (Associated singular surface for a S predicate).
Let S(K,L,A,B) be a predicate. The following surface S̃
is a singular surface of S.

S̃ = {s ∈ Spin(3) : ‖(K − L)×Rs(A−B)‖2 = 0} (5)

The value of the predicate is undefined for all points on S̃.

Singular surface S̃ is a 4-th degree surface in Spin(3).
In the proposed algorithm constructing SO(3) configuration
space, we do not need to evaluate rotations on a singular
surface directly. Nevertheless, there exist a scenario when we
may need to evaluate S predicate value on a singular surface.
This is a situation when a rotation is given by a user of the
system, and it is on the singular surface. If such situation
occurs, we can execute one of the classical procedures for
triangle intersection (see [19], [20] or [21]) with the given
rotation and check the result. In case the proposed algorithm
is implemented in parallel, we can also use a highly parallel
triangle intersection routines, as presented in [22]. To check
whether a given rotation lies on a singular surface, we can
plug it directly into (5).

It can be shown that H and S are both special cases of a
new predicate G. As a result, we need only a G predicate to
be considered.

Definition 6 (A general predicate G). Assume that K and L
are ends of a stationary segment and A and B are ends of
a rotating segment and c is a scalar. The formula:

Gs(K,L,A,B, c) =

(K × L) ·Rs(A−B) + (K − L) ·Rs(A×B) + c

is called a general predicate.

G predicate is artificial by the construction. This is be-
cause, both H and S can be converted to G easily. The
equivalence of H to G and S to G predicates is due to the
following two propositions:

Proposition 1 (H to G predicate correspondence). A
predicate H(U, d, V ) is a special case of a predicate
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G(K,L,A,B, c) with the following parameters:

K = V ×R
L = V × (V ×R)

A = U

B = −U
c = 2d‖V ×R‖2

where R is an arbitrary non-zero vector that is not parallel
to V .

Proof: We plug in the above parameters into a G
predicate to obtain:

K × L = (V ×R)× (V × (V ×R))

= V (V ×R) · (V ×R)− (V ×R)(V ×R) · V
= V ‖V ×R‖2

A−B = 2U

A×B = 0

G(K,L,A,B, c)

= (K × L) ·Rs(A−B) + (K − L) ·Rs(A×B) + c

= V ‖V ×R‖2 ·Rs(2U) + 2d‖V ×R‖2

= 2‖V ×R‖2(V ·Rs(U) + d)

= 2‖V ×R‖2H(U, d, V )

≡ H(U, d, V )

During our research we tried different methods of choosing
an R vector. We use a simple and practical one: algorithm 2.
The method is as follows. First, we project the given vector
onto an axial plane in a way, that the projection is not a single
point (it means, that the vector is not orthogonal to the axial
plane). This is realized by checking consecutive coordinates
for being non-zero. Secondly, we take a vector, which is
orthogonal to the given one, and which lies on the selected
axial plane. Finally, we recover the vector’s coordinate which
was lost during the projection and set is to the original value.
In other words, we can leave the coordinate unchanged all
the time, but do the operation of taking an orthogonal vector
just on the selected axial plane (two vector coordinates).

Algorithm 2 Select an R vector
Require: v - a non-zero vector

if v.x 6= 0 then
return vector[−v.y, v.x, v.z] - Z is unchanged

else {v.y 6= 0}
return vector[v.x,−v.z, v.y] - X is unchanged

else
return vector[v.z, v.y,−v.x] - Y is unchanged

end if

Proposition 2 (S to G predicate correspondence). Pred-
icate S(K,L,A,B) is a special case of a predicate
G(K,L,A,B, c) with the following setting:

c = 0

Proof: Setting c = 0 in G predicate immediately gives
a definition of S predicate.

Fig. 3. A predicate of type T T

Fig. 4. Construction of T T predicate

We assume, that the proposed algorithm should trace
collision of polyhedra borders. Without any loss, it can be
assumed that all faces are triangles. Two (empty) polyhedra
collide if and only if their borders intersect. This is realized
by checking for collisions between all pairs of triangles:
one from the rotating polyhedron and the other one from
scene obstacles. By using ideas from [19] about collision of
triangles, we define a new predicate that detects a triangle-
triangle collision. A schematic view of T T predicate is
shown in figure 3:

Proposition 3 (A triangle-triangle predicate T T ). A generic
collision test between a stationary triangle KLM and a
rotating triangle ABC can be expressed with 9 predicates
of type S.

T T (K,L,M,A,B,C) > 0⇐⇒
intersect triangle triangle(4KLM,Rs(4ABC))

The characteristic matrix MT T is:

MT T =

S(K,L,A,B) S(K,L,B,C) S(K,L,C,A)
S(L,M,A,B) S(L,M,B,C) S(L,M,C,A)
S(M,K,A,B) S(M,K,B,C) S(M,K,C,A)


The predicate yields a positive value (collision) if and only

if there exist a row or a column in MT T that all it’s elements
are of the same non-zero sign.

Proof: Two triangles collide if and only if any edge of
the first triangle intersects the second triangle or vice versa.
A single S predicate is used to detect the orientation of a
rotating directed segment in respect to the other stationary
directed segment. We start with forming a single chain of
three S predicates for directed segments KL, LM and MK
and directed rotating segment AB. This is depicted in figure
4. Triangle vertices can be oriented clockwise or counter-
clockwise. Assuming that the vertices’ order is given, we
define:

ω :=(S(K,L,A,B) > 0) ∧ (S(L,M,A,B) > 0)∧
(S(M,K,A,B) > 0)

 
______________________________________________________________________________________ IAENG International Journal of Computer Science, 39:4, IJCS_39_4_05

(Advance online publication: 21 November 2012)



which detects whether an oriented rotating segment collides
with a stationary triangle with ordered vertices. Now we gen-
eralize this test to handle the case with a different orientation
of the rotating segment or a different orientation of triangle’s
vertices. There are three additional tests to handle. We write
a generalized test, which ignores both orientations:

ω′ :=[(S(K,L,A,B) > 0) ∧ (S(L,M,A,B) > 0)∧
(S(M,K,A,B) > 0)]∨
[(S(K,M,A,B) > 0) ∧ (S(M,L,A,B) > 0)∧
(S(L,K,A,B) > 0)]∨
[(S(K,L,B,A) > 0) ∧ (S(L,M,B,A) > 0)∧
(S(M,K,B,A) > 0)]∨
[(S(K,M,B,A) > 0) ∧ (S(M,L,B,A) > 0)∧
(S(L,K,B,A) > 0)]

by using the identities (4) we can do the following reduction:

ω′ :=[(S(K,L,A,B) > 0) ∧ (S(L,M,A,B) > 0)∧
(S(M,K,A,B) > 0)]∨
[(S(K,L,A,B) < 0) ∧ (S(L,M,A,B) < 0)∧
(S(M,K,A,B) < 0)]

The last step is to combine the remaining cases for segments
BC and CA:

π :=[(S(K,L,A,B) > 0) ∧ (S(L,M,A,B) > 0)∧
(S(M,K,A,B) > 0)]∨
[(S(K,L,A,B) < 0) ∧ (S(L,M,A,B) < 0)∧
(S(M,K,A,B) < 0)]∨
[(S(K,L,B,C) > 0) ∧ (S(L,M,B,C) > 0)∧
(S(M,K,B,C) > 0)]∨
[(S(K,L,B,C) < 0) ∧ (S(L,M,B,C) < 0)∧
(S(M,K,B,C) < 0)]∨
[(S(K,L,C,A) > 0) ∧ (S(L,M,C,A) > 0)∧
(S(M,K,C,A) > 0)]∨
[(S(K,L,C,A) < 0) ∧ (S(L,M,C,A) < 0)∧
(S(M,K,C,A) < 0)]

Similarly, if we analyse the mirror case with edges AB, BC
and CA intersecting triangle KLM , we get the following
test π′:

π′ :=[(S(K,L,A,B) > 0) ∧ (S(K,L,B,C) > 0)∧
(S(K,L,C,A) > 0)]∨
[(S(K,L,A,B) < 0) ∧ (S(K,L,B,C) < 0)∧
(S(K,L,C,A) < 0)]∨
[(S(L,M,A,B) > 0) ∧ (S(L,M,B,C) > 0)∧
(S(L,M,C,A) > 0)]∨
[(S(L,M,A,B) < 0) ∧ (S(L,M,B,C) < 0)∧
(S(L,M,C,A) < 0)]∨
[(S(M,K,A,B) > 0) ∧ (S(M,K,B,C) > 0)∧
(S(M,K,C,A) > 0)]∨
[(S(M,K,A,B) < 0) ∧ (S(M,K,B,C) < 0)∧
(S(M,K,C,A) < 0)]

Fig. 5. A predicate of type BB

Finally, we select all unique predicates from π and π′ and
compose them in a matrix MT T :S(K,L,A,B) S(K,L,B,C) S(K,L,C,A)

S(L,M,A,B) S(L,M,B,C) S(L,M,C,A)
S(M,K,A,B) S(M,K,B,C) S(M,K,C,A)


One can observe that π and π′ tests correspond exactly to
columns and rows of MT T respectively. This completes the
proof.

Assume that T T is, i = 1...nm are T T predicates of all
triangle pairs for a given scene. The following formula is a
T T predicate sentence for a scene:

T T sentences :=
⋃
i

T T is

The sentence yields a positive value if there is any collision
in the scene.

Remark 1. T T include a total of nine predicates of type S.
Because of that, there are also nine singular surfaces for a
T T predicate.

An alternative approach is to build a scene only from balls
(spheres). There are several advantages of that discussed in
one of the following sections. In a ball-only scene, both
the rotating object and obstacles are sets of balls. We only
need to consider one type of collision - a rotating ball and a
stationary ball. A schematic view of BB predicate is shown
in figure 5:

It can be shown, that a collision predicate for two balls
(one is rotating, the other is stationary) is equivalent to an
H predicate:

Proposition 4 (A ball-ball predicate BB). A generic collision
test between a rotating ball of radius r centered at A and
a stationary ball of radius l centered at B can be expressed
with one predicate of type H.

Ball-ball predicate is defined as:

BB(B, l, A, r) = (r + l)− ‖Rs(A)−B‖

An equivalent H predicate is:

BB(B, l, A, r) ≡ H(2B, (r + l)2 − ‖A‖2 − ‖B‖2, A)

The predicate yields positive value (collision) if and only if
there is a collision between two balls.

Proof: Let BB be a ball-ball collision predicate. We
consider the set of all rotations causing collision. The chain
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of equivalent sets is:

BB(B, l, A, r) > 0 ⇐⇒
(r + l)− ‖Rs(A)−B‖ > 0 ⇐⇒

(r + l) > ‖Rs(A)−B‖ ⇐⇒
(r + l)2 > ‖Rs(A)−B‖2 ⇐⇒
(r + l)2 > (s−1As−B)2 ⇐⇒

(r + l)2 > (s−1As)(s−1As)− s−1AsB −Bs−1As+BB

⇐⇒ (2B) · s−1As+ (r + l)2 −AA−BB > 0

⇐⇒ H(2B, (r + l)2 − ‖A‖2 − ‖B‖2, A) > 0

The same equations are for non-collision scenario, when the
> relation is changed to <. Thus,

BB(B, l, A, r) ≡ H(2B, (r + l)2 − ‖A‖2 − ‖B‖2, A)

by definition 1.
Assume that BBis, i = 1...nm are BB predicates of all

ball pairs for a given scene. The following formula is a BB
predicate sentence for a scene:

BBsentences :=
⋃
i

BBis

Remark 2. BB is composed of one predicate of type H. It
is free of singular surfaces, so a BB predicate is also free
of singular surfaces.

B. Spin-quadrics

A generic G predicate sets an oriented quadric (a quadratic
surface) in configuration space. The quadric is a quadratic
form in spin-space, thus it is henceforth called spin-quadric.
In case of Spin(3) configuration space we have:

Proposition 5. A general predicate G(K,L,A,B, c) can be
reduced to a quadratic form in Spin(3). It represents a spin-
quadric which can be expressed by:

Gs = sTMGs

with matrix

MG =


a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44


or, equivalently:

Gs = a11s
2
12 + a22s

2
23 + a33s

2
31 + a44s

2
0+

2(a12s12s23 + a13s12s31 + a14s12s0+

a23s23s31 + a24s23s0 + a34s31s0)

where s = [s12, s23, s31, s0]T and MG’s elements are linear

expressions of G’s parameters K, L, A, B and c:

a11 = −Pxyz − Pyzx + Pzxy −Qxyz −Qyzx +Qzxy + c

a22 = +Pxyz − Pyzx − Pzxy +Qxyz −Qyzx −Qzxy + c

a33 = −Pxyz + Pyzx − Pzxy −Qxyz +Qyzx −Qzxy + c

a44 = +Pxyz + Pyzx + Pzxy +Qzxy +Qyzx +Qxyz + c

a12 = +Pxxy + Pzyz +Qxxy +Qzyz

a13 = +Pyxy + Pzzx +Qyxy +Qzzx

a14 = +Pxzx − Pyyz −Qxzx +Qyyz

a23 = +Pxzx + Pyyz +Qxzx +Qyyz

a24 = +Pyxy − Pzzx −Qyxy +Qzzx

a34 = −Pxxy + Pzyz +Qxxy −Qzyz
where P and Q are linear combinations:

Pαβγ = (Kα − Lα)(AβBγ −AγBβ)

Qαβγ = (Aα −Bα)(KβLγ −KγLβ)

Proof: Let K = [Kx,Ky,Kz]
T , L = [Lx, Ly, Lz]

T ,
A = [Ax, Ay, Az]

T , B = [Bx, By, Bz]
T and c are given

parameters. We directly expand G(K,L,A,B, c) with the
coefficients by using a symbolic calculator. We apply auto-
matic formula simplification and obtain:

G =

(−Pxyz − Pyzx + Pzxy −Qxyz −Qyzx +Qzxy)s2
12+

(Pxyz − Pyzx − Pzxy +Qxyz −Qyzx −Qzxy)s2
23+

(−Pxyz + Pyzx − Pzxy −Qxyz +Qyzx −Qzxy)s2
31+

(Pxyz + Pyzx + Pzxy +Qzxy +Qyzx +Qxyz)s
2
0+

2(Pxxy + Pzyz +Qxxy +Qzyz)s12s23+

2(Pyxy + Pzzx +Qyxy +Qzzx)s12s31+

2(Pxzx − Pyyz −Qxzx +Qyyz)s12s0+

2(Pxzx + Pyyz +Qxzx +Qyyz)s23s31+

2(Pyxy − Pzzx −Qyxy +Qzzx)s23s0+

2(−Pxxy + Pzyz +Qxxy −Qzyz)s31s0 + c

It is almost a quadratic form, but the c scalar. We use the
basic property s2

12 +s2
23 +s2

31 +s2
0 = 1 of the Spin(3) space,

and write:

c = c(s2
12 + s2

23 + s2
31 + s2

0) = cs2
12 + cs2

23 + cs2
31 + cs2

0

From the above, we can write an equal formula:

G =

(−Pxyz − Pyzx + Pzxy −Qxyz −Qyzx +Qzxy + c)s2
12+

(Pxyz − Pyzx − Pzxy +Qxyz −Qyzx −Qzxy + c)s2
23+

(−Pxyz + Pyzx − Pzxy −Qxyz +Qyzx −Qzxy + c)s2
31+

(Pxyz + Pyzx + Pzxy +Qzxy +Qyzx +Qxyz + c)s2
0+

2(Pxxy + Pzyz +Qxxy +Qzyz)s12s23+

2(Pyxy + Pzzx +Qyxy +Qzzx)s12s31+

2(Pxzx − Pyyz −Qxzx +Qyyz)s12s0+

2(Pxzx + Pyyz +Qxzx +Qyyz)s23s31+

2(Pyxy − Pzzx −Qyxy +Qzzx)s23s0+

2(−Pxxy + Pzyz +Qxxy −Qzyz)s31s0

which is precisely a quadratic form, as stated in the theorem.
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As a result of the this step, we get a list of spin-
quadrics. These spin-quadrics introduce an arrangement in
Spin(3). A predicate sentence for the scene is also stored
in order to be used later. During the research, we learned
that some of the computed spin-surfaces can be doubled.
Mostly, these are doubled because of the S predicates. If we
consider a triangulated polyhedron, there are a lot of edges
which belong to two different triangles. In fact, this gives
two overlapping spin-surfaces with the opposite orientation.
There is no point in taking the both spin-surfaces into the
arrangement, so we omit one of these spin-surfaces. In
general, we take only one spin-surface from all that are the
same up to a scaling factor. To recover the information about
the missing spin-surfaces, we maintain a list of ”virtual spin-
surfaces”, pointing to the remaining ”real” ones. We also
store the information, whether the virtual spin-surface has
got the same or the opposite orientation. We have tested our
algorithm on different scenes, and usually more than a half
of all spin-surfaces were doubled, and thus removed. In an
algorithm with a complexity of O(n3) this is a theoretical
speed-up of factor 8. The reason that there are so many
doubled spin-surfaces is that we have manifold geometry -
there are no free edges of triangles. In a scene consisting only
of non-intersecting triangles there would be no doubled spin-
surfaces at all. Note, that in a ball-only scene, there should
be very little redundancy in spin-surfaces. Rarely, there are
doubled balls in scene. So, because the spin-surfaces are only
generated from a ball-ball collision, there can not be many
doubled spin-surfaces.

C. Spin-quadric intersection as graph edges
Computing an intersection of two spin-quadrics is not an

easy task. It is not easy, even in the case of an intersection
of two quadratic surfaces in R3. There exist algorithms
that partially solve this problem. In particular, [23], [24]
and [25] are known methods. Only recently, first complete
implementations of quadric intersection in R3 were devel-
oped: [26] and [27]. The case of an intersection, where
the resulting curve is not singular, was solved first. This
is called a smooth case. A standard procedure is to follow
a method proposed by Levin [28]. The problematic cases
are those, involving singular intersections. Much work is
needed to handle all specific cases, one by one. Currently,
two implementations are available: QI library [27] (available
online [29]) and Berberich’s implementation [26]. The first
one, returns parametrization of the resulting intersection.
The latter does not. Both implementations present a similar
performance. Although the dimensionality of Spin(3) and
R3 is the same, both spaces have a different topology. One
of the main results of this paper is to show that, a quadric
intersection library for R3 can also be used to perform
intersections in Spin(3).

Theorem 1 (Spin-surface intersecting algorithm). Let A
be an algorithm for quadric intersection in P3 (projective
space). By using only A, it is possible to construct an
algorithm B which intersects a pair of spin-quadrics in
Spin(3). The asymptotic complexity of B, is the same as the
asymptotic complexity of A.

Proof: Assume that in Spin(3) there are given two
spin-quadrics with matrices MG equal to P and Q. The

intersection is a set of spinors s = [s12, s23, s31, s0]T

satisfying:  sT s = 1
sTP s = 0
sTQs = 0

It is impossible that all of s12, s23, s31, s0 are equal to zero
simultaneously because of the first equation. Assume for now
that s0 is non-zero. We can divide the second and the third
equation by s2

0, obtaining:{
tTP t = 0
tTQt = 0

The newly introduced vector t is equal to [ s12s0 ,
s23
s0
, s31s0 , 1]T .

We can observe that the second and the third equations
form a quadric intersection problem in R3. This problem
can be effectively solved by A. Both quadrics are given
in terms of tx = s12

s0
, ty = s23

s0
, tz = s31

s0
. Now, we use

the assumption that A returns a parametrized intersection
curve Γ(ξ) = [Γx(ξ),Γy(ξ),Γz(ξ),Γw(ξ)]T is given in
homogeneous coordinates:

tx =
Γx(ξ)

Γw(ξ)
, ty =

Γy(ξ)

Γw(ξ)
, tz =

Γz(ξ)

Γw(ξ)
, ξ ∈ P1

To recover all of s12, s23, s31, s0, we first compute s0.
Summing up the squares of tx, ty and tz we get:

t2x + t2y + t2z =
s2

12

s2
0

+
s2

23

s2
0

+
s2

31

s2
0

=
s2

12 + s2
23 + s2

31

s2
0

=
1− s2

0

s2
0

=
1

s2
0

− 1

so,
1 + t2x + t2y + t2z = 1

s20
and s2

0 = 1
1+t2x+t2y+t2z

by plugging in the intersection curve Γ, one can write:

s2
0 =

1
Γw(ξ)2

Γw(ξ)2 + Γx(ξ)2

Γw(ξ)2 +
Γy(ξ)2

Γw(ξ)2 + Γz(ξ)2

Γw(ξ)2

=
Γw(ξ)2

Γw(ξ)2 + Γx(ξ)2 + Γy(ξ)2 + Γz(ξ)2

Using the last identity of (1), a rotation by a spinor s is
identified with a rotation by a spinor −s. Hence, in the above
equation we can take a square root of both sides without a
loss of generality. Finally we get:

s0 =
Γw(ξ)

‖Γ(ξ)‖

where ‖Γ(ξ)‖ =
√

Γw(ξ)2 + Γx(ξ)2 + Γy(ξ)2 + Γz(ξ)2.
The remaining spinor coordinates are:

s12 = s0t12 =
Γw(ξ)

‖Γ(ξ)‖
Γx(ξ)

Γw(ξ)
=

Γx(ξ)

‖Γ(ξ)‖

s23 = s0t23 =
Γw(ξ)

‖Γ(ξ)‖
Γy(ξ)

Γw(ξ)
=

Γy(ξ)

‖Γ(ξ)‖

s31 = s0t31 =
Γw(ξ)

‖Γ(ξ)‖
Γz(ξ)

Γw(ξ)
=

Γz(ξ)

‖Γ(ξ)‖

The above formulas can be finally rewritten as the spin-
quadric intersection parametrization:

s(ξ) = ±Γw(ξ) + Γx(ξ)e12 + Γy(ξ)e23 + Γz(ξ)e31

‖Γ(ξ)‖
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Fig. 6. An example set of spin-QSICs in Spin(3)

or, equivalently in a vector form:

s(ξ) = ± [Γx(ξ),Γy(ξ),Γz(ξ),Γw(ξ)]T

‖Γ(ξ)‖

s(ξ) = ± Γ(ξ)

‖Γ(ξ)‖
where Γ := intersect(P,Q).

It can be easily seen that the complexity of B is the
same as the complexity of A. A note is also needed about
initial choice of s0 as the coordinate by which we divided
the remaining coordinates. Because it is not possible that
all of s12, s23, s31, s0 are simultaneously zero, we can non-
constructively divide the Spin(3) space into a number of
fragments in which the selected spin component is non-zero.
In each of these fragments, we repeat the proof, with the
respect of different spin component.

The last theorem strictly depends on the fact, that the
intersecting algorithm represents the intersection curve in
homogeneous coordinates. In Spin(3) configuration space,
quadric intersection generates a curve, which is called a spin
quadric surface intersection curve (spin-QSIC) in analogy
to quadric surface intersection curve (QSIC), as used in
literature [30] and [31].

In figure 6 we show an example projection of spin-QSIC
curves onto R3. Three coefficients: s12, s23 and s31 are
projected onto screen and s0 is the spin-QSIC thickness.

D. Quadric surface intersection curve

In this section we present a short description and major
features of the algorithm by Dupont. It was published in
three parts [32], [33] and [34]. It is a complete implemen-
tation of quadric surface intersection in R3. The algorithm
works in real projective space P3. Points are represented by
quadruplets

X = [X0, X1, X2, X3]T 6= [0, 0, 0, 0]T

with the equivalence relation [X0, X1, X2, X3]T ∼
[λX0, λX1, λX2, λX3]T for all λ 6= 0 (homogeneous space).
Dupont et. at. define a quadric surface QS by an implicit
equation of degree 2 in P3:∑

0≤i≤j≤3

αijXiXj = 0, αij ∈ Q

The equation is a quadratic form in P3, hence it can be
written as XTSX = 0, with a real symmetric matrix S

associated to QS . The upper-left 3x3 matrix of S will be
called S′.

The initial step of the algorithm [32] is computation of
inertia. By looking at eigenvalues of S and S′, we can deduce
the type of a given quadric surface. It is known, that for a
symmetric matrix, all eigenvalues are real. Assume that, σ+

S

and σ−S are the numbers of positive and negative eigenvalues
of S, respectively. Similarly, assume that σ+

S′ and σ−S′ are the
numbers of positive and negative eigenvalues of S′. Dupont
et. al. introduce a two pairs of numbers, each called the
inertia of QS and QS′ :

σS = (max(σ+
S , σ

−
S ),min(σ+

S , σ
−
S )),

σS′ = (max(σ+
S′ , σ

−
S′),min(σ+

S′ , σ
−
S′))

Depending on the values of both inertias, it is possible to
distinguish the following euclidean types of a quadric: empty,
ellipsoid, hyperboloid of two sheets, elliptic paraboloid,
point, point at infinity, hyperboloid of one sheet, hyper-
bolic paraboloid, cone, elliptic cylinder, hyperbolic cylinder,
parabolic cylinder, line, line at infinity, intersecting planes,
parallel planes, plane, double plane, double plane at infinity
and the whole space (a total of 20 types). The reader can refer
to [32] for a detailed information about correspondence be-
tween inertia values and quadric surface types. An extended
information about quadric types is also available in [35].

Given two quadrics QS and QT with matrices S and T ,
an important concept is a pencil of quadrics:

Definition 7. The set

R(S, T ) = {λS + µT : (λ, µ) ∈ P1}

is called the pencil of quadrics.

It can be shown that for any two distinct (coprime)
quadrics from a pencil, their intersection is always the same.
In other words, two distinct quadrics from a pencil define
it uniquely. The equation det(R(S, T )) = 0 is called the
characteristic polynomial. The key idea comes from [28].
Assume, that R(S, T ) is a pencil of two given quadrics.
When the intersection is not degenerated, it is always pos-
sible to choose a quadric QU from the pencil, which is a
ruled surface. It means that the surface can be parametrized
by two linear coefficients. The next step is to plug the ruled
quadric QU : U ∈ R(S, T ) into one of the given quadrics.
We obtain an equation with two unknown parameters, that
we can solve and give the parametrized intersection curve.
We omit technical details of this evaluation, providing only
the final result.

Assume that we intersect a smooth quadric QS with a
generic quadric QT . Dupont et al. [32] show that it is possible
to choose a quadric QR from the pencil R(S, T ), in terms
of which, the intersection is given by the formula:

Γε(ξ) = ΓR(ξ, τε(ξ))

Γε(ξ) ∈ [Q(
√
δ)[ξ,

√
∆]]4

which yields homogeneous quadruplets. The first argument
ξ ∈ P1 is a free argument, and the second argument is a zero
of a second-degree polynomial γ(ξ, τ) = 0. Since, there are
two such solutions τε, the formula consists of two arcs for
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ε ∈ {−1, 1}. In particular, we have:

γ(ξ, τ) = a2(ξ)τ2 + a1(ξ)τ + a0(ξ) (6)

γ(ξ, τ) ∈ Q(
√
δ)[ξ, τ ]

τε(ξ) = (2a0(ξ),−a1(ξ) + ε
√

∆) (7)

τε(ξ) ∈ Q(
√
δ)[ξ,

√
∆]

and

∆(ξ) = a2
1(ξ)− 4a0(ξ)a2(ξ)

∆(ξ) ∈ Q(
√
δ)[ξ]

where a0, a1, a2 ∈ Q(
√
δ)[ξ]. These coefficients are obtained

by plugging QR into QS or QT .
When the intersection is singular, Dupont et al. provide

an extensive implementation for each case. All singular
parametrizations are rational - they do not contain the square
root. We omit all details, which are precisely discussed in
[34]. In the following sections we assume, the intersection
is given as Γ(ξ) with ξ ∈ P1 for the rational case.

E. Spin-quadric and spin-QSIC intersection as a graph
vertex

An important part of the new algorithm is the construction
of graph vertices. The number of possible vertices is O(n3)
for an arrangement of n surfaces. We use construction ideas
from [36]. Assume that s1(ξ) is the first intersection of
spin-quadrics QS and QT , given in terms of QX from the
their pencil. Let s2(ξ) be the second intersection of spin-
quadrics QU and QV given in terms of QY . An intersection
of two spin-QSIC is called a spin-quadric surface inter-
section point(s) (spin-QSIP). Note that we assume that the
intersection can be made up from more than one point. In
fact, there can be at most 8 points in one spin-QSIP. We also
stress the fact, that the parameter ξ in each of the spin-QSICs
is generally associated with two different spin-surfaces and
thus is not related. From the previous section we know that
the spin-QSIC can be smooth or rational. We have two cases,
which we discuss separately:
• at least one of s1(ξ) or s2(ξ) is rational
• both s1(ξ) and s2(ξ) are smooth
Rational spin-QSIC
Without the loss of generality, we assume that s1(ξ) is

rational. We use that fact that the intersection of two curves
is equal to the intersection of one of the curves with an
arbitrary surface that the second curve lies on:

s1(ξ) ∩ s2(ξ) = s1(ξ) ∩ (QU ∩QV )

= s1(ξ) ∩QU = s1(ξ) ∩QV
= {s1(ξ) : s1(ξ)TUs1(ξ) = 0}
= {s1(ξ) : s1(ξ)TV s1(ξ) = 0}

We can choose any of spin-quadrics QU , QV and write:

{s1(ξ) : s1(ξ)TUs1(ξ) = 0} =

{s1(ξ) : (± Γ1(ξ)

‖Γ1(ξ)‖
)TU(± Γ1(ξ)

‖Γ1(ξ)‖
) = 0} =

{s1(ξ) : Γ1(ξ)TUΓ1(ξ) = 0}

where Γ1(ξ) is the homogeneous intersection curve associ-
ated to s1(ξ).

The matrix product Γ1(ξ)TUΓ1(ξ), is a univariate poly-
nomial with the degree at most 8:

hs1∩s2(ξ) = Γ1(ξ)TUΓ1(ξ)

The polynomial, which zeroes define spin-QSIP points, will
be called a spin-QSIP determinant.

Now, we define a spin-QSIP as:

s1(ξ) ∩ s2(ξ) = {s1(ξ) : hs1∩s2(ξ) = 0} (8)

Smooth spin-QSIC
The case when two spin-QSICs are smooth is more

involved. First, we make an observation that the spin-QSIP
determinant is the same if we consider intersection of Γ1(ξ)
and Γ2(ξ) instead of s1(ξ) and s2(ξ). Now, we follow a
method proposed by Hemmer [36]. The method used for
rational spin-QSIC does not work for smooth case because
we obtain a spin-QSIP determinant with a square root. Since,
we want to get a univariate determinant polynomial we use
different method. We use the fact that:

(QS ∩QT ) ∩QU = (QS ∩QX) ∩QU
= (QX ∩QS) ∩ (QX ∩QU )

so, it is possible to utilize the same parametrization on QX
twice and get a common parameter space (ξ, τ) ∈ P1 × P1.
In our practical implementation, we first intersect QS and
QT to obtain the first intersection and QX quadric as a by-
product. Then, we intersect QX with QU . Since, the QX
is already a ruled quadric, the algorithm of Dupont et. al.
chooses the QX as the parametrization and in result, we get
the second intersection in the correct parametrization. From
(6), we know that Γ1(ξ) is the zero set of the biquadratic
polynomial

γ1(ξ, τ) = Γ1(ξ, τ)TXΓ1(ξ, τ)

= a2(ξ)τ2 + a1(ξ)τ + a0(ξ) (9)

where
τε(ξ) = (2a0(ξ),−a1(ξ) + ε

√
∆) (10)

The second curve Γ2(ξ) is the zero set of

γ2(ξ, τ) = Γ2(ξ, τ)TXΓ2(ξ, τ)

= b2(ξ)τ2 + b1(ξ)τ + b0(ξ) (11)

A standard approach for solving multi-variable system of
equations is a method of resultants. We eliminate τ variable
and obtain:

res(ξ) = resultant(γ1, γ2, τ) (12)

= u02(ξ)2 − u01(ξ)u12(ξ)

where uij = aibj−ajbi. In case of a smooth spin-QSIC, the
determinant polynomial is:

hs1∩s2(ξ) = res(ξ)

where res(ξ) is defined as in (12). There are at most 8 roots
of res(ξ). Because of the fact that spin-QSIC parametrization
includes the square root, we have to discard all complex
solutions (a negative value under the square root sign). Since,
there are always two arcs of a smooth spin-QSIC, we include
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the correct arc identifier ε = ±1 along with each of the spin-
QSIP points. We use the following theorem 8 from [37] to
distinguish both complex intersections and correct arcs of
spin-QSICs.

Theorem 2 (Hemmer). Let γ1, τε, γ2 and res 6= 0 be defined
as in the equations (9), (10), (11) and (12) respectively. And
let ξ0 denote a real root (if any) of res. Moreover, let τε(ξ)
be a valid parametrization for ξ0, that is, ξ0 is not a root of
a0(ξ).

There are 3 cases:
1) ∆(ξ0) < 0: ξ0 corresponds to two complex intersection

points
2) ∆(ξ0) = 0: ξ0 corresponds to a real endpoint of both

arcs
3) ∆(ξ0) > 0:

• If u01(ξ0) 6= 0, then ξ0 corresponds to one
real intersection point on arc Γε(ξ), with ε =
−sign(u01)sign(2a0u02 − a1u01)|ξ0

• If u01(ξ0) = 0, then ξ0 corresponds to two real
points, one on each arc

The next step is to locate real roots of spin-QSIP deter-
minant.

Real root isolation
Since we are dealing with polynomials of the degree up

to 8, we cannot use any formula for root computation. A
commonly used approach is real root isolation. The basic
principle is to give a list of non-overlapping intervals in
which, there is a single root. The polynomial sign has
to be opposite in both ends of the interval. In particular,
it entails that the polynomial is square-free. We can not
compute the exact root, but it is simple to refine root to
an arbitrary floating point precision by the Descartes rule of
signs (the bisection method). A classical description of this
method gives Uspensky [38]. Hemmer [36] uses a variant of
bisection method called bitstream Descartes by Eigenwillig
et al. [39]. During the research, we came to the conclusion
it is a bottleneck in our algorithm, thus we follow a different
approach. There exist an algorithm of Akritas [40] which was
shown in [41] to be far more efficient than the best known
bisection method by Rouillier [42]. Akritas method is based
on continued fractions. Due to a limited space, we will not
describe the details of this method. An implementation is
available in Mathemagix [43] in the realroot module. We
extended the existing implementation to support coefficients
of type Q(

√
δ). Our tests show that the Akritas method is

about over a dozen times faster than the method of Uspensky
and a few times faster than Rouillier’s method.

III. IMPLEMENTATION AND TESTING

A. New algorithm in contrast to Hemmer’s algorithm

Hemmer [36] proposed a complete algorithm for comput-
ing an intersection graph of quadrics in R3. The algorithm
uses QI library for quadric intersection. There are similar-
ities and differences between our proposed algorithm and
Hemmer’s algorithm. It is presented in table I. Note: n is a
number of quadrics in an arrangement.

Some of the procedures described in Hemmer algorithm
exist in the new algorithm. Some of these were reimple-
mented with new algorithm to improve overall performance.

TABLE I
COMPARISION OF THE NEW ALGORITHM AND HEMMER’S ALGORITHM

Property Motion planning in SO(3) Hemmer
Topology Spin(3) R3

Dimension 4 3
Constraints 1 0

Objects quadrics in Spin(3) quadrics in R3

Running time O(n3log(n)) O(n3log(n))

These include: an improved algorithm for polynomial root
isolation and a method of determining a polynomial sign at
a given point.

Currently, the implementation of Hemmer’s algorithm is
still not publicly available. Is is a part of Exacus project.

B. Triangle scenes or ball-only scenes

There are several reasons that ball-only scenes can be
chosen instead of triangle scenes. In some usages a ball
geometry is simply more natural than a triangulated one. We
have tested various scenes: triangulated by design, ball-only
scenes by design and scenes for which a sphere approxi-
mation was automatically generated by means of algorithm
[44]. A general observation is that the complexity of the
configuration space of ball-only scenes is usually lower.
For a triangular scenes, there are a lot of small pieces of
configuration space defined by every single S predicate.
These fragments rarely overlap. Also, many surfaces are
unnecessarily generated in triangle scenes.

We have collected the list of advantages of ball-only scenes
over triangle scenes:
• much fewer predicates are needed, so the running times

are better
• much fewer spin-surfaces are generated, because larger

areas are defined by a single BB predicate
• duplicated surfaces are rare (by design)
• sphere-trees can be used to adaptive computations
• a BB predicate can enclose many T T predicates - it

can be used as a faster method of approximation, but
still triangles can be used as well

• it may simply be useful to describe a scene by balls
only (for the safety of the mechanical tools used)

On the other hand, there are also a few disadvantages of
using ball-only scenes:
• precise and mostly linear scenes are not suitable for

ball-only scenes
• with a BB predicate, one can not design a flat geometry

which is possible with T T predicates
Several good algorithms for sphere-tree construction have

been developed, as in [45], [46] and [44]. The latter one, was
used by us in our tests.

C. Implementation

All presented results were implemented in the author’s
library libcs. The library is designed in a generic fashion, so
the most of underlying algorithms can be parametrized by
different number types. The bottom layer of the library is
CGAL [16] on top of which a spin kernel is introduced. For
a number type we employ bigint type from LiDIA library
[47], because the libqi [29] library requires that. Internally,
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Fig. 8. An example projection of Spin(3) configuration space contents

Fig. 9. libcs running times

LiDIA’s bigint type is implemented with GMP [15] library,
as most of similar solutions. Spin kernel extends CGAL’s
Cartesian kernel with a Filtered kernel on top of it.

The libcs class diagram is depicted in figure 7.
We also implemented a visualization application, which

can display configuration spaces with their contents. An
example configuration space is presented in figure 8.

During our research, we have tested many different scenes
for the correctness of our implementation. At the same time,
we have to note, our algorithm is not sensitive to any specific
nature of a scene. Because of that, for the performance
tests, we just use random scenes with the desired triangle
or ball count. The running times are presented in plot 9. The
implementation was tested on a Linux 3.2.0-3-amd64 SMP
on a 2.40 GHz processor with 4 GB RAM and compiled
with g++ 4.7.1.

D. The proposed algorithm is output-sensitive

We proved that it is possible to construct a simple test,
indicating whether a pair of a stationary and a rotating
triangle induce any geometry in the configuration space. As
a result of this, our new algorithm is preceded by a this test
for all triangle pairs, giving out a minimum list of predicates
that we have to consider to go get the complete configuration
space.

We start with the following lemma, for T T scenes:

Lemma 2 (Configuration space geometry). Triangle-triangle
predicate or ball-ball predicate generate non-empty geometry
in configuration space if and only if the intersection of the
sweep volume of a rotating object f and a stationary object

g is not empty:
sweep(f) ∩ g 6= ∅

Proof: If the sweep volume of rotating object intersects
a stationary object, there exist a subset U ∈ Spin(3) of rota-
tions Rs of the rotationg object that causes the intersection.
The border ∂U is a part of the border of configuration space
∂U ∈ ∂Cfree and thus, is included.

Depending on scene type, we have two different tests for
sweep volume intersection. In both, we use the previous
lemma.

Proposition 6 (T T predicate inclusion test). A
T T (K,L,M,A,B,C) predicate for a rotating triangle
f = ABC and a stationary triangle g = KLM shall
be included in configuration space computations if the
following holds:

intersect ball triangle(f,Bmax(g))∧
(gK > rmin(f) ∨ gL > rmin(f) ∨ gM > rmin(f))

where

rmin(f) = min(‖fA‖, ‖fB‖, ‖fC‖)
rmax(f) = max(‖fA‖, ‖fB‖, ‖fC‖)

Bmin(f) = B(0, rmin(f))

Bmax(f) = B(0, rmax(f))

and intersect ball triangle is a routine testing for a ball
and a triangle intersection.

Proof: From lemma 2 we have:

sweep(f) ∩ g 6= ∅

we can rewrite the above constraint as:

sweep(f) ∩ g 6= ∅ ⇐⇒
(Bmax(f)\Bmin(f)) ∩ g 6= ∅ ⇐⇒

((Bmax(f) ∩ g)\(Bmin(f) ∩ g)) 6= ∅ ⇐⇒
(Bmax(f) ∩ g 6= ∅) ∧ ¬(Bmin(f) ∩ g 6= ∅) ⇐⇒

(Bmax(f) ∩ g 6= ∅) ∧ (Bmin(f) ∩ g = ∅) ⇐⇒
intersect ball triangle(g,Bmax(f))∧

(gK > rmin(f) ∨ gL > rmin(f) ∨ gM > rmin(f))

The routine intersect ball triangle is taken from [48]
and generalized to support arbitrary number type. All com-
putations are performed in the number ring (no divisions
and no square roots). In figure 10 a schematic view of T T
inclusion test is depicted.

For a ball-only scene, we prove the following theorem:

Proposition 7 (BB predicate inclusion test). A
BB(B, l, A, r) predicate for a rotating ball f = B(A, r)
and a stationary ball g = B(B, l) shall be included in
configuration space computations if the following holds:

(lhs ≤ 0) ∨ (lhs2 ≤ rhs)

where

lhs := ‖A‖2 + ‖B‖2 − (r + l)2

rhs := 4‖A‖2‖B‖2
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Spin_kernel_3

Spin_exact_graph_3

Spin_configuration_space_3

Predicate_bb_3

Spin_quadric_3

Spin_3

Spin_qsip_3

«datatype»
RT

«datatype»
FT

Predicate_h_3

Predicate_s_3

Predicate_tt_3

Spin_qsic_3

Predicate_bb_3_list_generator

Spin_qsip_point_3

Predicate_g_3

Predicate_tt_3_list_generator

Diagram: diagram klasy Strona 1Fig. 7. libcs class diagram

Fig. 10. T T predicate inclusion test

Proof: From lemma 2 we have:

sweep(f) ∩ g 6= ∅

we can rewrite the above constraint as:

sweep(f) ∩ g 6= ∅ ⇐⇒
(‖A‖ − r ≤ ‖B‖+ l) ∧ (‖A‖+ r ≥ ‖B‖ − l) ⇐⇒

(‖A‖ − ‖B‖ ≤ r + l) ∧ (‖A‖ − ‖B‖ ≥ −r − l) ⇐⇒
(‖A‖ − ‖B‖ ≤ r + l) ∧ (−(‖A‖ − ‖B‖) ≤ r + l) ⇐⇒

|‖A‖ − ‖B‖| ≤ r + l ⇐⇒
‖A‖2 + ‖B‖2 − 2‖A‖‖B‖ ≤ (r + l)2 ⇐⇒
‖A‖2 + ‖B‖2 − (r + l)2 ≤ 2‖A‖‖B‖ ⇐⇒

lhs := ‖A‖2 + ‖B‖2 − (r + l)2

rhs := 4‖A‖2‖B‖2

the last inequality holds iff lhs ≤ 0 or lhs2 ≤ rhs.
Once again, in the test all computations are performed in

the number ring (no divisions and no square roots). In figure
11 a schematic view of BB inclusion test is depicted.

IV. CONCLUSION AND FUTURE WORK

We have shown that by using some latest algorithms
related to 3D arrangement of quadrics, we are able to
construct an exact configuration space for a motion involving

Fig. 11. BB predicate inclusion test

3D rotations. Such an algorithm allows one to construct
motion planning algorithms of a new class, currently solved
only in an approximate way. The algorithm can also be a
part of more complex algorithm for motion planning with
more than three degrees of freedom. The presented algorithm
currently does not support the removal of duplicated features
(edges and vertices), as in Hemmer’s algorithm. It also does
not support polyhedra with its interior included. We are going
to address these additional features in our further research.
Finally, it should be noted that it is possible to extend the
structure of the configuration space by introducing cells in
the arrangement. There has already been some progress done
for arrangements of quadrics in R3. Examples include [49]
and [50]. This task is one of the subjects of the author’s
further work.
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