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Abstract—The extraction and tracking of the vessels and their 
centerlines of coronary artery vessels in 2D and 3D angiograms 
has been vital part of many clinical analysis studies. This paper 
presents a new approach to extract the centerlines of vessels 
using novel center of gravity equations. The new equations 
depend on the intensity value as their main factor to track the 
vessels and by applying the center of gravity technique it can lead 
to centerline extraction. The new algorithm is called New Center 
of Gravity (NCOG). NCOG algorithm consists of four stages. 
First stage is angiogram partitioning using Recursive data 
structure technique. The second stage is to calculate the gray 
pixels in each partition and compare them with a threshold value 
(T). The third stage is center of gravity (COG) calculation. The 
fourth and last stage is connecting the final COG points by lines. 
The algorithm using the new COG equations were applied on a 
raw of clinical data and the results showed high robustness in 
extract the centerlines of vessels. We can conclude that our 
approach is robust, time saving, and helpful tool in surgery 
management and scientific researches.  
 

Index Terms—Angiogram, coronary artery, vessel extraction, 
vessel centerline extraction, center of gravity. 
 

I. INTRODUCTION 

oronary angiograms are performed to guide physicians 
in the medical diagnosis and treatment of cardiac patients. 

Important advances in coronary angiography have been 
brought about with the help of medical imaging techniques 
such as biplane angiography and digital subtraction 
angiography (DSA), according to Baim [4].  
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Blood vessel delineation on medical images forms an essential 
step in solving several practical applications such as diagnosis 
of the vessels (e.g., stenosis or malformations) and registration 
of patient images obtained at different times. Veins and 
arteries have many observable features, including diameter, 
color, tortuosity (relative curvature), and opacity (reflectivity). 
Artery-vein crossing and patterns of small vessels can also 
serve as diagnose indicators. An accurate delineation of the 
boundaries of blood vessels makes precise measurements of 
these features possible. These measurements may then be 
applied to a variety of tasks, including diagnosis, treatment 
evaluation, and clinical study, according to Baim [4]. The 
vessel extraction is a vital process in nowadays medical 
images. The extraction or tracking of blood vessels have been 
needed a lot in scientific researches, diseases diagnosing, and 
surgery planning. Therefore, the object detection plays an 
important role in many image processing problems such as 
Khalil et al. [9]. Examples from medical imaging are marker 
recognition and leukocyte tracking. In remote sensing, tasks 
like automatic target recognition and delineation of particular 
areas are essential object recognition tasks, [19]. 

There has been a considerable amount of work done on the 
enhancement and extraction of curvilinear structures from 2D 
medical images, most of which has focused on the extraction 
of a specific anatomical structure from a specific imaging 
modality—for example, cerebral blood vessels from magnetic 
resonance angiography (MRA) images [20] and bronchial 
trees from lung CT images [14]. From the clinical point of 
view, digital subtraction angiography (DSA), which subtracts 
X-ray images without contrast material from X-ray 
angiograms, is currently regarded as the most reliable and 
accurate method of vascular imaging. However, MRA [17] is 
seen as a potential alternative to DSA. CT angiography and 
conventional magnetic resonance imaging (MRI) can also be 
used for vascular imaging, [18].  

Surgical and interventional radiology procedures often 
involve the visualization and quantification of vessels, 
bronchi, bowels, ducts, or nerves in two-dimensional (2-D) 
and three-dimensional (3-D) medical data. These and other 
anatomic objects are tubular, i.e., they have nearly circular 
cross sections, smoothly varying radii, and possibly follow 
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tortuous paths and branch. Clinical applications involving 
tubular anatomy in magnetic resonance angiogram (MRA), X-
ray computed tomography (CT), and 3-D ultrasound data 
include shunt length specification, virtual colonoscopy flight-
path control, embolization planning, stenosis detection, 
radiation therapy treatment planning, and MRA/digital 
subtraction angiogram registration for intraoperative guidance. 
Compared to edge identification which is generally performed 
using small-scale measures, centerline identification can be 
performed by integrating over a large extent of a tubular 
object and, therefore, may be less sensitive to image noise, [3]. 

Detection of objects can be performed by approaches such 
as the Hough Transform, (non-) linear filters, or by pattern 
recognition techniques such as neural networks or support 
vector machines, [19]. Object recognition can also be 
performed by detecting the object boundaries, e.g., by 
dynamic programming or snakes. Most of these methods give 
as a result the most likely central pixel of each detected object, 
either directly by means of a filter response or indirectly by 
means of the centroid of all points on the boundary contour. 
When the positions of the objects need to be known with sub-
pixel precision, an accurate and robust estimate can be 
obtained by computing its center of gravity, [19]. 

In this paper, we are going to show the way of coronary 
artery extraction by extracting the centroid using new center of 
gravity equations. The Center of Gravity (CoG) is a popular 
technique in a variety of fields [1, 15, 12], due to its ability to 
simplify the data of an object. We first divide the image 
(angiogram) into four partitions using Recursive data structure 
technique. Afterwards we calculate the number of gray scale 
points for each partition. If the number was greater than or 
equal to a specific threshold value (T), then we apply recursive 
technique again for that partition, or else we calculate the 
COG point for the specific partition. The COG used to be 
calculated using conventional equations, in this paper we 
improve new equations to work with medical images. After 
getting the COG points for the whole angiogram, we connect 
those CoGs by lines. The output shape of lines will represent 
both the coronary artery tree plus the centerline of the vessel 
because we extracted the COG points of the vessels using our 
new equations. The results showed that using our new 
equations could give more accurate output comparing to the 
conventional one. 

II.  Methods 

The proposed methodology of the CoG algorithm achieved 
success by introducing four main steps to extract the CoG 
points from the masked gray scale angiograms. The first step 
is to mask the plain angiogram images to extract only the 
coronary arteries in gray scale format. The second step is to 
recursively divide the image into four equal partitions. The 

third step, and by the end of the recursive division process, is 
to calculate the number of points (NoP) for each partition. In 
the fourth step, the NoP for each partition is compared to a 
threshold value (T) that is set by the user. If NoP ≥ T in the 
current partition, then the partition is recursively divided or 
else a CoG point is calculated. The calculation of the CoG of 
the points is done using two new proposed mathematical 
equations. Finally, after the calculation of all the CoGs for the 
entire angiogram, they will be linked by lines. Linking the 
CoGs by lines is a process to construct the same original 
coronary artery tree but using only the centerlines. In other 
words, the CoGs will be located at the center of the arteries in 
the final partitions of the divided angiogram. Therefore, 
linking these CoGs together will visualize the coronary 
arteries again but only by the centerlines. Therefore, it is a 
good approach to extract the centerlines of coronary arteries. 
The following subsections of the proposed methodology give 
the details of the four main steps; however, a brief description 
regarding the use of CoG technique for real objects is 
presented first.  

A. Center of Gravity in Real Objects 
The definition of a Center of Gravity (CoG) is the source of 

power that provides moral or physical strength, freedom of 
action, or will to act, [16], thus, the center of gravity is usually 
seen as the source of strength. The center of gravity (CoG) of 
an object is the average location of its weight. In physics, 
the center of gravity of an object is a point at which the 
object's mass can be assumed, for many purposes, to be 
concentrated. For example, if you hang an object from a 
string, the object's center of gravity will be directly below the 
string. The path of an object in orbit depends only on its center 
of gravity. Most astronomical objects are radially symmetric, 
causing both the center of gravity and the center of mass to 
coincide at the center of the sphere. 

The center of gravity or CoG of an aircraft is the point at 
which the entire weight of the aircraft is assumed to be 
concentrated and at which point the aircraft would balance if 
suspended there, [6]. The center of gravity of a collection of 
masses is the point where all the weight of the object can be 
considered to be concentrated. If (xcg,ycg) are the coordinates 
of the center of gravity of a collection of point masses m1 , m2 , 
etc, located at coordinates ( x1,y1 ), ( x2,y2 ), respectively, as it 
was reported by Armes [2]:  

ሺ݉1	 ൅ 	݉2	൅	. . ሻ݃ݔcog		 ൌ 	1ݔ1݃݉ ൅ 2ݔ2݃݉	 ൅⋯			ሺ1ሻ 

ሺ݉1	 ൅ 	݉2	൅	. . ሻ݃ݕcog ൌ 	1ݕ1݃݉ ൅ 	2ݕ2݃݉	 ൅ ⋯				ሺ2ሻ 

    solving for the x -coordinate of the center of gravity: 

ܺcog ൌ 	
∑ ௡݅ݔ	݅݉
௜ୀଵ

∑ ݉݅௡
௜ୀଵ

																																																														ሺ3ሻ 
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similarly, the y-coordinate of the center of gravity is:   

ܻcog ൌ 	
∑ ௡݅ݕ	݅݉
௜ୀଵ

∑ ݉݅௡
௜ୀଵ

																																																													ሺ4ሻ 

For real objects, the center of gravity could be calculated 
using specific equations. Let's use the example of two kids on 
a see-saw. The see-saw by itself weighs 30lbs. Since the see-
saw is a symmetrical object, the CoG of the empty see-saw 
will be exactly in the center of symmetry. So, to calculate CoG 
in this example: 
(1) Calculate the weight of the basic object. 
(2) Calculate the additional weights. 
(3) Choose a starting point. 
(4) Measure the distances. 
(5) Multiply each distance by the respective weight. 
(6) Add the weights of all the objects. 
(7) Divide the total moment by the total weight. 

To find the CoG of a 2D object, use Eq. (5) to find the CoG 
along the x-axis and Eq. (6) to find the CoG along the y-axis, 
where W is represents the weight. The point at which they 
intersect is the center of gravity. 

݃݋ܿܺ ൌ
∑ ሺ݅ݔ ∗ ܹ݅ሻ௡
௜ୀଵ

∑ ܹ݅௡
௜ୀଵ

																																																							ሺ5ሻ 

݃݋ܻܿ ൌ
∑ ሺ݅ݕ ∗ ܹ݅ሻ௡
௜ୀଵ

∑ ܹ݅௡
௜ୀଵ

																																																							ሺ6ሻ 

The definition for center of gravity of a general mass 
distribution is (∫ r dW/∫ dW) where dW is the differential of 
weight, r is the position vector and the integrals are to be 
interpreted as Stieltjes integrals over the entire body. They can 
however be expressed as more conventional Riemann or 
Lebesgue volume integrals for distributions that admit a 
density function, [8]. 

B. Center of Gravity in Images 
For the center of gravity in images, it has been used rarely 

especially in medical images since the equations above need to 
be improved so they can fit with images. Dealing with images 
is different from dealing with real objects. In [19], an 
algorithm was used to locate objects in gray scale images 
using the center of gravity measures. They have studied the 
behavior of the (weighted) center of gravity measure as a 
function of additive noise present in the gray value image. 
Furthermore, they analyzed the influence of applying a 
threshold to the gray value image (which determines the 
weighing scheme) for a possible bias and variance of the 
center of gravity measure. The decision whether to apply a 
threshold to the gray value image or not, is basically a choice 
between accuracy and precision [Van Assen et al. (2002)]. In  

order to find the best estimate for the center of gravity in a 
gray level image, a threshold should in general be applied to 
(the local neighborhood in) the image before calculating a 
center of gravity measure. The variance equation in the work 
makes it possible to estimate the trade-off between accuracy 
and precision, in the presence of noise [19]. 

In medical images and especially angiograms, upon which 
our method was built, we designed new equations to solve the 
problem. Vessel extraction has been taken a wide space in the 
medical articles since long time ago. But in this paper we 
present a new method to extract the vessels by extracting the 
centroid. CoG could be calculated using few equations as we 
said before. In Eq. (5) and Eq. (6), W represented the weight 
of the real object. Meanwhile, the weight could be omitted in 
Eq. (7) and Eq. (8) below. The x-axis in Eq. (7) or y-axis in 
Eq. (8) represents the main factor in the equations to calculate 
the CoG. 

݃݋ܿܺ ൌ
∑ ௡݅ݔ
௜ୀଵ

݊
																																																																						ሺ7ሻ 

݃݋ܻܿ ൌ
∑ ௡݅ݕ
௜ୀଵ

݊
																																																																						ሺ8ሻ 

We tried to apply Eq. (7) and Eq. (8) in our work to 
calculate the CoG in angiograms. In a previous algorithm [10, 
11], we could reconstruct the 3D coronary artery tree but we 
had limitation which was the 3D object was represented as 
points in the 3D space. This led us to think of a way to connect 
the points of the vessels in 2D which can lead to connect those 
clouds of points in 3D in the future. We have designed the 
algorithm in this paper to connect the points of CoGs in 2D. 
Since we are dealing with huge data of coronary artery pints; 
therefore, it needs to construct a new data structure algorithm 
to connect these data. Our way to solve this problem is to use 
CoG technique. Using the conventional equations could give 
us some results to calculate CoG; however, studying the 
algorithm that was presented by Van Assen et al. [19], could 
sparkle in our mind proposing the new equations. Our new 
equations (Eq. (9) and Eq. (10)) involve the intensity value to 
be the main factor of calculating CoG;  

݃݋ܿܺ ൌ
∑ ∑ ൫݅ ∗ ݃ሺ݅, ݆ሻ൯௬ଶ

௝ୀ௬ଵ
௫ଶ
௜ୀ௫ଵ	

∑ ∑ ݃ሺ݅, ݆ሻ௬ଶ
௝ୀ௬ଵ

௫ଶ
௜ୀ௫ଵ

																																									ሺ9ሻ 

݃݋ܻܿ ൌ
∑ ∑ ሺ݆ ∗ ݃ሺ݅, ݆ሻሻ௬ଶ

௝ୀ௬ଵ
௫ଶ
௜ୀ௫ଵ	

∑ ∑ ݃ሺ݅, ݆ሻ௬ଶ
௝ୀ௬ଵ

௫ଶ
௜ୀ௫ଵ

																																							ሺ10ሻ 

where ܺ௖௢௚ is the x-coordinate of a CoG point and ௖ܻ௢௚ is the 

y-coordinate of the CoG. ݔଵ and ݔଶ are the limits of a partition 
in the x-axis, ݕଵ and ݕଶ are the limits of the partition in the y-
axis, and ݃  is the intensity value of pixels. The term 
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∑ ∑ ሺ݅ ∗ ݃ሺ݅, ݆ሻሻ௬ଶ
௝ୀ௬ଵ

௫ଶ
௜ୀ௫ଵ	  indicates two summations and two 

limits. The first summation ∑ 	௫ଶ
௜ୀ௫ଵ	  shows the x-axis limits of 

a partition and the second ∑ 	௬ଶ
௝ୀ௬ଵ  shows the y-axis limits of 

the same partition under consideration. Then the term 
ሺ݅ ∗ ݃ሺ݅, ݆ሻሻ, where i is the x-axis factor and g(i,j) is the gray 
scale value for vessel inside that partition. If the gray scale 
value is zero, the background, then the output will be zero. 
Therefore, no CoG will exist in this case, which means we are 
tracking the vessels down in the angiogram and not going for 
the parts that have no vessels. Then the term 

∑ ∑ ݃ሺ݅, ݆ሻ௬ଶ
௝ୀ௬ଵ

௫ଶ
௜ୀ௫ଵ  which gets the summation of all gray scale 

values in that partition. Same for the y-axis of CoG point 

∑ in the term ,(݃݋ܻܿ) ∑ ሺ݆ ∗ ݃ሺ݅, ݆ሻሻ௬ଶ
௝ୀ௬ଵ

௫ଶ
௜ୀ௫ଵ	 , the j is y-axis 

factor and g(i,j) is the gray scale value for vessel inside that 
partition. 

The results of the CoG calculations using the conventional 
equations on our masked angiogram data were inaccurate as 
will be shown later in the results and their discussions. The 
new Eq. (9) is to calculate x-coordinate of the CoG point and 
Eq. (10) is to obtain the y-coordinate, i.e., (xcog, ycog). The new 
equations include the intensity value of a pixel to extract the 
CoGs. As mentioned earlier, the intensity value element in the 
new equations will track down the gray scale arteries until the 
end of the angiogram and then stop. If, say g(i, j) is the 
intensity value for a pixel located in row ‘i’ and column ‘j’, 
with ݔଵand	ݔଶ being the limits of the x-axis in the partition, 
and ݕଵand	ݕଶ are the y-axis limits in the same partition, then 
∑ ∑ ݃ሺ݅, ݆ሻ௬మ

௝ୀ௬భ
௫మ
௜ୀ௫భ

 represents the summation of all intensity 

values in the entire partition. The proof of the correctness of 
Eq. (9) and Eq. (10) is by generalizing them from the 
conventional equations (Eq. (7) and Eq. (8)). The proof of the 
generality of the new equations (Eq. (9) and Eq. (10)) is 
shown as follows. 

Theorem 1. The new equations (Eq. (9) and Eq. (10)) are 
not general forms of the conventional equations (Eq. (7) and 
Eq. (8)). 

 
Proof. Let us assume that the value of ݃ሺ݅, ݆ሻ 	ൌ 	1 for all 

rows ‘i’ and columns ‘j’ in the image. If we substitute this into 
the new equations, i.e., Eq. (9) and Eq. (10), we obtain the 
equations: 

ܺ௖௢௚ ൌ
∑ ∑ ሺ݅ ∗ ሺ1ሻሻ௬మ

௝ୀ௬భ
௫మ
௜ୀ௫భ	

∑ ∑ ሺ1ሻ௬మ
௝ୀ௬భ

௫మ
௜ୀ௫భ

																																										ሺ11ሻ 

௖ܻ௢௚ ൌ
∑ ∑ ሺ݆ ∗ ሺ1ሻሻ௬మ

௝ୀ௬భ
௫మ
௜ୀ௫భ	

∑ ∑ ሺ1ሻ௬మ
௝ୀ௬భ

௫మ
௜ୀ௫భ

																																										ሺ12ሻ 

Let us assume that the limits of a partition in the x-axis are 
between 1 and n, i.e., ݔଵ ൌ 1  and ݔଶ ൌ ݊ . The numerator 

∑ ∑ ሺ݅ ∗ ሺ1ሻሻ௬మ
௝ୀ௬భ

௫మ
௜ୀ௫భ	

 of Eq. (11) has two summations for both 

the x and y limits of a partition. After the substitution of the 
ଵݔ ൌ 1 and ݔଶ ൌ ݊ assumption and with a little algebra, the 
equations become as follows: 

 ∑ ∑ ሺ݅ ∗ ሺ1ሻሻ௬మ
௝ୀ௬భ

௡
௜ୀଵ	                         ∑ ∑ ݅௡

௜ୀଵ
௬మ
௝ୀ௬భ	

        

                ∑ ݅௡
௜ୀଵ                     ∑ ݊௡

௜ୀଵ  
As for the denominator of Eq. (11), with a little algebra it 

becomes as follows: 
∑ ∑ ሺ1ሻ௬మ

௝ୀ௬భ
௫మ
௜ୀ௫భ

                  ∑ 1 ൌ ݊௡
௜ୀଵ    

We rewrite Eq. (11) after substituting the newly obtained 
numerator and denominator above: 

ܺ௖௢௚ ൌ
∑ ݊௡
௜ୀଵ

݊
																																																																	ሺ13ሻ 

Let us say ݊ ൌ  :, then Eq. (13) will become as follows	௜ݔ

ܺ௖௢௚ ൌ
∑ ௜ݔ
௡
௜ୀଵ

݊
																																																															ሺ14ሻ 

We can conclude now that Eq. (14) is identical with Eq. (7), 
which means that the new Eq. (9) is a general form of the 
conventional Eq. (7). Since this violates our assumption of 
Theorem 2.1., therefore, our assumption is wrong and the new 
Eq. (9) is indeed a general form of the conventional Eq. (7). 

The same applies to the Eq. (12) in Theorem 2.1., the 
substitution and algebra simplification are as follows: 

Let us assume that the limits of a partition in the y-axis are 
between 1 and n, i.e., ݕଵ ൌ 1  and ݕଶ ൌ ݊ . The numerator 
∑ ∑ ሺ݆ ∗ ሺ1ሻሻ௬మ

௝ୀ௬భ
௫మ
௜ୀ௫భ	

 of Eq. (12) has two summations for both 

x and y limits of a partition. After the substitution of the 
ଵݕ ൌ 1  and ݕଶ ൌ ݊  assumption and with a little algebra, it 
becomes such as the following: 

 ∑ ∑ ሺ݆ ∗ ሺ1ሻሻ௡
௝ୀଵ

௫మ
௜ୀ௫భ	

                   ∑ ∑ ݆௡
௝ୀଵ

௫మ
௜ୀ௫భ	

        

                ∑ ݆௡
௝ୀଵ                     ∑ ݊௡

௝ୀଵ  

As for the denominator of Eq. (12), with a little algebra it 
becomes as follows: 
∑ ∑ ሺ1ሻ௬మ

௝ୀ௬భ
௫మ
௜ୀ௫భ

                  ∑ 1 ൌ ݊௡
௝ୀଵ    

We rewrite Eq. (12) after substituting the newly obtained 
numerator and denominator above: 

௖ܻ௢௚ ൌ
∑ ݊௡
௝ୀଵ

݊
																																																																				ሺ15ሻ 

Let us say ݊ ൌ  :, Eq. (15) will become as follows	௝ݕ

ܺ௖௢௚ ൌ
∑ ௝ݕ
௡
௝ୀଵ

݊
																																																										ሺ16ሻ 

We can conclude now that Eq. (16) is identical with Eq. (8), 
which means that the new Eq. (10) is a general form of the 
conventional Eq. (8). Since this violates our assumption of 
Theorem 2.1., therefore, our assumption is wrong and the new 
Eq. (10) is indeed a general form of the conventional Eq. (8). 
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We expected the new equations to give more robust and 
better results than the conventional equations after proving by 
Theorem 2.1. that the new suggested equations are general 
forms of the conventional equations. The question that might 
be raised at this point could be why do we expect better results 
from the new mathematical equations? The answer to this 
question is because of the new element that was included in 
the new equations, which is the intensity value. The 
conventional equations involved calculating the CoG 
coordinates from the average of all the pixels inside a partition 
or subparts no matter where their locations are within that 
partition. However, the new equations would track down the 
gray scale arteries, taking advantage of the intensity element 
in the equations, and always calculate the exact coordinates of 
the centroids. The results regarding the efficient behaviour of 
the new equations over the conventional equations will be 
shown later in the results section. Three assumptions will be 
discussed later to prove the robustness of the new equations 
over the conventional equations.  

Both of the new suggested mathematical equations are 
responsible for calculating the CoG of the gray scale arteries 
in the masked angiograms. The equations are to extract the x 
and y coordinates of the centroids. The importance of 
suggesting the new equations is to calculate more accurate 
CoGs than the conventional equations. The conventional 
equations averaged the pixel values in the rows and columns 
to calculate the xcog and ycog respectively. However, the 
suggested equations in this chapter included the intensity 
value, which we expect it to extract more accurate results, as 
will be shown later in the experiments, results and discussion 
section. Therefore, the new equations will be used to calculate 
the CoGs for the work of this paper upon proving their 
correctness in Theorem 2.1. before and after the three 
assumptions that will be discussed later. The creation of the 
new equations helped to achieve the advantages of calculation 
of CoGs at the exact centers of the gray scale arteries and the 
calculation of the CoGs in an artery will continue until the end 
of the artery and will stop once the artery has disappeared 
from the angiogram. Fig. 1 illustrates a synthetic vessel with 
the calculated CoGs located at the center of the artery. 

 
 
 
 
 
 
 
 
 
 
 
 

C. NCoG Algorithm 
In this step of the methods, we present the whole flowchart 

of our new method to extract the arteries centerlines, as shown 
in Fig. 2. The method involves coronary artery centroid 
extraction using CoG technique. The steps of the method are 
as follows: 
(1) Mask the input plain angiogram, 
(2) Recursive division of the masked angiogram, 
(3) For each partition, find the Number of Points (NoP), 
(4) If (NoP ≥ T) - T is a threshold value – repeat steps 2 and 3, 

else go to step 5, 
(5) Calculate CoG point of the partition or subpart, 

(6) Once steps 2, 3, 4, and 5 are done for all angiogram’s 
partitions and subparts, the calculated CoGs will be linked by 
lines according to Nearest Neighbor (NN) technique. Finally, 
the linked CoGs are displayed. The display stage is to 
visualize the extracted CoGs as one complete coronary artery 
tree. 

 
D.  NCoG Algorithm 
In this step of the methods, we present the whole flowchart 

of our new method to extract the arteries centerlines, as shown 
in Fig. 2. The method involves coronary artery centroid 
extraction using CoG technique. The steps of the method are 
as follows: 
(1) Mask the input plain angiogram, 
(2) Recursive division of the masked angiogram, 
(3) For each partition, find the Number of Points (NoP), 
(4) If (NoP ≥ T) - T is a threshold value – repeat steps 2 and 3, 

else go to step 5, 
(5) Calculate CoG point of the partition or subpart, 
(6) Once steps 2, 3, 4, and 5 are done for all angiogram’s 
partitions and subparts, the calculated CoGs will be linked by 
lines according to Nearest Neighbor (NN) technique. Finally, 
the linked CoGs are displayed. The display stage is to 
visualize the extracted CoGs as one complete coronary artery 
tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Synthetic vessels with CoGs located at the center. 
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Fig. 3.  Masking process in angiograms. 
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Masking  

Image processing has many important techniques and 
operations, and masking is one of these processes. The 
masking is a thresholding process that can isolate some 
features (the foreground) and remove others (the background) 
in order to highlight some objects from the whole image. For 
example, masking an image to include only pixels with values 
≥ 100 and remove others. Therefore, the masking can be done 
generally by isolating some features which are below, equal, 
or above a specified pixel value. As it was explained by Luft 
et al. [13], the masking process isolates the boundaries of 
objects under consideration and slightly darkens the 
background to make the objects lighter. Since the masking 
process can be done manually by detecting objects in an 
image and isolate them; therefore, masking can be a semi-
automatic operation. Medical images, as in other types of 
images, contain planes overlying other planes. The overlying 
planes belong to the foreground and others belong to the 
background.  

The masking process firstly segmentizes all planes in an 
image according to a specific pixel value after determining 
that pixel value. Next, the segmented overlying planes will be 
extracted to a separate image to create what is called a Binary 
Mask  with a “1” pixel value for the foreground and a “0”  
value for the background. Finally, the Binary Mask will be 

combined with the original image to highlight the pixels with 
values higher than the specified pixel value in the masked 
image. 

The specified pixel value in this paper of vessel extraction 
was “80”, i.e., all pixels with values higher than or equal “80” 
are saved in the masked image and the rest are zeroed-out 
(background). The value “80” is chosen after trying few 
values by experiment and this value worked well for all our 
angiograms. Thus, this value (80) can give good masking 
results without noise (noise refers to any background’s 
detection). The artery extraction in the gray scale format from 
the original image will be completed accurately because the 
Binary Mask will always determine which part of the image is 
required and which pixels to eliminate. Therefore, our 
extraction algorithm will first extract the binary coronary 
artery tree image and use it as a Binary Mask with the original 
angiogram image. The masking stage in this paper is 
important because we need to highlight only the coronary 
arteries from the plain angiogram and calculate the CoGs for 
them. However, the masking process is important for the 3D 
reconstruction algorithms recently where the idea of using the 
intensity values of pixels as the z-dimension in R3, [10, 11]. 
Fig. 3 illustrates the masking process in angiograms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recursive Division 
In this section we will discuss the first stage of our 

algorithm in NCoG which is angiogram dividing. Since when 
we deal with medical images especially angiograms, we are 
dealing with huge amount of information. So, for the coronary 
artery angiograms there are thousands of points and dealing 
with them all at the same time would not be proper or could 

Fig. 2.  The flowchart of the CoG algorithm. 
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give wrong results. In our algorithm we tried to use data 
structure conventional algorithms with our coronary artery 
trees but it did not fit to the acceptable level. 

 
 

We thought of dividing the angiogram first into small 
partitions and deal with them separately then we gather the 
whole information for all partitions to get the total result for 
the whole coronary artery tree angiogram. In this paper, we 
used for the division the Recursive data structure technique. 
The divide approach is an iterative logical partitioning of a 
computation into isolated subparts, which can then be 
individually optimized part by part. The strategy is recursive, 
in that optimization of a subpart may itself involve further 
dividing and conquering. The overall optimized critical path 
is the maximum critical path among all parts [7].  

The purpose of dividing is to break a difficult problem into 
more manageable parts. Our divide step both identifies and 
isolates subparts. As a result, the overall critical path lies 
within only one of the parts, and independent focused 
optimization of each computation subpart in accordance with 
its topological structure is enabled. An important ramification 
is that this enables the use of techniques which, while not 
applicable to the entire computation, can be applied to 
individual subparts [7]. Recursively defined data structures 
are essential constructs in programming languages. 
Intuitively, a data structure is recursively defined if it is 
partially composed of smaller or simpler instances of the 
same structure. Examples include lists, stacks, counters, trees, 
records and queues. To verify programs containing 
recursively defined data structures we must be able to reason 
about these data structures. Decision procedures for several 
data structures exist. However, in program verification 
decision procedures for a single theory are usually not 
applicable as programming languages often involve multiple 
data domains, resulting in verification conditions that span 
multiple theories. Common examples of such "mixed" 
constraints are combinations of data structures with integer 
constraints on the size of those structures [21].  

In this paper we will divide the angiogram first into four 
equal parts. Then each part out of the four will be divided into 
four smaller parts. And we continue doing this to each and 
every partition until a stopping condition will be fulfilled. Our 
stopping condition in this paper will be depending on the 
number of points (intensity values) inside the partition itself.  
If the NoP inside a specific partition was larger than or equal 
to a threshold value we can set it (T) then divide again into 
four partitions or else calculate CoG of that partition. Fig. 4 
shows the technique of division.   

 
 
 
 
 

 

 

 

 

 
Finding NoP 

In this step we are going to calculate the number of gray 
scale values (vessels) inside each partition. According to our 
equations, the limits of each partition would be (i = x1 to x2) 
for the x-axis and (j = y1 to y2) for the y-axis. So, we 
calculate the number of gray points inside these limits for 
each partition coming out from division step and that number 
will decide the next step for that specific partition. In the 
beginning of our algorithm we define a threshold value (T: a 
specific number) and this T will be the stopping condition of 
division. With each division process, we will compare the 
number of gray scale points inside each partition with T, so if 
NoP was larger or equal to T, we divide again or else we go 
for the next step which is calculating GoG. This step 
considers new approach to find the centroid of the vessels by 
calculating the CoG and it will be repeated for the whole 
angiogram. 

   
CoG Calculation 

Previous works, as in [19], has defined the CoG equation in 
different shapes. It has been always depending on the axes (x 
and y) as the main factor affecting the output. It used to 
calculate CoG by taking the mean of the object’s points using 
Eq. (7) and Eq. (8) above. As it is clear, the equations’ 
parameters play the main role in the output’s robustness and 
affect it directly. Since our work depends totally on the 
vessels (objects) in our angiograms, we came out with the 
idea to derive new equations involve the gray scale value as 
one of the affecting parameters. The new equations that we 
derived (Eq. (9) and Eq. (10)) came out from Eq. (7) and Eq. 
(8) indicated above in this paper. As we explained previously 
that we involved the gray scale as the main affecting factor in 
our new equations because our input angiogram have black 
background and only gray scale vessels (objects) need to be 
tracked down. We tested the conventional equations and our 
new equations and the results are indicated in the 
experimental results section. 

In this case, we are saving time, so instead of dividing the 
whole image and calculating CoG randomly, we will be 
specifying a condition here, which is there should be a gray 

Fig. 4.  Recursive division technique in images. 
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scale value (vessel) in that part to calculate CoG point for it. 
And this way will track the vessels down and calculate the 
centroid of them by getting CoG points. Fig. 5 indicates the 
CoG points in the middle of the vessel. We went through test 
the new equations and we came out with three assumptions 
showing the robustness of the new equations plus output 
enhancement over the conventional equations. The 
assumptions will be discussed in the discussion section after 
showing the results. 

 
 

 

 

 

 

 

 

Linking CoG Points by Lines 
This is the last step of our approach when we attempt to 

link (connect) the extracted CoG points, which we extracted 
from previous step in section 2.3.4, by lines. The reasons from 
this connection are:  
(1) In order to give the CoG points the shape of the coronary 

artery tree that was used for CoG extraction, 
(2) Connecting those points will show the exact centroid of 

the vessels because the extracted CoG point was located 
exactly in the center of the vessel as in Fig. 6. 

 
 

 

 
 
 
 
 

 
 
 
 
 
According to many papers and books about CoG technique, 

we found out that the center of gravity is the same as the 
center of mass. The key point is that the force of gravity on 
the object as a whole acts at the center of gravity. In order to 
determine the center of gravity for the patient-wheelchair 

system, a balance platform was constructed in a manner 
similar to du Bois-Reymond [5]. This point – CoG – would be 
in the middle of an object and usually represents the mean of 
its surrounding points. This idea of CoG could be the same in 
images and objects included in them.  

In this paper, we used the Nearest Neighbor (NN) technique 
to connect the CoG points by lines. This technique is going to 
check the surrounding points and grab the nearest one 
(Neighbor) and connect with it. Since the CoG points in our 
work will lie in the middle of the vessel and as in Fig. 5, then 
each point – except the two ending points – will have two 
neighbors, one above and the other below. So, each point will 
connect by lines with both neighbors, like in Fig. 6, and as a 
result will give a shape of connected lines or vessels. Since 
CoG points lie in the middle of the vessels, as we mentioned 
before, then the connected lines will represent the centroid of 
the vessels. By this way we could achieve two goals: 
(1)  Extracting the vessel centroid, 
(2) Making our program more knowledgeable wise which 
point is connected or neighbor to which one in our   coronary 
artery tree vessels. 

In the past, plenty of researchers spent a lot of effort and 
time to extract the centroids (centerlines) of vessel using 
different complicated approaches. However, we present in this 
paper a simple yet robust approach to extract the centroids of 
vessels in angiograms using new proposed center of gravity 
equations. In the next section of experiments and results, we 
will show and prove the correctness of our new equations 
over the conventional.  
 

III. EXPERIMENTAL RESULTS 

The experiments are conducted by calling the results from 
the conventional Eq. (7) and Eq. (8) by Algorithm-1. 
However, the results from the new equations (Eq. (9) and Eq. 
(10)) were included under the name Algorithm-2. Therefore, 
Algorithm-1 and Algorithm-2 are applied on a row of 100 
angiograms and their results are compared according to three 
assumptions will be discussed in the discussion section later 
on. The angiograms that are used in the experiments are 
collected clinically (real data). A database of 100 angiograms 
is built from around 10 patients. The size of angiograms is in 
the range of 512×512 resolution pixels. Both Algorithm-1 and 
Algorithm-2 are applied on the raw of angiograms and the 
results are shown in Fig. 7. 

Fig. 7 shows few samples of our angiograms after applying 
Algorithm-1 and Algorithm-2. We can notice some false 
alarms (errors) in the results of Algorithm-1 while there is 
none of these false alarms in the results of Algorithm-2. It 
proves that the proposed equations can give more accurate 
results. Fig. 8 shows the same results from Fig. 7 but after 
taking out the vessels and leaving the linked centroids 

Fig. 5.  A Synthetic vessel with its extracted CoGs located in the center. 

Fig. 6.  A synthetic vessel with its extracted CoGs located in the 
center and linked by lines. 
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standing alone from both algorithms (1 and 2). In this figure, 
we can notice the false alarms clearer than before after 
removing the vessels. Once more, Fig. 8 shows that the new 
equations can give better results than the conventional 
equations. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To know the reason of the false alarms in the results of 

Algorithm-1, it is important to analyze the results of both 
algorithms and study them closely. We extracted the 
coordinates of the CoG points (X(cog) and Y(cog)) for both 
algorithms and we studied them closely. We found out that in 
Algorithm-1, the calculation of CoGs keeps generating these 
points till the end of the limits of the angiograms and that is 
because Eq. (7) and Eq. (8) depend totally on the image’s 
coordinates only. Therefore, it will keep producing CoGs till 
the end of the image and subsequently can cause some false 
alarms in the connection part of CoG points. However, in 
Algorithm-2 and since the new equations use the gray scale 
value as the main factor in CoG calculation; therefore, the 
algorithm keeps generating CoGs as long as there is a vessel 
(gray scale value). Thus, Algorithm-1 will track down the 
vessel and terminate the calculations of CoGs when the vessel 
is finished even before the end of the angiogram. This fact is 
clearly noticeable in the values of coordinates of CoGs those 
were extracted from both algorithms. We can see zero 
coordinate values for the CoGs that are calculated at the end 
of angiograms when Algorithm-2 is used. Therefore, no false 
alarms can be noticed in the results of Algorithm-2. On the 
other side, we can still see non-zero coordinate values for the 

CoGs those are calculated at the end of angiograms when 
Algorithm-1 is used. Table 1 and Table 2 show the 
coordinates of CoGs after applying both algorithms. Those 
coordinates are extracted from the calculations at the end of 
an angiogram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

No. of 
partition 

X(cog) Y(cog) 

3759 438 481 
3760 443 483 
3761 437 485 
3762 441 485 
3763 437 488 
3764 441 488 
3765 445 485 
3766 448 486 
3767 445 487 
3768 448 487 
3769 0 0 
3770 0 0 
3771 0 0 
3772 0 0 

TABLE I  
COORDINATES OF COGS USING ALGORITHM-1 

            Masked angiograms               Algorithm-1                        Algorithm-2 

Fig. 7.  The results of applying Algorithm-1 and Algorithm-2 on samples 
of angiograms. 

             False alarms 

               False alarms 

            False alarms                  Masked angiograms                 Algorithm-1                      Algorithm-2 

Fig. 8.  Same results as Fig. 7 but with the linked centroids only. 
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The results in Table 1 and Table 2 are just samples were 

taken from the end of the angiogram after applying both 
algorithms. We can notice from both tables above that there is 
3772 CoG points are calculated in this angiogram, depends on 
the T that was chosen. The results in Table 1 show non-zero 
coordinate values until the end of the angiogram (X(cog) and 
Y(cog)), which causes false alarms. However, Table 2 results 
show zero coordinate values at the end of the angiogram 
because Algorithm-2 keeps tracking vessels till their end only; 
therefore, there will be no more CoG points after this. This is 
first assumption of being the proposed equations better than 
the conventional equations. 

In the meanwhile, we noticed that if Algorithm-1 runs more 
than one time on the same angiogram, the results of X(cog) 
and Y(cog) will be changed. This was tested in 10 angiograms 
and the results of coordinates in 50% of them (5 angiograms) 
were changed. However, results stay always the same when 
Algorithm-2 runs (new equations used) .This fact was 
discovered by calculating the summation of errors in both 
CoGs coordinates and like the following:           

෍∆ܺሺ݅ሻ ൌ ሺݔሺ2ሻ െ ሺ1ሻሻݔ ൅ ሺݔሺ3ሻ െ ሺ2ሻሻݔ ൅ ⋯൅ ሺݔሺ݊ሻ

௡

௜ୀଵ

െ ሺ݊ݔ െ 1ሻሻ																																												ሺ17ሻ 

෍∆ܻሺ݅ሻ ൌ ሺݕሺ2ሻ െ ሺ1ሻሻݕ ൅ ሺݕሺ3ሻ െ ሺ2ሻሻݕ ൅ ⋯൅ ሺݕሺ݊ሻ

௡

௜ୀଵ

െ ሺ݊ݕ െ 1ሻሻ																																									ሺ18ሻ 
     

where n is the number of CoG points that are calculated in an 
angiogram through the entire process. Table 3 shows the fact 
of coordinates values changing upon running both algorithms 
two times on the same 10 angiograms. The algorithms run 
with T=30. The changed results were highlighted and marked 
with star (*) symbol. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

No. of 
partition 

X(cog) Y(cog) 

3759 437 485 
3760 441 485 
3761 437 488 
3762 441 488 
3763 445 485 
3764 449 485 
3765 445 487 
3766 449 488 
3767 428 506 
3768 450 495 
3769 439 506 
3770 448 504 
3771 439 506 
3772 448 504 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 3770 21987 22491 
2 2821 18498* 18713* 
3 3548 22861* 22965* 
4 3554 22485 22989 
5 4864 31703 32206 
6 3427 21631* 21826* 
7 4693 29590* 29618* 
8 4361 28265 28767 
9 3681 23935 24428 
10 1815 11639* 11720* 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 3770 21987 22491 
2 2821 18872* 19378* 
3 3548 23291* 23795* 
4 3554 22485 22989 
5 4864 31703 32206 
6 3427 21829* 22331* 
7 4693 29897* 30406* 
8 4361 28265 28767 
9 3681 23935 24428 
10 1815 11929* 12215* 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 3770 45857 45857 
2 2821 38572 38572 
3 3548 42215 42215 
4 3554 41961 42466 
5 4864 49251 49251 
6 3427 51005 51005 
7 4693 35685 35685 
8 4361 44785 44785 
9 3681 47527 47527 
10 1815 20187 20187 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 3770 45857 45857 
2 2821 38572 38572 
3 3548 42215 42215 
4 3554 41961 42466 
5 4864 49251 49251 
6 3427 51005 51005 
7 4693 35685 35685 
8 4361 44785 44785 
9 3681 47527 47527 
10 1815 20187 20187 

TABLE II   
COORDINATES OF COGS USING ALGORITHM-2. 

TABLE III   
T = 30. A) FIRST ITERATION OF RUNNING ALGORITHM-1 ON 10 

ANGIOGRAMS. B) SECOND ITERATION OF RUNNING 
ALGORITHM-1 ON THE SAME 10 ANGIOGRAMS. C) FIRST 
ITERATION OF RUNNING ALGORITHM-2 ON THE SAME 10 

ANGIOGRAMS. D) SECOND ITERATION OF RUNNING 
ALGORITHM-2 ON THE SAME 10 ANGIOGRAMS. 

(C) 

(A) 

(B) 

(D) 
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From Table 3, it could be noticed from the results in (A) 
and (B) that 50% of the summation errors of coordinates are 
different between the 1st iteration and the 2nd iteration of 
running Algorithm-1. The different results are highlighted and 
marked with star (*) symbol in (A) and (B). In parts (C) and 
(D) of Table 3, it could be noticed that the results are constant 
and there is no single difference between the 1st and the 2nd 
iterations. Therefore, this can prove that the new equations 
can always give the exact location of CoGs which is supposed 
to be located at the center of vessels no matter how many the 
program (Algorithm-2) runs. This is because the new 
equations depend on the gray scale value of the vessels. To 
confirm this fact, both algorithms are run on the same 10 
angiograms of Table 3 but with T= 21. Once more, there was 
50% difference in the results of Algorithm-1 ((A) and (B)) 
while there was none in the results of Algorithm-2 ((C) and 
(D)). Table 4 shows the results of applying both algorithms 
with T = 21 and on the same 10 angiograms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We depended on three assumptions in this paper to prove 

the correctness and robustness of the new proposed equations 
over the conventional equations to calculate the CoG points. 
As it was mentioned earlier in this paper, the conventional 
equations involve the coordinate values of images only for 
CoG calculation. However, our new equations involve, beside 
the coordinates, the gray scale value of pixels. The new 
equations work on the masked angiograms to calculate the 
centroids of arteries. The three assumptions that were used in 
this paper and their observations are summarized in Table 5. 

 
 
 

 
 
 
 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 6076 26365 26869 
2 5466 23343* 23371* 
3 6906 29522 30026 
4 6963 28705 29210 
5 9142 39601 40104 
6 7051 28129* 28170* 
7 9531 38569 39078 
8 8805 36390* 36418* 
9 6752 29278* 29500* 
10 3038 13982* 14099* 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 6076 26365 26869 
2 5466 23648* 24154* 
3 6906 29522 30026 
4 6963 28705 29210 
5 9142 39601 40104 
6 7051 28303 28805 
7 9531 38569 39078 
8 8805 36655* 37157* 
9 6752 29559* 30052* 
10 3038 14281* 14567* 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 6076 58395 58395 
2 5466 46856 46856 
3 6906 53712 53712 
4 6963 55027 55532 
5 9142 65765 65765 
6 7051 62771 62771 
7 9531 45329 45329 
8 8805 55111 55111 
9 6752 58347 58347 
10 3038 22985 22985 

No. of 
image 

No. of the 
calculated COG 

∑∆X ∑∆Y 

1 6076 58395 58395 
2 5466 46856 46856 
3 6906 53712 53712 
4 6963 55027 55532 
5 9142 65765 65765 
6 7051 62771 62771 
7 9531 45329 45329 
8 8805 55111 55111 
9 6752 58347 58347 
10 3038 22985 22985 

Conventional equations Proposed equations 

In the normal cases ∑ ∆X  ≠  ∑ ∆Y 
In the normal cases always ∑ ∆X  =  

∑ ∆Y 
Running the program more than 

once sometimes produces ∑ ∆X  ≠  
∑ ∆Y 

Running the program more than 
once always produces ∑ ∆X  =  ∑ 

∆Y 

False results will appear because the 
equations depend only on the x and y 

axes in the calculation of the CoG 

False results will not appear 
because the equations depend on 
the x and y axes plus the intensity 
value in the calculation of the CoG 

(C) 

(D) 

TABLE IV   
T = 21. FIRST ITERATION OF RUNNING ALGORITHM-1 ON 10 

ANGIOGRAMS. B) SECOND ITERATION OF RUNNING 
ALGORITHM-1 ON THE SAME 10 ANGIOGRAMS. C) FIRST 
ITERATION OF RUNNING ALGORITHM-2 ON THE SAME 10 

ANGIOGRAMS. D) SECOND ITERATION OF RUNNING 
ALGORITHM-2 ON THE SAME 10 ANGIOGRAMS. 

TABLE V 
  THE THREE ASSUMPTIONS AND OBSERVATIONS OF THE NEW 

PROPOSED COG EQUATIONS OVER THE CONVENTIONAL. 

(B) 

(A) 
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The first observation of getting different results locations 
from Algorithm-1 but not from Algorithm-2 is occurred 
because the new equations can calculate CoG points exactly 
in the centers of vessels but this is the not the case with the 
conventional equations. The second observation getting 
different results with Algorithm-1 but always the same results 
with Algorithm-2 when both algorithms run multi times  is 
occurred because the conventional equations follow the 
coordinates of the arteries only but the new equations follow 
the coordinates and the gray scale of vessels. Therefore, the 
results with the conventional equations change in about 50% 
of angiograms bu5 the results with the proposed equations are 
always fixed. The third observation of false alarms occurring 
with Algorithm-1 but not with Algorithm-2 is because the new 
equations follow and track the gray vessels until their end 
then stop calculating CoGs. However, the conventional 
equations keep calculating CoGs until the end of images and 
get errors linking the CoGs of end of the image with CoGs of 
the beginning.  

 
IV. CONCLUSION 

In this paper we presented a new approach to extract the 
coronary artery trees centerlines. This new approach used the 
technique of Center of Gravity with new proposed equations 
to extract CoG points. The algorithm starts by masking the 
plain angiogram images to highlight the coronary arteries 
only. Next, the masked angiogram is divided recursively 
using Recursion Data Structure technique. Next, with each 
division process and for each partition, find the number of 
points (gray pixels) per that partition or subpart (NoP). If NoP 
≥ T (T is a threshold value), the partition or subpart is 
recursively divided again or else pass it to next step. Next, 
calculate a CoG point in the partition or subpart that failed the 
NoP ≥ T condition. The calculations of CoG points were done 
in this paper using both conventional and the proposed 
equations to compare the results and show the correctness and 
robustness of the proposed equations. The last step, after done 
calculating CoG points for the complete angiogram, is to link 
(connect) those centroids by lines to display the centerlines of 
the coronary artery trees as one shape. The results of 
comparing the proposed equations with the conventional 
proved that the new proposed equations can give more 
accurate results. The proposed approach in this paper is about 
extracting the centerlines of vessels in angiograms. This 
approach can be used in increasing the knowledge about the 
pixels of coronary arteries and their neighbors. The approach 
can detect exactly the neighbors of each pixel. This approach 
can be used in future work of detecting the locations of 
vessels in the coronary artery tree for medical benefits. We 
can conclude that the approach is a good tool to extract the 
centerline of the vessels and to help researchers get to know 

and study the coronary artery trees in better shape. We hope 
to develop the approach in the future to show the connected 
lines of CoG points in three dimension shape. 
 

ACKNOWLEDGEMENT 

The authors of this paper would like to express their sincere 
thanks and appreciation to PPUKM hospital in Malaysia and 
the stuff of angiograms imaging department for their 
cooperation in getting the data. 

REFERENCES 

[1]   J. E. Arlot, The determination of the center of gravity of a planet from 
photographic plates. Celestial Mechanics and Dynamical Astronomy. 
26, 199-205 (1982). 

[2]  S. P. Armes. The Center of Confusion: Otherwise Known as the Center 
of Gravity. 2006. Storming Media. Unclassified paper submitted to the 
Faculty of the Naval War College in partial satisfaction of the 
requirements of the Joint Military Operations Department. 

[3]  S. R. Aylward and E. Bullitt, Initialization, noise, singularities, and scale 
in height ridge traversal for tubular object centerline extraction. IEEE 
Trans. on Medical Imaging. 21, 61-75 (2002). 

[4]  D. S. Baim, Grossman's cardiac catheterization, angiography, and 
intervention. (Lippincott Williams & Wilkins Philadelphia: Baltimore, 
MD, 2000), pp. 558-558. 

[5]  Edward D.Lemaire, Mario Lamontagne, Hugh W.Barclay, Thomas John 
and M. Guy Martel, A technique for the determination of center of 
gravity and rolling resistance for tilt-seat wheelchairs. J. of 
Rehabilitation Research and Developmen. 28, 51-58 (1991). 

[6]  H. Goldstein, C. Poole, J. Safko and S. R. Addison, Classical mechanics. 
American J. of Physics. 70, 782 (2002).  

[7]  L. Guerra, M. Potkonjak and J. Rabaey, Divide-and-conquer techniques 
for global throughput optimization. In IEEE Workshop on VLSI Signal 
Processing, Citeseer, Berkeley, CA, USA, 1996, pp. 137-146. 

[8]  Jonathan Thorne, M, e, T, Viren, A, nymous, luniu, lizzerand, Glutted 
and Goldenzebra, How to Calculate Center of Gravity, 2009. Retrieved 
04 January 2011 from http://www.wikihow.com/Calculate-Center-of-
Gravity  

[9]  H. H. Khalil, R. O. K. Rahmat and W. A. Mahmoud, Estimation of Noise 
in Gray-Scale and Colored Images Using Median Absolute Deviation 
(MAD). In IEEE 3rd International Conference on Geometric Modeling 
& Imaging, London, UK, 2008, pp. 92-97. 

[10]  H. H. Khalil, R. O. K. Rahmat, D. M. Zamrin, R. Mahmod and N. 
Mustapha, Three Dimension Reconstruction of Coronary Artery Tree 
Using Single-View Cineangiogram. J. of Computer Science. 6, 1485-
1489 (2010). 

[11]  H. H. Khalil, R. O. K. Rahmat, D. M. Zamrin, R. Mahmod and N. 
Mustapha, Three-Dimension Coronary  Artery Tree Curvature 
Confirmation. J. of Computer Science .6, 1524-1530 (2010). 

[12] A. Kitaoka, I. Kuriki and H. Ashida, The center-of-gravity model of 
chromostereopsis. Ritsumeikan J. of Human Sciences. 11, 59-64 
(2006). 

[13] T. Luft, C. Colditz and O. Deussen, Image enhancement by unsharp 
masking the depth buffer. ACM Trans. on Graphics (TOG). 25, 1206-
1213 (2006). 

[14]  K. Mori, S. Ema, T. Kitasaka, Y. Mekada, I. Ide, H. Murase, Y. 
Suenaga, H. Takabatake, M. Mori and H. Natori, A method for 
automated nomenclature of bronchial branches extracted from CT 
images. In International Congress Series, Elsevier, Nagoya, Japan, 
2005, pp. 1281, 86-91. 

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_02

(Advance online publication: 9 February 2013)

 
______________________________________________________________________________________ 



 

[15]  A. Patwardhan, Subpixel position measurement using 1D, 2D and 3D 
centroid algorithms with emphasis on applications in confocal 
microscopy. J. of Microscopy. 186, 246-257 (1997). 

[16]  S. Poteet, J. Patel, C. Giammanco, I. Whiteley, P. Xue and A. Kao, 
Words Are Mightier Than Swords and Yet Miscommunication Costs 
Lives. In Proceedings of the Annual Conference of ITA (ACITA), 
London, UK, 2008. 

[17]  M. R. Prince, T. M. Grist and J. F. Debatin, 3D contrast MR 
angiography. (Springer Verlag, 2003). 

[18] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. 
Gerig and R. Kikinis, Three-dimensional multi-scale line filter for 
segmentation and visualization of curvilinear structures in medical 
images. Medical Image Analysis. 2, 143-168 (1998). 

[19]  H. C. Van Assen, M. Egmont-Petersen and J. H. C. Reiber, Accurate 
object localization in gray level images using the center of gravity 
measure: accuracy versus precision. IEEE trans. on image processing. 
11, 1379-1384 (2002). 

[20]  D. Vandermeulen, P. Plets, S. Ramkers, P. Suetens and G. Marchal. 
Integrated visualization of brain anatomy and cerebral blood vessels. 
In Proceedings of the 1992 workshop on Volume visualization 
(VolVis92), ACM, NY, USA, 1992, pp. 39-46. 

[21]  T. Zhang, H. B. Sipma and Z. Manna, Decision procedures for recursive 
data structures with integer constraints. LECTURE NOTES IN 
COMPUTER SCIENCE. 152-167 (2004). 

 
 
 
Hasan H. Khaleel was born in Iraq 1979. He received his B.Sc. in Electrical 
Engineering and M.Sc. in Control and Computer Engineering from 
University of Baghdad, in 2001 and 2003 respectively. He received his PhD 
in Computer Graphics from the faculty of Computer Science and Information 
Technology at University Putra Malaysia in 2012. Among his research 
interests and focus are Image processing, Computer Graphics, and Computer 
Assisted Surgery. 
 
Rahmita O.K. Rahmat received the B.Sc. and M.Sc. degrees in Science 
Mathematics from University Science Malaysia, in 1989 and 1994, 
respectively. During 1989 to 1990 she work as research assistance in 
Department of Physics in University Science Malaysia experimenting on 
Ozone layer measurement at the Equatorial region, before working as tutor in 
Universiti Putra Malaysa. She received her PhD in Computer Assisted 
Engineering from University of Leeds, U.K. At this moment she is an 
Associate Professor working in Faculty of Computer Science and Information 
Technology as lecturer and acting as head of multimedia department. Among 
her focus research area are Computer Graphics and Applications, Computer 
Assisted Surgery and Computational Geometry. 
 
DM Zamrin is a Professor and Consultant Cardiothoracic Surgeon at UKM 
Medical Centre. Kuala Lumpur, Malaysia (2006). He received his MD from 
the Universiti Kebangsaan Malaysia (1992) and post-graduate degree in 
Surgery (MMED Surgery) from Universiti Sains Malaysia (2000). He had his 
subspecialty training in cardiothoracic surgery at National Heart Institute 
(IJN), Kuala Lumpur, Malaysia (2000- 2003) and at Cardiothoracic Centre, 
Sarawak Heart Centre, Sarawak (2003 – 2004). He has performed more than 
1,500 cardiac surgeries including coronary artery bypass grafts (CABG), 
aortic and mitral valve procedures, thoracic surgeries including lung resection 
for malignancies, video-assisted thoracoscopic surgery, endoscopic radial 
artery harvesting and endoscopic saphenous vein harvesting.   
 
Ramlan Mahmod holds a PhD from University of Bradford, United 
Kingdom. He is currently a Professor at Faculty of Computer Science and 
Information Technology, Putra University of Malaysia and acting as the dean 
of the same faculty. His research area is artificial intelligence and security 
computing. 
 

Norwati Mustapha received her Diploma and B.Sc. in Computer Science; 
Universiti Pertanian Malaysia in 1988 and 1991 respectively. She received 
her M.Sc. (Information Systems); University of Leeds, UK in 1995 and her 
Ph.D. (Artificial Intelligence); Universiti Putra Malaysia, Malaysia. She is an 
Associate Professor at the Faculty of Computer Science and Information 
Technology, and head of computer science department. Her research interests 
are Intelligent Computing and Data Mining. 

 

IAENG International Journal of Computer Science, 40:1, IJCS_40_1_02

(Advance online publication: 9 February 2013)

 
______________________________________________________________________________________ 




