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Abstract— Number of works covers a topic of denoising of 

digital images affected by an additive white Gaussian noise 

(AWGN), which are formed by typical devices that contain of 

lenses and semiconducting sensors which capture a projected 

scene. These constructive elements inevitably add numerous 

distortions, degradation and noise. Some tasks require high-

quality digital images, this leads to the development of 

denoising algorithms which also sharpen an image and perform 

its colour correction. In this paper we present our results of 

applying several image filtration algorithms based on Principal 

Component Analysis (PCA) and non-local processing. Work is 

focused on a discussion of experimental data which is aimed to 

uncover best practices of use for the studied filtration 

algorithms. 

 
Index Terms—Image filtration, principal component 

analysis, non-local processing, applications 

 

I. INTRODUCTION 

S it was shown by Chatterjee and Milanfar in 2010, the 

theoretical limit of image reconstruction hasn’t been yet 

achieved [1]. There still are debates on how to increase 

performance of filtration techniques used today. Among the 

widest spread methods of cancelling an AWGN in digital 

images, according to [2], are the algorithms which base on: 

(1) local processing, (2) non-local processing, (3) pointwise 

processing and (4) multipoint processing. 

All the named methods evolved through the years and 

now each of them has sophisticated implementations which 

compete with each other on the test metrics. That is why 

most of researchers consider their own evaluations of image 

reconstruction for specific textural, edge and contrast 

regions. The main problems with the quality of reconstructed 

images which researches try to evaluate are: a Gibbs effect, 

which becomes highly noticeable on images containing 
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objects with high brightness contrast on their outer edges, 

and an edge blurring of objects on an image being 

processed. Both of these effects highly degrade an image 

perception and could not be suited for high demands. 

List of the most successful solutions to the stated 

problems includes the following digital image reconstruction 

algorithms: (1) algorithm based on block-matching and 3D 

filtering (BM3D) [3]; (2) algorithm based on shape-adaptive 

discrete cosine transform (SA-DCT) [4]; (3) k-means 

singular value decomposition (K-SVD) [5]; (4) non-local 

means algorithm (NL-means) [6]; (5) algorithm based on a 

local polynomial approximation and intersection of 

confidence intervals rule (LPA-ICI) [7]. 

In our previous work [8], we proposed a parallel filtration 

scheme algorithm based on PCA and non-local processing. 

In the present study we compare sequential and parallel 

filtration schemes in terms of their work principles and the 

results of their use in modern digital image filtration tasks. 

Literature on digital images noise cancelling shows that 

modern AWGN filtration methods used for greyscale images 

may be successfully transferred to other digital image 

processing tasks. So, this work in addition to the primary use 

of the methods shows how they may be used for: 

(1) denoising AWGN-affected colour images; (2) filtration 

of mixed noises from greyscale images; (3) suppression of 

blocking artefacts in compressed JPEG images; (4) filtration 

of mixed noises from colour images. 

Usage of the AWGN model may be explained with the 

help of statistics theory, namely – central limit theorem. It 

has an important practical value and is suitable for 

describing the work of devices containing numerous 

independent additive noise sources, each of which has its 

own random distribution, which may be unknown. Resulting 

sum of these noise distributions is best described as a 

Gaussian distribution. On practice AWGN model well suits 

to simulate a thermal noise which is inevitably observed in 

digital devices such as charge-coupled devices (CCDs) or 

CMOS matrixes. 

Filtration of colour images is an issue of the day for 

various practical applications. That is why there are 

numerous solutions to it. As a possible approach, in this 

work we did no transition from RGB image to an image with 

separated brightness and colour information, and added an 

AWGN separately to each channel with the same 

characteristics. This method was used for simplicity and for 

further research it may be extended by using specific noise 

models and applying them to each image layer in a variation 

of interest. 
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II. USED FILTRATION SCHEMES DESCRIPTION 

For the present study we took two similar methods which 

both used PCA and non-local means approaches. 

A. Two-stage PCA filtration scheme 

Both sequential and parallel filtration schemes used the 

modification of two-stage PCA filtration scheme (Adaptive 

PCA + empiric Wiener filter (APCA+Wiener for short)). 

Conceptual structure of two-stage PCA filtration 

procedure is given in Fig. 1. It can be observed that the first 

processing stage forms a first “raw” evaluation I
x̂  of an 

unnoised image x . After that, on the second processing 

stage, a “fine” evaluation II
x̂  of an unnoised image x  is 

formed based on the “raw” evaluation I
x̂ , received after the 

previous stage. 

We decided to test this filtration scheme along with two 

more advanced ones in order to see, how the latter two 

perform in comparison with the APCA+Wiener, which is 

one of their major components. 

B. Sequential filtration scheme 

Next method is a sequential filtration scheme shown on 

Fig. 2. First, as it was noted, this scheme includes an 

abovementioned APCA+Wiener filtration scheme as a base 

which forms an input for non-local denoising algorithm. The 

latter algorithm calculates the non-local means discussed 

previously [6, 9-11]. As a result we receive a final non-local 

evaluation of the processed pixel ),(IIˆ jix  using the 

following formula: 

 lk h
lklkjigjix

,

III ),(IIˆ),,,(),(ˆ III x , (1) 

where 




lk h

h
h lkjiw

lkjiw
lkjig

,
),,,(

),,,(
),,,(

III

III

III  (2). 

C. Parallel filtration scheme 

The last method used in this work, and discussed in 

detail [8], is a parallel filtration scheme based on the same 

algorithms which were used in the previous method. Scheme 

of the parallel filtration is shown in Fig. 3. 

Notable is that the “Two-stage PCA based filtration” 

block performs completely same tasks that it does in a 

sequential scheme. On the other hand, contrary to the 

previous method, block “Non-local algorithm of image 

denoising” processes a noised image y , not a second 

evaluation II
x̂  of an unnoised image x  (This is marked 

with an arrow from the “Two-stage PCA based filtration” 

block to the block of “Non-local algorithm of image 

denoising” on the Fig. 3). Wherein weight of a pixel ),( lky  

similar to a processed pixel ),( jiy  in a final 

evaluation III
x̂  of an unnoised image x , received as an 

output of the block, is calculated using the formula: 
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Fig. 1. Two-stage PCA-based filtration scheme 
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Fig. 2. Sequential digital image filtration scheme 

 

 
 

Fig. 3. Parallel digital image filtration scheme 

 

Based on the foregoing, the final non-local evaluation of 

the processed pixel ),( jiy  is formed basing on the 

following: 

 lk h
lkylkjigjix

,

III ),(),,,(),(ˆ III , (4) 

where ),,,(III lkjig
h

 is calculated using formula (2), and 

weights ),,,(III lkjiw
h

 may be found using expression (3). 

In addition, parallel scheme uses a supplemental 

“Mixing pixels” block which forms a final “accurate” 

evaluation IV
x̂  of an unnoised image x . 

In the present work mixing pixels procedure was 

implemented using the following simple formula: 
IIIIIIIIIIIV ˆˆˆ xxx  dd , (5) 

where IId  and IIId  – are constants with values less than 1. 

III. METHODS’ APPLICABILITY FOR AWGN-AFFECTED 

GREYSCALE IMAGE FILTRATION 

In our work values of constants IIIc  were selected 

empirically and the results of AWGN-affeсted greyscale 

image filtration for a sequential filtration scheme are given 

in Table 1. Specific values of Peak Signal-to-Noise 

Ratio (PSNR) and Mean Structural Similarity Index 

Map (MSSIM) are shown for each algorithm. Hereinafter 

best image reconstruction results based on the criteria of 

PSNR [12] and MSSIM [13] are marked in bold. 

Experimental results are shown for 10 greyscale images 

from [14] with   values in a range from 5 to 35 and 

for IIIc  – from 0.2 to 0.5. It can be concluded that best 

results are obtained with IIIc  equal to 0.3. MSSIM quality 

assessment shows that the use of the third processing stage 

in the sequential filtration scheme is rational for noise 

with 20 . Results analysis shows that the further 

increase of IIIc  leads to an excessive decrease of ringing 

artefacts on a foreground edges. In addition, while the IIIc  

value is increasing same happens to IIIh  value, and thus an 

image resulting from a second stage processing is 

additionally smoothed, which in turn gradually decreases a 

reconstructed image quality. 

Notable is that the use of the sequential filtration scheme 

allows only to remove ringing artefacts from the main 

objects’ edges, but the decrease of a blurring effect is not 

observed. The latter is connected with the structure of the 

third processing stage. A preliminary filtered image from the 

second processing stage, which already contains traces of the 

blurring on its objects’ edges, comes as an input to the non-

local filtration algorithm. The overcome of this limitation is 

implemented in a parallel filtration scheme. 

Results of a same set of AWGN-affected greyscale images 

filtration for a parallel filtration scheme are given in Table 2. 

Comparing Tables 1 and 2 based on PSNR and MSSIM 

metrics it can be concluded that the use of the third and 

fourth processing stages is rational for 15 . 

The use of parallel filtration scheme allows both to 

remove ringing artefacts and blurring effect from the 

objects’ edges. It may be explained by the fact that a noised 

image y  is used as an input to the “Two-stage PCA based 

filtration” block and to the block of “Non-local algorithm of 

image denoising”, shown on the Fig. 3. This allows to have 

two independent evaluations of an unnoised image x , in one 

of which, namely received from the “Two-stage PCA based 

filtration” block, texture specifics of an unnoised image x  

are better preserved, and in the second - “Non-local 

algorithm of image denoising”, the main objects’ edges are 

better preserved. Union of these two evaluations using an 

equation (5) allows forming of a higher quality evaluation of 

an unnoised image x . 
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TABLE 1 

Results of quality assessment of greyscale digital image filtration 

using a sequential filtration scheme 

Number 

of processing 

stages 

1 2 

3 

IIIc  value 

0.2 0.3 0.4 0.5 

Average PSNR and MSSM results for 10 test images 

P
S

N
R

, 
d
B

 

σ = 5 37.78 38.02 36.65 36.19 35.99 35.90 

σ = 15 31.79 32.29 31.97 31.97 32.00 32.00 

σ = 20 30.29 30.86 30.70 30.73 30.74 30.74 

σ = 25 29.12 29.75 29.68 29.70 29.71 29.69 

σ = 35 27.34 27.99 27.99 28.00 27.97 27.92 

M
S

S
M

 

σ = 5 0.949 0.953 0.943 0.941 0.941 0.940 

σ = 15 0.855 0.879 0.876 0.876 0.876 0.875 

σ = 20 0.814 0.851 0.850 0.851 0.850 0.848 

σ = 25 0.777 0.825 0.827 0.827 0.826 0.824 

σ = 35 0.714 0.781 0.785 0.785 0.782 0.779 

 

Specific numerical results of AWGN-affected greyscale 

digital images filtration with sequential and parallel filtration 

schemes are given for images size of 256256  pixels and 

512512  pixels in Table 3 and Table 4 respectfully. Their 

analysis helps to conclude that the use of: (1) sequential 

filtration scheme does not give an increase in reconstructed 

image quality assessed with PSNR and MSSIM, however, 

with low IIIc  values this scheme allows to remove the 

ringing artefacts; (2) parallel scheme increases a 

reconstructed image quality along with the removal of 

ringing artefacts and reducing the blurring effect on the 

object’s edges. 

Overall the quality of a reconstructed image is comparable 

with the BM3D algorithm which provides best quality of a 

reconstructed image among the overviewed filtration 

algorithms. The average loss of the parallel scheme in 

comparison with BM3D is for PSNR ~ 0.53 dB and ~ 0.008 

for MSSIM. While the perceptional quality of reconstructed 

images filtered by the parallel scheme is high and very close 

to the one obtained by BM3D [3]. 

Results of AWGN-affected greyscale digital images 

filtration with sequential and parallel filtration schemes are 

visualised on Fig. 4 on an examples of “Boat” size of 

512512  pixels and “Barbara” size of 256256  pixels 

images. 

IV. USAGE OF THE FILTRATION SCHEMES IN MODERN 

IMAGE PROCESSING TASKS 

Modern AWGN filtration methods applied to greyscale 

images may be additionally used in a series of other digital 

image processing tasks. Examples of such tasks are: colour 

image filtration, filtration of “raw” images, deletion of 

blurring from objects’ edges, sharpening of objects’ edges 

and so on. In the present article we studied the work of 

APCA+Wiener, sequential and parallel filtration schemes on 

the tasks of: colour images filtration, mixed noise filtration 

from greyscale and colour images and removal of blocking 

artefacts. 

In this section we applied APCA+Wiener, sequential and 

parallel filtration schemes’ algorithms implemented in 

MATLAB to the mentioned digital image processing tasks. 

A. Removal of blocking artefacts 

The task was formulated as a situation where an image 

compression using JPEG algorithm is used as a noise 

model [15-16]. In this case a noise component n  may be 

treated as a result of distortion connected with blocking 

artefacts on a digital image. Then a solution to this task may 

be found as dispersion 2  of a noise component n . A 

possible way of finding 2 , using an a priori knowledge 

about a quantization matrix of JPEG standard coefficients, is 

shown in [4]. In this study search of 2  was performed 

manually. 

For our experiments on blocking artefacts removal we 

used the same source of greyscale images [14]. We tested 

our algorithms on 256256  pixels and 512512  pixels 

images. 

 

TABLE 2 

Results of quality assessment of greyscale digital image filtration using a parallel filtration scheme 

Number 

of processing 

stages 

3 4 

IIIc  value IIIc  value 

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

Average PSNR and MSSM results for 10 test images 

P
S

N
R

, 
d
B

 

σ = 5 35.56 35.64 35.73 35.81 37.41 37.45 37.48 37.52 

σ = 15 30.99 31.73 32.07 32.13 32.22 32.49 32.60 32.61 

σ = 20 29.90 30.70 30.97 30.91 30.96 31.23 31.29 31.25 

σ = 25 29.13 29.90 30.04 29.85 29.99 30.22 30.22 30.12 

σ = 35 28.03 28.50 28.34 27.97 28.46 28.54 28.42 28.24 

M
S

S
M

 

σ = 5 0.935 0.940 0.941 0.941 0.949 0.951 0.951 0.951 

σ = 15 0.865 0.877 0.876 0.871 0.880 0.884 0.884 0.882 

σ = 20 0.843 0.853 0.850 0.842 0.855 0.859 0.857 0.855 

σ = 25 0.824 0.831 0.825 0.815 0.834 0.836 0.833 0.829 

σ = 35 0.791 0.791 0.780 0.766 0.795 0.794 0.789 0.784 
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TABLE 3 

PSNR and MSSIM of reconstructed 256256  pixels images received from sequential and parallel filtration schemes 

Image   
Sequential scheme Parallel scheme 

PSNR, dB MSSIM PSNR, dB MSSIM 

Montage 

5 38.61 0.976 39.57 0.977 

15 33.43 0.944 33.90 0.943 

20 31.58 0.929 32.28 0.928 

25 30.04 0.912 30.89 0.913 

35 27.39 0.877 28.40 0.881 

Cameraman 

5 35.28 0.943 36.75 0.954 

15 30.02 0.877 31.12 0.889 

20 28.82 0.848 29.73 0.859 

25 27.78 0.820 28.64 0.833 

35 26.06 0.775 26.95 0.790 

Peppers 

5 35.60 0.943 36.86 0.949 

15 31.35 0.891 32.02 0.895 

20 30.11 0.871 30.75 0.876 

25 29.10 0.854 29.75 0.858 

35 27.37 0.820 28.06 0.826 

House 

5 38.42 0.948 39.12 0.954 

15 33.84 0.873 34.21 0.880 

20 32.73 0.856 33.16 0.863 

25 31.85 0.845 32.34 0.852 

35 30.40 0.828 30.96 0.834 

 

 

TABLE 4 

PSNR and MSSIM of reconstructed 512512  pixels images received from sequential and parallel filtration schemes 

Image   
Sequential scheme Parallel scheme 

PSNR, dB MSSIM PSNR, dB MSSIM 

Lenna 

5 37.30 0.935 38.26 0.943 

15 33.79 0.891 34.09 0.895 

20 32.67 0.874 32.94 0.878 

25 31.74 0.858 32.03 0.862 

35 30.20 0.830 30.52 0.833 

Boat 

5 35.10 0.918 36.44 0.934 

15 31.37 0.840 31.80 0.850 

20 30.19 0.810 30.59 0.820 

25 29.21 0.782 29.63 0.792 

35 27.61 0.730 28.02 0.741 

Barbara 

5 36.12 0.957 37.57 0.962 

15 32.42 0.915 32.65 0.919 

20 31.17 0.896 31.41 0.901 

25 30.09 0.875 30.39 0.881 

35 28.23 0.827 28.64 0.836 

Couple 

5 35.21 0.947 36.58 0.936 

15 31.07 0.867 31.64 0.855 

20 29.85 0.834 30.37 0.821 

25 28.85 0.803 29.34 0.790 

35 27.21 0.742 27.61 0.730 
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TABLE 5 

PSNR and MSSIM of JPEG compressed 256256  pixels images after reconstruction 

Image Q    
Noised image APCA+Wiener Sequential scheme Parallel scheme 

PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM 

Aerial 

5 

15 

22.32 0.672 

23.19 0.710 23.20 0.709 23.08 0.707 

20 23.27 0.709 23.27 0.706 23.22 0.711 

25 23.26 0.703 23.22 0.694 23.29 0.708 

10 

15 

24.85 0.791 

24.63 0.812 25.50 0.806 25.64 0.815 

20 25.45 0.800 25.25 0.787 25.62 0.809 

25 25.11 0.782 24.78 0.758 25.40 0.793 

15 

15 

26.19 0.838 

26.76 0.848 26.45 0.837 26.86 0.853 

20 26.34 0.830 25.97 0.811 26.66 0.840 

25 25.79 0.806 25.29 0.775 26.23 0.818 

Airplane 

5 

15 

28.11 0.813 

29.57 0.874 29.64 0.878 29.33 0.868 

20 29.81 0.881 29.95 0.888 29.69 0.881 

25 29.93 0.887 30.16 0.896 29.98 0.890 

10 

15 

31.54 0.861 

33.16 0.914 30.32 0.920 33.27 0.917 

20 33.07 0.915 33.22 0.921 33.43 0.920 

25 32.80 0.915 32.87 0.920 33.38 0.921 

15 

15 

32.97 0.888 

34.29 0.925 34.35 0.928 34.53 0.928 

20 33.98 0.924 33.98 0.926 34.47 0.928 

25 33.50 0.922 33.37 0.924 34.21 0.927 

 

TABLE 6 

PSNR and MSSIM average increase rate of JPEG compressed 256256  pixels images after reconstruction 

Q    
PSNR MSSIM 

APCA+Wiener Sequential Parallel APCA+Wiener Sequential Parallel 

5 

15 3.56% 4.22% 3.40% 4.59% 4.84% 4.35% 

20 4.17% 4.81% 4.12% 4.78% 4.90% 4.92% 

25 4.49% 5.07% 4.69% 4.65% 4.42% 5.00% 

10 

15 3.02% 3.44% 3.34% 2.54% 2.39% 2.82% 

20 2.86% 3.07% 3.48% 1.88% 1.30% 2.30% 

25 2.33% 2.29% 3.27% 0.93% -0.17% 1.44% 

15 

15 2.24% 2.39% 2.87% 1.06% 0.51% 1.37% 

20 1.54% 1.50% 2.57% -0.02% -1.06% 0.38% 

25 0.53% 0.21% 1.90% -1.27% -2.76% -0.81% 

 

JPEG compression quality parameter Q  was used to set the 

degree of compression, and 2  varied to demonstrate a 

dependence of the image reconstruction quality from the 

filtration smoothing parameter. 

Table 5 shows some numerical quality assessment results 

of 256256  pixels image reconstruction on examples of 

“Aerial” and “Airplane” images. 

Average quality increase rate of PSNR and MSSIM 

values of a reconstructed image compared to an input 

compressed image for each variable parameter tested is 

shown in Table 6 for each of the studied schemes. 

Notable is that the average increase rate for each 

algorithm was relatively low both on PSNR and MSSIM 

scales. It also can be seen that images compressed 

with 15Q  after the processing with each of the algorithms 

were more damaged than reconstructed. This sets an 

important benchmark for further investigations in this 

specific application of filtration methods. 

Special attention through all our further test analysis was 

devoted to the best performance results for each combination 

of variables and an algorithms’ comparison based on this 

data. Table 7 illustrates the algorithms comparison by the 

number of best results shown. Hereinafter decimal values 

were used when two or more algorithms showed same results 

in one test and these numbers depict a proportion between 

their numbers of occurrences in a limited number of tests 

held. Table 8 gives a percentile outlook of the same data. 

A final general overview of the proposed algorithms best 

performance results for this set of images is given 

in Table 9. From this table can be seen that best results on 

average show a positive dynamics of processing regardless 

of the negative average increase rates shown in Table 6 and 

discussed above. However the tempo of differential decrease 
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in MSSIM values is much higher than the one in PSNR. This 

may be easily observed from the Fig. 5. 

Same tests were performed with 512512  pixels images. 

Similarly, numerical PSNR and MSSIM quality assessment 

results of reconstructed images are given in Table 10 on 

examples of “Bridge” and “Barbara” images. Average 

quality increase rate of PSNR and MSSIM values of a 

reconstructed image compared to an input compressed image 

for each variable parameter tested is shown in Table 11 for 

each of the studied schemes. Table 12 illustrates the 

algorithms comparison by the number of best results shown. 

Table 13 again gives a percentile outlook of the same data. 

A final general overview of the proposed algorithms best 

performance results for this set of images is given 

in Table 14 and visualised in Fig. 6. Compared to Fig. 5 it 

can be seen, that the MSSIM decrease becomes more 

exponential and PSNR decreases linearly with the Q  

growth. 

 

TABLE 7 

Algorithms comparison by the number of best results shown 

(for JPEG compressed 256256  pixels images)  

Parameter Q  APCA+Wiener Sequential Parallel 

PSNR 
5 

1.00 4.00 2.00 

MSSIM 2.00 3.33 1.67 

PSNR 
10 

0.00 1.00 6.00 

MSSIM 0.00 2.69 4.31 

PSNR 
15 

0.00 1.00 6.00 

MSSIM 1.00 2.25 3.75 

Total 4.00 14.28 23.72 

Total # tests 42 

 

TABLE 8 

Algorithms comparison by the percentage of best results shown 

(for JPEG compressed 256256 pixels)  

Parameter Total # tests APCA+Wiener Sequential Parallel 

PSNR 21 4.76% 28.57% 66.67% 

MSSIM 21 14.29% 39.41% 46.31% 

Average 9.52% 33.99% 56.49% 

 

 

 
a) Noised image “Boat” 

(20.28 dB; 0.349) 

 
b) Sequential scheme (29.21 dB; 0.782) 

 
c) Parallel scheme (29.21 dB; 0.782) 

 
d) Noised image “Barbara” 

(17.54 dB; 0.300) 

 
e) Sequential scheme (28.23 dB; 0.827) 

 
f) Parallel scheme (28.64 dB; 0.836) 

 

Fig. 4. Example of reconstruction of AWGN-affected greyscale images “Boat” ( 25 ) and “Barbara” ( 35 ) processed by 

sequential and parallel filtration schemes. In brackets PSNR, dB and MSSIM 
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TABLE 9 

Average best results quality increase percentage 

(for JPEG compressed 256256  pixels images) 

Q  PSNR MSSIM 

5 6.28% 6.33% 

10 5.32% 3.58% 

15 4.68% 1.80% 

 

A greater number of tests held underlined some of the 

previously mentioned observations. It can be concluded that 

neither of the studied algorithms may be applied to the JPEG 

compressed images with 15Q . Although they remove 

blocking artefacts from the input image each of them gives a 

decrease in MSSIM value of a reconstructed image. This 

decrease is expressed in smoothing too much detail from test 

images and in most cases is considered unacceptable. 

 

TABLE 12 

Algorithms comparison by the number of best results shown 

(for JPEG compressed 512512  pixels images)  

Parameter Q  APCA+Wiener Sequential Parallel 

PSNR 
5 

7.00 1.00 8.00 

MSSIM 8.00 1.45 6.55 

PSNR 
10 

4.00 0.00 12.00 

MSSIM 1.78 0.00 14.22 

PSNR 
15 

1.00 0.00 15.00 

MSSIM 0.94 0.00 15.06 

Total 22.72 2.45 70.83 

Total # tests 96 

 

TABLE 10 

PSNR and MSSIM of JPEG compressed 512512  pixels images after reconstruction 

Image Q    
Noised image APCA+Wiener Sequential scheme Parallel scheme 

PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM 

Bridge 

5 

15 

23.06 0.571 

23.75 0.597 23.76 0.592 23.67 0.596 

20 23.78 0.589 23.75 0.576 23.76 0.591 

25 23.73 0.575 23.61 0.552 23.75 0.576 

10 

15 

25.13 0.711 

25.66 0.713 25.54 0.698 25.68 0.717 

20 25.44 0.688 25.18 0.657 25.55 0.693 

25 25.09 0.656 24.65 0.609 25.21 0.657 

15 

15 

26.25 0.774 

26.56 0.760 26.28 0.736 26.65 0.766 

20 26.11 0.724 25.67 0.682 26.30 0.729 

25 25.54 0.681 24.92 0.622 25.72 0.682 

Barbara 

5 

15 

23.86 0.664 

25.03 0.723 25.10 0.724 24.86 0.718 

20 25.27 0.728 25.31 0.726 25.11 0.725 

25 25.41 0.727 25.40 0.723 25.31 0.727 

10 

15 

25.70 0.771 

27.13 0.814 27.17 0.810 27.00 0.814 

20 27.27 0.808 27.17 0.796 27.19 0.809 

25 27.23 0.797 26.98 0.778 27.24 0.798 

15 

15 

27.05 0.822 

28.61 0.853 28.60 0.846 28.53 0.855 

20 28.64 0.843 28.45 0.829 28.67 0.846 

25 28.42 0.829 28.02 0.807 28.57 0.831 

 

TABLE 11 

PSNR and MSSIM average increase rate of JPEG compressed 512512  pixels images after reconstruction 

Q    
PSNR MSSIM 

APCA+Wiener Sequential Parallel APCA+Wiener Sequential Parallel 

5 

15 4.06% 4.23% 3.61% 7.36% 7.18% 6.93% 

20 4.51% 4.55% 4.31% 7.25% 6.40% 7.32% 

25 4.55% 4.31% 4.61% 5.16% 4.60% 6.61% 

10 

15 3.53% 3.28% 3.65% 2.59% 1.37% 2.96% 

20 2.94% 2.16% 3.37% 0.63% -1.78% 1.07% 

25 1.90% 0.52% 2.50% -1.85% -5.38% -1.59% 

15 

15 2.42% 1.70% 2.76% 0.21% -1.65% 0.67% 

20 1.17% -0.05% 1.84% -2.43% -5.23% -2.01% 

25 -0.42% -2.31% 0.38% -5.44% -9.51% -5.23% 
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TABLE 13 

Algorithms comparison by the percentage of best results shown 

(for JPEG compressed 512512  pixels images) 

Parameter Total # tests APCA+Wiener Sequential Parallel 

PSNR 48 25.00% 2.08% 72.92% 

MSSIM 48 22.33% 3.03% 74.64% 

Average 23.67% 2.56% 73.78% 

 
TABLE 14 

Average best results quality increase percentage 

(for JPEG compressed 512512  pixels images) 

Q  PSNR MSSIM 

5 4.72% 7.84% 

10 3.78% 2.79% 

15 2.80% 0.67% 

 

 
 

Fig. 5. Average PSNR and MSSIM increase rates for different 

Q  values (for JPEG compressed 256256  pixels images) 

 

Applying sequential filtration scheme to a higher 

resolution images proved to be inadvisable because it 

showed lower average increase rates and it gave the least 

number of best reconstruction results both for PSNR and 

MSSIM. However comparing test results from Table 8 and 

Table 13 shows that APCA+Wiener filtration scheme which 

showed the minimum number of best results for 256256  

pixels images performed much better on 512512  pixels 

images and its average quality increase rates given in 

Table 6 and Table 11 on average were better than the ones 

of sequential filtration scheme. This makes us consider the 

APCA+Wiener filtration method applicable for this task. On 

the other hand, parallel scheme strengthened its positions 

among the compared algorithms. 

Results of JPEG compressed greyscale digital images 

filtration with the discussed filtration schemes are visualised 

on Fig. 7 on an example of “Scarlett” and “Pentagon” size of 

512512  pixels, and “Clock” and “Airplane” size of 

256256  pixels images. 

It can be concluded that all the named filtration methods 

may be successfully applied to the task of removal of 

blocking artefacts with the notion to the listed limitations, 

however the reconstructed images quality shows to be 

relatively low and thus a further research in this area is 

needed. 

B. AWGN-affected colour images filtration 

The task is of especially current interest from the 

standpoint of modern applications. That is why numerous 

solutions were formulated to perform it. The one we used in 

the present work is a direct channelwise processing of an 

RGB image. For simplicity we did no transfer from RGB 

images to images with separated colour and brightness 

information [4]. AWGN was added to each channel 

independently with the same characteristics. Relevancy of 

use of the described noise model may be confirmed with the 

presence of image capture systems which consist of three 

separate CCDs or CMOS matrixes. 
 

 
 

Fig. 6. Average PSNR and MSSIM increase rates for different 

Q  values (for JPEG compressed 512512  pixels images) 

 

For this test we used 512768  pixels colour images from 

the CIPR’s Kodak image database [17]. We used AWGN 

with   values in a range from 15 to 25. 

Table 15 shows some numerical quality assessment results 

of noised image reconstruction on examples of “House” and 

“Door lock” images. 

Average quality increase rate of PSNR and MSSIM 

values of a reconstructed image compared to an input 

AWGN-affected image for different   values tested is 

shown in Table 16 for each of the studied schemes. The 

tendency of strong filtration quality results is observed for 

each scheme for all   values tested, which justifies their 

applicability to this task. 

Table 17 illustrates the algorithms comparison by the 

number of best results shown. Table 18 gives a percentile 

outlook of the same data. Notable is the fact that through our 

entire test series sequential scheme never showed a best 

performance neither in PSNR nor in MSSIM. This enforces 

our proposal of use the parallel filtration scheme with its 

approach of using two independent evaluations of an 

unnoised image x . It should also be mentioned that 
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APCA+Wiener filtration scheme showed very competitive 

results in terms of MSSIM. This scheme even outperformed 

the parallel scheme for AWGN with 30 . That is why 

this scheme may be of use when a “good” instead of 

“excellent” colour images filtration results are needed. 
 

TABLE 17 

Algorithms comparison by the number of best results shown 

(for AWGN-affected colour images) 

Parameter   APCA+Wiener Sequential Parallel 

PSNR 
15 

1.92 0.00 21.08 

MSSIM 6.81 0.00 16.19 

PSNR 
20 

1.00 0.00 22.00 

MSSIM 9.00 0.00 14.00 

PSNR 
25 

0.00 0.00 23.00 

MSSIM 11.50 0.00 11.50 

PSNR 
30 

0.00 0.00 23.00 

MSSIM 12.46 0.00 10.54 

PSNR 
35 

0.00 0.00 23.00 

MSSIM 10.12 0.00 12.88 

Total 52.81 0.00 177.19 

Total # tests 230 

 

A final general overview of the proposed algorithms best 

performance results for this set of images is given 

in Table 19. It can be seen that growth in PSNR and MSSIM 

is almost linear, but as   value of AWGN increases PSNR 

growth slows, and contrary, MSSIM growth fasters. This 

may be explained by our previously mentioned findings [8] 

– all the compared filtration methods provide a high-quality 

processing of main objects’ edges. This fact shows its results 

in this test series – absolute values of PSNR and MSSIM 

decrease, but carefully processed edges slow this decrease 

for MSSIM. 

Applying sequential filtration scheme to the task of colour 

images filtration proved to be infeasible as well as for the 

removal of blocking artefacts. At the same time parallel 

scheme showed almost absolute best performance for this 

task, especially according to PSNR quality assessment of 

reconstructed images. 

Results of AWGN-affected colour digital images filtration 

with the named filtration schemes are visualised on Fig. 8 on 

examples of “Bikes”, “Hibiscus”, “Lighthouse”, and “Child” 

images, all size of 512768  pixels. Only fragments of high-

resolution images are shown for easier comparing. 

It can be concluded that APCA+Wiener and parallel 

filtration methods may be successfully applied to the task of 

AWGN-affected colour images filtration. Quality of the 

reconstructed images for these methods is rather high, 

although on high-resolution colour images the smoothing 

effect, which arises after filtration procedures, becomes 

more visible, due to the superposition of different image 

layer filtration defects. The smart way of layers integration 

may be of good help in solving the issue, and its 

implementation requires an additional study. 
 

TABLE 19 

Average best results quality increase percentage 

(for AWGN-affected colour images) 

  PSNR MSSIM 

15 28.95% 38.15% 

20 36.88% 61.48% 

25 44.13% 86.84% 

30 50.82% 113.47% 

35 57.06% 141.37% 

 

TABLE 15 

PSNR and MSSIM of AWGN-affected colour images after reconstruction 

Image   
Noised image APCA+Wiener Sequential scheme Parallel scheme 

PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM 

House 

15 24.64 0.797 28.97 0.873 28.20 0.838 29.11 0.879 

20 22.17 0.713 27.46 0.820 27.03 0.788 27.74 0.827 

25 20.27 0.638 26.36 0.771 26.10 0.740 26.67 0.775 

30 18.74 0.572 25.51 0.726 25.32 0.695 25.77 0.725 

35 17.45 0.515 24.80 0.684 24.64 0.652 25.01 0.678 

Door lock 

15 24.75 0.566 32.70 0.849 32.38 0.834 32.82 0.847 

20 22.37 0.443 31.51 0.818 31.29 0.804 31.63 0.814 

25 20.57 0.355 30.58 0.793 30.41 0.780 30.70 0.789 

30 19.12 0.292 29.78 0.773 29.63 0.760 29.90 0.769 

35 17.91 0.245 29.03 0.757 28.90 0.745 29.16 0.753 
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a) Noised image “Scarlett” 

(28.66 dB; 0.732) 

 
b) APCA+Wiener 

(30.90 dB; 0.821) 

 
c) Sequential scheme 

(30.83 dB; 0.818) 

 
d) Parallel scheme 

(30.86 dB; 0.820) 

 
e) Noised image “Clock” 

(28.77 dB; 0.879) 

 
f) APCA+Wiener 

(29.74 dB; 0.912) 

 
g) Sequential scheme 

(29.68 dB; 0.912) 

 
h) Parallel scheme 

(29.86 dB; 0.915) 

 
i) Noised image “Pentagon” 

(25.17 dB; 0.615) 

 
j) APCA+Wiener 

(25.21 dB; 0.575) 

 
k) Sequential scheme 

(24.89 dB; 0.544) 

 
l) Parallel scheme 

(25.31 dB; 0.579) 

 
m) Noised image “Airplane” 

(28.1 dB; 0.813) 

 
n) APCA+Wiener 

(29.57 dB; 0.874) 

 
o) Sequential scheme 

(29.64 dB; 0.878) 

 
p) Parallel scheme 

(29.33 dB; 0.868) 

 

Fig. 7. Example of reconstruction of JPEG compressed greyscale images “Scarlett” ( 5Q , 25 ), “Clock” ( 10Q , 20 ), 

“Pentagon” ( 10Q , 25 ), and “Airplane” ( 5Q , 15 ) processed by APCA+Wiener, sequential and parallel filtration schemes. 

In brackets PSNR, dB and MSSIM 

 

TABLE 16 

PSNR and MSSIM average increase rate of AWGN-affected colour images after reconstruction 

  
PSNR MSSIM 

APCA+Wiener Sequential Parallel APCA+Wiener Sequential Parallel 

15 28.34% 24.34% 28.89% 37.73% 35.30% 38.09% 

20 35.77% 34.32% 36.86% 60.99% 58.14% 61.27% 

25 42.70% 41.66% 44.13% 86.26% 82.92% 86.46% 

30 49.21% 48.37% 50.82% 112.89% 108.98% 112.91% 

35 55.34% 54.60% 57.06% 140.66% 136.27% 140.60% 
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a) Noised image “Bikes” 

(17.79 dB; 0.533) 

 
b) APCA+Wiener 

(24.71 dB; 0.741) 

 
c) Sequential scheme 

(24.49 dB; 0.713) 

 
d) Parallel scheme 

(25.18 dB; 0.748) 

 
e) Noised image “Hibiscus” 

(22.20 dB; 0.513) 

 
f) APCA+Wiener 

(31.87 dB; 0.922) 

 
g) Sequential scheme 

(31.88 dB; 0.923) 

 
h) Parallel scheme 

(32.50 dB; 0.932) 

 
i) Noised image “Lighthouse” 

(18.73 dB; 0.406) 

 
j) APCA+Wiener 

(27.45 dB; 0.824) 

 
k) Sequential scheme 

(27.23 dB; 0.812) 

 
l) Parallel scheme 

(27.74 dB; 0.828) 

 
m) Noised image “Child” 

(24.96 dB; 0.599) 

 
n) APCA+Wiener 

(32.93 dB; 0.889) 

 
o) Sequential scheme 

(32.46 dB; 0.875) 

 
p) Parallel scheme 

(33.05 dB; 0.890) 

 

Fig. 8. Example of reconstruction of AWGN-affected colour images “Bikes” ( 35 ), “Hibiscus” ( 20 ), “Lighthouse” ( 30 ), 

and “Child” ( 15 ) processed by APCA+Wiener, sequential and parallel filtration schemes. In brackets PSNR, dB and MSSIM 

 

TABLE 18 

Algorithms comparison by the percentage of best results shown 

(for AWGN-affected colour images) 

Parameter Total # tests APCA+Wiener Sequential Parallel 

PSNR 115 2.54% 0.00% 97.46% 

MSSIM 115 43.39% 0.00% 56.61% 

Average 22.96% 0.00% 77.04% 

 

C. Mixed noise images filtration 

The discussed AWGN model may be complicated by a 

usage of mixed noise model. An example of such model was 

proposed by Hirakawa and Parks in 2006 [18] to 

characterize noise of CMOS matrixes. The model may be 

described as follows: 

,)( 21 nxxy    (6) 

where 1  and 2  – are the constants which determine a 

noisiness degree, and n  – is an AWGN with zero mean and 

1 . If 02   this noise model becomes the described 

earlier AWGN model. 

Because of the irregular character of noise dispersion in 

the mixed noise model, which is explained by the 

dependency of noise from the initial signal, a direct 

application of the described schemes is impossible. For this 
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reason we used a generalized homomorphic filtration 

method [19], proposed by Ding and Venetsanopoulos 

in 1987. The idea of this method is in using a logarithm-type 

transform to interpret noised data y  as a sum of an initial 

unnoised signal and AWGN, process them with described 

filtration schemes and then reconstruct the data with the 

inverse transform. 

For this test we used all the mentioned above images – 

256256  and 512512  pixels greyscale and 

512768  pixels colour images from [14, 17]. We used a 

mixed noise with 1  values in a range from 15 to 25 and 

2  values in a range from 0.1 to 0.3. 

Table 20 shows some numerical quality assessment results 

of noised image reconstruction on examples of “Chemical 

Plant” size of 256256  greyscale image, “Terminal” size 

of 512512  greyscale image and “House” size of 

512768  colour image. 

Average quality increase rate of PSNR and MSSIM 

values of a reconstructed image compared to an input mixed 

noise affected image for different 1  and 2  values tested 

are shown in: Table 21 for 256256  greyscale images, 

Table 22 for 512512  greyscale images and Table 23 for 

512768  colour images, for each of the studied schemes. 

The tendency of strong filtration quality results is observed 

for each scheme for all 1  and 2  values tested, which as 

well justifies their applicability to this task. 

The algorithms comparisons by the number of best results 

are given in: Table 24 for 256256  greyscale images, 

Table 25 for 512512  greyscale images and Table 26 for 

512768  colour images. Tables 27, 28 and 29 give a 

percentile outlook of the same data. It can be observed that 

the parallel filtration scheme showed best results of image 

reconstruction on a PSNR scale in a prevailing number of 

tests. However, MSSIM quality assessment results were 

almost equally distributed between all three filtration 

schemes. This may be explained by the fact that the MSSIM 

values are formed based on evaluating the image, which 

colour layers were processed independently, so that each 

scheme at the end formed a synergetic reconstructed image. 

This is why in Tables 21, 22, and 23 a dramatic MSSIM 

values increase is observed. 

A final general overview of the proposed algorithms best 

performance results is given in: Table 30 for 

256256  greyscale images, Table 31 for 

512512  greyscale images and Table 32 for 

512768  colour images. Similar to the notes which were 

made for the AWGN-affected images filtration may be made 

for this test. PSNR and MSSIM increase for correlating pairs 

of results is almost linear. All the compared filtration 

methods provide a high-quality processing of main objects’ 

edges and filtration quality in general. 

Although sequential filtration scheme showed nearly as 

many best results as parallel scheme on MSSIM scale for 

256256  pixels greyscale images, application of the 

sequential filtration scheme to this task is infeasible for the 

higher resolution images and colour images. At the same 

time parallel scheme showed almost absolute best 

performance in this task, especially according to PSNR 

quality assessment of reconstructed images. 
 

 

TABLE 30 

Average best results quality increase percentage 

(for mixed noise affected 256256  pixels greyscale images) 

1  2  PSNR MSSIM 

15 

0.1 43.14% 176.89% 

0.2 49.88% 287.64% 

0.3 50.88% 389.89% 

20 

0.1 47.88% 213.61% 

0.2 53.22% 328.26% 

0.3 53.94% 435.89% 

25 

0.1 52.11% 250.84% 

0.2 56.49% 368.68% 

0.3 56.62% 481.10% 

 

TABLE 31 

Average best results quality increase percentage 

(for mixed noise affected 512512  pixels greyscale images) 

1  2  PSNR MSSIM 

15 

0.1 45.51% 132.84% 

0.2 57.32% 212.84% 

0.3 61.33% 285.79% 

20 

0.1 52.10% 175.19% 

0.2 62.31% 260.58% 

0.3 65.35% 340.93% 

25 

0.1 58.28% 219.18% 

0.2 67.00% 309.46% 

0.3 69.16% 394.69% 

 

TABLE 32 

Average best results quality increase percentage 

(for mixed noise affected 512768  pixels colour images) 

1  2  PSNR MSSIM 

15 

0.1 42.14% 84.00% 

0.2 52.12% 135.54% 

0.3 56.09% 183.35% 

20 

0.1 48.38% 109.22% 

0.2 57.18% 162.24% 

0.3 60.37% 211.10% 

25 

0.1 54.23% 134.77% 

0.2 61.97% 188.61% 

0.3 64.38% 239.65% 

 

Results of mixed noise affected greyscale and colour 

digital images filtration with the discussed filtration schemes 

are visualised on Fig. 9 on examples of “Clock” 256256  

pixels greyscale image with ( 251  , 1.02  ), “Village” 

512512  pixels greyscale image with ( 201  , 3.02  ) 

and “Lady” 512768  pixels colour image with 

( 151  , 1.02  ). Only fragments of the images are 

shown for easier comparing. 

Application of all three algorithms to images affected by 

this noise model on high levels of 1  and 2  resulted in 

visible colour changes of minor image details and objects. 

For example, on a “Caps” colour image several little clouds 
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previously of a white colour were reconstructed as red-like, 

because of the high number of red noise pixels on an input 

noised image. We consider this type of reconstruction 

defects significant as they are easily noticeable, and we 

understand that for a successful use of the discussed 

filtration schemes to the mixed noise filtration on colour 

images some additions to the algorithms need to be made. 

However the overall quality of reconstructed images which 

were noised with }2.0,1.0{2   is high and the defects 

described above are unnoticeable. That is why it can be 

concluded that APCA+Wiener and parallel filtration 

methods may be successfully applied to the task of mixed 

noise affected greyscale and colour images filtration with 

limitation in using the high 2  values for colour images. 

 

TABLE 20 

PSNR and MSSIM of various resolution mixed noise affected images after reconstruction 

Image 1  2  
Noised image APCA+Wiener Sequential scheme Parallel scheme 

PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM PSNR, dB MSSIM 

House 

( 256256 ) 

15 

0.1 19.90 0.623 26.10 0.766 25.89 0.736 26.42 0.768 

0.2 16.86 0.490 24.15 0.683 24.13 0.659 24.47 0.678 

0.3 14.76 0.395 22.27 0.612 22.35 0.598 22.63 0.605 

20 

0.1 18.42 0.557 25.30 0.722 25.16 0.693 25.59 0.720 

0.2 15.86 0.442 23.60 0.645 23.57 0.619 23.87 0.635 

0.3 14.05 0.361 21.92 0.577 21.96 0.558 22.18 0.564 

25 

0.1 17.18 0.500 24.64 0.681 24.51 0.650 24.88 0.674 

0.2 14.99 0.401 23.12 0.607 23.06 0.577 23.33 0.593 

0.3 13.43 0.331 21.59 0.542 21.56 0.515 21.76 0.525 

Chemical 

Plant 

( 512512 ) 

15 

0.1 19.96 0.462 27.16 0.786 26.90 0.773 27.28 0.789 

0.2 16.97 0.334 24.86 0.709 24.83 0.704 25.12 0.716 

0.3 14.89 0.252 22.61 0.629 22.72 0.635 22.91 0.640 

20 

0.1 18.47 0.392 26.32 0.751 26.15 0.738 26.51 0.754 

0.2 15.96 0.289 24.27 0.679 24.25 0.672 24.50 0.683 

0.3 14.16 0.223 22.26 0.607 22.31 0.608 22.48 0.611 

25 

0.1 17.22 0.337 25.61 0.718 25.49 0.705 25.83 0.721 

0.2 15.08 0.253 23.75 0.651 23.71 0.640 23.94 0.651 

0.3 13.53 0.199 21.91 0.583 21.88 0.575 22.06 0.582 

Terminal 

( 512768 ) 

15 

0.1 20.73 0.478 25.76 0.682 25.32 0.650 26.00 0.683 

0.2 18.07 0.362 24.10 0.611 23.91 0.588 24.29 0.610 

0.3 16.14 0.283 22.63 0.553 22.57 0.539 22.76 0.549 

20 

0.1 19.12 0.404 25.01 0.642 24.71 0.614 25.23 0.642 

0.2 16.93 0.312 23.61 0.579 23.45 0.556 23.73 0.574 

0.3 15.29 0.248 22.29 0.524 22.21 0.506 22.34 0.515 

25 

0.1 17.80 0.346 24.42 0.607 24.19 0.581 24.59 0.604 

0.2 15.96 0.272 23.18 0.548 23.02 0.524 23.24 0.539 

0.3 14.56 0.220 21.99 0.496 21.85 0.471 21.98 0.483 

 

TABLE 21 

PSNR and MSSIM average increase rate of mixed noise affected 256256  pixels greyscale images after reconstruction 

1  2  
PSNR MSSIM 

APCA+Wiener Sequential Parallel APCA+Wiener Sequential Parallel 

15 

0.1 35.74% 36.00% 37.41% 171.38% 174.97% 175.70% 

0.2 47.27% 48.08% 49.68% 239.60% 250.24% 249.30% 

0.3 42.04% 21.00% 44.51% 305.13% 273.47% 332.46% 

20 

0.1 39.62% 39.96% 41.63% 181.20% 185.00% 185.98% 

0.2 44.34% 44.95% 46.57% 274.71% 285.87% 284.72% 

0.3 44.87% 22.69% 47.20% 348.51% 303.88% 372.97% 

25 

0.1 43.18% 43.56% 45.44% 212.97% 217.39% 218.55% 

0.2 47.16% 47.65% 49.43% 310.08% 321.09% 320.25% 

0.3 47.39% 47.88% 49.54% 392.73% 418.92% 412.93% 
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TABLE 22 

PSNR and MSSIM average increase rate of mixed noise affected 512512  pixels greyscale images after reconstruction 

1  2  
PSNR MSSIM 

APCA+Wiener Sequential Parallel APCA+Wiener Sequential Parallel 

15 

0.1 44.26% 43.68% 45.51% 131.12% 129.19% 132.64% 

0.2 55.37% 55.62% 57.32% 207.00% 210.18% 212.00% 

0.3 58.62% 38.70% 61.33% 265.93% 241.01% 284.01% 

20 

0.1 50.66% 50.28% 52.10% 172.85% 171.09% 174.70% 

0.2 60.44% 60.65% 62.31% 253.53% 257.34% 259.06% 

0.3 63.18% 42.31% 65.35% 320.34% 292.82% 336.57% 

25 

0.1 56.77% 56.43% 58.27% 216.06% 214.38% 218.18% 

0.2 65.27% 65.29% 67.00% 301.63% 305.11% 307.08% 

0.3 67.39% 67.72% 69.15% 376.63% 392.11% 389.78% 

 

TABLE 23 

PSNR and MSSIM average increase rate of mixed noise affected 512768  pixels colour images after reconstruction 

1  2  
PSNR MSSIM 

APCA+Wiener Sequential Parallel APCA+Wiener Sequential Parallel 

15 

0.1 44.36% 43.91% 46.36% 82.94% 80.97% 83.83% 

0.2 49.75% 50.12% 52.12% 132.63% 132.71% 135.14% 

0.3 53.19% 52.71% 56.09% 173.79% 176.40% 183.12% 

20 

0.1 46.39% 46.11% 48.38% 107.95% 105.73% 108.92% 

0.2 54.92% 55.22% 57.18% 158.94% 158.92% 161.59% 

0.3 57.98% 57.92% 60.37% 202.70% 206.42% 210.45% 

25 

0.1 52.20% 51.95% 54.23% 133.41% 130.73% 134.26% 

0.2 59.88% 60.00% 61.97% 185.52% 184.79% 187.70% 

0.3 68.69% 69.09% 70.81% 232.18% 236.59% 237.75% 

 

TABLE 24 

Algorithms comparison by the number of best results shown 

(for mixed noise affected 256256  pixels greyscale images) 

1  2  
APCA+Wiener Sequential Parallel 

PSNR MSSIM PSNR MSSIM PSNR MSSIM 

15 

0.1 0.00 1.00 1.00 3.00 6.00 3.00 

0.2 0.00 0.00 1.00 4.00 6.00 3.00 

0.3 0.00 0.00 1.00 3.00 6.00 4.00 

20 

0.1 0.00 1.00 1.00 3.00 6.00 3.00 

0.2 0.00 0.00 0.00 3.50 7.00 3.50 

0.3 0.00 0.00 0.00 3.50 7.00 3.50 

25 

0.1 0.00 1.00 1.00 3.00 6.00 3.00 

0.2 0.00 0.80 0.00 2.63 7.00 3.58 

0.3 0.00 2.00 0.00 3.00 7.00 2.00 

Total 5.80 33.63 86.58 

Total # tests 126 

 

TABLE 27 

Algorithms comparison by the percentage of best results shown 

(for mixed noise affected 256256  pixels greyscale images) 

Parameter Total # tests APCA+Wiener Sequential Parallel 

PSNR 63 0.00% 7.94% 92.06% 

MSSIM 63 9.21% 45.44% 45.36% 

Average 4.60% 26.69% 68.71% 
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TABLE 25 

Algorithms comparison by the number of best results shown 

(for mixed noise affected 512512  pixels greyscale images) 

1  2  
APCA+Wiener Sequential Parallel 

PSNR MSSIM PSNR MSSIM PSNR MSSIM 

15 

0.1 0.00 2.82 0.00 0.00 16.00 13.18 

0.2 0.00 6.00 0.00 3.33 16.00 6.67 

0.3 0.00 3.00 0.00 6.00 16.00 7.00 

20 

0.1 0.00 4.71 0.00 0.00 16.00 11.29 

0.2 0.00 6.00 0.00 3.00 16.00 7.00 

0.3 0.00 4.00 0.00 9.00 16.00 3.00 

25 

0.1 1.00 6.00 0.00 0.00 15.00 10.00 

0.2 0.00 6.00 0.00 3.00 16.00 7.00 

0.3 1.00 5.00 0.00 7.62 15.00 3.38 

Total 45.53 31.95 210.52 

Total # tests 288 

 

TABLE 26 

Algorithms comparison by the number of best results shown 

(for mixed noise affected 512768  pixels colour images) 

1  2  
APCA+Wiener Sequential Parallel 

PSNR MSSIM PSNR MSSIM PSNR MSSIM 

15 

0.1 0.00 4.00 0.00 0.00 10.00 6.00 

0.2 0.00 2.00 0.00 1.00 10.00 7.00 

0.3 0.00 1.00 0.00 0.00 10.00 9.00 

20 

0.1 0.00 3.00 0.00 0.00 10.00 7.00 

0.2 0.00 2.00 0.00 1.00 10.00 7.00 

0.3 0.00 1.00 0.00 1.00 10.00 8.00 

25 

0.1 0.00 3.00 0.00 0.00 10.00 7.00 

0.2 0.00 2.00 0.00 1.00 10.00 7.00 

0.3 0.00 1.00 0.00 3.00 10.00 6.00 

Total 19.00 7.00 154.00 

Total # tests 180 

 

TABLE 28 

Algorithms comparison by the percentage of best results shown 

(for mixed noise affected 512512  pixels greyscale images) 

Parameter Total # tests APCA+Wiener Sequential Parallel 

PSNR 144 1.39% 0.00% 98.61% 

MSSIM 144 30.23% 22.19% 47.58% 

Average 15.81% 11.09% 73.10% 

 

TABLE 29 

Algorithms comparison by the percentage of best results shown 

(for mixed noise affected 512768  pixels colour images) 

Parameter Total # tests APCA+Wiener Sequential Parallel 

PSNR 90 0.00% 0.00% 100.00% 

MSSIM 90 21.11% 7.78% 71.11% 

Average 10.56% 3.89% 85.56% 
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a) Noised image “Clock” 

(16.60 dB; 0.203) 

 
b) APCA+Wiener 

(26.01 dB; 0.877) 

 
c) Sequential scheme 

(26.09 dB; 0.899) 

 
d) Parallel scheme 

(26.62 dB; 0.893) 

 
e) Noised image “Village” 

(14.01 dB; 0.134) 

 
f) APCA+Wiener 

(23.20 dB; 0.610) 

 
g) Sequential scheme 

(23.44 dB; 0.625) 

 
h) Parallel scheme 

(23.32 dB; 0.628) 

 
i) Noised image “Lady” 

(17.24 dB; 0.293) 

 
j) APCA+Wiener 

(28.06 dB; 0.773) 

 
k) Sequential scheme 

(28.14 dB; 0.772) 

 
l) Parallel scheme 

(28.39 dB; 0.777) 

 

Fig. 9. Example of reconstruction of mixed noise affected images: “Clock” ( 251  , 1.02  ), “Village” ( 201  , 3.02  ), and 

“Lady” ( 151  , 2.02  ) processed by APCA+Wiener, sequential and parallel filtration schemes. In brackets PSNR, dB and MSSIM 

 

V. COMPUTATIONAL COSTS 

Although we have already discussed the computational 

costs of the parallel filtration scheme [8], in the present work 

we would like to compare the computational costs of the 

used algorithms in order to give a complete coverage of the 

question of their applicability to the abovementioned digital 

image processing tasks. 

Consider N  and M  – number of strings and columns of 

a processed image, respectfully, N  – step in pixels, which 

a denoise region is moved on, n  – number of training 

vectors found in a train regions, m  – length of training 

vectors, depicted as column-vectors, l  – parameter, setting 

up a size of similarity area, and g  – parameter, setting up a 

size of similar pixels search area. 

A. Modification of the two-stage PCA filtration algorithm 

Calculations connected with creation of covariation 

matrix, search for eigenvectors (principal components) and 

data interpretation in a found principal components’ basis 

require )( 2nmO  operations for each denoise region. 

Data transform coefficients computation, shown in the 

found principal components’ basis, performed using 

LMMSE estimator during the first stage and using empirical 

Wiener filter during the second stage, combined require 

)(nmO  operations for each denoise region. 

Therefore, the APCA+Wiener filtration scheme has 

computation costs of: 

 










)()( 2 nmOnmO

N

NM
O , (7) 

there 
N

NM


 represents the number of denoise regions per 

processed image. 

B. Sequential filtration scheme 

Sequential scheme uses a third processing stage based on 

non-local processing algorithm which requires )( 22gNMlO  

operations in total. As you can see this component is highly 

dependable on the parameters algorithm uses, but in general 

it drastically increases the total run time of the filtration 

algorithm compared to the APCA+Wiener. 

Total computational costs of the three staged sequential 

filtration scheme are as follows: 

  )()()( 222 gNMlOnmOnmO
N

NM
O 











. (8) 

C. Parallel filtration scheme 

Its difference from the sequential scheme in a 

computational costs sense is in addition of a fourth stage of 
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mixing pixels. This procedure requires as low as )(NMO  

operations in total. 

A resulting equation describing the computation cost of 

the proposed algorithm: 

  )()()()( 222 NMOgNMlOnmOnmO
N

NM
O 











. (9) 

An addition of the fourth stage does not give any 

significant run time increase, because, as it was mentioned 

above, third processing stage – “Non-local algorithm of 

image filtration” comprises the most of the total 

computational costs. 

As we stated before computation costs of the sequential 

and parallel scheme algorithms are relatively high in 

comparison with APCA+Wiener and other existed denoising 

algorithms. There are several possible approaches which can 

be used to decrease the cost: (1) calculate only first largest 

eigenvalues and correspondent eigenvectors for creation of 

principal components’ basis [20]; (2) during the processing 

of a noised image change a procedure of searching a local 

principal component basis with a creation of global 

hierarchical principal component basis [21]; (3) while using 

a non-local processing algorithm [6, 9-11] implement it in a 

vector form [9,10], or, alternatively, use a global principal 

components’ basis separately calculated for a processed 

image – this will reduce size of compared similarity areas of 

pixels being processed and analyzed, and speed up 

calculation of weight coefficients used to form a final 

evaluation of an unnoised pixel [22]. 

With these steps taken we believe the described 

algorithms will perform using less computational resources. 

They surely will not be close to the APCA+Wiener 

performance but their use will be more flexible. For 

example, if APCA+Wiener algorithm implemented using a 

lower level than MATLAB programming language may be 

used for video stream, sequential and parallel schemes will 

still most likely be applicable only for separate images 

processing. 

VI. COMPARISON OF THE USED FILTRATION METHODS 

Here we give a brief discussion on the filtration schemes 

performance in the described digital image processing 

applications. 

A. Modification of the two-stage PCA filtration scheme 

The most advantageous feature of this method is its low 

computational cost and construction simplicity. 

Primary disadvantages of using this filtration scheme from 

the standpoint of reconstructed images quality are: 

(1) substantial amount of ringing artefacts on image objects’ 

edges, this effect is especially visible on high-contrast image 

parts (for example see Fig. 8, b) and f)); (2) high blurring of 

image objects’ edges, compared to other modern filtration 

methods [3-5]. 

According to the application tests performed 

APCA+Wiener filtration scheme showed good results in: 

(1) removal of blocking artefacts from 512512  pixels 

greyscale images; (2) AWGN-affected colour images 

filtration; (3) mixed noise affected 512512  pixels 

greyscale and 512768  pixels colour images filtration. 

These good results were achieved mostly due to the high 

MSSIM values; PSNR results shown by this filtration 

scheme are modest in all tests, except of the removal of 

blocking artefacts from 512512  pixels greyscale images 

(see Table 13). 

B. Sequential filtration scheme 

Advantages of this method are in its relative construction 

and implementation simplicity and the decrease of the 

amount of ringing artefacts on image objects’ edges 

(for example see Fig. 8, c) and g)). 

Primary disadvantages of using this filtration scheme are 

in the presence of high blurring of image objects’ edges and 

high computational cost of the filtration algorithm. 

According to the application tests performed sequential 

filtration scheme showed good results in: (1) removal of 

blocking artefacts from 256256  pixels greyscale images; 

(2) mixed noise affected 256256  pixels and 

512512  pixels greyscale images filtration. Similarly to the 

APCA+Wiener, these good results were achieved mostly 

due to the high MSSIM values; PSNR results shown by this 

filtration scheme are modest in all tests, except the removal 

of blocking artefacts from 256256  pixels greyscale 

images (see Table 8). 

C. Parallel filtration scheme 

Advantages of this method are: (1) high quality of the 

reconstructed images both on PSNR and MSSIM scales; 

(2) minimal amount of ringing artefacts on image objects’ 

edges, and low blurring of image objects’ edges 

(for example see Fig. 8, d) and h)). 

Primary disadvantage of using this filtration scheme is in 

the high computational cost of the filtration algorithm. 

In all tests held the parallel filtration scheme showed 

nearly absolute best performance on PSNR scale and 

significantly outperformed its competitors on MSSIM scale. 

However in the task of blocking artefacts removal from 

256256  pixels greyscale images on MSSIM scale its lead 

from two other algorithms was less than 10% (see Table 8) 

and less than 15% in the task of AWGN-affected 

512768  pixels colour images filtration (see Table 18). 

VII. CONCLUSION 

Our study has shown how different digital image filtration 

algorithms based on the PCA and non-local processing may 

be applied to modern digital image processing tasks. 

Experimental results obtained prove the idea of successful 

application of these filtration methods to the removal of 

blocking artefacts, AWGN- and mixed noise affected image 

filtration. In the present work we listed the limitations of use 

for each method and proposed approaches of their 

overcome. 

Our further research will unveil the implementation 

results of the mentioned approaches and some other possible 

applications of the discussed filtration methods. 
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