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Abstract—In this work we introduce the combinatory use of 

Harmony Search (HS) with Optimal Computing Budget 
Allocation (OCBA) as a means to tackle noisy optimization 
situations as those that occur during the execution of Discrete 
Event Systems (DES) for modeling complex systems. The 
OCBA procedure is employed for the exclusion of the worst 
harmony during the memory updating process in order to 
minimize the computational cost and at the same time retain a 
pool of promising solutions. The proposed hybrid approach is 
tested on real valued test functions as a proof of concept and 
the results are promising in case of small computational 
budgets. 
 

Index Terms— Budget Allocation, Harmony Search, Noisy 
Optimization, Optimal Computing, Simulation Optimization  

I. INTRODUCTION 

oisy optimization problems arise in many real life 
application domains. One of the most common 

problems is the attempt to optimize a performance index for 
a complex procedure that is captured through a simulation 
model, giving rise to what is known as simulation-
optimization [1]-[4]. In the field of logistic systems and 
operations research, Discrete Event Systems (DES) are 
among the most prominent members for simulating complex 
logistic systems. Their main drawback is that in most cases 
their execution is quite slow combined with the need to run 
multiple replications for a specific design due to “simulation 
noise”. 

The simulation approach has been adopted by many 
researchers especially over the past decade due to the 
availability of modern simulation software and ample 
computational power [5]. Simulation can assist in either a 
static or a dynamic analysis of a system. A dynamic analysis 
is enhanced with software that shows the time-sequenced 
operation of the system that is being predicted or analyzed. 
Simulation is by its nature a descriptive tool that can be used 
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for both prediction and exploration of the behavior of a 
specific system. A complex simulation embedded in a 
model-driven Decision Support System (DSS) can help a 
decision maker plan activities, anticipate the effects of 
specific resource allocations and assess the consequences of 
actions and events [6]. “What if analysis” performed via a 
simulation tool can sometimes offer extra confidence to the 
decision maker compared to just the simple presentation of 
numbers in a tabular format. However, detailed simulations 
are time consuming and can be computational heavy when a 
large number of alternatives are considered. Therefore 
simulation optimization is usually employed for tactical or 
strategic planning using some kind of metaheuristic process 
to guide the search. 

In this paper we present for the first time the combination 
of two well-known procedures, each one suitable for 
tackling a different aspect of the simulation optimization 
problem, namely the Harmony Search (HS) and the Optimal 
Computing Budget Allocation (OCBA) procedures. It is 
known that HS can tackle the problem of efficiently 
searching the solution space, while the OCBA tackles the 
problem of effectively allocating the, usually restricted, 
available number of replications. Thus their combinatory 
usage may lead to a new advanced methodology. 

The rest of the paper is structured as follows: Section II 
presents a brief introduction to simulation optimization 
aspects. Sections III and IV describe the essentials of HS 
and OCBA. Section V presents the proposed approach and 
Section VI summarizes some preliminary results. Section 
VII concludes the paper offering some hints for future work.  

II. SIMULATION OPTIMIZATION 

The primary reason why simulation optimization is 
difficult to apply is the stochastic nature of evaluating the 
objective function. There is a basic trade-off between 
devoting computational effort on searching the space for 
new candidate solutions (exploration) versus getting more 
accurate estimates of the objective function as there are 
some currently promising solutions (exploitation). In other 
words, we have to investigate how much of the simulation 
budget should be allocated to additional replications at 
already visited points and how much to allocate for 
replications at newly generated points. 

In mathematical terms, adopting the notation of [1], we 
have to find a set of values θ that minimizes (maximizes) an 
expression (the expression sometimes represents just one 
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Key Performance Indicator (KPI) of the problem or it can be 
a function including more than one KPIs) 

                                        min J


                                 (1) 

Where  represents the (vector of) input variables, 

 J   is a (scalar) objective function, and  is the 

constraints set, which may be either explicitly given or 
implicitly defined. 

The assumption in the simulation optimization setting is 
that  J   is not available directly, but must be estimated 

through simulation, e.g., the simulation output provides 

   ˆ ,J L   , a noisy estimate of  J  . The most 

common form for  J   is an expectation, e.g. 

                                 ,J E L                              (2) 

where ω represents a sample path (simulation replication), 
L  is the sample performance measure [1] and  E   is the 

expectation operator. Although this form is fairly general 
(includes probabilities by using indicator functions), it does 
exclude certain types of performance measures such as the 
median (and other quantiles) and the mode. 

Lately, metaheuristic approaches have become more and 
more popular in the settings of simulation-optimization 
augmented with some kind of mechanism to allocate the 
available computational budget among the various 
alternatives [6]-[10]. In this paper, the HS represents the 
metaheuristc part and the mechanism for allocating the 
available replications is OCBA, which are presented in the 
following sections. 

III. HARMONY SEARCH 

Harmony search is a relatively new metaheuristic method 
that was introduced in an attempt to simulate the 
improvising process [11] of a music band in search of an 
improved harmony/melody. The original formulation 
considered integer variables but newer developments have 
been proposed also for real [12], [13] as well as binary 
variables [14]. The way that each variable is treated also 
makes it suitable for problems with mixed types of 
variables.  

As almost all metaheuristic approaches, HS consists of a 
number of stages, such as memory consideration, pitch 
adjustment and random selection, but also it includes 
problem-specific features for every application. In this 
work, we are not exploiting all the possible alternatives of 
the HS but we just use the basic steps of the method that are 
described in the rest of this section.  

A. Harmony memory initialization 

The basic component on HS is a pool of promising 
solutions that are stored in harmony memory (HM). 
Therefore, before the application of each one of the 
aforementioned steps we have to generate randomly (or 
alternatively some could be provided by the user based on 
expert knowledge or even intuition) and store a number of 
initial harmonies in the HM:  
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        (3) 

where j
iD  is the i-th decision variable in the j-th solution 

vector, which for the original integer formulation has one 
discrete value out of a candidate set  

        1 , 2 , , , ,i i i i iD D D k D K  ;  jf D  is the 

objective function value for the j-th solution vector, and 
HMS is the harmony memory size (i.e. the number of 
solution vectors stored in the HM). The number of random 
harmonies should be at least HMS. However, the number 
can be more than HMS, such as twice or three times as 
many as HMS. Then, top-HMS harmonies are selected as 
starting vectors [15]. In the case of simulation optimization 
the inclusion of this step should be weighed against the 
extra replications needed.  

B. Improvisation of a new harmony 

Using the vectors stored in the HM, new solution vectors 
are produced based on the application of three operations: 

 Random selection 
 Memory consideration and 
 Pitch adjustment  

During the random selection process, as its name implies, 
a new value is chosen randomly out of a candidate set with a 
probability (1-HMCR) (see next paragraph for the definition 
of HMCR), as a direct analogy to a musician playing any 
possible pitch within the range of its musical instrument  

            , 1 , 2 , ,New
i i i i i i iD D k D k D D D K      (4) 

In memory consideration, we resort to the already stored 
harmonies within the HM, picking a value that is already 
there, with a probability equal to the harmony memory 
considering rate (HMCR), as a musician plays any pitch of 
the preferred pitches stored in his memory 

               1 2, , , ,New HMS
i i i i i iD D l D l D D D             (5) 

In pitch adjustment a value that has been selected in the 
previous step of memory consideration is altered further a 
bit, turning into one of its neighboring values with a 
probability equal to the pitch adjusting rate (PAR)   

             1 21 , , , ,New HMS
i i i i i iD D l D l D D D           (6) 

In the case of constrained optimization problems, if the 

newly improvised harmony NewD  violates any of the 
constraints, HS abandons it or still keeps it by adding a 
penalty to the objective function value, just like musicians 
sometimes still accept a rule-violating harmony. 

C. Update of harmony memory 

After the generation of a new vector  

 1 2, , ,New New New
nD D D  a selection process takes place: if the 

new harmony is better than the worst vector in HM with 
respect to the objective function, the former takes the place 
of the latter.  

Note: For the diversity of harmonies in HM, other 
harmonies (in terms of least-similarity) can be considered. 
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Also, maximum number of identical harmonies in HM can 
be considered in order to prevent premature convergence. 

After the HM update and if the maximum number of 
iterations or a desired performance has not been reached, the 
algorithm continues to generate new harmonies. 

D. Harmony search for real valued variables 

In the case of real valued variables what changes is the 
random selection and the pitch adjustment while the 
memory consideration remains the same.  

In the random selection we now select a value within the 
admissible range of values for the corresponding variable  

                       (0,1)New
i iD Range U                            (7) 

Where iRange  is the range of values of variable i and  

(0,1)U  is a uniform random generator between 0 and 1, 

meaning that we sample uniformly within the acceptable 
range of values. 

In the pitch adjustment the new value is produced by 
randomly sampling around the value that was selected in the 
memory consideration step, by: 

                   
   
   1

2 (0,1) 1 ,

, ,

New
i i i

HMS
i i i

D D l bw U

D l D D

   

 
               (8) 

where ibw  is an arbitrary distance bandwidth for the 

continuous design variable 

IV. OPTIMAL COMPUTING BUDGET ALLOCATION 

Optimal Computing Budget Allocation was originally 
proposed by Chen [16] as a procedure to optimally allocate 
a predefined number of trials/replications in order to 
maximize the probability of selecting the best 
system/design. Since its introduction many variants have 
been proposed [17], [18] and while at the beginning it was 
meant to deal with a predefined number of designs, lately it 
has been coupled with (global) search algorithms to deal 
with large scale optimization problems both for discrete and 
continuous search spaces [19]-[25].  

The main philosophy of OCBA dictates: Allocate 
replications not only based on the variance of the different 
designs but also taking into account the respective means. 

According to OCBA if we have a total budget of T 

replications, 
1

k

i
i

T N


  then we try to (asymptotically) 

maximize the probability of Correct Selection { }P CS  (the 

probability of actually selecting the best b among the k 
designs) [18] (for the case of a minimization problems): 

 
1,

{ }
k

b i
i i b

P CS P J J
 

 
  

 
                        (9) 

As it was pointed out in Section II we can only have 
estimates of iJ  using the sample mean based on simulation 

outputs. Even using estimates the { }P CS  itself, for the 

general case, can be only estimated resorting to a Monte 
Carlo simulation procedure which is time consuming. 
Therefore instead of estimating the { }P CS  one resorts to a 

much easier to compute lower bound which is called the 
Approximate Probability of Correct Selection (APCS).  

APCS comes in two forms [18]: 

APCS-B which is in a summation form derived using the 
Bonferroni inequality: 

 
1,

1 { }
k

b i
i i b

APCS B P J J P CS
 

                   (10) 

APCS-P which comes as a product form: 

 
1,

{ }
k

b i
i i b

APCS B P J J P CS
 

                      (11) 

For a more thorough treatment of the subject the 
interested reader is referred to the original publication [16]. 
Note: In Chen’s formulation normal distributions are 
assumed for the estimation of the APCS. 

In order to (asymptotically) maximize APCS and as a 
result { }P CS  the following relationship between two non-

best designs  ,i jN N  should hold   

2

,

,

i b ii

j j b j

N

N

 
 
 

   
 

, for all i j b                  (12) 

and the number of simulation replications for the best 
design is given as 

2

2
1,

k
i

b b
i i b i

N
N 

 

                                      (13) 

where, i , i , are the mean and standard deviation of the i-

th design, ,b i i b    , and b  is the best design. 

The above equations show that the noisier the simulation 
output (larger variance), the more replications are allocated. 
More replications are also given to the design of which the 
mean is closer to that of the best design.  

The most common implementation of the OCBA is based 
on a sequential approach that allocates   extra replications 
per step. The procedure is summarized as follows [18]: 
 

OCBA Procedure: 

Input: k, *P , Δ, 0n ( 0 5n  ) 

Initialize: 0l   

Perform 0n  simulation replications for all designs, 

1 2 0...l l l
kN N N n     

Loop. 

Update: Calculate sample means ˆi  and sample 

standard deviations  l
i iS N , i=1,2,…,k 

using the new simulation output. Find 
ˆarg min i

i
b  ; calculate APCS 

Check:    If *  stop; Otherwise, continueAPCS P  

Allocate: Increase the computing budget by Δ and 
calculate the new budget allocation 

1 1 1
1 2, ,...,l l l

kN N N   , according to 
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Simulate: Perform additional max( 1l l
i iN N  ,0) 

simulations for design i, i=1,2,…,k; 
1l l   

End of loop 

We must note that for practical implementations the 
allocation of replications is terminated at some point even 
without reaching the predefined confidence level. This is 
especially useful in case of large spaces and/or expensive 
simulation runs. In the extreme case 1   and one 
replication is allocated at a time. 

V. HS-OCBA 

In the HS procedure during the step of memory update a 
decision has to be made on whether the new harmony will 
be included in the HM substituting the worst member of the 
memory or not.  

Therefore the OCBA procedure can be used to find the 
worst among the HMS+1 harmonies (where HMS is the size 
of the memory). Moreover towards the end of the search, 
OCBA can be used to select the best among the members of 
the HM. Therefore in general if we are dealing with a 
minimization problem, during the memory update process 
we apply the OCBA procedure as described in section III 
using ˆi  instead of ˆi  (turning a maximization problem 

into a minimization one) while during the final selection of 
the best solution we apply the OCBA procedure using ˆi .  

VI. RESULTS 

In this preliminary study we experimented mainly with 
scenarios having a rather “small” number of replications 
since our approach aims to be used primarily as part of 
simulation optimization solution where each simulation is 
“expensive” in terms of computational time. The OCBA 
loop was terminated either if the number of replications was 
consumed or if the APCS exceeded a predefined threshold. 
The parameters used are summarized in the following Table 
I. We must note that at this stage no “optimal” selection of 
the HS parameters was sought. 

For each one of the following test functions, Gaussian 
noise was added with zero mean and variance equal to one: 

     0,1g x f x N                               (14) 

In this study the dimension d was set equal to 2 and the 
search space in each dimension to [-5,5] for all test 
functions. For each test function the experiments were 
repeated 20 times and the results were averaged. Three 
commonly used test functions were involved and the results 
are depicted in Figures 1 to 3. For the case of equal 
allocation scheme the replications were also allocated one 
by one and the procedure was stopped either if the number 

of replications was exceeded or the APCS exceeded the 
predefined threshold. 

TABLE I 
PARAMETER SETTINGS 

Parameter name Parameter Value 

Total number of replications T-total 5000 

number of replications T 100 

Initial number of replications 0n  5 

Δ 1 

APCS threshold 0.8 

HMCR 0.9 

PAR 0.3 

ibw  iRange  
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Fig. 1.  Average performance of the best Harmony for the case of noisy 
Rosenbrokc function 
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Fig. 2.  Average performance of the best Harmony for the case of noisy 
Rastrigin function 
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Fig. 3.  Average performance of the best Harmony for the case of noisy 
Ackley function 

VII. CONCLUSIONS 

In this work, we present a scheme for integrating a 
popular metaheuristic algorithm with a mechanism for 
allocating replications under the presence of uncertainty. 
Harmony Search is augmented with Optimal Computing 
Budget Allocation, so as to be able to tackle noisy 
optimization problems that arise frequently in real life 
applications. 

Our preliminary results that are presented here, suggest 
that for a fairly small computational budget and moderate 
levels of noise the proposed scheme seems to be more 
effective compared to a scheme that blindly allocates equal 
budget to all candidate solutions. To be more specific, by 
implementing OCBA, more alternatives were investigated 
within a given computational budget, letting further 
exploration of the search space. However more tests need to 
take place before reaching overall conclusions regarding the 
settings at which the OCBA procedure can outperform with 
certainty the simpler equal-allocation approach. 

One of our preliminary observations also suggests that as 
the budget increases the difference between the two 
approaches becomes smaller and at some point is negligible. 
Therefore the HS-OCBA scheme should probably be 
reserved for situations where only few and time consuming 
replications are available as in the case of DES application. 
Our ongoing research is going to include a more elaborate 
set of experiments involving a real life DES model. 

During our experiments, we found out that in some cases 
we came across a situation where less promising solutions 
were “accidentally” saved in the HM. This occurred 
especially under a setting with higher noise levels and small 
number of initial replications. Under these circumstances a 

solution could be assigned a better performance value which 
is in fact an anomaly/outlier and since the comparison that 
takes place seeks for the worst solution, the solution with 
the “mistakenly” perceived better performance value can 
continue being held in the HS memory only to be revealed 
that it is actually inferior during the final OCBA stage that 
seeks for the best among the solutions stored in the memory. 
This final stage helps us to more accurately estimate the 
value of the best solution but is not able to prevent the 
situation just described.  

Therefore in future work, we will investigate whether 
such a stage or a stage of equal sampling applied at some 
point during the search process and not just during the final 
stage could be beneficial for the overall efficiency of the 
algorithm.  

Moreover in future work we will also test the use of an 
indifference zone formulation [26], in other words a 
formulation that will stop sampling if all competitors for the 
best/worst are “good enough” in order to avoid unnecessary 
replications just to achieve a trivially better solution. Such a 
mechanism can be of great use within a simulation-
optimization framework. 
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