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On the Constrained Longest Common
Subsequence Problem

Anna Gorbenko

Abstract—The problem of the longest common subsequence
is a classical distance measure for strings. There have been
several attempts to accommodate longest common subsequences
along with some other distance measures. There are a large
number of different variants of the problem. In this paper,
we consider the constrained longest common subsequence
problem for two strings and arbitrary number of constraints. In
particular, we consider an explicit reduction from the problem
to the satisfiability problem and present experimental results
for different satisfiability algorithms. It should be noted that
different regularities in experimentally obtained data reveal
important information about the underlying physical system. In
this paper, we consider the problem of systematic monitoring
of passenger flows. In particular, we use constrained longest
common subsequences for tracking the image features.

Index Terms—longest common subsequence, satisfiability
problem, feature tracking, genetic algorithms.

I. INTRODUCTION

ARIOUS algorithms on sequences of symbols have

been studied for a long time and now form a fun-
damental part of computer science (see e.g. [1]-[3]). One
of the most important problems in analysis of sequences is
the longest common subsequence problem. This problem has
been studied extensively over the last thirty years (see [4]—
[8]). There are a large number of applications of different
variants of this problem (see e.g. [9]-[11]). In particular, we
can mention robot self-awareness (see e.g. [12]-[19]), mining
for interesting patterns (see e.g. [20], [21]), and automatic
generation of recognition modules (see e.g. [22]).

In this paper, we consider the constrained longest common
subsequence problem that was proposed in [23]. It should be
noted that there are a number of efficient algorithms for the
constrained longest common subsequence problem for two
strings and one constraint (see e.g. [24]-[31]).

However, in general case, the constrained longest common
subsequence problem is NP-hard [32], [33]. In particular,
the NP-hardness and inapproximability of the constrained
longest common subsequence problem for two strings and
arbitrary number of constraints was proved in [32]. This
paper is devoted to the consideration of efficient algorithms
for the constrained longest common subsequence problem.

II. PRELIMINARIES

Let ¥ = {aj,as,...,a,} be a fixed alphabet. Given two
strings S and T over %, the string 7" is a subsequence of S
if T can be obtained from S by deleting some letters from
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S. Note that the order of the remaining letters of S should
be preserved. The length of a string S is the number of
letters in it. The length of a string S is denoted as |S|. For
simplicity, we use S[i] to denote the ith letter in the string
S, and S[i, j] to denote the substring of S consisting of the
ith letter through the jth letter.

Given two strings S7 and S5, the classic longest common
subsequence problem asks for a longest string 7' that is a
subsequence of both S; and S;. The decision version of the
constrained longest common subsequence problem for two
strings and arbitrary number of constraints can be formulated
as following.

CONSTRAINED LONGEST COMMON
PROBLEM (C-LCS-D):

INSTANCE: Two strings S, and S over %, a set

SUBSEQUENCE

{N,T,,...,T,}

of strings over Y., a positive integer k.
QUESTION: Is there a string T over X such that
. |T| > k,’
o T is a common subsequence of S1 and Ss;
o T; is a subsequence of T, for all 1 < i <n?

III. AN EXPLICIT REDUCTION FROM C-LCS-D TO THE
SATISFIABILITY PROBLEM

The satisfiability problem was the first known NP-
complete problem. Different variants of the satisfiability
problem were considered. In particular, the 3-satisfiability
problem (3SAT) is the problem of determining if the vari-
ables of a given boolean function in conjunctive normal form
with 3 variables per clause (3-CNF) can be assigned in such
a way as to make the formula evaluate to true (see e.g. [34]).

Note that 3SAT is NP-complete. However, there are a
large number of different efficient satisfiability algorithms.
Encoding various hard problems as instances of the satisfi-
ability problem and solving them with efficient satisfiability
algorithms has caused considerable interest (see e.g. [35]—
[38]). In this paper, we consider an explicit reduction from
C-LCS-D to the satisfiability problem.

Let
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It is not hard to verify that there is a string 7" over X such
that |T'| > k, T is a common subsequence of S; and Ss,
and T; is a subsequence of 7T, for all 1 < ¢ < n, if and
only if ¢ is satisfiable. It is clear that £ is a CNF. Using
standard transformations (see e.g. [39]), we can obtain an
explicit transformation ¢ into ¢ such that ¢ < ( and ( is
a 3-CNF. Clearly, ¢ gives us an explicit reduction from C-
LCS-D to 3SAT.

Fig. 1.

A typical example of data for monitoring of passenger flows.

IV. MONITORING OF PASSENGER FLOWS

In this section, we consider the problem of systematic
monitoring of passenger flows. In general, we can apply
various face and body detectors to images for solution of
this problem. However, low quality of data (see e.g. Figure
1) makes this task very difficult. To simplify this task, it is
natural to use some method of tracking the image features.
In particular, we can represent a sequence of features as a
string.

We can consider strings of features of current and previous
images and use longest common subsequence to establish a
feature correspondence. However, successful feature tracking
have different values for different types of features. In par-
ticular, features that extracted from the images of passengers
have critical importance for solution of the problem of
systematic monitoring of passenger flows. If we use classic
longest common subsequences, then we may lose some
important features (see e.g. Figure 2). In case of Figure 2,
if we consider a classic longest common subsequence, then
subsequence of features, which extracted from the back of
the chair (white area), can absorb features of passenger. In
this case, we lose corresponding passenger. Therefore, we
use constrained longest common subsequences.

We consider image corners (see [40]), vertical edges,
and color features (see [41]) as the set of features of the
environment. Let

By ={bi1,b12,...,01,8}

be an alphabet of image corners. Let

By ={b2,1,b22,...,b23,}

be an alphabet of vertical edges. Let

Bz = {b3,1,b3,2,...,b33,}

be an alphabet of color features. In this case,

B1UDBy U Bg

is the alphabet of features of the environment.

We use Haar cascades (see e.g. [42], [43]) for initial
detection of passengers. Haar cascades allow us to obtain a
set of various features, parts of faces, parts of bodies, pieces
of clothing and so on. We classify these features based on
their motion. This classification allows us to select areas of
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fx(t),y(t))

be a feature f with coordinates

(=(t),y(t))

at time t. We assume that

Si(@a (), p1 () < falz2(t), y2(1))
if and only if

Fig. 3. Areas of interest. (21 (t) < wa(t)) V ((21(t) = 22(t)) A (y1(2) > w2(1))),
for fl,fz (S BzUCl. If f1 ¢ BQUCl or f2 ¢ BQ UCl, then
interest and identify these areas or sets of these areas as
z1(t), () < zo(t), y2(t
passengers (see e.g. Figure 3). After classification, we use Jila®)n(0) < folwa(t) y2(1))
unusual patterns and passenger color features as features for &
tracking. z1(t —1) < z2(t — 1))A

Let x1(t) < xa(t) + ),

Cr={ci1,¢12,---,C1y, } yi(t—1) > ya(t —1)))A
.’1?1(75) < $2(t> + 8),
(z2(t) > 1(t) +€),

Co={c21,c22,...,C24,} where ¢ is a constant that depends on the resolution of the
images. Under this assumption, we can construct the string

be an alphabet of unusual patterns. Let

be an alphabet of passenger color features.
Let f be a feature. The set of pixels of the feature f at

time ¢ we denote by S;(t). We consider F(t) = fia{ee1(t), ye1(8)) frol@ea(t), yr2(t)) ...
max T min Y
(@y)eSs(t) (max(e yyes, () ©:¥) €S (1) ftor (@t (), Y, (1))
as the coordinates of the feature f at time t. Let of all features at time t.
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TABLE I
THE AVERAGE NUMBER OF FRAMES DURING TRACKING
% 1 2 3 4 5 6 7 8 9 10 11 12
nfros(Setli]) 19 16 10 7 4 3 24 20 11 8 5 4
nfc_ros(Setli]) 304 112 94 57 36 27 743 481 366 154 217 125
Let o Set[9]: resolution 1280 x 800,
color video,
P(t) = {Pi(t), Ps(t),..., Pa(t)} 5 < number of passengers < 10;

be a set of passengers at time ¢{. We create a set of strings
of features of passengers. In particular, we assume that the
string Z; of features of P;(t) is the longest subsequence of
F(0) such that F'(0)[¢] € P;(t), for all ¢ and j.

We assume that

fi{@1(t),y1(t)) = falw2(t), ya(t))

if and only if f; = f,. For feature tracking, we consider
strings F'(t — 1) and F'(t) and the set of constraints

{Z;11<j<a}.

If we can solve the constrained longest common subse-
quence problem, then we use constrained longest common
subsequence to localize passengers. If we can not solve
the problem, then we again use Haar cascades for initial
detection of passengers and restart the process. Usage of
constrained longest common subsequences allows us to
minimize number of runs of very complicated process of
classification.

In our experiments, we consider video files that have
been received from one bus camera. We have considered the
following parameters: resolution; infrared video and color
video; number of passengers. We have created following data
sets:

o Set[1]: resolution 1280 x 800,
infrared video,
number of passengers < 5;

resolution 640 x 400,
infrared video,
number of passengers < 5;

resolution 1280 x 800,
infrared video,

5 < number of passengers < 10;

resolution 640 x 400,
infrared video,

5 < number of passengers < 10;

resolution 1280 x 800,
infrared video,
number of passengers

resolution 640 x 400,
infrared video,
number of passengers

resolution 1280 x 800,
color video,
number of passengers

resolution 640 x 400,
color video,
number of passengers

o Set[2]:

o Set[3]:

. Set[4]

o Set[5]:

< 15;
. Set[ﬁ]

< 15;
. S@t[?]

< 5;
o Set[8]:

< 5;

o Set[10]: resolution 640 x 400,

color video,

5 < number of passengers < 10;
resolution 1280 x 800,

color video,

number of passengers < 15;
resolution 640 x 400,

color video,

number of passengers < 15.

o Set[11]:

. Set[l?}

For any data set Set[i], let nfrcs(Set[i]) be the average
number of frames before the loss of first passenger during
longest common subsequence tracking, nfc_rcs(Set|i])
be the average number of frames before the loss of first
passenger during constrained longest common subsequence
tracking. Selected experimental results are given in Table I.

V. MINING FOR INTERESTING PATTERNS

It is well-known that feature selection is one of the most
important problems of image processing (see e.g. [44], [45]).
A common technique for feature selection is the discovery
of frequent patterns.

Note that we can use fluents [46] to express tempo-
ral patterns. This approach allow us to consider different
string problems to mine interesting patterns. Since different
versions of the longest common subsequence problem fre-
quently used to mine interesting patterns (see e.g. [9], [11],
[47]-[49]), it is natural to use C-LCS to mine interesting
patterns.

Mining for interesting patterns has a number of applica-
tions in robot self-awareness (see e.g. [9], [11]). In particular,
we need some system of prediction of collisions to build
robot with ability to anticipate the motions (see e.g. [16],
[501, [51D).

The c-fragment longest arc-preserving common subse-
quence problem (C-FLCS) and the problem of the longest
common subsequence over the set (LCSS) were used to
create sets of interesting patterns for prediction of collisions
(see [9], [11]). These sets were used by recurrent neural
network for prediction of collisions of mobile robot. It is
clear that we can apply C-LCS to create a set of interesting
patterns for prediction of collisions. Let ¢ be the size of
training set. Selected experimental results are shown in Table
II.

TABLE II
THE QUALITY OF PREDICTION

t 102 103 10% 10° 10° 107

CICS [ 9% 98% 989% 992% 995 % 996 %

C-FLCS | 91 % 96% 97 % 98 % 98.1% 981 %

LCSS 76 % 83% 88 % 96 % 96 % 96 %

(Advance online publication: 29 November 2013)
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TABLE III
EXPERIMENTAL RESULTS FOR DIFFERENT TEST SETS FOR MONITORING OF PASSENGER FLOWS

solver test average time max time best time
OA[1] Test[1] 1.13 sec 2.19 min 0.04 sec
OA[2] Test[1] 1.38 sec 1.28 min 0.06 sec
OA[3] Test[1] 0.27 sec 42.14 sec 0.02 sec
OA[4] Test[1] 0.08 sec 6.15 sec 0.012 sec
OA[5] Test[1] 0.03 sec 3.19 sec 0.007 sec
GSAT Test[1] 0.54 sec 1.17 min 0.05 sec
OA[1] Test|2] 1.28 sec 2.43 min 0.12 sec
OA[2] Test[2] 1.54 sec 1.57 min 0.09 sec
OA[3] Test|2] 0.35 sec 47.32 sec 0.03 sec
OA[4] Test|2] 0.24 sec 33.2 sec 0.021 sec
OA[5] Test[2] 0.13 sec 19.8 sec 0.014 sec
GSAT Test[2] 0.87 sec 59.13 sec 0.086 sec
OA[1] Test[3] 9.19 sec 6.58 min 0.36 sec
OA[2] Test[3] 12.63 sec 9.13 min 0.28 sec
OA[3] Test[3] 7.14 sec 4.68 min 0.19 sec
OA[4] Test[3] 3.13 sec 2.05 min 0.043 sec
OA[5] Test[3] 2.52 sec 1.44 min 0.022 sec
GSAT Test[3] 8.43 sec 5.12 min 0.121 sec
OA[1] Test[4] 2.12 min 22.23 min 1.29 sec
OA[2] Test[4] 4.44 min 27.15 min 2.16 sec
OA[3] Test[4] 1.62 min 16.97 min 1.08 sec
OA[4] Test[4] 56.2 sec 8.49 min 0.064 sec
OA[5] Test[4] 42.8 sec 6.27 min 0.043 sec
GSAT Test[4] 1.83 min 19.73 min 1.15 sec
OA[1] Test[5] 25.02 min 4.82 hr 2.06 min
OA[2] Test[5] 31.49 min 6.39 hr 38.77 sec
OA[3] Test[5] 14.12 min 2.14 hr 19.7 sec
OA[4] Test[5] 3.58 min 56.77 min 6.09 sec
OA[5] Test[5] 2.16 min 47.2 min 0.6 sec
GSAT Test[5] 15.88 min 3.03 hr 28.5 sec
OA[1] Test[6] 4.16 hr 31.78 hr 6.91 min
OA[2] Test[6] 1.92 hr 17.09 hr 8.11 min
OA[3] Test[6] 9.18 hr 43.52 hr 53.69 sec
OA[4] Test[6] 6.43 min 1.09 hr 18.05 sec
OA[5] Test[6] 3.17 min 53.1 min 1.129 sec
GSAT Test[6] 47.3 min 3.69 hr 1.1 min

VI. SAT SOLVERS FOR C-LCS-D

We use genetic algorithms OA[1] (see [52]), OA[2] (see
[53]), OA[3] (see [54]), OA[4] (see [55]), and OA[5] (see
[56]) for the satisfiability problem to obtain optimal solutions
of C-LCS-D. Also, we have considered GSAT with adaptive
score function (see [57]).

We have used heterogeneous cluster (500 calculation
nodes, Intel Core i7). Each test was runned on a cluster of at
least 100 nodes. Note that due to restrictions on computation
time (20 hours) we used savepoints.

In our experiments, we use real world data for monitoring
of passenger flows. In particular, we consider two test sets,

o Test[1]: average length of strings = 150,
average number of constraints = 7;

o Test[2]: average length of strings = 200,
average number of constraints = 15.

Also, we consider four synthetic test sets for monitoring of
passenger flows,

o Test[3]: average length of strings = 150,
average number of constraints = 7,

o Test[4]: average length of strings = 200,
average number of constraints = 15;

o Test[5]: average length of strings = 1000,
average number of constraints = 100;
o Test[6]: average length of strings = 6000,
average number of constraints = 200.
Selected experimental results are given in Table III.
We have considered real world data for mining for inter-
esting patterns (see [9]). Selected experimental results are
given in Table IV.

TABLE IV
EXPERIMENTAL RESULTS FOR MINING FOR INTERESTING PATTERNS
solver average time  max time  best time
OA[1] 47 sec 1.67 hr 4.8 sec
OA[2] 51 sec 1.83 hr 3.91 sec
OA[3] 45 sec 2.29 hr 7.53 sec
OA[4] 12 sec 19 sec 1.23 sec
OA[5] 4.2 sec 14.7 sec 3.6 sec
GSAT 49 sec 3.25 hr 1.82 sec

VII. A TASK-LEVEL ROBOT LEARNING FROM
DEMONSTRATION

Robot task learning has received significant attention re-
cently (see e.g. [58]). In particular, the longest common

(Advance online publication: 29 November 2013)
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Fig. 4. Robot Neato XV-11 with an onboard computer and a camera.

subsequence of the state sequences can be used for task
generalization (see e.g. [59]). We can assume that the longest
common subsequence of two demonstrations constitute the
generalized task model. The other actions can be considered
as alternative paths, noise, or alternative tasks. Also, the
longest common subsequence of the state sequences can
be used for task learning from demonstration. In particular,
we can consider task learning with one training example
prepared by a human. In this case, the robot’s state sequences
are processed to evaluate the robot’s performance given the
specific training example prepared by a human (see e.g. [60]).
It is natural to use demonstrations of different simple tasks
to learn a complex task. In this case, we need a common
subsequence of two demonstrations of the complex task such
that task models of simple tasks are subsequences of the
common subsequence of two demonstrations. It is clear that
we can use the constrained longest common subsequence for
solution of this problem.

In our experiments, we consider Neato XV-11 [61] with an
onboard computer and a camera (see Figure 4). We consider
a simple genetic algorithm that evolves a population of
sequences of motor primitives and tries to obtain a sequence
of motor primitives for given trajectory. At first, we assume
that we have only one human training example of some
trajectory H. We consider the robot’s state sequence R and
use the length of the longest common subsequence of H
and R as the value of the fitness function for R. This
genetic algorithm we denote by 77. Also we consider genetic
algorithm 72 where we assume that we have human training
example of some trajectory H and two human training
examples H; and Hs of some parts of the trajectory. We
consider the robot’s state sequences R, R, and Ry for H,
H,, and Hs. Let T; be the longest common subsequence of
H,; and R; where i € {1,2}. Let T be the constrained longest
common subsequence of H and R for {T1,T>}. In Tz, we
use the length of T as the value of the fitness function for
R.

Let N;(n) be the average number of generations of 7; that
needed to obtain H = R for |H| = n. It is clear that we can
use

as a measure of the quality of 77 and 75. Selected experi-
mental results are given in Table V.

TABLE V
EXPERIMENTAL RESULTS FOR 71 AND T2
n 102 103 10* 10°
N(n) 043 037 0.12 0.03

It is easy to see that 75 gives us better results. However,
for 75 we need additional human training examples. Now we
consider the following genetic algorithm 73. We consider hu-
man training examples H', H? ... H* for different tasks.
We assume that 73 evolves a population of sequences of
motor primitives and tries to obtain a set of sequences of
motor primitives for trajectories H', H?,... H*. Let R’ be
the robot’s state sequence for the trajectory H'. Let T} ; be
the longest common subsequence of H?, R?, and H’. Let
T7 be the constrained longest common subsequence of H’
and R7 for {T; ; | i # j}. In T3, use the length of 77 as the
value of the fitness function for R7. Let

_ Ns(n)
Ni(n)
where N3(n) be the average number of generations of T3

that needed to obtain H? = R’ for |[H| =n, 1 < j < k.
Selected experimental results are given in Table VI.

TABLE VI
EXPERIMENTAL RESULTS FOR 71 AND 73
n 102 103 104 105
M(n) 056 0.18 0.041 0.0082

It is clear that 73 demonstrates good performance and does
not require additional human training examples. However, 73
can be used only in the case when we have many learning
tasks.

VIII. CONCLUSION

In this paper, we have considered the constrained longest
common subsequence problem for two strings and arbitrary
number of constraints. In particular, we have considered
applications of the constrained longest common subsequence
problem for monitoring of passenger flows and task-level
robot learning from demonstration.

We have proposed an explicit reduction from the con-
strained longest common subsequence problem to the sat-
isfiability problem. Also, we have presented experimental
results for different satisfiability algorithms. In particular, we
have considered synthetic test sets and real world data for
monitoring of passenger flows.
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