


Abstract—In this work we introduce the combinatory use of

Harmony Search (HS) with Optimal Computing Budget
Allocation (OCBA) as a means to tackle noisy optimization
situations as those that occur during the execution of Discrete
Event Systems (DES) for modeling complex systems. The
OCBA procedure is employed for the exclusion of the worst
harmony during the memory updating process in order to
minimize the computational cost and at the same time retain a
pool of promising solutions. The proposed hybrid approach is
tested on real valued test functions as a proof of concept and
the results are promising in case of small computational
budgets.

Index Terms— Budget Allocation, Harmony Search, Noisy
Optimization, Optimal Computing, Simulation Optimization

I. INTRODUCTION

oisy optimization problems arise in many real life
application domains. One of the most common

problems is the attempt to optimize a performance index for
a complex procedure that is captured through a simulation
model, giving rise to what is known as simulation-
optimization [1]-[4]. In the field of logistic systems and
operations research, Discrete Event Systems (DES) are
among the most prominent members for simulating complex
logistic systems. Their main drawback is that in most cases
their execution is quite slow combined with the need to run
multiple replications for a specific design due to “simulation
noise”.

The simulation approach has been adopted by many
researchers especially over the past decade due to the
availability of modern simulation software and ample
computational power [5]. Simulation can assist in either a
static or a dynamic analysis of a system. A dynamic analysis
is enhanced with software that shows the time-sequenced
operation of the system that is being predicted or analyzed.
Simulation is by its nature a descriptive tool that can be used

G. Georgoulas, P. Karvelis and C.D. Stylios are with the Knowledge and

Intelligent Computing (KIC) Laboratory of the Department of Informatics
Engineering, Technological Educational Institute of Epirus, 47100, Arta,
Greece; (e-mail: {georgoul; karbelis}@kic.teiep.gr and stylios@teiep.gr)

G. Iacobellis and M.P. Fanti are with the Department of Electrical and
Electronic Engineering, Polytechnic of Bari, Bari Italy; (e-mail:
{fanti;iacobellis}@deemail.poliba.it).

V. Boschian and W. Ukovich are with the Department of Engineering
and Architecture, University of Trieste, Trieste, Italy; (mail:
valentina.boschian@di3.units.it; ukovich@units.it)

for both prediction and exploration of the behavior of a
specific system. A complex simulation embedded in a
model-driven Decision Support System (DSS) can help a
decision maker plan activities, anticipate the effects of
specific resource allocations and assess the consequences of
actions and events [6]. “What if analysis” performed via a
simulation tool can sometimes offer extra confidence to the
decision maker compared to just the simple presentation of
numbers in a tabular format. However, detailed simulations
are time consuming and can be computational heavy when a
large number of alternatives are considered. Therefore
simulation optimization is usually employed for tactical or
strategic planning using some kind of metaheuristic process
to guide the search.

In this paper we present for the first time the combination
of two well-known procedures, each one suitable for
tackling a different aspect of the simulation optimization
problem, namely the Harmony Search (HS) and the Optimal
Computing Budget Allocation (OCBA) procedures. It is
known that HS can tackle the problem of efficiently
searching the solution space, while the OCBA tackles the
problem of effectively allocating the, usually restricted,
available number of replications. Thus their combinatory
usage may lead to a new advanced methodology.

The rest of the paper is structured as follows: Section II
presents a brief introduction to simulation optimization
aspects. Sections III and IV describe the essentials of HS
and OCBA. Section V presents the proposed approach and
Section VI summarizes some preliminary results. Section
VII concludes the paper offering some hints for future work.

II. SIMULATION OPTIMIZATION

The primary reason why simulation optimization is
difficult to apply is the stochastic nature of evaluating the
objective function. There is a basic trade-off between
devoting computational effort on searching the space for
new candidate solutions (exploration) versus getting more
accurate estimates of the objective function as there are
some currently promising solutions (exploitation). In other
words, we have to investigate how much of the simulation
budget should be allocated to additional replications at
already visited points and how much to allocate for
replications at newly generated points.

In mathematical terms, adopting the notation of [1], we
have to find a set of values θ that minimizes (maximizes) an
expression (the expression sometimes represents just one

Harmony Search augmented with Optimal
Computing Budget Allocation Capabilities for

Noisy Optimization

George Georgoulas, Petros Karvelis, Giorgio Iacobellis, Valentina Boschian, Maria Pia Fanti, Walter
Ukovich and Chrysostomos D. Stylios

N

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_08

(Advance online publication: 29 November 2013)

__

Key Performance Indicator (KPI) of the problem or it can be
a function including more than one KPIs)

  min J


 (1)

Where  represents the (vector of) input variables,

 J  is a (scalar) objective function, and  is the

constraints set, which may be either explicitly given or
implicitly defined.

The assumption in the simulation optimization setting is
that  J  is not available directly, but must be estimated

through simulation, e.g., the simulation output provides

   ˆ ,J L   , a noisy estimate of  J  . The most

common form for  J  is an expectation, e.g.

    ,J E L      (2)

where ω represents a sample path (simulation replication),
L is the sample performance measure [1] and  E  is the

expectation operator. Although this form is fairly general
(includes probabilities by using indicator functions), it does
exclude certain types of performance measures such as the
median (and other quantiles) and the mode.

Lately, metaheuristic approaches have become more and
more popular in the settings of simulation-optimization
augmented with some kind of mechanism to allocate the
available computational budget among the various
alternatives [6]-[10]. In this paper, the HS represents the
metaheuristc part and the mechanism for allocating the
available replications is OCBA, which are presented in the
following sections.

III. HARMONY SEARCH

Harmony search is a relatively new metaheuristic method
that was introduced in an attempt to simulate the
improvising process [11] of a music band in search of an
improved harmony/melody. The original formulation
considered integer variables but newer developments have
been proposed also for real [12], [13] as well as binary
variables [14]. The way that each variable is treated also
makes it suitable for problems with mixed types of
variables.

As almost all metaheuristic approaches, HS consists of a
number of stages, such as memory consideration, pitch
adjustment and random selection, but also it includes
problem-specific features for every application. In this
work, we are not exploiting all the possible alternatives of
the HS but we just use the basic steps of the method that are
described in the rest of this section.

A. Harmony memory initialization

The basic component on HS is a pool of promising
solutions that are stored in harmony memory (HM).
Therefore, before the application of each one of the
aforementioned steps we have to generate randomly (or
alternatively some could be provided by the user based on
expert knowledge or even intuition) and store a number of
initial harmonies in the HM:

 
 

 

1 1 1 1
1 2

2 2 2 2
1 2

1 2

n

n

HMS HMS HMS HMS
n

D D D f

D D D f

D D D f

 
 
 

  
 
 
  

D

D
HM

D





    



 (3)

where j
iD is the i-th decision variable in the j-th solution

vector, which for the original integer formulation has one
discrete value out of a candidate set

        1 , 2 , , , ,i i i i iD D D k D K  ;  jf D is the

objective function value for the j-th solution vector, and
HMS is the harmony memory size (i.e. the number of
solution vectors stored in the HM). The number of random
harmonies should be at least HMS. However, the number
can be more than HMS, such as twice or three times as
many as HMS. Then, top-HMS harmonies are selected as
starting vectors [15]. In the case of simulation optimization
the inclusion of this step should be weighed against the
extra replications needed.

B. Improvisation of a new harmony

Using the vectors stored in the HM, new solution vectors
are produced based on the application of three operations:

 Random selection
 Memory consideration and
 Pitch adjustment

During the random selection process, as its name implies,
a new value is chosen randomly out of a candidate set with a
probability (1-HMCR) (see next paragraph for the definition
of HMCR), as a direct analogy to a musician playing any
possible pitch within the range of its musical instrument

           , 1 , 2 , ,New
i i i i i i iD D k D k D D D K   (4)

In memory consideration, we resort to the already stored
harmonies within the HM, picking a value that is already
there, with a probability equal to the harmony memory
considering rate (HMCR), as a musician plays any pitch of
the preferred pitches stored in his memory

      1 2, , , ,New HMS
i i i i i iD D l D l D D D   (5)

In pitch adjustment a value that has been selected in the
previous step of memory consideration is altered further a
bit, turning into one of its neighboring values with a
probability equal to the pitch adjusting rate (PAR)

      1 21 , , , ,New HMS
i i i i i iD D l D l D D D    (6)

In the case of constrained optimization problems, if the

newly improvised harmony NewD violates any of the
constraints, HS abandons it or still keeps it by adding a
penalty to the objective function value, just like musicians
sometimes still accept a rule-violating harmony.

C. Update of harmony memory

After the generation of a new vector

 1 2, , ,New New New
nD D D a selection process takes place: if the

new harmony is better than the worst vector in HM with
respect to the objective function, the former takes the place
of the latter.

Note: For the diversity of harmonies in HM, other
harmonies (in terms of least-similarity) can be considered.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_08

(Advance online publication: 29 November 2013)

__

Also, maximum number of identical harmonies in HM can
be considered in order to prevent premature convergence.

After the HM update and if the maximum number of
iterations or a desired performance has not been reached, the
algorithm continues to generate new harmonies.

D. Harmony search for real valued variables

In the case of real valued variables what changes is the
random selection and the pitch adjustment while the
memory consideration remains the same.

In the random selection we now select a value within the
admissible range of values for the corresponding variable

 (0,1)New
i iD Range U  (7)

Where iRange is the range of values of variable i and

(0,1)U is a uniform random generator between 0 and 1,

meaning that we sample uniformly within the acceptable
range of values.

In the pitch adjustment the new value is produced by
randomly sampling around the value that was selected in the
memory consideration step, by:

   
   1

2 (0,1) 1 ,

, ,

New
i i i

HMS
i i i

D D l bw U

D l D D

   

 
 (8)

where ibw is an arbitrary distance bandwidth for the

continuous design variable

IV. OPTIMAL COMPUTING BUDGET ALLOCATION

Optimal Computing Budget Allocation was originally
proposed by Chen [16] as a procedure to optimally allocate
a predefined number of trials/replications in order to
maximize the probability of selecting the best
system/design. Since its introduction many variants have
been proposed [17], [18] and while at the beginning it was
meant to deal with a predefined number of designs, lately it
has been coupled with (global) search algorithms to deal
with large scale optimization problems both for discrete and
continuous search spaces [19]-[25].

The main philosophy of OCBA dictates: Allocate
replications not only based on the variance of the different
designs but also taking into account the respective means.

According to OCBA if we have a total budget of T

replications,
1

k

i
i

T N


  then we try to (asymptotically)

maximize the probability of Correct Selection { }P CS (the

probability of actually selecting the best b among the k
designs) [18] (for the case of a minimization problems):

 
1,

{ }
k

b i
i i b

P CS P J J
 

 
  

 
 (9)

As it was pointed out in Section II we can only have
estimates of iJ using the sample mean based on simulation

outputs. Even using estimates the { }P CS itself, for the

general case, can be only estimated resorting to a Monte
Carlo simulation procedure which is time consuming.
Therefore instead of estimating the { }P CS one resorts to a

much easier to compute lower bound which is called the
Approximate Probability of Correct Selection (APCS).

APCS comes in two forms [18]:

APCS-B which is in a summation form derived using the
Bonferroni inequality:

 
1,

1 { }
k

b i
i i b

APCS B P J J P CS
 

     (10)

APCS-P which comes as a product form:

 
1,

{ }
k

b i
i i b

APCS B P J J P CS
 

    (11)

For a more thorough treatment of the subject the
interested reader is referred to the original publication [16].
Note: In Chen’s formulation normal distributions are
assumed for the estimation of the APCS.

In order to (asymptotically) maximize APCS and as a
result { }P CS the following relationship between two non-

best designs  ,i jN N should hold

2

,

,

i b ii

j j b j

N

N

 
 
 

   
 

, for all i j b  (12)

and the number of simulation replications for the best
design is given as

2

2
1,

k
i

b b
i i b i

N
N 

 

  (13)

where, i , i , are the mean and standard deviation of the i-

th design, ,b i i b    , and b is the best design.

The above equations show that the noisier the simulation
output (larger variance), the more replications are allocated.
More replications are also given to the design of which the
mean is closer to that of the best design.

The most common implementation of the OCBA is based
on a sequential approach that allocates  extra replications
per step. The procedure is summarized as follows [18]:

OCBA Procedure:

Input: k, *P , Δ, 0n (0 5n )

Initialize: 0l 

Perform 0n simulation replications for all designs,

1 2 0...l l l
kN N N n   

Loop.

Update: Calculate sample means ˆi and sample

standard deviations  l
i iS N , i=1,2,…,k

using the new simulation output. Find
ˆarg min i

i
b  ; calculate APCS

Check: If * stop; Otherwise, continueAPCS P

Allocate: Increase the computing budget by Δ and
calculate the new budget allocation

1 1 1
1 2, ,...,l l l

kN N N   , according to

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_08

(Advance online publication: 29 November 2013)

__

 
 

2
1

1

ˆ ˆ()

ˆ ˆ()

ll
i i j bi

l l
j j j i b

S NN

N S N

 

 





 
 
  

, for all i j b  and

21
1

1,

()
()

lk
l l i
b b b l

i i b i i

N
N S N

S N




 

 
  

 


Simulate: Perform additional max(1l l
i iN N  ,0)

simulations for design i, i=1,2,…,k;
1l l 

End of loop

We must note that for practical implementations the
allocation of replications is terminated at some point even
without reaching the predefined confidence level. This is
especially useful in case of large spaces and/or expensive
simulation runs. In the extreme case 1  and one
replication is allocated at a time.

V. HS-OCBA

In the HS procedure during the step of memory update a
decision has to be made on whether the new harmony will
be included in the HM substituting the worst member of the
memory or not.

Therefore the OCBA procedure can be used to find the
worst among the HMS+1 harmonies (where HMS is the size
of the memory). Moreover towards the end of the search,
OCBA can be used to select the best among the members of
the HM. Therefore in general if we are dealing with a
minimization problem, during the memory update process
we apply the OCBA procedure as described in section III
using ˆi instead of ˆi (turning a maximization problem

into a minimization one) while during the final selection of
the best solution we apply the OCBA procedure using ˆi .

VI. RESULTS

In this preliminary study we experimented mainly with
scenarios having a rather “small” number of replications
since our approach aims to be used primarily as part of
simulation optimization solution where each simulation is
“expensive” in terms of computational time. The OCBA
loop was terminated either if the number of replications was
consumed or if the APCS exceeded a predefined threshold.
The parameters used are summarized in the following Table
I. We must note that at this stage no “optimal” selection of
the HS parameters was sought.

For each one of the following test functions, Gaussian
noise was added with zero mean and variance equal to one:

     0,1g x f x N  (14)

In this study the dimension d was set equal to 2 and the
search space in each dimension to [-5,5] for all test
functions. For each test function the experiments were
repeated 20 times and the results were averaged. Three
commonly used test functions were involved and the results
are depicted in Figures 1 to 3. For the case of equal
allocation scheme the replications were also allocated one
by one and the procedure was stopped either if the number

of replications was exceeded or the APCS exceeded the
predefined threshold.

TABLE I
PARAMETER SETTINGS

Parameter name Parameter Value

Total number of replications T-total 5000

number of replications T 100

Initial number of replications 0n 5

Δ 1

APCS threshold 0.8

HMCR 0.9

PAR 0.3

ibw iRange

A. Rosenbrock

       1 2 22
1

1

100 1
d

i i i
i

f x x x x





    (14)

1000 2000 3000 4000 5000
-5

0

5

10

Total replications

a
v
e

ra
g

e
 p

e
rf

o
rm

a
n

e

o
f
th

e
 b

e
s
t
H

a
rm

o
n

y

OCBA
equal

Fig. 1. Average performance of the best Harmony for the case of noisy
Rosenbrokc function

B. Rastrigin

   2

1

() 10 10cos 2
d

i i
i

f x d x x


   (15)

1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

9

Total replications

a
v
e
ra

g
e
 p

e
rf

o
rm

a
n

e

o
f
th

e
 b

e
s
t
H

a
rm

o
n

y

OCBA
equal

Fig. 2. Average performance of the best Harmony for the case of noisy
Rastrigin function

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_08

(Advance online publication: 29 November 2013)

__

C. Ackley

 

2

1

1

1
() 20 20exp 0.2

1
exp cos 2

d

i
i

d

i
i

f x e x
d

x
d





 
     

 
   
 



 

 (15)

1000 2000 3000 4000 5000

1.5

2

2.5

3

3.5

4

Total replications

a
v
e
ra

g
e
 p

e
rf

o
rm

a
n

e

o
f
th

e
 b

e
s
t
H

a
rm

o
n

y

OCBA
equal

Fig. 3. Average performance of the best Harmony for the case of noisy
Ackley function

VII. CONCLUSIONS

In this work, we present a scheme for integrating a
popular metaheuristic algorithm with a mechanism for
allocating replications under the presence of uncertainty.
Harmony Search is augmented with Optimal Computing
Budget Allocation, so as to be able to tackle noisy
optimization problems that arise frequently in real life
applications.

Our preliminary results that are presented here, suggest
that for a fairly small computational budget and moderate
levels of noise the proposed scheme seems to be more
effective compared to a scheme that blindly allocates equal
budget to all candidate solutions. To be more specific, by
implementing OCBA, more alternatives were investigated
within a given computational budget, letting further
exploration of the search space. However more tests need to
take place before reaching overall conclusions regarding the
settings at which the OCBA procedure can outperform with
certainty the simpler equal-allocation approach.

One of our preliminary observations also suggests that as
the budget increases the difference between the two
approaches becomes smaller and at some point is negligible.
Therefore the HS-OCBA scheme should probably be
reserved for situations where only few and time consuming
replications are available as in the case of DES application.
Our ongoing research is going to include a more elaborate
set of experiments involving a real life DES model.

During our experiments, we found out that in some cases
we came across a situation where less promising solutions
were “accidentally” saved in the HM. This occurred
especially under a setting with higher noise levels and small
number of initial replications. Under these circumstances a

solution could be assigned a better performance value which
is in fact an anomaly/outlier and since the comparison that
takes place seeks for the worst solution, the solution with
the “mistakenly” perceived better performance value can
continue being held in the HS memory only to be revealed
that it is actually inferior during the final OCBA stage that
seeks for the best among the solutions stored in the memory.
This final stage helps us to more accurately estimate the
value of the best solution but is not able to prevent the
situation just described.

Therefore in future work, we will investigate whether
such a stage or a stage of equal sampling applied at some
point during the search process and not just during the final
stage could be beneficial for the overall efficiency of the
algorithm.

Moreover in future work we will also test the use of an
indifference zone formulation [26], in other words a
formulation that will stop sampling if all competitors for the
best/worst are “good enough” in order to avoid unnecessary
replications just to achieve a trivially better solution. Such a
mechanism can be of great use within a simulation-
optimization framework.

ACKNOWLEDGMENT

This work was supported by the E.U. FP7–PEOPLE–
IAPP–2009, Grant Agreement No. 251589, Acronym:
SAIL.

REFERENCES
[1] M. Fu, C. Chen, and L. Shi, “Some topics for simulation

optimization” In Winter Simulation Conference, pp 27–38, 2008.

[2] J. April, F. Glover, J. P. Kelly, and M. Laguna, “Practical introduction
to simulation optimization” In Winter Simulation Conference, vol. 1,
pp. 71-78, 2003.

[3] S. Olafsson and J. Kim. Simulation optimization. In E. Yucesan, C.-H.
Chen, J. Snowdon, and J. Charnes, editors, Winter Simulation
Conference, 2002.

[4] M. C. Fu, F. W. Glover, and J. April., Simulation Optimization: A
Review, New Developments, and Applications, in. Winter Simulation
Conference, pp. 83-95, 2005.

[5] G. Giani, G. Laporte and R. Musmanno, Introduction to Logistics
Systems Planning and Control, Willey, 2004

[6] D. J. Power, and R. Sharda. Model-driven decision support systems:
Concepts and research directions. Decision Support Systems vol. 43,
no. 3, pp. 1044-1061, 2007.

[7] F. Glover, F., Kelly, J.P., & Laguna, M. “The OptQuest approach to
Crystal Ball simulation optimization”. Decisioneering White
Paper.(http://www. decisioneering. com/articles/article_index. html),
2000.

[8] J. Xu, B. L., Nelson, and J.E.F.F. Hong, “Industrial strength
COMPASS: A comprehensive algorithm and software for
optimization via simulation”, ACM Transactions on Modeling and
Computer Simulation (TOMACS), vol. 20, no. 1, pp 3.1-3:29, 2010.

[9] M. C. Fu, J. Hu, and S. I. Marcus, “Model-based randomized methods
for global optimization” In Proceedings of the 17th International
Symposium on Mathematical Theory of Networks and Systems, pp.
355-363, 2006.

[10] G. S. Piperagkas, G. Georgoulas, K. E. Parsopoulos, C. D. Stylios,
and A. C. Likas “Integrating particle swarm optimization with
reinforcement learning in noisy problems” In Proceedings of the
fourteenth international conference on Genetic and evolutionary
computation conference, pp. 65-72, 2012.

[11] Z. W., Geem, J.-H. Kim, and, G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search”, Simulation, vol. 76, no 2,
pp. 60– 68, 2001.

[12] K. S. Lee, and Z. W. Geem, “A new meta-heuristic algorithm for
continuous engineering optimization: harmony search theory and

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_08

(Advance online publication: 29 November 2013)

__

practice” Computer Methods in Applied Mechanics and Engineering,
vol. 194, no 36–38, pp. 3902–3933, 2005.

[13] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, 2nd ed,
Luniver Publisher, 2010.

[14] L. Wang, Y. Mao, Q. Niu and M. Fei “A Multi-Objective Binary
Harmony Search Algorithm” Advances in Swarm Intelligence Lecture
Notes in Computer Science, vol. 6729, pp. 74-81, 2011.

[15] S. O. Degertekin, “Optimum design of steel frames using harmony
search algorithm” Structural and Multidisciplinary Optimization, vol.
36, no. 4, pp. 393-401, 2008.

[16] C. H. Chen, “A lower bound for the correct subset-selection
probability and its application to discrete-event system simulations”.
IEEE Transactions on Automatic Control, vol. 41, no. 8, pp. 1227-
1231, 1996.

[17] C. H. Chen, J. Lin, E. Yücesan, and S. E. Chick, “Simulation Budget
Allocation for Further Enhancing the Efficiency of Ordinal
Optimization,” Journal of Discrete Event Dynamic Systems: Theory
and Applications , vol. 10, pp. 251-270, July 2000.

[18] C .H. Chen, and L. H. and Lee, Stochastic Simulation Optimization:
An Optimal Computing Budget Allocation, World Scientific
Publishing Co., 2010.

[19] T. Bartz-Beielstein, D., Blum, and J. Branke, “Particle swarm
optimization and sequential sampling in noisy environments”. In
Hartl, R. and Doerner, K., editors, Proceedings 6th Metaheuristics
International Conference (MIC2005), Vienna, Austria, pp. 89-94,
2005.

[20] T. Bartz-Beielstein, D., Blum, and J. Branke, “Particle swarm
optimization and sequential sampling in noisy environments”. In
Metaheuristics Springer US., pp. 261-273, 2007.

[21] S. C., Horng, F. Y., Yang, and S .S. Lin, “Applying PSO and OCBA
to Minimize the Overkills and Re-Probes in Wafer Probe Testing”.
IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 3,
pp. 531-540, 2012.

[22] S. Zhang, P., Chen, L. H., Lee, C. E., Peng, and C. H. Chen,
“Simulation optimization using the particle swarm optimization with
optimal computing budget allocation”. In Winter Simulation
Conference, pp. 4303-4314, 2011.

[23] H. Pan, L., Wang, and B. Liu, “Particle swarm optimization for
function optimization in noisy environment” Applied Mathematics
and Computation, vol. 181, no. 2, pp. 908-919, 2006.

[24] B. Liu, X. Zhang, and H. Ma, “Hybrid differential evolution for noisy
optimization”. In Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence), pp. 587-592, 2008.

[25] C. Schmidt, J, Branke, and S. E. Chick, “Integrating techniques from
statistical ranking into evolutionary algorithms”. In Applications of
Evolutionary Computing , pp. 752-763, 2006.

[26] J. Branke, S.E. Chick, and C. Schmidt, “New developments in ranking
and selection: an empirical comparison of the three main approaches”.
In Winter Simulation Conference, pp. 708-717, 2005.

IAENG International Journal of Computer Science, 40:4, IJCS_40_4_08

(Advance online publication: 29 November 2013)

__

