
 

 
Abstract—An operon is the basic unit of transcription. The 

structural gene in the operon is co-transcribed into a 
single-stranded mRNA sequence, allowing operons to 
contribute to the understanding of transcription rules. 
However, experimental methods for detecting operons are 
extremely difficult and time-consuming to execute, thus using 
operon prediction as pre-treatment can greatly reduce the cost 
of performing an experimental assay. Previous studies have 
used different algorithms) with biological properties to predict 
genome operons distributions. This study uses a differential 
evolution (DE) algorithm with biological properties to predict 
the operons of bacterial genomes. The biological properties 
include the intergenic distance, the metabolic pathway, the 
cluster of orthologous groups (COG), gene length ratio and 
operon length. The Escherichia coli genome is used to train the 
evaluation standards of each property. The present study 
proposes DE for operon prediction, and also compares the 
effectiveness of the five properties as presented by ROC curves. 
Results indicate that intergenic distance, metabolic pathway 
and COG provide better operon prediction results. The 
respective accuracy values for the B. subtilis, P. aeruginosa 
PA01, S. aureus and M. tuberculosis genomes were 0.923, 0.954, 
0.963 and 0.963. A comparison with other methods in the other 
literature demonstrates that the proposed method can 
effectively be used for operon prediction. 
 
Index Terms—operon prediction, differential evolution, 
intergenic distance, metabolic pathway, cluster of orthologous 
groups. 
 

I. INTRODUCTION 

N prokaryotic organisms, operons of bacterial genomes 
contain valuable information regarding protein functions 

that can be used in drug design. An operon contains a 
promoter, an operator, one or more continuously-structural 
genes, and a terminator. The structural gene is co-transcribed 
into a single strand of mRNA. This provides information that 
is translated into proteins. However, experimental methods 
for detecting operons are extremely difficult and 
time-consuming [1] and effective prediction methods are 
urgently needed. This research focuses on using machine 
learning and biological properties for operon prediction. 
Since the co-transcribed genes have the same biological 
properties, machine learning can be applied to these 
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biological properties for operon prediction. The prediction 
results of an assay can be used as reference data, thus greatly 
reducing costs and improving the effectiveness of 
experimental detection. 

In recent years, studies have proposed several properties 
for use in inferring prokaryote operon structures, namely 
intergenic distance, conserved gene clusters, functional 
relations, genome sequence-based, and experimental 
evidence [2]. Genome sequence-based promoters and 
terminators are most commonly used for operon prediction 
for these five properties [3], with intergenic distance being 
the simplest to predict. It is widely used in operon prediction 
because the distance between operon pairs (i.e., adjacent 
genes within a single operon) is significantly smaller than the 
distance between non-operon pairs (i.e., adjacent genes 
within different operons), thus intergenic distance on its own 
can yield good operon prediction results [2]. Since genes in 
the same operon often show similar functional relations, this 
property also provides good prediction results. Metabolic 
pathways [4], clusters of orthologous groups [5], and gene 
ontologies [3] are also often used for operon prediction. 

Operon prediction methods proposed in recent years 
include hidden Markov models [6], support vector machines 
[7], probabilistic learning [8], Bayesian networks [9], fuzzy 
guided genetic algorithms [1], genetic algorithms [10] and 
differential evolution [11]. This study uses the differential 
evolution of an optimization algorithm to predict operons. 
The Escherichia coli (NC_000913) genome was used to train 
the fitness value of a gene pair, and accuracy testing was 
conducted using four test data sets. The fitness function 
evaluation standard was based on the intergenic distance, the 
metabolic pathway, the cluster of orthologous groups (COG), 
gene length ratio and operon length of the E. coli genome. 
The log-likelihood [12] was used to assess the scores of 
biological properties. 

We propose a simple and highly accurate computational 
method for operon prediction. The direction and distance 
between adjacent genes was used to encode chromosomes 
during the initialization process, and subsequent iterations 
were conducted with consideration of the relationship of 
adjacent and nearby genes to produce an operon combination. 
The proposed method was tested on the B. subtilis 
(NC_000964), P. aeruginosa PA01 (NC_002516), S. aureus 
(NC_002952) and M. tuberculosis (NC_000962) genomes. 
Experimental results on the four test data sets indicate that the 
proposed method obtained higher levels of accuracy, 
sensitivity, and specificity than can be obtained from other 
methods from the literature. 
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II. METHODOLOGY 

A. Training score based on biological properties 

In this study, the E. coli genome is used to train various 
property scores, followed by accuracy tests on the testing 
data genomes. Predictors are easier to build for large data sets 
like the E. coli genome. We applied five biological properties 
for operon prediction: the intergenic distance, the metabolic 
pathway, the cluster of orthologous groups (COG), gene 
length ratio and operon length. These five properties for the 
E. coli genome were used to assess the possibility of an 
assumed operon, with assessment scores calculated by the 
log-likelihood method. The properties and score assessment 
method are introduced below. 

 
1) Intergenic Distance 

Adjacent genes within the same operon are usually 
characterized by short distances, and adjacent genes may 
sometimes even overlap. Hence a short intergenic distance 
indicates that genes are more likely to be located in the same 
operon. [10]. Yan and Moult [13] further proposed that the 
distance distribution frequency of non-operon pairs increases 
with distance, and gradually becomes exceeds the frequency 
of operon pairs. We chose this feature as an evaluation 
criterion. The log-likelihood method for the scores is given in 
Eq.1: 
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where property can be distance, pathway or COG. In 
intergenic distance, NWO(property) and NTUB(property) 
respectively correspond to genes with the same 
characteristics on the number of WO and TUB pairs. TNWO 
and TNTUB are the total pair numbers of WO and TUB, 
respectively. Table I shows the score of each interval of the E. 
coli genome based on 10bps [14]. The table shows that, if the 
distance between a gene pair is -4 bps, the score of the gene 
pair is 2.22656. It also shows that shorter distances between 
gene pairs often obtain higher scores. 
 
2) Metabolic Pathway 

Genes within an operon often participate in the same 

biological process [7] and co-transcribed genes often share 
the same properties and functional relations. Therefore, this 
property can also be used to predict whether a gene pair is 
located in the same operon. Using Eq.1 to calculate the gene 
pair score of metabolic pathways based on the E. coli genome 
shows that, if the adjacent gene has the same metabolic 
pathway, the gene pair has a score of 2.671; otherwise the 
score is 0. 

 
3) Cluster of Orthologous Groups 

The cluster of orthologous Groups (COG) contains three 
levels biological functions; each level can be subdivided into 
several functional categories. The first level is divided into 
four main categories, namely (1) information storage and 
processing, (2) cellular processing and signaling, (3) 
metabolism and (4) different COG categories. We use Eq.1 to 
calculate the scores of categories (1), (2) and (3) of the first 
level. Gene pairs have a score for one of these three 
categories when the gene pair shares the same categories. If 
the gene pair belongs to different COG categories, the score 
of this category is calculated using Eq.2. Table 2 shows the 
training scores of this property. 
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4) Gene length ratio 

WO pairs are often associated with big values of the 
natural logarithm of the length ratio when the logn of the 
length ratio is examined. The length ratio property is best able 
to predict whether the gene pair is located in an operon [15]. 
The pair-score of the gene length ratio is calculated as the 
natural logarithm of the length ratio of the upstream and 
downstream genes [15]. It is defined by the following 
equation: 
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where lengthi and lengthj are the length of the upstream and 
downstream gene, respectively. 

 
 
 

TABLE I 
INTERVALS OF INTERGENIC DISTANCE USING THE LOGARITHMIC LIKELIHOOD METHOD FOR E. COLI GENOME 

Interval Score Interval Score Interval Score 

[-∞, -99] -0.82457 [30, 39] 0.568643 [170, 179] -1.83357 

[-100, -91] 0.00000 [40, 49] -0.67375 [180, 189] -1.98772 

[-90, -81] 1.478014 [50, 59] -0.52852 [190, 199] -1.51772 

[-80, -71] 0.00000 [60, 69] -0.43437 [200, 209] -2.35497 

[-70, -61] -0.31375 [70, 79] -0.6435 [210, 219] -1.98772 

[-60, -51] 0.00000 [80, 89] -0.6322 [220, 229] -3.4918 

[-50, -41] 0.533552 [90, 99] -0.55887 [230, 239] -2.23556 

[-40, -31] -0.22673 [100, 109] -1.48787 [240, 249] -2.25966 

[-30, -21] 0.379401 [110, 119] -1.15683 [250, 259] -2.79865 

[-20, -11] 2.019145 [120, 129] -1.43768 [260, 269] 0.00000 

[-10, -1] 2.22656 [130, 139] -1.84221 [270, 279] -3.33417 

[0, 9] 2.2105 [140, 149] -2.66512 [280, 289] -2.1329 

[10, 19] 2.340637 [150, 159] -1.80384 [290, 299] -2.83947 

[20, 29] 1.564274 [160, 169] -1.78965 [300,  ] -2.96611 
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TABLE II 
FREQUENCIES OF ADJACENT PAIRS FOR DIFFERENT COG FUNCTIONAL CATEGORIES AND THEIR SCORES IN THE E. COLI GENOME 

COG main categories of the first level OP pairs frequency NOP pairs frequency Score 

Information storage and processing 0.046 0.018 0.9360 
Cellular processing and signaling 0.105 0.023 1.4996 
Metabolism 0.271 0.085 1.1543 
Different COG categories 0.579 0.873 -0.4112 

 
5) Operon length 

The operon length is given by the number of genes in an 
operon [9]. De Hoon et al. [16] calculated a prior probability 
of adjacent gene pairs within the same operon based on a list 
of 635 experimentally verified operons. In the study, the 
assessment of the prior probability is based on the 
experimentally verified operons of the E. coli genome. If an 
operon consists of multiple genes, the probability of operon 
appearance decreases [17]. The probability P, i.e. the 
pair-score of the operon length, is calculated by the following 
equation: 

 

n

n
Pi

1
  (4) 

 
where n  is the average operon length given by the total 
number of genes in all operons divided by the total number of 
operons in the genome. Pi represents the probability of the 
next gene being located in the same operon. We infer that the 
gene pair is located in the same operon if a random number is 
smaller than Pi. 

 

B. Differential Evolution 

The differential evolution algorithm (DE) was proposed by 
Storn and Price in 1995 [18] and has been shown to have 
superior solving ability. The DE algorithm is similar to the 
genetic algorithm (GA) and particle swarm optimization 
(PSO) in that they are all optimized algorithms. The 
differential evolution algorithm includes three steps: mutation, 
recombination and selection. In selection, DE uses a 
one-to-one elimination mechanism to update the 
chromosome, which is similar to the recording of the best 
experience in PSO. DE considers the correlation between 
multiple variables, and this coupling provides an advantage 
over PSO. DE also has superior random search performance 
and simple parameter settings, causing it to be widely used in 
various fields including data mining, electronic engineering 
and decision support. Several DE processes are introduced 
below, including (1) Chromosome encoding, (2) 
Initialization, (3) Fitness evaluation, (4) Mutation, (5) 
Recombination and (6) Selection. 

 
1) Chromosome encoding  

To evaluate prediction accuracy, we must first define the 
adjacent gene pair for operon prediction. Adjacent genes in 
the same operon are called operon pairs (OP) and are positive. 
If an operon contains only a single gene or if it contains an 
adjacent gene within a different operon it is called a 
non-operon pair (NOP) and the gene pair is negative. If we 
assume an adjacent gene within the same operon, then the 
upstream gene of the adjacent gene will be coded 1. On the 
other hand, if the gene is coded 0, the gene and downstream 
gene are assumed to be NOP. For example, coding the 

chromosome xi = (1, 1, 0, 0, 1, 0) indicates the assumption 
that Gene1, Gene2 and Gene3 are located in the same operon; 
Gene4 is a single-gene operon; and Gene5 and Gene6 belong to 
a single operon. 
 
2) Initialization 

The initialization process is divided into two steps. In the 
first step obtains the preferred initial solution while the 
second step facilitates the execution of the DE algorithm. As 
shown in Fig. 1, in the first step we use the direction and 
distance of adjacent genes to generate a binary coding and 
randomly generate a threshold for each chromosome between 
from 0-600bps [17]. The distance is calculated by Eq. 5 [16]. 
If the distance of the adjacent gene is greater than the random 
threshold value and the adjacent gene has the same direction, 
the upstream gene is encoded as 1 (e.g., Gene1); Gene2 is 
encoded as 0 because the distance between Gene2 and Gene3 
exceeds the threshold. Genen is encoded as 0 because it is the 
last gene in the genome. In the second step, we give a random 
value for each gene. If the gene is encoded as 1 in the first 
step, the random value is assigned from 5 to 10; if the gene is 
encoded as 0 in the first step, the random value is assigned 
from 0 to 4, so as to complete the encoding of the 
chromosome’s decimal sequence. 

 

 
Fig 1. Diagram of binary sequence 

 
 1distance 12  _finishGene_startGene  (5) 

 
where Gene1_finish is the base end position of the upstream 
gene, and Gene2_start is the base start position of the 
downstream gene. 
 
3) Fitness evaluation 

In this study, we converted the decimal chromosome 
encoding of DE into binary encoding for assessment, and 
used the intergenic distance, the metabolic pathway, the 
cluster of orthologous groups (COG), gene length ratio and 
operon length properties to calculate the fitness value. Using 
the training scores of the E. coli genome to obtain the overall 
pair-score of the adjacent genes, Eq. 6 is then used to 
calculate the fitness value of the cth putative operon. 
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where m and n are respectively the total number of genes and 
gene pairs in the operonth. Finally, the fitness value of a 
chromosome is calculated as the sum of the fitness values 
from all putative operons in the chromosome as follows: 
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where c is the number of operons in the particle. 
 
4) Mutation 

In DE, each chromosome (Target vector, Xi,G) randomly 
selects three variable vectors (Xr1,G, Xr2,G and Xr3,G) from the 
chromosome group, and uses Eq. 8 to combine the three 
variable vectors into a donor vector (Vi,G+1). In Eq.8, F is a 
scale factor which controls the length of the exploration 
vector (Xr2,G − Xr3,G). 

 
Vi,G+1 = Xr1,G + F(Xr2,G− Xr3,G)            (8) 
 
where i is the target chromosome and G is the number of 
generations. 
 
5) Recombination 

Once the donor vector is generated by mutation, the target 
vector (Xj,i,G) and donor vector (Vj,i,G) are exchanged by the 
crossover rate (CR), and thus generate ui,G+1 (trial vector or 
final offspring) by Eq.9. 
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where rand is a random number between 0 and 1; j is the 
dimension of the chromosome i under examination. 
 
6)  Selection 

The resulting ui,G+1 is evaluated following a one-by-one 
spawning strategy, such as Eq. 10. ui,G+1 replaces xi when f 
(ui,G+1) ≤ f (Xi,G); otherwise, replacement does not occur. 
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C. Parameter settings 

In this study, the parameter value for the population 
number P is 20, the iteration number G is 100, the scale factor 
(F) is 0.5, the crossover rate (CR) is 0.5, and the initialization 
thresholds are between 0 and 600 bps. 

 

III. EXPERIMENTALRESULTSANDDISCUSSIONS 

A. Data sets 

In the study, experimental data sets consisted of the E. coli, 
B. subtilis, P. aeruginosa PA01, S. aureus and M. 
tuberculosis genomes with 4430, 4160, 5566, 2656 and 3988 
genes, respectively. All experimental data and annotated 
genes can be downloaded from the GenBank database 
(http://www.ncbi.nlm.nih.gov/). The data records the 
definition, name, number, start position, end position, 
direction, and product names of each gene. We obtained the 
experimental operon data of the E. coli and B. subtilis 
genome from the OperonDB [19] and DBTBS 
(http://dbtbs.hgc.jp/) [20] databases; and the operon data of 
the P. aeruginosa PA01 genome, S. aureus and M. 
tuberculosis genome from the ODB 
(http://odb.kuicr.kyoto-u.ac.jp/) [21]. The genome’s 
metabolic pathway and COG were respectively obtained 
from KEGG (http://www.genome.ad.jp/kegg/pathway.html) 
and NCBI (http://www.ncbi. nlm.nih.gov/COG/). 

 

B. Performance measurement 

Tables III and IV show the medical diagnostic assessment 
methods. TP and FP represent true and false positives, and 
TN and FN represent true and false negatives. Table III is 
used to calculate sensitivity (SN), specificity (SP) and 
accuracy (ACC) [17]. For example, a gene sequence is 
encoded as 111010, our prediction result is 110110. Gene1, 
Gene2 and Gene5 are TP, Gene3 is FN, Gene4 is FP, and Gene6 

is TN. Finally, sensitivity, specificity and accuracy are 
calculated using the equations in Table IV and are compared 
with results obtained by the other methods. It should be noted 
that the proposed method achieved a good balance between 
sensitivity and specificity. 

 
TABLE III 

THE POSITIVE AND NEGATIVE EVALUATION 

True 

Prediction 
Positive Negative 

Positive TP FP 

Negative FN TN 

 
TABLE IV 

EVALUATION METHOD FOR OPERON PREDICTION 

Value to be estimated Equation for estimation 

Sensitivity TP/(TP+FN) 

Specificity TN/(FP+TN) 

Accuracy (TP+TN)/(TP+FP+TN+FN) 

 

C. Prediction results 

We use the DE algorithm to identify the highest probability 
of operon combinations in a gene sequence, and compare the 
result with the experimentally verified operons to calculate 
TP, FN, TN, and FP and to evaluate accuracy, sensitivity, and 
specificity. The results, shown in Table V, are compared to 
those of the other methods. As explained in the discussion 
section, the intergenic distance, metabolic pathway and COG 
are used to predict operons. The proposed method obtains 
accuracy values of 0.923, 0.954, 0.963 and 0.963, 
respectively, for the B. subtilis, P. aeruginosa PA01, S. 
aureus and M. tuberculosis genomes. Although we only used 
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TABLE V 
ACCURACY, SENSITIVITY, SPECIFICITY OF THREE GENOMES 

Genome Methodology Accuracy Sensitivity Specificity 

B. subtilis 
(NC_000964) 

DE 0.923 0.910 0.934 
BPSO [17] 0.921 0.887 0.945 
UNIPOP [22] 0.792 0.782 0.821 
GA [10] 0.883 0.873 0.897 
Using both genome-specific and general genomic information [15] 0.902 N/A N/A 
SVM [7] 0.889 0.900 0.860 
ODB [21] 0.632 0.499 0.992 
FGA [1] 0.882 N/A N/A 
JPOP [23] 0.746 0.720 0.900 

P. aeruginosa 
PA01 
(NC_002516) 

DE 0.954 0.967 0.935
BPSO [17] 0.933 0.930 0.939 
GA [10] 0.813 0.870 0.763 

S. aureus 
(NC_002952) 

DE 0.963 0.972 0.945 
BPSO[17] 0.959 0.959 0.959 
Genome-wide operon prediction in Staphylococcus aureus [24] 0.920 N/A N/A 

M. tuberculosis 
(NC_000962) 

DE 0.963 0.963 0.963 
BPSO [17] 0.951 0.944 0.963 
A Predicted Operon map for Mycobacterium tuberculosis [25] 0.908 N/A N/A 

 
three features for prediction (fewer than are used in other 
operon prediction methods), our method achieved a good 
balance between sensitivity and specificity. Since the 
resulting prediction accuracy compares well with that 
achieved by other methods, the proposed method can be used 
to solve operon prediction problems. 
 

D. Discussion 

The DE algorithm is similar to a genetic algorithm and 
particle swarm optimization, but it also considers the 
multivariate correlation, and hence has an advantage over 
PSO in solving problems where variables are coupled. DE 
uses a one-on-one elimination mechanism to update the 
population, making it easier for DE to find the global optima. 

Since the genome contains many genes (i.e., the solution 
space is very large), the initialization step is very important 
for operon prediction. To enhance DE prediction 
performance, we use the direction and distance to generate 
the initial population with random values produced. This 
improves the fitness value of the chromosome population in 
the initialization step, and updating the population effectively 
improves operon prediction accuracy through multiple 
iterations. The direction of the adjacent gene is important for 
operon prediction because adjacent genes with different 
directions must belong to different operons, and can thus 
effectively predict NOP to enhance prediction accuracy and 
specificity. And the threshold point of intergenic distance, 
adjusting the initial threshold to 600 bps raises the sensitivity 
and specificity of the gap [17]. Therefore, we used these two 
conditions for initialization. 

Most methods use the properties of adjacent genes to 
determine whether a gene pair is OP or NOP, while ignoring 
the importance of the relationship between a gene and its 
neighbors. To increase the likelihood of finding an optimal 
solution, the DE fitness functions must consider the 
properties of nearby genes. The log-likelihood method is 
used to design the fitness function and to assess the scores of 
each property. In this study, we selected the E. coli genome as 
the training data since the E. coli genome has been 
extensively studied in experiments, and the majority of its 
operons have been experimentally confirmed, thus increasing 

the credibility of E. coli as a training data set. Theoretically, 
the use of additional properties for operon prediction should 
yield prediction results with a higher degree confidence. 

In operon prediction, biological property selection and 
fitness function design both directly affect the prediction 
results. Even though adjacent genes have related features, 
they could possibly belong to different operons, and hence 
the two factors above are the key to successful operon 
prediction. In theory, the more features used in prediction, it 
higher the resulting prediction accuracy. However, some 
features require considerable time investment without 
providing commensurate improvement. We selected the 
metabolic pathway and cluster of orthologous groups to 
predict operons because DVDA [26] only used homologous 
genes for prediction, yielding unsatisfactory results. ODB [21] 
used the intergenic distance, metabolic pathway, microarray 
and gene order conservation as properties, but failed to 
achieve a good balance between sensitivity and specificity. 
Therefore, we chose properties based on property utilization 
and prediction results. 

Due to the M. tuberculosis genome has the scarcity of 
experimentally verified operon data; hence we don't provided 
ROC curves of M. tuberculosis. In Figs. 2 to 4, the ROC 
curves of operon prediction show two messages. The first 
message indicates that the gene length ratio property is not 
suitable for use with the distance pathway and COG for 
operon prediction. The second message represents that the 
result of operon prediction did not significantly improve 
when the operon length property is added to calculate the 
fitness value. It can thus be assumed the gene length ratio and 
operon length is not suitable for operon prediction with 
distance, pathway and COG. In Figs. 4, the scarcity of 
experimentally verified operon data results in the roughness 
of the ROC curve of S. aureus [22]. Since the operon length is 
a severely biased method of prediction, since the probability 
is directly dependent on the number of WO pairs and TUB 
pairs (25). Therefore, we choose intergenic distance, 
metabolic pathway and the cluster of orthologous groups as 
the basis of the evaluation fitness. The three features used in 
this study are the same in those used in the GA study. 
However, even though GA also used microarray expression 
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data, the proposed method achieved a higher accuracy level, 
indicating that the three features used in DE are effective for 
operon prediction. 
 

 
Fig 2. ROC curves of operon prediction of B. subtilis genome 
 

 
Fig 3. ROC curves of operon prediction of P. aeruginosa 

genome 
 

 
Fig 4. ROC curves of operon prediction of S. aureus genome 

IV. CONCLUSIONS 

An effective operon prediction method with improved 
differential evolution is proposed. The initialization step 
considers the direction and intergenic distance of adjacent 
genes, and the log-likelihood method is used to design the 
fitness function to further improve evaluation accuracy. 
Experimental results show that DE, using only three kinds of 
biological properties, can obtain excellent prediction results. 
Future research will use a greater variety of biological 
properties to predict operons and provide related prediction 
results to provide a better understanding of the impact of 
other features on the operon prediction problem. 
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