
On Proving Operational Termination Incrementally
with Modular Conditional Dependency Pairs

Masaki Nakamura, Kazuhiro Ogata and Kokichi Futatsugi

Abstract—OBJ algebraic specification languages support
semi-automated verification of algebraic specifications based
on equational reasoning by term rewriting systems (TRS).
Termination is one of the most important properties of TRSs.
Termination guarantees that any execution of the specification
terminates in finite times. Another important feature of OBJ
languages is a module system with module imports to describe
large and complex specifications in a modular way. In this study,
we focus on a way to prove termination of OBJ specifications
incrementally, based on the notion of modular conditional
dependency pairs (MCDP).

Index Terms—Term rewriting, Operational termination, Con-
ditional Dependency Pairs, Algebraic specification, OBJ lan-
guages.

I. INTRODUCTION

OBJ languages [2], [3], [4], [5] are algebraic specification
languages which support several useful advanced features,
e.g. module system, typing system with ordered sorts, mix-
fix syntax, for describing specifications, and a powerful
interactive theorem proving system based on term rewriting
systems (TRSs). The following is an example of CafeOBJ
specifications, which is one of the active OBJ languages:

mod! BASIC-NAT{
[Zero NzNat < Nat]
op 0 : -> Zero
op s_ : Nat -> NzNat

}

The module BASIC-NAT represents natural numbers. Sorts
are declared in the square brackets ([ ]). BASIC-NAT has
the sorts Zero, NzNat and NAT. A partial order on sorts
is declared with <. The partial order ≤ is the reflexive and
transitive closure of <. In BASIC-NAT, Zero < Nat and
NzNat < Nat are declared, and the partial order is ≤ = {
(Zero, Zero), (Zero, Nat), (NzNat, NzNat), (NzNat, Nat),
(Nat, Nat) }. Sorts stand for sets in their models. Zero,
NzNat and Nat stand for the singleton set {0}, the set
of the positive numbers and the set of the natural numbers
respectively. A partial order stands for an inclusion relation
on the sets. In BASIC-NAT, two operation symbols are
declared. The operation symbol 0 is a constant symbol of
the sort Zero. The operation symbol s is a unary operation
symbol which takes an element of Nat and returns an
element of NzNat. 0 stands for zero, and s stands for
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the successor function on natural numbers. A term is a tree
whose nodes are operation symbols and leaves are constants
or variables. The terms 0, s 0, s s 0, . . ., sn 0, . . . stand
for the natural numbers 0, 1, 2, . . . , n, . . . respectively.

The following is another CafeOBJ module:

mod! NAT+{
pr(BASIC-NAT)
op _+_ : Nat Nat -> Nat
vars M N : Nat
eq 0 + N = N .
eq s M + N = s(M + N) .

}

The module NAT+ represents the addition on natu-
ral numbers. A module can import other modules.
pr(BASIC-NAT) means that the module NAT+ imports the
module BASIC-NAT. In the importing module, the elements
in the imported modules can be used, that is, Zero, NzNat,
Nat, 0, s can be used in NAT+. The binary infix operation
symbol + stands for the addition on natural numbers.
Variables are declared with vars. M and N are variables
of Nat. Equations are declared with eq. The first equation
means that 0 + t = 0 for any term t of Nat. The second
means s t + t′ = s(t + t′) for any terms t, t′ of Nat.

CafeOBJ supports a rewrite engine for equational reason-
ing. The following is the result of applying the CafeOBJ
reduction command red to the term s s 0 + s s s 0
in the module NAT+ 1:

NAT+> red s s 0 + s s s 0 .
-- reduce in NAT+ : (s s 0 + s s s 0):Nat
(s s s s s 0):NzNat

The above result is a proof of the equation 2 + 3 = 5.
The rewrite engine is implemented based on the theory of
term rewriting systems (TRS). In the TRS, equations in the
modules are regarded as left-to-right rewrite rules, and a
given term is reduced by applying those rules until it cannot.
For example, s s 0 + s 0 is reduced into s s s 0
as follows: s s 0 + s 0 → s (s 0 + s 0) → s s
(0 + s 0) → s s s 0, where the underlined subterms
are matched with some left-hand sides of the rewrite rules
and replaced with the instances of the corresponding right-
hand sides. The first two rewrite steps come from the second
equation and the last rewrite step is obtained by the first
equation in NAT+. The reduction command uses all equations
in the module and its all submodules. We give another
module of the multiplication on natural numbers.

mod! NAT*{
pr(NAT+)
op _*_ : Nat Nat -> Nat

1Some brackets are omitted by hand for the readability
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vars M N : Nat
eq 0 * N = 0 .
eq s M * N = (M * N) + N .

}

In NAT*, the term s s 0 * s 0 is reduced into s s 0
as follows: s s 0 * s 0 → (s 0 * s 0) + s 0 →
((0 * s 0) + s 0) + s 0 → (0 + s 0) + s 0
→ s 0 + s 0 → s (0 + s 0) → s s 0. Note that
the equations in both NAT* and NAT+ are used.

Termination is one of the most important properties of
TRSs, which guarantees that execution of the specification
must terminate in finite times. Note that in NAT*, terms
are reduced by applying the equations in both NAT+ and
NAT*. To prove termination of NAT*, we need to con-
sider all equations in both NAT+ and NAT*. In general,
termination is not a modular property, that is, for two
terminating TRSs R0 and R1, the combination R0 ∪ R1 is
not always terminating even if they have no shared operation
symbols. It can be seen in the following famous Toyama’s
counter-example: for R0 = {f(a, b, x) → f(x, x, x)} and
R1 = {g(x, y) → x, g(x, y) → y} where f is a ternary
operation symbol, g is a binary operation symbol, a and b
are constant symbols, and x and y are variables, then we have
the following infinite rewrite sequence: f(a, b, g(a, b))→R0

f(g(a, b), g(a, b), g(a, b)) →R1 f(a, g(a, b), g(a, b)) →R1

f(a, b, g(a, b)) → · · · even if each Ri is terminating (i =
0, 1).

Modularity of termination has been studied and several
kinds of conditions in which termination can be modular
have been proposed [6], [7]. Recently, an incremental ap-
proach to termination proofs has been proposed [8]. Roughly
speaking, in the incremental approach, termination of a
module with module imports is shown by (1) assuming
(a subclass of) termination of the imported modules, and
(2) proving some well-founded properties of the importing
module. The method proposed in [8] seems to be suitable for
proving termination of OBJ specifications, however, practical
OBJ specifications often include conditional equations which
are not treated in [8], where a conditional equation is an
equation with a guard condition. In this study, we extend the
incremental termination method in order to cover conditional
equations.

II. PRELIMINARIES

In this section, we introduce the notion of term rewriting
systems [6].

A. Signature and terms

A signature is a set of operation symbols. An operation
symbol f has its arity ar(f) ∈ N , where N denotes the
set of all natural numbers 2. We write the set of operation
symbols like Σ = {f0/n0, f1/n1, . . .} where the operation
symbol fi has the arity ar(fi) = ni. We may omit the
arities and write f instead of f/n if no confusion arises.
For a signature Σ and a countable set X of variables, the

2In order-sorted signature, the arity of an operation symbol is given as a
sequence of sorts, like s1s2 · · · sn. However, in this article, our termination
method proposed does not use sort information, and we adopt the simple
definition of signature (uni-sorted signature) and the arity of an operation
symbol is given as the number n of the sorts in the sequence s1s2 · · · sn.

set T (Σ, X) (abbr. T ) of (Σ, X)-terms is the smallest set
satisfying the following: X ⊆ T and f(t1, . . . , tn) ∈ T if
f/n ∈ Σ and ti ∈ T (i = 1, 2, . . . , n). We write c instead
of c() with c/0 ∈ Σ, and call it a constant (for both symbol
and term). Throughout this article, we may use x, y, z as
variables, f, g, h as operation symbols, a, b, c as constant
symbols, l, r, s, t, u as terms, without notice.

A substitution θ is a map from X to T . We write the term
obtained by replacing all variables x in a term t with the
terms θ(x) as tθ. A sequence w ∈ N+

∗of positive integers
represents a position of a term. O(t) ⊆ N+

∗ is defined as the
smallest set satisfying the following: ε ∈ O(t) (ε : the empty
sequence) and i.p ∈ O(f(t1, . . . , tn)) if 1 ≤ i ≤ n and
p ∈ O(ti). An operation symbol at the position p ∈ O(t) in
t is defined as xε = x, f(· · · )ε = f , and (f(t1, . . . , tn))i.p =
(ti)p. We call tε the root symbol of t. The term tp is called a
subterm of t at p, denoted by t D tp, if p ∈ O(t), and called
a strict subterm, denoted by t D tp, if p 6= ε, i.e., t D tp and
t 6= tp. A context C is a term with the special symbol �
which is not included in considered Σ and X and occurs only
once in C. The term obtained by replacing � with a term t
is written as C[t]. The set of all variables in t is written as
V ar(t).

Example 2.1: Let Σ+ = {+/2, s/1, 0/0} and Σ∗ =
{∗/2}. Examples of terms are 0, s(0), +(x, s(0)),
∗(+(x, s(0)), s(y)), and so on. s(0) is a strict subterm of
+(x, s(0)). Let t = +(x, s(y)). tθ = +(s(0), s(0)) when
θ(x) = s(0) and θ(y) = 0, C[t] = ∗(s(x), +(x, s(y))) when
C = ∗(s(x), �), and V ar(t) = {x, y}.

B. Conditional rewrite rules and rewrite relation

We formalize conditional term rewriting systems (CTRS)
corresponding to CafeOBJ. In CafeOBJ, each module implic-
itly imports a built-in Boolean module BOOL. BOOL has the
sort Bool and the constants true and false, and usual
logical operations and, or, not, etc, on Bool. A CafeOBJ
conditional equation has the form of ceq l = r if c, where
c is a term of Bool, and means that the body equation l = r
holds whenever c holds. In the reduction, the instance lθ is
replaced with rθ when cθ is reduced into true. Note that
V ar(r)∪V ar(c) ⊆ V ar(l). Unconditional equations eq l =
r can be considered as l→ r ⇐ true. A (Σ, X)-conditional
rewrite rule is a triple (l, r, c), denoted by l → r ⇐ c, such
that l, r, c ∈ T (Σ, X) and V ar(r) ∪ V ar(c) ⊆ V ar(l). A
conditional term rewriting system (CTRS) is a pair of a
signature Σ and a set of (Σ, X)-conditional rewrite rules
3. We write l → r instead of l → r ⇐ c when
c = true. We may call just a conditional rewrite rule, a
rewrite rule or a rule, instead of a (Σ, X)-conditional rewrite
rule if no confusion arises. A CTRS (Σb, Rb) for BOOL
is defined as Σb = {true/0, false/0, not/1, . . .} and
Rb = {not(true) → false, not(false) → true, . . .},
and hereafter we assume that every CTRS (Σ, R) implicitly
includes (Σb, Rb), that is, Σb ⊆ Σ and Rb ⊆ R. We may
omit Σ and write R as a CTRS instead of (Σ, R). A rewrite
relation →R is defined as follows: (1) s→0 t if there exists
l → r ⇐ c ∈ R and a substitution θ such that s = C[lθ],

3Our definition of CTRSs is categorized into 1-CTRS [6] by regarding
l → r ⇐ c as l → r ⇐ c = true.
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t = C[rθ], and cθ = true. (2) s →i+1 t if there exists
l → r ⇐ c ∈ R and a substitution θ such that s = C[lθ],
t = C[rθ], and cθ →∗

i true, where →∗ stands for the
reflexible and transitive closure of a binary relation →. (3)
→R= ∪i∈N →i.

Example 2.2: Consider the following CafeOBJ module:
mod! EVEN{

pr(NAT+)
op even : Nat -> Bool
var N : Nat
eq even(0) = true .
ceq even(s N) = true if odd(N) .
ceq odd(s N) = true if even(N) .

}
The corresponding CTRS Re is defined as follows:

Re =

 even(0) → true
even(s(x)) → true ⇐ odd(x)
odd(s(x)) → true ⇐ even(x)

We have even(s(s(0))) →R true since even(0) →0 true,
odd(s(0))→1 true, and even(s(s(0)))→2 true.

III. OPERATIONAL TERMINATION AND CONDITIONAL
DEPENDENCY PAIRS

A CTRS R is terminating if there is no infinite rewrite
sequence t0 →R t1 →R t2 →R · · · . Although termination is
one of the most important properties of CTRS, it does not
directly correspond to termination of computation of terms.
Consider R = {a → b ⇐ a}. By removing the condition
we have R′ = {a → b} and R′ is trivially terminating and
thus R is also terminating since in general →R is a subset
of →R′ when R′ is a (unconditional) TRS obtained from
R by removing all condition parts. However, computation
of reducing a does not terminate since when try to apply
a → b ⇐ a to the target term a, the condition a should
be checked whether it can be reduced into true, and the
procedure fails into an infinite calls of the condition. To
capture the above non-terminating behaviors, the notion of
operational termination has been proposed [9], which is de-
fined by infinite well-formed trees in a logical inference sys-
tem of conditional rewrite relation instead of infinite rewrite
sequences. By the notion of operational termination, we can
guarantee the absence of both infinite rewrite sequences and
infinite condition calls. From the space limitation, we omit
the precise definition of operational termination. Instead,
we introduce an equivalent proposition on context-sensitive
rewriting later in this section.

A. Conditional dependency pairs

The notion of dependency pairs is one of the most power-
ful method to prove termination of (unconditional) TRS [10].
where essential pairs of terms are extracted from rewrite rules
and chains of the pairs are analyzed for proving termination.
We redefine the notion of dependency pairs for CTRS. An
operation symbol at the root position of the left-hand side
of some rewrite rule is called a defined symbol, that is,
DR = {f ∈ Σ | f(. . .)→ r ⇐ c ∈ R}. The marked symbol
of f is defined as f# and the set of marked symbols of
Σ is written as Σ#. The marked term t# of a non-variable
term t = f(t1, . . . , tn) is the term obtained by renaming

only the root symbol, defined as t# = f#(t1, . . . , tn). An
ordinary dependency pair is a pair (l#, u#) of the marked
left-hand side and a marked subterm in the right-hand side
whose root symbol is defined. For operational termination,
we need to consider the condition part. Thus, besides the
right-hand side, a marked subterm u# of the condition c
should be considered.

Definition 3.1: Let R be a CTRS. The set CDP (R) of
all conditional dependency pair (CDP) of R is defined as
follows:

CDP (R) =
{

(l#, u#)⇐ c
l→ r ⇐ c ∈ R,
r = C[u], uε ∈ DR

} ∪{
(l#, u#)⇐ true

l→ r ⇐ c ∈ R,
c = C[u], uε ∈ DR

}
We may write (s, t) instead of (s, t)⇐ true.

Definition 3.2: Let R be a CTRS. A (possibly infinite)
sequence (l#i , u#

i ) ⇐ ci (i = 0, 1, 2, . . .) of pairs of
CDP (M) is called a dependency chain of R if there exist
θi (i = 0, 1, 2, . . .) such that (1) ciθi →∗

R true, and (2)
u#

i θi →∗
R l#i+1θi+1 for each i ∈ N 4.

The following sufficient condition of operational termina-
tion holds.

Theorem 3.3: A CTRS R is operationally terminating if
and only if there exists no infinite chain of R.

Example 3.4: While Re does not have any ordinary de-
pendency pair [10] since any right-hand side does not have
defined symbols, it has conditional dependency pair since de-
fined symbols occur in the conditions. We have CDP (Re) =
{(even#(s(x)), odd#(x)), (odd#(s(x)), even#(x))}. There
is no infinite chain of Re since any chain should be in
the form of (even#(s0), odd#(t0))) (odd#(s1), even#(t1))
(even#(s2), odd#(t2)) · · · and the argument of each CDP
should decrease (si > ti because of s(x) > x) and the
connected terms are equivalent (ti = si−1) in the meaning
of the model of NAT+. The strict order > on natural
number is well-founded, i.e. there is no decreasing sequence
n0 > n1 > n2 > · · · . Similarly, we can see that R+ of NAT
does not have infinite dependency chains, and Re ∪ R+ is
operationally terminating.

B. Proof of Theorem 3.3

To prove Theorem 3.3, the notion of context-sensitive
rewriting (CSR) [11] and the transformation from CTRS
to CSR [12] are useful. We introduce the notations and
definitions of them. Let R be a (unconditional) TRS. A
map µ from Σ to P(N ) is called a replacement map if
µ(f) ⊆ {1, 2, . . . , ar(f)} for each f ∈ Σ. The set Oµ(t)
of replacement positions of t is defined as ε ∈ Oµ(t) and
i.p ∈ Oµ(f(t1, . . . , tn)) if i ∈ µ(f) and p ∈ Oµ(ti).
A context-sensitive rewrite relation of µ, denoted by →µ,
is defined as follows: s →µ t if and only if there exists
l → r ∈ R and θ such that s = C[lθ], t = C[rθ], Cp = �,
and p ∈ Oµ(t).

The following unraveling technique with CSR can simu-
late computation of CTRS completely.

4Assume variables in pairs of CDPs are marked such that they are distinct
from each other.
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Definition 3.5: [12] Let (Σ, R) be a CTRS. The (uncon-
ditional) TRS (Σ ∪ ΣU , Ucs(R)) and the replacement map
µU are defined as follows: Let each conditional rule in R be
labeled like α : l→ r ⇐ c.

ΣU = {Uα | α : l→ r ⇐ c ∈ R}

Ucs(R) =
{

l→ Uα(c, x1, . . . , xn) α : l→ r
Uα(true, x1, . . . , xn)→ r ⇐ c ∈ R

}
∪ {

l→ r l→ r ⇐ true ∈ R
}

µU (f) =
{
{1, . . . , ar(f)} if f ∈ Σ
{1} if f ∈ ΣU

where V ar(l) = {x1, . . . , xn}.
Hereafter, we may write s→U t instead of s→µU t.

Example 3.6: Re in Example 2.2 is unravelled as follows:

Ucs(Re) =


even(0) → true

even(s(x)) → Ue(odd(x), x)
Ue(true, x) → true

odd(s(x)) → Uo(even(x), x)
Uo(true, x) → true

A term even(s(s(0))) is reduced into true as follows:

even(s(s(0))) →µ Ue(odd(s(0), s(0))
→µ Ue(Uo(even(0), 0), s(0))
→µ Ue(Uo(true, 0), s(0))
→µ Ue(true, s(0))
→µ true

A TRS is called µ-terminating if there is no infinite rewrite
sequence t0 →µ t1 →µ t2 →µ · · · . Operational termination
of CTRS and µ-termination of the transformed TRS have
been shown to be equivalent in [12].

Proposition 3.7: [12] Let R be a CTRS. (1) If s →R t,
then s →+

U t, and (2) R is operationally terminating if and
only if Ucs(R) is µU -terminating on T (Σ, X).

Now we give a proof of Theorem 3.3.
Theorem 3.3: A CTRS R is operationally terminating if

and only if there exists no infinite chain of R.
Proof: (only if part): We will prove by contraposition.

Assume an infinite chain (l#i , u#
i ) ⇐ ci (i ∈ N ) exists.

From Definition 3.1 and 3.5, for each (l#i , u#
i ) ⇐ ci,

there exist rewrite rules li → Uαi(ci, x
i
1, . . . , x

i
n) and

Uαi(true, xi
1, . . . , x

i
n) → Ci[ui] in Ucs(R). From Def-

inition 3.2 (1), ciθi →∗
R true for some θi, and thus

ciθi →∗
U true from Proposition 3.7 (1). Thus, we have

liθi →U Uαi(ciθi, ~x) →∗
U Uαi(true, ~x) →U Ci[ui]θi =

Ciθi[uiθi]. From Definition 3.2 (2), u#
i θi →∗

R l#i+1θi+1

and thus uiθi →∗
U li+1θi+1. Note that s# →R t#

implies s →R t since R does not have any marked
symbols f#. Then, we have an infinite rewrite sequence
l0θ0 →+

U C0θ0[u0θ0] →∗
U C0θ0[l1θ1]→+

U C0θ0[C1θ1[u1θ1]]
→∗

U · · · →
+
U C0θ0[C1θ1[· · ·Cnθn[unθn]]] →U · · · . Since

l0θ0 belongs to the original T (Σ, X), R is not operationally
terminating from Proposition 3.7 (2).
(if part): Assume R is not operationally terminating. Ucs(R)
is not µU -terminating from Proposition 3.7 (2). We take a
minimal infinite rewrite sequence of µU -termination: t00 →U

t01 →U t02 →U . . . where t00 ∈ T (Σ, X), and there is no
infinite rewrite sequence t′0 →U t′1 →U · · · beginning with a
strict subterm t′0 of t00. From the minimal assumption and the
fact that t00 ∈ T (Σ, X), there exists t0i such that t0i = l0θ0

and t0i+1 = Uα0(c0θ0, ~v) for some l0 → r0 ⇐ c0 ∈ R,
where vk = θ0(xk). Note that θ0(z) ∈ T (Σ, X) for each
z ∈ ~x since t00 ∈ T (Σ, X). We consider the case that c0θ0 is
not µU -terminating. Then, we take a minimal infinite rewrite
sequence c0θ0 D u0θ0 = t10 →U t11 →U · · · . From the min-
imality, root(u0) ∈ DR. Then, we take (l#0 , u0

#) ⇐ true
as the first CDP of the chain. Next, we consider the other
case that c0θ0 is µU -terminating. Since µU (Uα0) = {1}
and t0i+1 is not µ-terminating, c0θ0 →∗

U true holds, and
t0i+1 = Uα0(c0θ0, ~v) →∗

U Uα0(true, ~v) →U r0θ0 where
r0θ0 is not µ-terminating. Then, we take a minimal infinite
rewrite sequence r0θ0Du0θ0 = t10 →U t11 →U · · · . From the
minimality, root(u0) ∈ DR. Then, we take (l#0 , u0

#) ⇐ c0

as the first CDP of the chain. From Proposition 3.7 (1),
c0θ0 →∗

R true holds. Now, for both cases, there exists
t1i such that t1i = l1θ1 and t1i+1 = Uα1(c1θ1, ~v) for some
l1 → r1 ⇐ c1 ∈ R, and similarly we can take the next CDP
(l#1 , u1

#)⇐ c1 with θ1. Since u0θ0 →∗
U t1i = l1θ1, we have

u0θ0 →∗
R t1i = l1θ1 from Proposition 3.7(1). As a similar

way, we can make an infinite chain (l#k , uk
#)⇐ ck with θk

(k ∈ N ). �

IV. INCREMENTAL PROOFS OF OPERATIONAL
TERMINATION

A. Hierarchical extension

The notion of the hierarchical extension has been defined
for TRSs in [8]. We give a straightforward extension to
CTRSs as follows:

Definition 4.1: A pair [Σ1 | R1] is called a module ex-
tending a CTRS (Σ0, R0), denoted by (Σ0, R0)← [Σ1 | R1],
if (1) Σ0 ∩ Σ1 = ∅, (2) (Σ0 ∪ Σ1, R1) is a CTRS and
(3) DR1 ⊂ Σ1. The CTRS (Σ0 ∪ Σ1, R0 ∪ R1) is called
a hierarchical extension of (Σ0, R0) with module [Σ1 | R1].

We write (Σ0, R0) ← [Σ1 | R1] ← [Σ2 | R2] when [Σ2 |
R2] extends (Σ0 ∪ Σ1, R0 ∪R1). A CTRS (Σ0, R0) can be
regarded as a module [Σ0 | R0] extending the empty CTRS
(∅, ∅). Hereafter we may use the module expression for an
ordinary CTRSs.

Example 4.2: Let M+ = [Σ+ | R+] and M∗ = [Σ∗ | R∗]
such that Σ+ = {0, s, +} declared in NAT+, Σ∗ = {∗}
declared in NAT*, R+ is the TRS which has two rewrite
rules in NAT+, and R∗ is the TRS which has two rewrite
rules in NAT*. Then, M+ ←M∗ since Σ+∩Σ∗ = ∅ and the
root symbols of the two rewrite rules in R∗ is ∗ ∈ Σ∗. Also
M+ ← Me(= [Σe | Re]) for Σe = {even, odd}(= DRe)
and Re in Example 2.2.

B. Modular Conditional Dependency Pairs

To give a sufficient condition of operational termination in
a modular way, we introduce conditional dependency pairs
of a module, which is defined by ignoring the subterms u
whose root symbol is not in the module in ordinary CDP
defined above. While (∗#(s(m), n), +#(n, ∗(m, n)) belongs
to CDP (R+ ∪R∗) since + ∈ DR+∪R∗ , it is not considered
for M∗ = [Σ∗ | R∗] since + 6∈ DR∗ .

Definition 4.3: Let M = [Σ | R] be a module. The set
MCDP (R) of all conditional dependency pair of module
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M (abbr. MCDP) is defined as follows:

MCDP (R) =
{

(l#, u#)⇐ c
l→ r ⇐ c ∈ R,
r = C[u], uε ∈ DR

}∪{
(l#, u#)⇐ true

l→ r ⇐ c ∈ R,
c = C[u], uε ∈ DR

}
The dependency chain of MCDP is defined as a sequence

of MCDPs which are connected by the rewrite relation of
some arbitrary CTRS S, which may be R0∪R1, for example.

Definition 4.4: Let M = [Σ | R] be a module and S be
a CTRS. A (possibly infinite) sequence (l#i , u#

i ) ⇐ ci (i =
0, 1, 2, . . .) of pairs of MCDP (M) is called a dependency
chain of M over S if there exist θi (i = 0, 1, 2, . . .) such
that (1) ciθi →∗

S true, and (2) u#
i θi →∗

S l#i+1θi+1 for each
i ∈ N .

The ordinary CDP (R) and the dependency chain are
equivalent to MCDP ([Σ | R]) and the dependency chain of
[Σ | R] over R respectively. Collapse-extended termination
(CE-termination) is a subclass of termination, which plays
important role in proving termination in a modular way
[7]. A CTRS R is CE-(operationally) terminating if R ∪ π
is (operationally) terminating, where π = {G(x, y) →
x,G(x, y)→ y} with a special fresh binary operation symbol
G/2, which means that G 6∈ Σ for any considered Σ. Our
main theorem is that CE-operational termination of R0 and
the absence of infinite chains of R1 over R0 ∪ R1 imply
(CE-)operational termination of R0 ∪R1.

Before the main theorem, we show the following theorem
between CE-operational termination and MCDP.

Theorem 4.5: A CTRS (Σ, R) is CE-operationally termi-
nating if and only if there exists no infinite chain of [Σ | R]
over R ∪ π.

Proof: Since G is fresh, R does not have G and
MCDP ([Σ | R]) = MCDP ([Σ ∪ {G/2} | R ∪ π]). �

The following is a main theorem of this paper.
Theorem 4.6: Let [Σ0 | R0] ← [Σ1 | R1]. If (1) R0 is

CE-operationally terminating, and (2) there exists no infinite
chain of [Σ1 | R1] over R0 ∪ R1 ∪ π, then R0 ∪ R1 is CE-
operationally terminating.

Proof: (Sketch) It can be proved by the same proof
strategy with the unconditional version of this theorem in the
literature [8] (Theorem 1). An infinite chain of CDP (R0 ∪
R1 ∪ π) consists of either

(a) those of MCDP ([Σ0 | R0]),
(b) those of MCDP ([Σ1 | R1]), or
(c) (l#, u#)⇐ c such that lε ∈ Σ1 and uε ∈ Σ0.

In the example of M+ ←M∗,

(a) MCDP (M+) = {(+#(s(m), n), +#(m,n))}
(b) MCDP (M∗) = {(∗#(s(m), n), ∗#(m,n))}
(c) CDP (R+ ∪R∗) \ (MCDP (R+) ∪MCDP (R∗))

= {(∗#(s(m), n),+#(∗(m,n), n))}

Since Σ0 ∩ Σ1 = ∅, it suffices to consider infinite chains
constructed from (a) only or (b) only. An infinite chain of
(b) contradicts the assumption (2) directly. An infinite chain
of (a) does not directly contradict (1) since since infinite
chains of CDP (R0) is over R0 while infinite chains of (a)
is over R0 ∪ R1 ∪ π. We can make a chain of CDP (R0)
from a chain of (a) with the same dependency pairs of the

sequence and different substitution and connective rewrite
relation according to the term interpretation from Σ#

0 ∪ Σ1

to Σ#
0 ∪{G/2} in [8]. Then, we have the interpreted infinite

chain of CDP (R0) which contradicts (1) and Theorem 3.3.
�

The condition ”CE” in Theorem 4.6 (1) is essential
since Toyama’s example is a counter-example such that
R0 = {f(a, b, x) → f(x, x, x)} and R1 = π. Then,
MCDP ([{G} | π]) = ∅ and no infinite chain exists,
however, R0 ∪ π is not terminating as shown in I. INTRO-
DUCTION.

V. PROVING OPERATIONAL TERMINATION

To prove the absence of infinite dependency chains of
ordinary dependency pairs, the notion of weak reduction
pairs is useful [13]. We show that the weak reduction pair
also gives a useful sufficient condition for prove operational
termination via MCDP.

Definition 5.1: [13] A pair (≥, >) of binary relations on
terms is a weak reduction pair if it satisfies the following
conditions: (1) ≥ is monotonic (s ≥ t ⇒ C[s] ≥ C[t]) and
stable (s ≥ t ⇒ sθ ≥ tθ) (2) > is stable and well-founded
(no infinite sequence t0 > t1 > t2 > · · · ), and (3) either
≥ · >⊆> or > · ≥⊆>.

Definition 5.2: Let M = [Σ | R] be a module and S
be a CTRS. A weak reduction pair (≥, >) is compatible
with M over S if (1) ∀l → r ⇐ c ∈ S. l ≥ r and (2)
∀(l#, u#)⇐ c ∈MCDP (M). l# > u#.

Theorem 5.3: Let M = [Σ | R] be a module and S be
a CTRS. If there exists a weak reduction pair (≥, >) com-
patible with M over S, then there is no infinite dependency
chain of M over S.

Proof: Since ≥ is monotonic and stable, s = C[lθ]→S

C[rθ] = t implies s ≥ t. Since > is stable, l#θ > r#θ for
each (l#, r#) ⇐ c ∈ MCDP (M). From an infinite chain
(l#i , u#

i ) ⇐ ci (i = 0, 1, . . .), we have l#i θ0 > u#θ0 ≥
· · · ≥ l#i θ1 > u#θ1 ≥ · · · . Now we assume ≥ · >⊆> of
Definition 5.1 (3). we have l#i θ0 > u#θ0 > u#θ1 > u#θ2

> · · · . It contradicts the well-foundedness of >. Similarly,
for the case of > · ≥⊆>, we have l#i θ0 > l#θ1 > l#θ2 >
· · · . �

There are two approaches to make a weak reduction pair:
semantic methods, e.g. by weakly monotone well-founded
Σ-algebra, and syntactic methods, e.g. by recursive path
ordering [6], [7].

A. Semantic methods

A weakly monotone Σ-algebra (A,≥) consists of a set A
and interpretation Af : An → A of each f/n ∈ Σ with a
quasi-ordering ≥ (a reflexive and transitive binary relation on
A) such that every algebra operation is weakly monotone in
all of its arguments, that is, for each f/n ∈ Σ and a, b ∈ A
with a ≥ b we have f(. . . , a, . . .) ≥ f(. . . , b, . . .). A weakly
monotone Σ-algebra (A,≥) is well-founded if > is well-
founded. A map a : X → A is called an assignment, and
it can be extended to a map a : T (Σ, X) → A such that
a(f(t0, . . . , tn)) = f(a(t0), . . . , a(tn)). The order ≥A on T
is defined as t ≥A t′ if ∀a : X → A.a(t) ≥ a(t′). The
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stable-strict ordering >A is defined as s >A t if and only
if sθ ≥A tθ and tθ 6≥A sθ for each ground substitution θ :
X → T (Σ, ∅). Then, for a weakly monotone well-founded
Σ-algebra (A,≥), a pair (≥A, >A) is a weak reduction pair
[7].

Example 5.4:
1) For R+, a Σ+ ∪ Σ#

+ ∪ {G/2}-algebra (A,≥) is
defined as follows: A = N , A0 = 0, As(x) =
x + 1, A+(x, y) = x + y, A+#(x, y) = x, and
AG(x, y) = x + y. Then, for an assignment a, all
l → r ∈ R+ are interpreted to equations a(l) = a(r).
For π = {G(x, y) → x, G(x, y) → y}, a(G(x, y))
= a(x) + a(y) ≥ a(x) and a(G(x, y)) ≥ a(y). For
(+#(s(m), n), +#(m,n)) ∈MCDP (M+), we have

a(+#(s(m), n)) = a(s(m)) = a(m) + 1
> a(m) = a(+#(m,n))).

Then, (≥A, >A) is a weak reduction pair compatible
with M+ over R+ ∪ π, and from Theorem 4.6 and
5.3, R+ is CE-operationally terminating. Note that
for (∅, ∅) ← M+, the empty CTRS is trivially CE-
operationally terminating.

2) Next consider M+ ←M∗. A Σ+ ∪Σ∗ ∪Σ#
∗ ∪{G/2}-

algebra (A,≥) is defined as follows: the same inter-
pretation is given for Σ+ and G/2 with A = N .
A∗(x, y) = x × y, and A∗#(x, y) = x. Then, for
an assignment a, all l → r ∈ R∗ are interpreted to
equations a(l) = a(r). For (∗#(s(m), n), ∗#(m,n)) ∈
MCDP (M∗), we have

a(∗#(s(m), n)) = a(s(m)) = a(m) + 1
> a(m) = a(∗#(m,n)).

Then, (≥A, >A) is a weak reduction pair compatible
with M∗ over R∗ ∪ R+ ∪ π, and similarlly we have
that R+ ∪R∗ is CE-operationally terminating.

3) Consider M+ ←Me. A Σ+∪Σe∪Σ#
e ∪{G/2}-algebra

(A,≥) is defined as follows: the same interpretation is
given for Σ+ and G/2 with A = N . Atrue = 0 and
Aeven(x) = Aodd(x) = Aeven#(x) = Aodd#(x) =
x. Then, a(l) ≥ a(r) for all l → r ⇐ c ∈ Re and
a(l#) > a(u#) for all (l#, u#)⇐ c ∈MCDP (Me).
Thus, R+ ∪Re is CE-operationally terminating.

B. Syntactic methods

The notion of recursive path ordering (RPO) is one of the
most classical syntactic methods [6]. For a quasi-order ≥,
we write >=≥ \ ≤ and ∼=≥ ∩ ≤.

Definition 5.5: [6] Let Σ be a signature. A status function
τ maps f ∈ Σ to either mul or lexσ where σ is a permutation
on {1,2,. . . ,ar(f)}. Let ≥ be a well-founded precedence
(quasi-order) on Σ such that τ is compatible with ≥, that
is, if f ∼ g then (1) τ(f) = τ(g) = mul or (2) τ(f) = lexσ

and τ(g) = lexσ′ . Then, the recursive path order (RPO) ≥pro

on terms defined as follows:
s = f(s1, . . . , sm) ≥rpo g(t1, . . . , tn) = t⇔

(1) ∃i ∈ {1, . . . ,m}.si = t ∨ si ≥rpo, or
(2) f > g ∧ j ∈ {1, . . . , n}.s >rpo tj , or
(3) f ∼ g ∧ {s1, . . . , sm} ≥τ(f),τ(g)

rpo {t1, . . . , tn}

where >rpo=≥rpo \ ≤rpo, ≥lexσ,lexσ′
rpo is a lexicographic

extension of ≥rpo after permutation of {s1, . . . , sm} by σ
and {t1, . . . , tn} by σ′, and ≥mul,mul

rpo is a multiset extension
of ≥rpo

5.
It is known that (≥rpo, >rpo) is a weak reduction pair. To

describe a specification whose operational termination can be
proved by RPO, the notion of argument decreasing is useful
[14], [15].

Definition 5.6: [14], [15] For a module M = [Σ | R]. The
quasi order ≥M on Σ is defined as the smallest reflexive and
transitive relation satisfying the following condition: f ≥M g
whenever there exists f(· · · )→ r ⇐ c ∈ R such that rp = g
or cp = g for some p. We write ∼M=≥M ∩ ≤M .

Definition 5.7: [14], [15] Let τ be a status function
compatible with ≥M . A rewrite rule f(l1, . . . , lm)→ r ⇐ c
is argument decreasing if for any subterm g(r1, . . . , rn) of r
or c such that f ∼M g, {l1, . . . , lm}Bτ(f),τ(g) {r1, . . . , rn}.

If there exists a status function τ such that all component
modules of a given specification are argument decreasing,
then its operational termination can be proved by the weak
reduction pair (≥rpo, >rpo) with τ .

Example 5.8: Let τ(f) = mul for all operation symbol
f in M+,M∗,Me. Those modules are argument decreasing,
and they are all operationally terminating. For example, for
the rewrite rule +(s(m), n) → s(+(m,n)) ∈ R+, we need
to check {s(m), n}Bmul,mul{m,n}. {s(m)} = {s(m), n}−
{m,n} and {m} = {m,n}−{s(m), n}. It holds that s(m)B
m.

VI. APPLICATION TO PRACTICAL OBJ SPECIFICATIONS

The notion of observational transition system (OTS)
gives a way to describe a state machine in CafeOBJ,
and OTS/CafeOBJ specifications have been used for
modeling and analyzing several practical systems, for
example, authentication protocols, e-government systems,
etc [16], [17], [18]. An OTS/CafeOBJ specification
consists of a system module and data modules. A data
module is a specification of an abstract data type used
in the system, for example, integers with operations,
enumerated types, user-defined structures, and so on. A
system module is a specification of a state machine defined
via observations. We show an example of OTS/CafeOBJ
specifications: a specification of a bank account system
(Fig.1). The module ACCOUNT imports INT and USER
as data modules, where INT is a specification of integers
and their operations, and USER is a specification of
a user database. balance takes a state of the bank
account system and returns the balance value of each
user. Users can withdraw from and deposit in their
account. For example, the third conditional equation ceq
balance(U,withdraw(U’,I,A)) = (if U = U’
then balance(U,A) - I else balance(U,A)
fi) if balance(U,A) >= I and I >= 0 means
that the balance of the user U’ after withdrawing I is the
remainder of subtracting I from the balance of the current
state A if the balance of the user U’ of the current state A

5A multiset M is characterized by the number of each element x, denoted
by M(x). M−N is defined by (M−N)(x) = M(x)−N(x) if M(x) >
N(x), o.w. 0. M >mul N if and only if ∀x ∈ M−N.∃y ∈ N−M.x > y.
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mod* ACCOUNT {
pr(INT + USER)
*[ Sys ]*
op init : -> Sys
bop balance : User Sys -> Int
bop deposit : User Int Sys -> Sys
bop withdraw : User Int Sys -> Sys
vars U U’ : User
var I : Int
var A : Sys
eq balance(U,init) = 0 .

ceq balance(U, deposit(U’,I, A)) =
(if U = U’ then I + balance(U,A) else balance(U,A) fi)
if I >= 0 .

ceq deposit(U’,I,A) = A
if not ( I >= 0) .

ceq balance(U,withdraw(U’,I,A)) =
(if U = U’ then balance(U,A) - I else balance(U,A) fi)
if balance(U’,A) >= I and I >= 0 .

ceq withdraw(U’,I,A) = A
if not(balance(U’,A) >= I and I >= 0) .

}

Fig. 1. An OTS/CafeOBJ specification of bank account systems

is more than or equal to I and I is not negative, and that
of the other user U (6= U’) is not changed.

Let Ma = [Σa | Ra] be the module corresponding to
ACCOUNT. Then, the MCDP (Ma) consists of only four
conditional dependency pairs:

(bal#(u, dep(u′, i, a)), bal#(u, a))⇐≥ (i, 0)
(bal#(u,with(u′, i, a)), bal#(u, a))

⇐ and(≥ (bal(u′, a), i),≥ (i, 0))
(bal#(u,with(u′, i, a)), bal#(u, a))⇐ true
(with#(u′, i, a), bal#(u, a))⇐ true

Note that we do not need to consider operation symbols
=, ≥, +, −, if then else fi as defined symbols for
MCDP (Ma) even if they may be defined in the imported
modules. The last MCDP can be ignored in an infinite chain
because with# does not occur in any right-hand side of
MCDP. For each of the remaining three MCDPs, the second
argument of bal# strictly decreases in the meaning of the
number of operation symbols dep and with. Thus, there is
no infinite chain of MCDP, and if the imported modules are
already proved CE-operationally terminating, then the whole
CTRS is CE-operationally terminating. It can be proved by
RPO straightforwardly.

VII. CONCLUSIVE REMARKS

One of our goals is to implement a light-weight termi-
nation checker in CafeOBJ. Computing MCDPs is easy to
be implemented. There are several ordering on terms for
automated checking which can be transformed to a weakly
reduction pair, for example, RPO. Consider describing a large
specification with several modules. (1) We first describe basic
modules, that is, without imports, and prove CE-operational
termination of them and label them so. (2) Next we describe a
module which imports modules labelled by ”CE-operational
termination”. Then, it suffices to show the absence of infinite
chains of the module for proving CE-operational termination
of the whole system. One of the future work is to improve our
results for other features of OBJ languages, e.g. order-sorted
specifications, the evaluation strategy, operator attributes for
associative and commutative axioms.

REFERENCES

[1] M. Nakamura, K. Ogawa, and K. Futatsugi, “Incremental proofs of
operational termination with modular conditional dependency pairs,”
in Lecture Notes in Engineering and Computer Science: Proceedings
of The International MultiConference of Engineers and Computer
Scientists 2013, 2013, pp. 516–521.

[2] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer, “Prin-
ciples of obj2.” in Proceedings of the 12th ACM Symposium on
Principles of Programming Languages, POPL, 1985, pp. 52–66.

[3] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud, Software Engineering with OBJ: Algebraic Specification in
Action. Kluwers Academic Publishers, 2000, ch. Introducing OBJ*.

[4] CafeOBJ, http://www.ldl.jaist.ac.jp/cafeobj/.
[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,

and C. L. Talcott, Eds., All About Maude - A High-Performance
Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, ser. Lecture Notes in Computer Science, vol. 4350.
Springer, 2007.

[6] Terese, Term Rewriting Systems, ser. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003, vol. 55.

[7] E. Ohlebusch, Advanced topics in term rewriting. Springer, 2002.
[8] X. Urbain, “Modular & incremental automated termination proofs,” J.

Autom. Reasoning, vol. 32, no. 4, pp. 315–355, 2004.
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