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Abstract— Deriving classification information from large 

databases presents several challenges. The current methods 

used to classify a large dataset have the disadvantage of 

requiring long computational time and high complexity. In 

addition, most of the methods can only deal with selected 

features of the data while some of the methods can only deal 

with categorical or numerical attributes. This paper proposes 

large data solutions by defining the strategy to classify large 

data with local processors of Artificial Neural Networks 

(ANNs). A combination technique for reordered ANNs is 

proposed in modeling the combination of multiple ANNs as 

part of framework approach. Several repeated experiments 

with different techniques tested with the MNIST dataset show 

good percentage of performance and reduction of errors. The 

results obtained are in line with the importance of good 

performance achieved with the use of combiner for a large data 

solution.  

 
Index Terms—Large data, neural network, multi-classifier, 

output fusion, combiner 

 

I. INTRODUCTION 

ANY real-world applications require the identification 

of a problem solution for a large collection of data in 

high dimensional space. The enormous size of these datasets 

poses very challenging problems in recognition tasks for 

efficient processing [1, 2]. As a result, the enhancement in 

recognition method with high efficiency and accuracy to 

support high dimensional data access has become an active 

research area. The term “large scale” can refer to different 

kinds of problems such as, problem with a large number of 

features, a large number of samples or a large number of 

categories [3]. The challenge of training a classifier with a 

large number of samples lies in the computational 

complexity of the training task. This is because the 

variability of the categories is high and several examples 

from each category are necessary for a correct representation 

of the data. 

Classifiers use the samples several times in order to 

optimize the internal parameters such as the weights of the 

neural networks. This would result in longer training time 

due the large amount of data. A large number of samples in 
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the training data also affect the complexity of a 

classification process. The model’s hyper-plane 

representation based directly on the samples with a large 

number of reference vectors is impractical [4]. Strategies to 

select smaller subsets of data are needed in order to reduce 

the training times. Appropriate selections are very critical, 

since the strategies are usually heuristic method that does 

not guarantee a better performance for all cases. 

The challenge of using Artificial Neural Networks 

(ANNs) for large data lies at the exclusion of features and 

the difficulties of adjustment that affect variations in 

position, orientation and scale. Hence, it requires a more 

intelligent and invariant feature selection and extraction 

mechanisms. Our contribution is on the strategy of 

partitioning using reordering technique based on [5] for 

parallel ANNs training to cope with large data. The solution 

of the problem to be tackled is a little bit different from 

previous research because it is assumed that each data and 

features in the dataset is important. Since the recognition 

process for large data is usually very complex and requires 

high computational time, a large ANNs size with ensemble 

technique is needed to accomplish the task. The 

performance  

This rest of this paper is organized as follows. Section II 

describes the related works in detail. Section III describes 

the first strategies in for partitioning data as well as the 

diversity technique to prepare the data sequence for 

partitioning. Section IV describes the second strategy to 

combine the output of each classifier. Section V presents the 

experimental task for training and testing for the proposed 

strategies. Section VI and VII shows the result discussion 

and conclusion respectively. 

II. RELATED WORKS 

The partitioning of data is trending solution to large 

dataset [6]. With a large Multi Layer Perceptron (MLP) 

network, online ANNs could lead to thousands of epochs 

that require up to months to process [7, 8]. Previous research 

on large data have suggested several techniques such as the 

use of AdaBoost technique [9] , Rule Extraction technique 

[10], ANNs partitioning [11], and Support Vector Machine 

(SVM) [12]. The related issues in large datasets are 

classification tasks and accuracy of the machine learning 

used [13, 14]. Recognizing large dataset requires 

computational time that grows rapidly in relation to the data 

size, making the time required to be too long when solving 

large dataset [15]. ANNs is suitable for highly complex 

learning concepts for sufficiently large data in training times 
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that scales linearly with the data size [16]. Essentially, 

ANNs with a larger dataset requires more time to generalize 

the learning and minimize the error function with additional 

hidden nodes. Additionally, it would be more time 

consuming if the datasets hold more than 50 thousand rows 

multiclass patterns with multidimensional attributes. SVM 

performs faster classification but not suitable for large 

dataset classification. It is because it needs to solve the 

quadratic programming problem in order to find a separation 

hyper-plane, which greatly increases the computational 

complexity [17]. 

A large number of categories can cause the training 

procedure unfeasible for many types of classifiers. 

Applications such as speech or handwritten character 

recognition or other problems containing thousands of 

different classes still remain a challenge [18]. ANNs with 

thousands of output neurons are impossible to be trained, as 

the errors associated with the samples would be too small 

for the direction of the gradient to be properly defined[2]. 

Strictly binary ANNs, which depend on being arranged in 

sub ANNs, would contain millions of ANNs or thousands of 

large scale binary problems to be solved. Moreover, data 

elimination cannot be used, as all samples are considered as 

important for a complete training. Regarding large dataset, 

the use of parallel processor is practical since it is based on 

scalable features and due its ability to accomplish 

simultaneous tasks [7, 8]. Due to this facts, the use of 

combiners is feasible as they use all the available 

information for all available ANNs, hence contributing to 

better and more robust solution in most application [19]. 

The use of a single ANN usually leads to unstable learner; 

and in fact it is sensitive to the initial conditions and works 

differently for different training data [20]. Therefore, a 

combiner technique has to be employed in order to preserve 

the capability of ANNs. Kittler et.al (1998) [6] had 

investigated the need for a theoretical framework to describe 

the combinations of classifiers (or networks). He then 

proposed a technique to be used in output combiner strategy, 

called the parallel combinations of classification. The 

outputs from multiple ANNs are required to be in diverse 

conditions [21, 22]. It is because when different areas of 

input spaces have been learned by some classifiers, they 

become specialized in specific areas of the input spaces, and 

consequently have fewer errors in those areas. Furthermore, 

the architecture of neural networks itself determined by trial 

and error and it is not unique. Thus, integrating different 

neural network using output combiner strategy is an elegant 

and effective way to solve the variety yielded network’s 

output  and it is rather easy [4, 12]. 

The proposed framework in this paper involved disjoint 

subsets of data that can be clustered in parallel. This data 

can either be used independently or merged to allow 

clustering to scale for large datasets. After individual 

training, each ANNs has its own diverse results. The results 

are then combined in order to get an aggregated output. In 

this paper, several methods to combine outputs of each 

classifier have been investigated. Individual classifier 

performances are not related significantly with combined 

performance as they missed out the information about the 

team strength of the classifiers [21, 23]. Therefore, the 

delegation of ANNs tasks should take into account the 

diversity principle that must be applied onto all existing 

ANNs. Diversity is important since individual ANNs have 

their own identities that are different to each other. Previous 

researchers have proven that multiple ANNs can outperform 

their base ANNs model since individual ANNs tends to 

make errors on different examples [4, 5]. However, there is 

no advantage to combine a set of identical ANNs if all 

ANNs generalize in the same way. Therefore, in order for 

this process to be effective, individual experts must exhibit 

some level of diversities among themselves [24]. 

There are a few techniques that can be used by each of the 

multiple ANNs to make different errors. Those diversity 

techniques are [25]: a) different initial conditions, b) 

different network architectures, c) different training data and 

d) different training algorithm. The first technique may 

involve an ANNs initialization with random weights, the 

learning rate and the momentum or the combination of 

them. The second technique is to vary the network 

architecture by changing the number of hidden layers or 

number of hidden nodes to set up each of ANNs with 

different architecture. The next technique is used to 

diversify the training data where re-sampling or pre-

processing data methods such as bagging, noise injection, 

cross-validation, stacking, boosting and input decimation 

can be used. The last technique is by forcing each individual 

ANNs to run with a different ANNs learning approach from 

each other. 

There are two main strategies that contribute to the core 

subjects in this paper. They are data partitioning and 

combination technique. The data partitioning strategy 

involves the pattern reordering and partitioning of the 

dataset. The detail of technique will be discussed in Section 

III. 

III. DATA PARTITIONING 

Data partitioning is a popular algorithm for solving 

complex problems. It allows problems that are more difficult 

than the standard classifiers to be easily solved.  Although 

the algorithms are naturally implemented as recursive 

procedures, they can also be implemented in a non-recursive 

way that stores the partial sub-problems in some explicit 

data structures. Most solutions designed for pattern 

classification composed of the following steps [26]: (i) 

breaking the problem into sub-problems, (ii) solving the 

trivial cases of the sub-problems and (iii) combining the 

sub-problems to form the original problem. 

Data partitioning provides a way to design efficient 

algorithms. For example, if a base classifier has a 

complexity proportional to       , where   is the number of 

samples, then by dividing the problem to R smaller sub 

problems, the average sub-problem’s complexity 

becomes         
  . If R > 1, the new algorithm reduces the 

complexity to          . This reduction can also be 

observed as an advantage on the memory usage as memory 

is a very critical limiting factor to any computational 

process. Another advantage to this technique, it can be 

easily adapted for parallel processing. The sub problems are 

usually independent and can run on different processors 

without requiring complex strategies for communication 

between the different processes [9]. 
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For the non-recursive method, instead of forming trivial 

cases, simpler versions of the original problem is solved in 

order to find the final solution [27]. This approach is 

suitable for the classification scenario where powerful 

methods for normal-sized problems are available, but are 

unable to solve large scale problems. The data partitioning 

technique in this paper has been encapsulated with the 

technique for creating diversity which will be described in 

following sub-sections. 

A. Creating Diversity 

Many researchers believe that the success of classifier 

ensembles not only depends on a set of appropriate 

classifiers, but also on the diversity being inherent in from 

each classifier [28-30]. A diversity technique is adopted in 

assigning vectors for worker processors in order to make 

sure the training data is diverse among processors. A 

classifier that is diverse would have the ability to find the 

extent of diversity among classifiers and estimate the 

improvement or deterioration inaccuracy of individual 

classifiers when they have been combined [31]. Essentially, 

there is no advantage to combine a set of identical ANN if 

all ANN generalize in the same way. In addition, the 

diversity also has been raised up by [13] as a factor of 

increased of ensemble. 

In order to have a significant improvement, the individual 

classifiers must exhibit some level of diversity of own 

identity among themselves [19]. Therefore, there are a few 

methods for each of multiple ANNs in making different 

errors. They are either with different initial conditions, 

different topology, different training data or different 

algorithm. 

The input data can be presented as         pattern matrix 

or         different matrix. Suppose    is a set samples of 

input data. A selected reordering is run on each of the 

samples of DS that results in B partitions 

P=                . 
 

Different Initial Conditions 

A set of ANN could be varied by random weight 

initialization, learning rate, different momentum rate for 

each multiple ANNs. Different initial weight to different 

networks can converge to different local minima and 

independent errors. 

 

Different Topology 

By varying the topology or the architecture, with different 

hidden layer number or hidden nodes number or different 

neural network with different architecture are useful for 

diversity; the error made by two modular systems with 

different internal structure might well be uncorrelated. 

 

Different Training Data 

This method is the most popular used in ensemble 

methods, which involve in altering the training data. 

Different datasets in each network can lead to a different 

space of possible classifiers. It also mean it allows 

individual classifiers to generate different decision 

boundaries [9]. Each data can be varied using different re-

sampling or pre-processing data. By using pre-processing 

technique, the data can be extracted from the raw data for a 

different feature sets. Either, the input data for ANN could 

be distorted in different ways. The data smoothing or 

normalization could be employed in order to make sure 

smooth and learnable ensemble learning. In certain cases, 

there would be an issue in establishing different training 

datasets. In specific, for low number of patterns in a 

particular datasets, the subset of training dataset would 

appear similarly with other subset and it could caused the 

lower degree of diversity and impractical. 

 

Different Training Algorithm  

Different algorithm or different multiple ANNs can be 

employed, e.g, feedforward ANNs, RProp training, 

conjugate gradient, recurrent network and etc. Associate 

with varying data, this training algorithm could be used to 

assemble a set of potential multiple ANNs. This paper 

adopts two techniques, (i) different initial condition 

technique and (ii) different training data. The initial 

condition is based on the ANN parameter and weight setting 

while the later is the reordering technique. The reordering 

procedure has been discussed in next sub-section. 

B. Reordering Procedure 

Reordering procedure is important to make the different 

training data for multiple ANN using parallel processors. 

Reordering procedure alters sequence of patterns to apply 

the concept of diversity[4]. The individual network in each 

processor is desperately needed to use batch learning 

mechanism with respect to scalability of large dataset. 

Furthermore, maintaining the original sequence can let all 

ANN falls in the same or very similar configuration and the 

training condition is very low. Fig. 1 shows the original 

ordering of datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Original ordering of learning algorithm  

 

This network is impractical for multiple ANN because 

there would be no improvement to the classifiers if the 

involved training data is the small and similar to the other 

network in parallel processors [32]. The reordering is altered 

with simple reordering resampling with replacement. 

Another reordering technique is Bagging algorithm as in 

Fig.2. The bagging algorithm is widely used and has been 

proved for data sampling with replacement and efficiently 

constructs a reasonable size for training data [12]. A 

bagging sampling algorithm such as in Fig.4, adapted from 

[9] creates a unique training set with replacement over a 

uniform probability distribution on the original data. The 

sampling process with replacement means that each sample 

Algorithm: Original Reordering 

Input: original dataset DS, number of processor P 

Output: The  new training subsets {  
 
   

 
      

 
  

Begin 

    Initial weight            

    for t=1 to P 

      for i=1 to N pattern 

                 Select     from DS 

             end for 

     end for 
   Output the final training subsets    

 
   

 
      

 
  

End  
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values are independent where the covariance between two 

samples is zero. 

 

Input: original dataset DS, boostrap value S 

Output: The  new training subsets {  
 
   

 
      

 
  

Begin     

   for t=1 to N 

        for i=1 to N 

            RandRow =S*rand() 

                if RandRow <= P 

                    St (i, all columns)=  

                            DS(randRow,AllColumns) 

                End if 

         Next i  

     Next i  
  Output the final training subsets {  

 
   

 
      

 
  

End  
 

Fig. 2. Bagging algorithm as [3] for data re-sampling in generating different 
data. 

C. Delegating Training Tasks to Parallel Processors 

Parallel learning plays an important role since the size of 

the dataset is expected to grow faster than the capacity 

calculation [8]. Although, parallelism could manage long 

training time for sequential ANNs within minimal time, it 

has been discovered that the accuracy deteriorated when 

multiple processing took place [14]. Distributing the training 

part to more than one processor enables large scale 

computations that are economical and reliable [26]. 

Parallelism can minimize the usually long training time in 

sequential ANNs. However, this paper focuses on the 

method to reduce training using parallel training. 

In multilabel ANNs classification,   problem can be 

described as with respect to a given d-dimensional feature 

space, , and training dataset      . Each element    in 

    is associated with class label,            

             where        for all      and    . An 

ANNs system   can be trained on    such that for any 

given feature vector                 .   can be ANNs system 

or single ANN where the weights are determined by a 

ANNs algorithm. 

The training dataset   is partitioned into equal parts 

                where   is the number of parallel 

processors used. Each processor has a whole copy of the 

network. Each of them presents a different pattern block for 

each training cycle as in (1). Each of the processors has their 

own ANNs training. Equation (1) shows the first phase 

which is to get the individual network response after 

representing the pattern data into the network. This feed 

forward phase can be formulated based on [5, 33] where   

is the number of nodes of the corresponding error while     

is the weight of node j of the hidden layer to the nodes.     

and    are the weights for input node to the node of hidden 

layer and the output values.    is the threshold for the output 

nodes. 

                   
 

   
             

 

   
           (1) 

 

The error signal is based on the weights of the neural 

network [4] as in (2).   represent sum square error which 

describes the difference between the output   the desired 

output   . 

                        
 

 
       

 

   
                           (2) 

The error  , is minimized by after the weight is 

calculated. The gradient descent weight update starts from 

the output layer to the hidden layer by propagating the error 

to each layer. In this parallel case, the weight is updated 

locally. The component gradient is the result from individual 

processors that each represents some part of the batch of the 

training pattern as summarized in (3).    represents the set of 

all weights.      represents the weight changes in batch B to 

the corresponding sum of the component gradient      . 

 

             
   

   
    

          

                          
   
                                        (3) 

The component gradients        from each processor are 

synchronized using (4). Equation (4) describes the 

modification that involved only once in performing the 

collection and summation of all component gradients of 

     , instead of each pattern in the sequential algorithm. 

                                  
   

       
                                (4) 

The component gradient in batch B communicates using 

neighbor configuration of P processors. Each P processor 

will send its component gradient and will receive p-1 

processor’s component gradient and implicitly exchange the 

component gradient with the predecessor. This process is 

repeated until the sum square value is smaller than the 

threshold defined. 

After vectors of pattern have been generated and assigned 

to multiprocessors, the master processor has to wait for each 

processor’s response in order to combine the outputs. The 

communication of distribution of vectors involved the 

parallelization is implemented using Message Passing 

Interface (MPI). MPI is a parallel standard application using 

message-passing paradigm. It provides portability, and 

flexibility in managing and carrying parallel algorithms with 

optimized code for all parallel architectures. Fig.3 shows 

that the master processor has to identify and allocate vectors 

of pattern for available individual processors. This 

procedure involves assigning vectors of pattern for each 

processor in order to delegate task. The master processors 

process feeds the queue with tasks at one end, and the tasks 

are shifted down to the queue of worker processors. When a 

worker processor process, the neighbor processor sending a 

tasks shifted down to workers and the process is idle. Then, 

the tasks are to be shuffled to the left so the space held by 

the task is filled into the left side end of the queue. When the 

master processor receives all weights and output vector from 

worker processors, the ensemble combination of outputs 

will take place. Detail on the combination technique is to 

make sure the best single output obtained from each 

processor is discussed in Section IV. 
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Fig. 3. Delegating tasks to processors  

In worker processor part, after receiving vector of patterns 

from master processor; each processor has its own time with 

different training pattern for ANNs learning. Before ANNs 

training started, random weights have to be initialized. The 

initialization considers the number of processors include 

master processor ranging from -1 to 1 floating numbers. The 

weights initialization is also considered to be one of 

diversity technique for classifier for each worker processor. 

The worker processor adopts (1) for batch training in to 

complete the hidden and output nodes for feed-forward 

ANNs and error term for correcting errors. The errors is as 

in (2) are iteratively calculated until the minimum errors 

found. The weights updates are performed locally based on 

the errors based on (3). The weights are then being saved 

after the entire data patterns vector complete. After the 

vectors of pattern completes, the worker processors are 

considered as a classifier and capable to classify patterns. 

All the worker processors weights and outputs will be sent 

to master processor for next procedure. At this point, the 

worker has their own output classifiers and be ready for 

combination process. The combiner technique will take 

place to aggregate and combine all the outputs of 

multiprocessors and will be discussed in Section IV. 

IV. COMBINING MULTIPLE ANNS OUTPUTS 

The underlying idea of obtaining the best output among 

system is the utilization of the valuable information from 

neural networks [20]. There are several important 

requirements for both classifiers and combining techniques 

to be considered to ensure that they can achieve high 

classification performance. Each individual network should 

have enough training data and each of the members of the 

multiple ANNs must have a complementary set of classifier 

[34]. The number of training for each pattern and the 

network size are the two important factors in measuring the 

performance of neural networks [30]. A combiner can be 

developed based on the modification of the training 

algorithm or on the modification of learning set. The output 

of after combiner procedure for multiple ANNs is often 

more accurate than any independent network output. It is 

because the independent network within multiple ANNs 

network can have potentially different weights and 

techniques in creating the diversity of the networks. 

Approaches that use high resolution representations usually 

have n number of examples for each clustering solution in 

the ANNs environment. Hence, affecting its computational 

time and memory complexity [35]. 

Numerous techniques of ensemble are used to model the 

combination of multiple outputs such as linear combiner, 

output combiner and voting combiner. There are basic rules 

for choosing specific combiner in ensuring consistent 

behavior among classifier and data. The linear combiner is 

dedicated to be used for real-valued number of output model 

such in regression or classification combiner. Each 

component partition in P is a subset of dataset    

   
     

     
         

   ,      
      

       
         

        

and    is the number of clusters in the     partition. The 

probability of class y is estimated based on [24] by using 

input x of a model which is         and combiner   
       as (5). The weights of each combiner represented 

by    
 

 
   , which uses normalization   function for a 

valid distribution as in (5).  

 

                       
 

 
         

   
                  (5) 

 

A simple homogeneous averaging of the probability 

estimates possibilities of non-homogeneous weighted 

average. A non-homogeneous combination could give a 

lower error than a homogeneous combination if the 

classifiers have different accuracies. In practice, it is 

difficult to estimate the parameters   without over-fitting 

and it will lead to a small gain. Combination of classifiers 

by mixing of each expert is non-homogeneous but it 

dependant to the input  . It is suggested to use the output 

combiner as proposed by [5]. The class probability estimates 

is assumed to be independent to make sure the determination 

of possible and reliable weights  . The linear combination 

and output combination allows for continuum of combining 

strategy. The linear and output combiners are applicable 

when the output of classifier is real-value numbers. In order 

to aggregate the output of each classifier and also to achieve 

the objectives of this research; the following techniques for 

ANNs combination have been investigated.  

A. Output Average combiner 

Output Average combiner is the combiner that utilizes the 

average obtained from each classifier processor. The final 

output for this simple average is given by [5]. All classifier’s 

output is summed and averaged as in (6). 

 

                     
 

         
              

                          (6) 

 

Then the class c, yielding maximum of the averaged values, 

    is assigned to the pattern. Any argmax returns the 

argument, class c, with highest output value        in (7). 

 

                                                             (7) 

 

Output Average is a simple type of combiner where it takes 

the averages the individual classifiers the average of 

         . The notation of super index shown in (7) is 

referring to the multiple ANNs network          . 

 

B. Weighted average combiner 

This technique combines average and weighted majority 

voting in which the weights are applied not only to class 
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labels, but also to continuous outputs. This kind of 

combination rule can be categorized as trainable or non-

trainable combination rule, depending on how the weights 

are obtained. In non-trainable combination rule, the weights 

are obtained as a part of regular training during the 

combination process just as in AdaBoost. While, for 

trainable combination rule, the weights are obtain from 

separate training such as in a mixture of experts’ model. 

The weights that are generated for each classifier or class 

of output, from the training performances are represented by 

  weight,   . The total support for class    is: 

                                          
 
                       (8) 

where      is the weight of the     classifier for classifying 

class    instances. 

C. Majority voting combiner 

Majority voting is the simplest technique for combining 

classifiers. The class that receives the largest number of 

votes is selected as the final classification decision of 

output. Majority voting can be in any class whether when 

almost all the classifiers agree [9]. At least more than half of 

classifiers, or the highest vote (whether exceeded the 50% 

votes or not) will nominate the selected output as in (9). 

             
        

  
 
      

                                

         
       (9) 

All in all, the votes for class c, is calculated according to 

(10). 

                                
    

     

     
                         (10) 

Lastly, the class which is most often voted by the 

classifiers, which is the highest       , is assigned to the 

pattern, x, as in (11). 

                                      
                      (11)                                 

The weakness with this kind of voting is that the 

information provided by the network is reduced to a single 

vote so the probabilistic information related to each output is 

omitted. 

V. EXPERIMENTAL STUDY 

Evaluation of performance based on strategies of 

partitioning and ensemble method are discussed in this 

section. The details of the used datasets are given in the 

subsequent section. Then the experimental setting and the 

result are presented. 

A. Dataset 

The proposed method is examined over one large 

benchmark dataset which is the Modified National Institute 

Science & Technology (MNIST) data. The MNIST dataset 

is a standard handwritten digit classification and recognition 

benchmark. It is originally developed by the National 

Institute of Standards and Technology [3]. The dataset 

contains the original black and white images of digits 0 to 9. 

To date, there are 60 000 training samples and 10 000 test 

samples, with a resolution of 28 × 28 pixels and a depth of 

256 bits, that can be used to test and verify the effectiveness 

of various machine learning algorithms. These images are 

normalized using a bipolar technique while preserving their 

aspect ratio. The dataset is stored in vectors and 

multidimensional matrices. The integer data are stored in 

high-endian format used by most non-Intel processors. The 

image pixels are organized in row-wise values of 0 to 255. 

The value of 0 represents the background color (white) 

while 255 represent the foreground color (black). The 

network is trained using the bipolar values instead of the 

grey scale values. Bipolar in this case refers to the 

normalization of both network input and output. 

 

B. Experimental Settings 

The pixel intensity of the original data of MNIST is in 

gray scale images which ranges from 0 (background) to 255 

(maximum foreground intensity). They has been normalized 

to their real values as in [11] in (12). 

                           
               

     
                                   (12) 

A prototype simulator has been developed to simulate the 

training of ANNs on parallel computers and for sequential 

ANNs. Table I shows the network parameter setup for 

processing the MNIST data. 
 

TABLE I. NETWORK SETUP 

Network Parameter Values 

Number of Patterns 60000 

Number of Inputs 784 

Number of Outputs 1 

Number of Class 30 

Hidden Nodes 30 

Number of weights 23581 

 

To get more generalized network, the data was 

normalized and randomly distributed from all classes related 

to its class. The dataset were divided into two groups: the 

training (70%) and the testing datasets (30%). The training 

parameter values, such as the learning rate and the 

momentum were fixed throughout the training. The cluster 

was set up in seven nodes using Intel Dual Core Machines. 

The algorithm was developed using C language while the 

MPI was implemented using MPICH2 and was compiled 

using Visual Studio 2005. The sequential training was 

simulated with the used of combiner and the exclusion of 

combiner part as well as for parallel training. The parallel 

training results obtained were significant where major 

decrease of time in training were observed with decreasing 

trends. The parallel training executed for two mode which is 

for bagging reordering (as in Fig. 1) and simple reordering 

from the original ordering of datasets (as in Fig. 2). To be 

more fair and general, all experiments are averaged up to 10 

independent runs. There are seven partitions with respect to 

seven processors have been used for this experiment. 

 

C.  Performance measure 

The performance of multiple ANNs was measured based 

on i) the improvement comparison and ii) reduced error. The 

Improved of Performance (IP) was calculated for both a 
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single ANNs and multiple ANNs that use combiner. The IP 

calculation was based on (13). 

                                                    (13) 

Equation (13) refers to corrected classified patterns of the 

test set for multiple ANNs and single ANNs. On the other 

hand, the Percentage of Error Reduction (PER) is calculated 

afterwards based on [6]. PER is calculated based on (14). 

                 
                             

               
                (14) 

where Error is: 

                                                           (15)                         

Error is refers to total errors of recognition by single and 

multiple ANNs. Any negative values for calculations in (13) 

and (14) will indicate that multiple ANNs for the particular 

technique perform better than a single ANNs. 

VI. RESULT AND DISCUSSIONS 

The combination techniques were tested to compare their 

performance for large dataset. The dataset were normalized 

using bipolar technique while preserving their aspect ratio. 

The dataset was stored in vectors and multidimensional 

matrices. The parallel ANNs was successfully developed 

using D & C method and by using the combination phase at 

the end of the parallel session. For seven processors, it was 

observed that the time taken for a single ANNs learning was 

250 hours while it only took 10 hours for parallel ANNs 

learning. The speedup factor affecting the performance as 

similarly studied by [36]. The performance of three 

combiner techniques has been measured. The techniques 

were Output Average (OA), Weighted Average (WA) and 

Majority Voting (MV) techniques. 

The first network has been tested using ANNs with the 

various combiner methods with simple modification of 

ordering. Fig. 4 shows the mean percentage for Increased of 

Performance (IP) for Original reordering ANNs with three 

variety of network combiner. The Majority Voting 

technique recorded the highest increase of performance that 

is nearly up to 9% for seven processors compared to a single 

classifier. Meanwhile Output Average recorded 8.6% and 

Weighted Average scores 3.14% of improvement 

respectively. 

 

 

Fig. 4. Increased of Performance for original ordering 

Fig. 5 shows that the mean percentage of reduced error 

for the Output Average technique increased nearly to 53%. 

Meanwhile, the Majority Voting method scores 40% error 

reduction and Weighted Average method scores 19%. The 

reduced error for this network is not more than 53% but 

shows the differences among each ensemble methods 

especially when processor increased. 

 

 

Fig. 5. Percentages of error reduction for original ordering 

 

Bagging reordering has been tested using ANNs with the 

various combiner methods. Fig. 6 shows the mean 

percentage for Increased of Performance (IP) for Bagging 

reordering Artificial Neural Network with three variety of 

network combiner. The Output Average technique recorded 

the highest increase of performance that is nearly up to 10% 

for seven processors compared to a single classifier. Both 

Majority Voting and Bayesian method scores more 8% of 

improved performance. Meanwhile, Weighting Average 

method in this case increased 4% of performance. 

 

 

Fig. 6. Increased of Performance for Bagging reordering 

Fig. 7 shows that the mean percentage of reduced error 

for the Output Average technique increased nearly to 69%. 

This technique has reduced the error in 50% from the use of 

single network of Bagging reordering. Meanwhile, the 

Majority Vote technique scores more than 48% and the 

Weighted Average technique scores 41%. The reduced error 

for Majority Voting and Weighted Average scores has been 

slightly similar for two to three processors. However, it 

shows the significant differences when the processor 

increased in Bagging reordering network. This result is 

similar to the result in [5, 24] in aspect of error reduced error 

when the number of classifier increased. Although it is also 
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shown that the Output Average technique demonstrated the 

better performance, both Majority Vote and Weighted 

Average techniques were capable of providing good results 

for any size of multiple ANNs with good accuracy scores. 

 

 

Fig. 7. The percentage of error reduced (PER) for Bagging reordering 

 

The simple original reordering shows the increased of 

(IP) performance between each method compared to Output 

Average is so small and negative. This situation can be seen 

in Table II. Table II shows the differences of IP values for 

Output Average method across Weighted Average and 

Majority Voting method for simple reordering network. The 

performance of Output Average method improves has been 

improved compared to other two methods. Negative values 

from Table II show the facts that error for Output Average 

has been reduced for most number of processors when 

compared to other methods except for Weighted Average. 

 
TABLE II. IP DIFFERENCES COMPARED TO OA FOR SIMPLE REORDERING 

Increased of Performance (IP) 

 WA MV 

N
u

m
 o

f 
P

ro
ce

ss
o

rs
 

1 0 -1 

2 0.64 -0.66 

3 -0.04 0.36 
4 -0.38 -0.68 

5 -0.35 -0.33 

6 -0.53 -0.18 
7 0.14 -1.4E-14 

 
The PER values for Original ordering networks in Table 

III also shows the reduction of error for other method are in 

small scores and negative especially when compare to 

Output Average method. This result shows that the Output 

Average outperformed other methods reordering with no 

improvement by other methods. Output Average method can 

be considered as the best ensemble method. The following 

investigations are about to find the significant of Output 

Average method compared the other methods. 

 
TABLE III. PER DIFFERENCES COMPARED TO OA FOR SIMPLE REORDERING 

Percentage of Error Reduction (PER) 

 WA MV 

N
u

m
 o

f 

P
ro

ce
ss

o
rs

 

1 0 0 
2 -2.9097 -18.5495 

3 -9.66243 3.875105 

4 6.57188 -15.1612 
5 -4.12638 -16.516 

6 -5.47551 -20.0724 

7 -7.394 -2.59582 

 

 

Table IV shows the differences of IP for Output Average 

method in comparing with Weighted Average and Majority 

Voting method in Bagging reordering network. Small and 

negative values indicate that the alternative technique have 

not been better than Output Average technique. On the other 

hand, any positive IP values indicate the opposite. It can be 

observed that the differences IP scores with respect to 

Output Average are mostly small and negative. This means 

that the result of increased of performance percentage 

provide by Output Average technique is slightly better than 

the results provided from other methods. 
 

TABLE IV. IP DIFFERENCES COMPARED TO OA FOR BAGGING REORDERING 

Increased of Performance (IP) 

 WA MV 

N
u

m
 o

f 

P
ro

ce
ss

o
rs

 

1 0 -1 
2 -1 -1.5 

3 -3.03333 -3.2 

4 -2.6075 -4 
5 -3.24 -4.86 

6 -4.12 -5.83333 

7 -2.03429 -6.22 

 

The PER values for Bagging reordering networks in 

Table V also shows the reduction of error for other methods 

is small and negative exclude the scores for Weighted 

Average method. Weighted Average outperforms Output 

Average method for some particular processors. This can be 

seen by the occurrence of positive numbers for Weighted 

Average method for four to seven processors. Output 

Average has been slightly improved but has been sometime 

not performed when compared to Weighting Average in this 

case. But with Majority Voting method, Output Average is 

slightly performed. 

 
TABLE V. PER DIFFERENCES COMPARED TO OA FOR BAGGING 

REORDERING 

PERCENTAGE OF ERROR REDUCTION (PER) 

 WA MV 

N
u

m
 o

f 

P
ro

ce
ss

o
rs

 

1 0 0 

2 -7.45098 -13.3333 

3 -21.5294 0.882353 
4 4.803922 -19.9324 

5 4.117647 -24.7686 

6 5.189706 -31.885 
7 8.937255 -27.8 

 

The pair t-test has been applied in order to statistically 

compare the simple original reordering and bagging 

reordering multiple ANNs. This test has is conducted to 

verify the variability of the performance of Bagging with 

respect to simple reordering to rank the ensemble method. 

These two measurements of IP and PER have been checked 

whether they are independent and distributed normally. 

Table VI shows the statistical result for pair t-test of IP 

mean value for Bagging and simple reordering using three 

ensemble methods. This result shows the equal variance 

among network for all ensemble methods. Therefore, the t-

test for IP value for improved ensemble methods is 

statistically significant. However, there a few cases for 

Bagging in which most of value of   are above than 0.05. 

The Bagging reordering is statistically better than simple 

reordering of the original datasets especially for classifier 

that employed Output Average (OA) method. The simple 

reordering relates significantly for single processor and for 
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five processors (Weighting Average) and 6 processors 

(Majority Voting). 

 
TABLE VI. T-TEST FOR MEAN OF IP FOR BAGGING VS SIMPLE REORDERING 

Bagging vs 

Simple 

reordering 

OA WA  MV 

t value   t value   t value   

N
u

m
 o

f 

P
ro

ce
ss

o
rs

  

1 -0.06 0.51 -0.01 0.31 -0.04 0.93 

2 0.2 0.32 0.01 0.22 0.3 0.21 

3 0.411 0.62 0.06 0.52 0.52 0.46 

4 0.510 0.81 0.12 0.41 0.67 0.43 

5 0.621 0.11 -0.59 0.31 1.03 0.29 

6 0.97 0.90 0.87 0.10 -0.62 0.65 

7 1.03 0.27 1.03 0.67 1.56 0.53 

 

Table VII shows the statistical result for pair t-test of PER 

mean for Bagging and simple original reordering network. 

This result also shows the equal variance among network for 

three ensemble methods. The t-test values of PER for 

improved ensemble methods is statistically significant. 

Bagging reordering technique in this case has been 

statistically dispersed compared to simple reordering for 

error reduction but with some worse score in all methods 

especially for Majority Voting. 
 

TABLE VII. T-TEST FOR MEAN OF PER FOR BAGGING VS SIMPLE 

REORDERING 

Bagging vs 

Simple 

reordering 

OA WA  MV 

t value   t value   t value   

N
u

m
 o

f 

P
ro

ce
ss

o
rs

  

1 -0.01 0.31 -0.07 0.43 0.30 0.41 

2 0.22 0.22 -0.06 0.21 -0.07 0.52 

3 0.42 0.52 0.07 0.46 -0.14 0.12 

4 0.79 0.41 0.34 0.43 1.23 0.31 

5 0.921 0.31 0.7 0.29 1.35 0.51 

6 -0.62 0.10 1.1 0.65 -0.07 0.60 

7 1.03 0.67 1.25 0.53 1.03 0.67 

 

The result shows that, with Bagging reordering pattern 

diversity, the large dataset classification using multiple 

ANNs improves with better performance with the use of 

Output Average method. This finding is consistent with the 

finding of past research by [37] which suggest output 

averaging can outperform other methods. This result is 

supported by the t-test that aligned with first result. On the 

other hand, the t-test scores shows smaller error reduction 

for Bagging reordering compared with most processors used 

for simple reordering. The statistical scores are average 

among all methods for reduction of error where t-test score 

are negatives for some processors. 

Generally, the results provided by proposed ensemble 

strategy are significant with the use of reordering technique 

where there are some specific cases where a combiner 

performs better on a few subsets. This finding is consistent 

with past study by [21], which there is no combiner 

technique that outperforms other combiner techniques 

consistently. In addition, the result that have been obtained 

shared a similar view of combiner technique comparison 

with what has been demonstrated in [32]. In this paper, two 

or more combiners can reach a similar general value while 

one is more suitable for a set of data, and the other one fits 

better on another subset of classification problem. The 

overall finding from this research suggests that, the large 

data is better managed in multiple ANNs training where the 

ANNs workload can be reduced whilst maintaining its 

accuracy. 

VII. CONCLUSION 

In this paper, a new strategy is proposed which is based 

on diversity of training data and the ensemble combiner 

methods. The alternative representation of ANNs for large 

data is also suggested. This strategy that has been conducted 

for ANNs tasks to manage large data associated with 

recognition tasks. The dataset has been normalized to ensure 

the smooth training for each ANNs. The partitioning with 

the reordering techniques has been introduced to distribute 

and shuffle the order of training pattern. The combination of 

multiple ANNs outputs has been worked in compiling all the 

outputs of from various ANNs in multiple processors to get 

the best result. 

Employing several techniques in classification task for 

large data requires several integrated strategies. The 

partitioning and distributing the different data vector to 

different ANNs processor as a good consensus to delegate 

tasks from large data is practical. The use of reordering 

employed herein is the other alternative in creating diversity 

among ANNs processor show performance improvement 

among networks tested. The ensemble method to combine 

all the output from ANNs processors as a final consensus 

function result representation is a worthwhile task for large 

data. The sense of using reordering is worthwhile for the 

large datasets with significant performance. Although, 

Majority Voting and Weighted Average have been provided 

good general result and might perform better in specific 

cases. 

The proposed strategies show significant improvement for 

the large dataset in classification task for generalization 

ability and accuracy contribute by multiple classifiers. The 

results demonstrate that most of strategy are dataset 

dependent but good for large dataset. However, this result 

also depends on normalization for both input and output. 

Otherwise, it performs quite worst than single ANNs. The 

need for variety of normalization techniques should be 

imposed in future. The study will be extended to consider on 

more combiners including the selection and pooling of 

output aggregation technique. 
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