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Abstract—Understanding the characteristics of workloads is
extremely important in the hardware and software design of
computer systems. Better metrics and methods for evaluating
workloads are continually needed. Here we propose a quanti-
tative metric, namely RDCC (Ratio of Dynamic Computation
to Control operations), for evaluating workloads. The RDCC
values of a great many benchmarks are measured in various
conditions. The evaluation results indicate that the intrinsic
properties of the application can be marked with the RDCC
value. The applications with lower RDCC values contain
more control operations and less computational operations. In
contrast, the applications with higher RDCC values consist of
less control operations and more computational operations. In
addition, the RDCC value of one application is relatively stable
with different compiler optimizations and inputs. Furthermore,
this paper presents a quantitative approach for identifying
computation-intensive and control-intensive applications by
RDCC values, and provides five levels of classification based
on the K-means clustering of RDCC values. The feasibility is
verified by many evaluation results. Therefore, RDCC can be
used as a metric to identify and evaluate the characteristics of
applications and is much helpful for the design of high-efficiency
processor architecture and software optimization.

Index Terms—RDCC, processor, workload, Computation-
intensive, Control-intensive.

I. INTRODUCTION

ENERGY efficiency has become an important companion
to performance in modern computer design. Under-

standing the characteristics of workloads is extremely impor-
tant in the design of energy-efficient computer architectures
[1], [2]. It is very necessary to study the characteristics
of computation-intensive applications and control-intensive
applications for improving the energy efficiency of the
computer system [3], [4], [5]. Differentiating computation-
intensive applications from control-intensive applications is
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helpful for the designers to improve the system energy-
efficiency in the design of computer architecture and soft-
ware, especially in the heterogeneous multi-core system.

Computer architects continually need better metrics and
methods for evaluating processors as well as a better un-
derstanding of how to use them appropriately [6], [7]. As
a fundamental part of computer architecture research, the
metrics study has been focusing on multicore processors
recently. For example, Michaud and Pierre proposed several
different metrics for quantifying the throughput of multicore
processors [8], and Otoom elaborated the capacity metric
for chip heterogeneous multiprocessors in his doctoral thesis
[9]. There are a lot of metrics to evaluate the processor
workloads such as ratio of computation to memory access,
ratio of computation to communication, basic block size and
parallelism [2], [10]. However, few metrics can be used
to identify computation-intensive applications and control-
intensive applications exactly.

The definitions of control-intensive and computation-
intensive applications are mostly qualitative in our survey.
Guthaus et al. said that control-intensive applications have
a much larger percentage of branch instructions and that
computation-intensive applications have a larger percentage
of integer or floating point ALU operations [11]. Eeckhout
and Bosschere made a conclusion that multimedia appli-
cations are computation-intensive workloads because the
percentage of computational operations in their instruction
mix are higher than that for general-purpose workloads [12].
Oguike et al. thought that a computation-intensive application
can be defined as any application of a single processor
computer system where the arrival rate of processes into
the processor queue is greater than the departure rate of
the processes from the processor [13]. This definition tends
to regard a CPU-intensive application as a computation-
intensive application. John et al. analyzed the relationship
between the computation instructions and memory access
instructions on high performance RISC architectures [14].
Samuel Williams et al. gave a model named roofline which
pointed the relationship between the operational intensity and
memory access for multicore architectures [15]. However,
there is little information available in their studies about
revealing detailed characteristics of the relationship between
computational and control operations of workloads.

As different applications have different characteristics, it is
necessary to find an exact approach to identify computation-
intensive applications and control-intensive applications. Un-
fortunately, we have not found any papers introducing a
quantitative approach to identify them. In many literatures,
the authors discussed the methods or algorithms to improve
the performance and efficiency of the system based on
the assumption that the applications are already known as
computation-intensive or control-intensive without any quan-
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titative analysis. There may be some reasons, for example,
it is hard to identify them for lack of exact models or
metrics. Therefore, it is worth studying an exact approach to
identify them. It is not only useful in the design of computer
architectures, but also worthy of software design, especially
for hybrid computing systems.

Therefore, the motivations of this paper are as follows:
firstly, to reveal the statistical characteristics of the relation-
ship between computational operations and control opera-
tions in various applications; secondly, to explore a quantita-
tive approach to identify computation-intensive applications
and control-intensive applications exactly; thirdly, to provide
some suggestions in the design of energy-efficient computer
architecture and software.

To study the characteristics of various applications, the Ra-
tio of Dynamic Computation to Control operations (RDCC)
is chosen as a new metric, and the statistical characteristics of
RDCC for a great many benchmarks are measured in various
conditions. In addition, the Ratio of Static Computation to
Control operations (RSCC) is measured to find whether or
not there are dependencies between RDCC and RSCC. To the
author’s knowledge, this paper is a first step in analyzing the
statistical characteristics of RDCC of various applications.
The contributions of this paper are as follows:

1) The RDCC as a new metric for evaluating workload
characteristics is proposed. The statistical characteristics of
the RDCC of many benchmarks are measured in various
conditions. The evaluation results indicate that some intrinsic
properties of applications can be marked with the RDCC
value. The results can be used to guide workloads scheduling
in heterogeneous multi-cores.

2) A quantitative approach for identifying computation-
intensive applications and control-intensive applications by
the RDCC metric is presented. In addition, a reference
classification with RDCC values is given based on the K-
Means clustering analysis.

3) Several interesting results are found. The RDCC values
of various benchmarks are quite different, but the RSCC
values are much similar, and there are few dependencies
between the RDCC and RSCC values. In addition, it is found
that strong control-intensive applications usually accompany
memory-intensive properties.

The remainder of this paper is structured as follows. The
following section introduces the metrics and methodology
selected to evaluate benchmark characteristics. The statisti-
cal results are shown in section III. The characteristics of
RDCC are discussed in section IV. In section V, a quantita-
tive approach to identify computation-intensive and control-
intensive applications with the RDCC values is presented in
detail, and other applications of RDCC are explored. Finally,
some conclusions are drawn in section VI.

II. METRICS AND METHODOLOGY

A. Metrics

To analysis the characteristics of different applications,
RDCC and RSCC are used as metrics. RDCC is de-
fined as the ratio of the dynamic computational operations
count (Ncom dy) to the dynamic control operations count
(Ncon dy) based on the dynamic instruction mix of an
application, as shown in (1). RSCC is defined as the ratio of

the static computational operations count (Ncom st) to the
static control operations count (Ncon st) based on the static
instruction mix of an application, as shown in (2).

𝑅𝐷𝐶𝐶 = 𝑁𝑐𝑜𝑚 𝑑𝑦/𝑁𝑐𝑜𝑛 𝑑𝑦 (1)

𝑅𝑆𝐶𝐶 = 𝑁𝑐𝑜𝑚 𝑠𝑡/𝑁𝑐𝑜𝑛 𝑠𝑡 (2)

Alternatively, RDCC can also be calculated by the per-
centage of computational operations dividing by the percent-
age of control operations in the dynamic instruction mix.
Likewise, RSCC can also be calculated by the percentage
of computational operations dividing by the percentage of
control operations in the static instruction mix.

The RDCC value can be used to mark the effective
utilizations of computational resources and control resources
of a processor while an application is being executed. The
hardware resources of a processor can be classified into
computational units, control units and memory access units
by their functions. The computational units are used to
process calculation class instructions, such as floating-point
operations, arithmetic operations and logic operations. The
control units are used to deal with control operations. In
general, the hardware complexity of control units is growing
with more control instructions and control-related technolo-
gies such as branch predictors, speculation, and dynamic
scheduling being adopted in the processor. Memory access
units refer to data load and store between the processor and
the memory. This paper will focus on the computational and
control operations first.

To analyze the relationship between computational op-
erations and control operations with a more abstract level,
both floating-point and integer computational operations are
regarded as computational operations in the following. Like-
wise, branch operations and jump operations are esteemed
as control operations.

B. Benchmarks

To characterize applications in terms of RDCC and RSCC
as well as their effective characteristics for classifying ap-
plications, large amount of benchmarks from the SPEC
CPU2006 and Mibench benchmark suites were used in our
analysis. SPEC CPU2006 is the most widely used industry-
standardized benchmark suite for general-purpose computers,
which represents a different class of applications developed
from real user applications [16]. Mibench is a free, com-
mercially representative embedded benchmark suite [11]. A
total number of 24 benchmarks from SPEC CPU2006 and 20
benchmarks from Mibench suite are successfully measured.

C. Tools

To get the RDCC and RSCC values of various bench-
marks, the dynamic instruction mix and the static instruction
mix of each benchmark are measured. The dynamic instruc-
tion mix is obtained from the gem5 simulator. The gem5
simulation infrastructure is the merger of the best aspects
of the M5 and GEMS simulators [17]. It provides a highly
configurable simulation framework, multiple Instruction Set
Architectures (ISAs) and diverse CPU models, and it is an
open source community tool. A statistical function to count
each type executed instructions has been added into gem5
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simulator by us. The static instruction mix is obtained by
a script program from the static executable files which are
generated by a compiler. The compiler is GCC4.3.2 and the
Alpha ISA is used in this study.

D. Data Analysis

Two statistical data analysis techniques are used here to
survey the characteristics of applications. First, the correla-
tion coefficient is used to survey the dependent relationship
between the results from different cases. The correlation
coefficient is usually used to measure the strength and
direction of the dependent relationship between two vectors.
The higher absolute value of correlation coefficient indicates
more dependencies between the two vectors. Second, the
K-Means clustering analysis method is used to classify the
applications. Clustering techniques are widely recommended
tools for classification, and the K-Means is a famous clus-
tering algorithm which aims to partition all observations
into several clusters by their locations [17]. The K-Means
clustering analysis used in this study is the function named
Kmeans in Matlab2008.

III. RESULTS

In this section, the statistical characteristics of RDCC and
RSCC of the benchmarks are presented. Firstly, the RDCC
and RSCC values of the benchmarks from SPEC CPU2006
and Mibench are presented. Secondly, the relationship be-
tween the RDCC and the dynamic instruction mix of different
benchmarks are investigated. Thirdly, the relationship be-
tween RDCC and basic block size are compared. Finally, the
effects of inputs and optimizations on the RDCC values are
compared. All the benchmarks are compiled by the compiler
GCC 4.3.2 with -O3 optimization options if without special
statements.

A. RDCC and RSCC

The RDCC and RSCC values of the benchmarks from
SPEC CPU2006 are presented in Fig. 1. For the benchmarks
from SPEC CPU2006, the ref input mode is used. The RDCC
and RSCC values of the benchmarks from Mibench are
shown in Fig. 2, and the large input mode is used for each
benchmark. In each figure, the benchmarks are ranked by the
RDCC values in ascending order from left to right.

As shown in Fig. 1 and Fig. 2, it can be found that
the RDCC values of the various benchmarks are very dif-
ferent, and the values change from 1.2 to 41.4. However,
the range of the RSCC values is small and most of the
values are round 1.4. Furthermore, the correlation coefficient
between the RDCC values and the RSCC values for all the
benchmarks is only 0.2. This indicates that there are few
dependencies between RDCC and RSCC for a benchmark.
For the diversity of RDCC values, the characteristics of
RDCC will be analyzed further in the following.

B. RDCC and Instruction Mix

To make more detailed analysis of RDCC and program
behaviors, the dynamic instruction mixes of the benchmarks
from SPEC CPU2006 and Mibench are presented in Fig.

3 and Fig. 4, respectively. The instructions are classi-
fied into four types: control transfer (including jump and
branch), computation (including floating-point operations,
integer arithmetic and logic operations), memory access op-
erations (load/store) and miscellaneous (including trap barrier
and system calls). As the percentages of miscellaneous is too
little (all less than 0.5%) to be seen, they are not shown in
the two figures.

Several observations can be found from these two graphs.
First, if the RDCC value of a benchmark is lower, the
percentage of dynamic control operations is greater in most
cases. As shown in Fig. 3 and Fig. 4, when the RDCC
values are less than 2, the percentages of control operations
are nearly 20%; when the RDCC values are greater than
12, the percentages of control operations are less than 5%.
Second, if the RDCC value is greater, the percentage of
computational operations is greater too in most cases. For
example, when the RDCC values are greater than 12, the
percentage of computational operations is about 55% on
average. In contrast, if the RDCC values are less than 2, the
percentage of computational operations is only about 30%
on average. Third, when the RDCC value is less than 2, the
percentage of memory access operations is more than 50%,
but when the RDCC is greater than 12, the percentage of
memory access operations is 42% on average.

The correlation coefficient between the RDCC values and
the percentage of computational operations is 0.63 in SPEC
CPU2006, and the correlation coefficient between the RDCC
values and the percentages of control operations is -0.84. The
two correlation coefficients are 0.62 and -0.78 respectively
in Mibench.

C. RDCC and Basic Block Size

Basic block size, which indicates how many instructions
between a pair of branch instructions, is a significant pro-
gram characteristic because the scheduling capability of a
compiler is highly affected by it [10]. The RDCC values
and the basic block size of the benchmarks from SPEC
CPU2006 are shown in Fig. 5. The basic block size of a
benchmark with lower RDCC value is smaller, but it is
greater if the RDCC value is higher. There are also the
same dependencies between the RDCC values and the basic
block sizes of the benchmarks from Mibench. The correlation
coefficient between the RDCC values and the basic block
sizes is as high as 0.98, indicating that there are very strong
dependencies between them. The RDCC value indicates how
many computational instructions per branch, and basic block
size indicates how many computational and memory access
instructions per branch. Both of them reflect how many non-
control instructions per branch. Therefore, there are strong
dependencies between the RDCC values and the basic block
sizes for an application.

D. Effects of the Input on RDCC

To observe the effects of different inputs on RDCC, the
RDCC values of benchmarks are measured with different
input data. There are two input sets for each benchmark in
SPEC CPU2006. They are the ref and the test input modes.
The former has larger input data than the latter. The RDCC
values of benchmarks in both input modes are presented in
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Fig. 1. RDCC and RSCC values of the benchmarks from SPEC CPU2006
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Fig. 2. RDCC and RSCC values of the benchmarks from Mibench
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Fig. 3. RDCC and Instruction Mix for SPEC2006 CPU

Fig. 6. The benchmarks are ranked by the RDCC values in
ascending order from left to right. As shown in this figure,
the RDCC values are relatively stable, especially for the
benchmarks with lower RDCC values, although there are a
few differences between the two input modes. The RDCC
values of the benchmarks with lower RDCC values in the
ref mode are still lower in test mode in most cases, and the
RDCC values of the benchmarks with higher values in test
mode are still greater in ref mode. The correlation coefficient
of the RDCC values in between test and ref input modes is as
high as 0.77, indicating that there are few changes of RDCC

value among different input sets in most cases.

E. Effects of the Optimization on RDCC

To observe the effects of optimization options on RDCC,
the benchmarks are compiled with two different optimization
options. ”-O1” is used in one case, and ”-O3” is used in
the other case. The RDCC values of the benchmarks are
measured in the both cases and presented in Fig. 7. The
benchmarks are ranked by RDCC values in the O3 case in
ascending order from left to right. As shown in this figure,
the RDCC values are relatively stable although there are tiny
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Fig. 5. RDCC and Basic Block Size
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Fig. 6. Effects of the input on the RDCC values

changes between O1 and O3 cases. The benchmarks with
lower RDCC values in O1 case are still with smaller RDCC
values in O3 condition. Although there are big changes of
the RDCC values for a few benchmarks such as leslie3d,
GemsFDTD and lbm, the RDCC values of them in both cases
are still higher than that of the most other benchmarks. For
most benchmarks, there are few changes of the RDCC values
between O1 and O3 optimization options. The correlation
coefficient of the RDCC values between O1 and O3 cases is
as high as 0.92, indicating that there are few changes of the
RDCC value between different compiler optimizations for a

benchmark.

F. RDCC and Loop unrolling

Loop unrolling is an important optimization technique, as
it decreases the loop overhead and increases the opportu-
nities for instruction-level parallelism [18]. In some cases,
however, due to lack of further potential for optimizations
and constraints of compensation codes for loop unrolling,
the utilization of loop unrolling is not always effective
[19]. In order to compare the effects of loop unrolling on
the RDCC value with that on the performance speedup of
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Fig. 7. Effects of Optimization on the RDCC values
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Fig. 8. Comparison of the effects of loop unrolling on the RDCC value and performance speedup

programs, the benchmarks from Mibench are compiled with
two different optimizations. Only ”O3” optimization option
is used in one case, but ”O3” and ”funroll-all-loops” are
used simultaneously in the other case. The RDCC values
and the executed times of the benchmarks are measured in
both cases, and then the ratios of RDCC and the values
of performance speedup are calculated. The performance
speedup, which is used to reflect the performance improved
by the loop unrolling, is calculated by the executed time of
the program compiled without loop unrolling dividing by the
executed time with loop unrolling. The ratio of RDCC is the
RDCC value with loop unrolling divided by the RDCC value
without this optimization. The comparison of them is shown
in Fig. 8. As shown in this figure, it can be found that the
loop unrolling optimization is not always effective for all
programs. Moreover, the RDCC value of a program will be
increased if loop unrolling is an effective optimization for
the program in most cases. When affected by loop unrolling,
the ratios of RDCC and values of performance speedup
show strong correlation, as indicated by a high correlation
coefficient—0.8. Therefore, it is possible to use the ratio
of RDCC to evaluate the effects of loop unrolling on the
performance speedup.

IV. CHARACTERISTICS OF RDCC

In this section, the factors influencing on the RDCC values
are discussed firstly, and then the relationships between the
RDCC values and energy-efficiency are discussed. Finally,

the statistical characteristics of RDCC are analyzed and
workload characteristics evaluated by RDCC are discussed.

A. Factors Affecting RDCC value

The RDCC value of an application may be affected by
many factors. The factors can be categorized as follows.

1) Compilers and optimization techniques: The RDCC
may be affected by different compilers and different op-
timization techniques which are used to generate the exe-
cutable files. For example, the RDCC value will decrease
when some expressions are simplified by the optimization
techniques, but the RDCC value may increase if loop un-
rolling is adopted.

2) Input data: The dynamic instruction mix may be
influenced by the input set because the execution traces of
applications may depend on the input data.

3) ISAs: Different ISAs may have different functions
for computational operations and control operations. For
example, if an application with many multiply-accumulate
operations, the RDCC value in the ISA included Multiply-
Accumulate instructions may be less than in other ISA
without this instruction.

4) Algorithms: There may be many different algorithms
which can be used to deal with the same task, and there may
be some differences of the RDCC values among the different
algorithms.
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B. RDCC and Energy-efficiency

The static power dissipation becomes an important part
of total power consumption for deep submicron technology
[20], [21]. In general, more functional units require more
transistors, leading to more static power consumption. In
addition, if some units do a lot of useless work, the energy
efficiency of a processor will be reduced. Therefore, high
energy-efficiency usually meets high effective utilization of
resources in modern processors.

The Amdahl’s law implies that the performance gain is
limited by the percentage of potential speedup part [22].
For the applications with high RDCC value, the performance
gain obtained from improving computational operations will
be higher than that from improving control operations at
the same cost, and the effective utilization of computational
units is much higher than that of the control units. On the
contrary, control operations will be done frequently when
the applications with lower RDCC values are being executed.
Meanwhile, the average basic block size of those applications
is small and the parallel degree of computation is generally
low.

The effective resource utilization of computational units
and control units can be marked with the RDCC value
while an application is being executed. The number of
computational operations is larger than that of control oper-
ations while the application with high RDCC value is being
executed. Consequently, the effective utilization of computa-
tional units is higher than that of the control units. Generally,
the percentages of control operations in the applications with
low RDCC values are more than that in the applications
with high RDCC values. The effective utilization of control
units for the applications with low RDCC values will be
higher than that for other applications. The applications
with low RDCC values will make high effective resource
utilization of control units, but the applications with high
RDCC values will make high effective resource utilization of
computational units. Therefore, there are hardly any energy-
efficiency gains if more parallelism computational units are
used for the applications with low RDCC values. Likewise,
better energy-efficiency gains will be hardly obtained if only
more complex control technologies are used for applications
with high RDCC values.

C. RDCC and Workload Characteristics Evaluation

Although the RDCC values may be affected by many
factors, the statistical characteristics of RDCC can be found
as follows.

1) The RDCC values of various applications are quite
different. This indicates that RDCC could be used to mark
different applications.

2) The RDCC values can be used to reflect the charac-
teristics which can be marked with basic block size, be-
cause there are strong dependencies between the basic block
size and the RDCC value for an application. RDCC value
indicates how many computational operations per branch.
Basic block size indicates the total number of computational
operations and memory access operations per branch. When
the RDCC value is greater, the basic block size is larger
too. The basic block size can be used in many aspects. For
example, basic block distribution is used to find the periodic

behavior and simulation points in applications [23], and a
framework for power estimation and reduction in multi-core
architectures using basic block approach is present in [24].
In general, there is a higher probability to exploit instruction-
level parallelism in larger basic block. Therefore, RDCC can
be used to reveal the potential probability of instruction-
level parallelism. In a word, RDCC can be used to reveal
the characteristics of programs as basic block size in many
aspects.

3) The RDCC value of one application is relatively stable
despite different optimizations and inputs, especially for
the applications with lower RDCC values. The correlation
coefficients of the RDCC values from different conditions are
greater than 0.77, indicating that the RDCC value is relatively
stable among different conditions. In addition, it is found that
the RDCC values of the applications are relatively stable
between ARM and MIPS ISAs according to the instruction
mix results in the literature [25]. The applications with high
RDCC values in ARM ISA are also with high RDCC values
in MIPS ISA.

4) The characteristics of applications can be marked with
the RDCC values. For simplicity, the benchmarks with
RDCC values less than 2 are named Low-RDCC type and
the benchmarks with the RDCC values greater than 12 are
named High-RDCC type. The comparison related to the
instruction mixes between Low-RDCC type and High-RDCC
type is shown in table I. The range and average values of
the percentage of each instruction types are presented in the
columns. The values of the low-RDCC type and the High-
RDCC type are presented in the second and third columns,
respectively. The values of all the benchmarks are shown in
the last column.

TABLE I
THE COMPARISON RELATED TO INSTRUCTION MIX AMONG

BENCHMARKS WITH DIFFERENT RDCC VALUES

Instruction Percentage /range(average)
Types Low-RDCC High-RDCC All *

Control 16%-20%(18%) 1.5%-5%(3%) 1.5%-20%(11%)
Computation 25%-36%(31%) 46%-70%(57%) 25%-70%(48%)
Memory 46%-57%(51%) 27%-47%(40%) 16%-64%(41%)

* Low-RDCC represents the benchmarks whose RDCC values are less than 2;

High-RDCC represents the benchmarks whose RDCC values are greater 12;

ALL represents all the benchmarks.

The following statistical characteristics can be found from
table I.

First, the Low-RDCC type benchmarks include more
control operations and less computational operations than
that for all the benchmarks on average. The percentage of
control operations for Low-RDCC type (18% on average) is
larger than that for all benchmarks (11% on average). The
percentage of computational operations for Low-RDCC type
(31% on average) is lower than that for all the benchmarks
(48% on average).

Second, the High-RDCC type benchmarks consist of less
control operations and more computational operations than
that for all the benchmarks on average. The percentage of
computational operations is larger for High-RDCC type—
57% on average—than that for all the benchmarks. The
percentage of control operations for High-RDCC type (31%
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on average) is lower than that for all the benchmarks.
Furthermore, the Low-RDCC type benchmarks usually

accompany with memory-intensive properties. The percent-
ages of memory access operations for Low-RDCC type
benchmarks (51% on average and 46% minimum value) are
greater than that for all the benchmarks (41% on average).

The statistical characteristics of RDCC and results in
section III indicate that the inherent properties of applications
can be marked with the RDCC values. Therefore, RDCC can
be used to evaluate characteristics of workloads. For exam-
ple, the RDCC values can be used to reflect the relationship
between control operations and computational operations for
applications. The applications of RDCC will be explored in
the following section.

V. APPLICATIONS OF RDCC

In this section, a quantitative approach to identify
computation-intensive and control-intensive applications by
RDCC values is discussed in detail and other applications of
RDCC are introduced.

A. Identifying Computation-intensive and Control-intensive
Applications by RDCC

1) RDCC and identifying Computation-intensive and
Control-intensive Applications

From the qualitative perspective, control-intensive applica-
tions have a much larger percentage of control operations, but
computation-intensive applications have a larger percentage
of integer or floating point ALU operations than general
applications [11].

According to the results in section III and table I, it can be
found that the applications with lower RDCC values show
more control-intensive characteristics and the applications
with higher RDCC values show more computation-intensive
characteristics. This conclusion not only can be deduced
from the average values of control operations and computa-
tional operations between High-RDCC type or Low-RDCC
type benchmarks and all the benchmarks, but also can be
concluded from the range values of control operations or
computational operations of the two type benchmarks.

The benchmarks with lower RDCC values show more
control-intensive characteristics. The percentages of control
operations for all the Low-RDCC type benchmarks are
greater than 16%, which is greater than that for all the
benchmarks (11% on average). Meanwhile, the percentages
of computational operations for all the Low-RDCC type
benchmarks are less than 36%, which is lower than that for
all the benchmarks—48% on average. In other words, the
benchmarks with lower RDCC values have more control op-
erations and less computational operations than the average.
Therefore, the applications with lower RDCC values can be
seen as control-intensive ones.

The benchmarks with higher RDCC values show more
computation-intensive characteristics. The percentages of
control operations for all the High-RDCC type benchmarks
are less than 5%. The percentages of computational opera-
tions for all those benchmarks are greater than 46%, and the
average value of them is as high as 57%. In other words, the
benchmarks with higher RDCC values include less control

operations and more computational operations than the aver-
ages for all the benchmarks. Therefore, the applications with
higher RDCC values can be seen as computation-intensive
ones.

The benchmarks which include not only many compu-
tational operations but also many control operations such
as adpcm dec., adpcm enc. and bitcnt have both control-
intensive and computation-intensive characteristics. There-
fore, it is reasonable that those benchmarks appear in the
middle position of the ranking which is used to identify
control-intensive and computation-intensive applications.

Therefore, RDCC can be used as a metric for identifying
computation-intensive and control-intensive applications.

2) A Reference Classification
It is necessary to provide a reference classification for

identifying an application whether computation-intensive or
control-intensive when its RDCC value is obtained. Although
different people may have various views on how to define the
classification, it is obvious that an application with a higher
RDCC value could not be seen as a strong control-intensive
one. For example, lbm whose RDCC value is 41.4 should not
be regarded as a control-intensive application, because the
percentage of control operations in its dynamic instruction
mix is only 1.5%. In order to reflect the degree of intensive
properties of different applications accurately, the reference
classification is divided into five types in this study. The five
types are named as follows: Strong Control-intensive, Weak
Control-intensive, Normal, Weak Computation-intensive and
Strong Computation-intensive. This method will be more
accurate than that only dividing two or three types.

To get the reference classification, K-Means clustering
analysis method is adopted. Before doing the clustering
analysis, the special mathematical characteristics of RDCC
should be addressed. First, RDCC values are always greater
than zero and are greater than 1 in most cases. Second,
applications with values less than 1 can be regarded as
control-intensive since they are relatively small. On the con-
trary, the RDCC values of computation-intensive applications
are usually large and without an upper limit theoretically.
Furthermore, it is reasonable that the applications with the
RDCC values greater than a special number can be consid-
ered as computation-intensive ones. For those characteristics
of RDCC, when the RDCC values are directly used as the
inputs of the K-Means clustering analysis function, only one
benchmark is considered as strong computation-intensive.
This is a pitfall in this way. Fortunately, the natural logarithm
can make the steep part of a curve become smoothed. It can
be used to avoid the pitfalls.

The RDCC values are processed by the natural logarithm
function firstly and then the results are used as one input
of K-Means function. The other input which indicates the
number of clusters is five. The boundary values of the
five clusters are extracted based on the results of K-Means
function. They are 0.67, 1.13, 1.85 and 2.75, respectively.
The RDCC values corresponding to the boundary values are
2, 3, 6 and 16, respectively, which are gotten by the natural
exponential function being applied to the boundary values
and then rounded to integers. At last, we have gotten the
reference classification with the RDCC values, as shown in
table II.

According to the reference classification, when the RDCC
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TABLE II
THE REFERENCE CLASSIFICATION

Types The Range of RDCC value

Strong control-intensive Less than 2
Weak control-intensive 2-3
Normal 3-6
Weak computation-intensive 6-16
Strong computation-intensive Higher than16

TABLE III
RESULTS OF CLASSIFICATION

Types Benchmarks Description
(RDCC value)

Strong control- omnetpp(1.3) Discrete Event Simulation
intensive specrand(1.7) Pseudorandom generator

mcf(1.9) Depot vehicle scheduling

Weak control- gobmk(2.6) Game playing
intensive sjeng(2.7) Game tree search

povray(2.6) Computer visualization

Normal soplex(3.6) Program Solver
bzip2(4.0) Compression
tonto(4.9) Quantum crystallography

Weak computation- h264ref(6.7) Video compression
intensive sphin3(7.5) Speech recognition

hmmer (8.8) Gene sequence searching

Strong computation- gromacs(21.9) Molecular dynamics
intensive zeusmp(28.4) Magnetohydrodynamics

lbm(41.4) Computational fluid dynamics

value of an application is less than 2, the application can
be regarded as strong control-intensive. The range of the
RDCC value for weak control-intensive applications is from
2 to 3. An application can be seen as the normal type if
its RDCC value is greater than 3 and less than 6. If the
RDCC value of an application is greater than 6 and less than
16, the application can be considered as weak computation-
intensive. The applications are strong computation-intensive
if their RDCC values are greater than 16.

3) Verification
To further verify the classification approach and effec-

tiveness of the reference classification, many representative
benchmarks are mapped into each type based on their RDCC
values. The results are shown in table III.

The results of the classification for those benchmarks
are very reasonable. This is reflected in a significantly
higher percentage of control operations and lower percentage
of computational operations of the benchmarks which are
classified into strong control-intensive. The percentages of
control operations for those benchmarks are nearly 20%,
which is higher than that for all the benchmarks—11%
on average. The percentage of computational operations is
only about 30%, which is much lower than that for all
the benchmarks—49% on average. The rationality is also
reflected in the dynamic instruction mix of the benchmarks
which are classified into strong computation-intensive. Those

benchmarks include higher percentages of computational
operations and lower percentages of control operations.

The classification results are consistent with the con-
ventional understanding about computation-intensive and
control-intensive applications. The benchmarks dealing with
the random or discrete events are classified into strong
control-intensive rank such as omnetpp, specrand, mcf. Weak
control-intensive characteristics are shown in the applications
referring to artificial intelligence. The benchmarks named
h264ref, sphin3 and hmmer refer to multimedia or infor-
mation processing applications. The benchmarks named gro-
macs, zeusmp and lbm relate to scientific computing appli-
cations. The more details of those benchmarks can be found
in the literature [16]. The applications about multimedia,
information processing and scientific computing are gener-
ally regarded as computation-intensive applications, and the
intensity of computation-intensive for scientific computing
applications is stronger than that for other categories [12],
[26], [27], [28].

Therefore, the approach to identify computation-intensive
and control-intensive applications by RDCC values is feasi-
ble, and the reference classification is reasonable, especially
for the strong control-intensive and strong computation-
intensive ones.

B. RDCC in Other Applications

1) Evaluation of Benchmark Suites: RDCC can be used
as one of the indicators to evaluate whether the benchmark
suites have similar characteristics with real workloads in the
relationship between computational and control operations.
One goal of the design of benchmark suites is that benchmark
workloads should yield the same distribution of the utiliza-
tion of system resources as real workloads [29]. It is essential
that a subset of benchmarks used to evaluate the architecture,
is well distributed within the target workload space rather
than clustered in specific areas [30]. Good benchmark suits
should have similar characteristics with the real workloads in
the RDCC value. In addition, basic block size can be used to
character behaviors of applications. For example, Sherwood
et al. proposed basic block distribution analysis to find the
representative parts of the entire program and they found that
basic block could reflect many architectural metrics,such as
IPC, branch miss rate, cache miss rate, value misprediction
and address misprediction [23]. As the RDCC values highly
depend on the basic block sizes, it is reasonable that RDCC
is used to evaluate the behavior characteristics of benchmarks
like basic block size.

2) Computer Architecture Design: RDCC can be used as
a reference indicator which may be helpful for designers to
make an appropriate choice in computer architecture design,
especially for application specific instruction set processors
and reconfigurable computing systems. Heterogeneous chip
multiprocessors present unique opportunities for improving
system throughput, reducing processor power, and mitigating
Amdahl’s law [31]. Many computer architects believe that
heterogeneous multi-core architectures will be the domi-
nant architectural design in the future. Amin Ansari et
al. presented the advantages of adaptive asymmetric mul-
tiprocessors [32]. However, the architects usually face the
problem that they must make a choice among many design
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schemes to balance the performance and power dissipation
[33], [34]. To improve energy-efficiency of one computer
architecture, the effective resource utilization of function
units should be much concerned and the characteristics of
its workloads should be analyzed firstly. If the workloads are
mainly computation-intensive applications, which are with
high RDCC values, it will be reasonable to improve com-
putational units. If the workloads are mainly strong control-
intensive applications, which are with low RDCC values, the
control ability should be enhanced in the system. The strong
control-intensive applications are usually accompanied by
memory-intensive attributes as shown in table I. This also
offers a reference indicator for the design of the memory
system.

3) Task Allocation and Scheduling: RDCC can be used
as a reference indicator to improve the task allocation
and scheduling for heterogeneous multi-core systems. Com-
pared with the advantages of heterogeneous multi-cores, task
scheduling in heterogeneous multi-cores is still a daunting
challenge. The successful scheduling approach for heteroge-
neous multi-cores must be able to map workloads to the most
appropriate core in performance and power. In heterogeneous
multi-core system, different cores have different specialties.
Some cores may be good at processing control-intensive
tasks; others may be good at executing computation-intensive
tasks. Making wrong scheduling decisions can lead to
suboptimal performance and energy-efficiency. To address
this scheduling problem, the indicators to guide workload
scheduling should be chosen. For example, workload mem-
ory intensity, CPI, MLP and ILP profile information are
used as indicators to guide workload scheduling [35], [36].
Koufaty et al. proposed the bias scheduling for heterogeneous
systems by key metrics that characterize an application bias
[37]. As the RDCC values can reflect the characteristics
of workloads in control-intensive and computation-intensive,
it is reasonable that RDCC is used as a new indicator to
guide workload scheduling in heterogeneous multi-cores.
The RDCC values can be recorded by offline or online
profiling. The scheduling objects can be different levels such
as functions, threads, processes or whole programs. The tasks
with higher RDCC values will be processed by the cores with
strong computing ability and the tasks with lower RDCC
values will be allocated to the cores with strong control
ability.

4) Compiler Design for Reconfigurable Computing: Com-
pilers for reconfigurable computing are widely used to ac-
celerate applications. Automatic mapping of computations
to reconfigurable computing architectures represents a rel-
atively new and very promising area of research [18]. It
is very necessary to identify computation-intensive tasks
and control-intensive tasks for choosing appropriate speedup
methods in the compilers. RDCC can be used as one of
the indicators to identify computation-intensive and control-
intensive functions or tasks based on profiling texts.

VI. CONCLUSION
As a fundamental part of computer architecture research,

better metrics and methods for evaluating workloads are
continually needed. This paper presents a new metric named
RDCC and the characteristics of the RDCC values of a great
many benchmarks in various conditions are explored. The

results indicate that many intrinsic properties of workloads
can be marked with the RDCC values. The RDCC can
be used in the following aspects at least: 1) to identify
the computation-intensive and control-intensive applications;
2) to evaluate the effective resource utilizations of com-
putational units and control units of a processor for given
workloads; 3) to evaluate whether benchmark suites have
similar characteristics with real workloads; 4) to reflect
behaviors of workloads and to guide workload scheduling in
heterogeneous multi-cores. In addition, this paper presents a
novel quantitative approach to identify computation-intensive
and control-intensive applications with only one metric—
RDCC, and gives a reference classification which is obtained
by K-Means clustering analysis. The RDCC gives a new
indicator to evaluate application characteristics, and it will
be much helpful for processor architecture design, the com-
piler and software optimization, espacially for heterogeneous
multi-core systems. Therefore, the RDCC could be adapted
to be a metric to identify and evaluate the characteristics of
applications. It may be worth studying how to use the RDCC
to improve task scheduling for heterogeneous systems and
hardware-software partitioning for reconfigurable computing
systems.
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