



Abstract— Deriving classification information from large

databases presents several challenges. The current methods

used to classify a large dataset have the disadvantage of

requiring long computational time and high complexity. In

addition, most of the methods can only deal with selected

features of the data while some of the methods can only deal

with categorical or numerical attributes. This paper proposes

large data solutions by defining the strategy to classify large

data with local processors of Artificial Neural Networks

(ANNs). A combination technique for reordered ANNs is

proposed in modeling the combination of multiple ANNs as

part of framework approach. Several repeated experiments

with different techniques tested with the MNIST dataset show

good percentage of performance and reduction of errors. The

results obtained are in line with the importance of good

performance achieved with the use of combiner for a large data

solution.

Index Terms—Large data, neural network, multi-classifier,

output fusion, combiner

I. INTRODUCTION

ANY real-world applications require the identification

of a problem solution for a large collection of data in

high dimensional space. The enormous size of these datasets

poses very challenging problems in recognition tasks for

efficient processing [1, 2]. As a result, the enhancement in

recognition method with high efficiency and accuracy to

support high dimensional data access has become an active

research area. The term “large scale” can refer to different

kinds of problems such as, problem with a large number of

features, a large number of samples or a large number of

categories [3]. The challenge of training a classifier with a

large number of samples lies in the computational

complexity of the training task. This is because the

variability of the categories is high and several examples

from each category are necessary for a correct representation

of the data.

Classifiers use the samples several times in order to

optimize the internal parameters such as the weights of the

neural networks. This would result in longer training time

due the large amount of data. A large number of samples in

Manuscript received July 18, 2013; revised February 12, 2014.

Mumtazimah Mohamad is with the Faculty Science & Technology,
University Malaysia, Terengganu, Malaysia, on leave from University

Sultan Zainal Abidin, Terengganu, Malaysia (phone: 6019-934-8822, fax:

609-6155-722; e-mail: ummurifqi09@gmail.com).
Mohd Yazid Md Saman is with the Faculty Science & Technology,

University Malaysia Terengganu, Malaysia (e-mail: yazid@umt.edu.my).

Muhammad Suzuri Hitam is with the Faculty Science & Technology,
University Malaysia Terengganu, Malaysia (e-mail: suzuri@umt.edu.my).

the training data also affect the complexity of a

classification process. The model’s hyper-plane

representation based directly on the samples with a large

number of reference vectors is impractical [4]. Strategies to

select smaller subsets of data are needed in order to reduce

the training times. Appropriate selections are very critical,

since the strategies are usually heuristic method that does

not guarantee a better performance for all cases.

The challenge of using Artificial Neural Networks

(ANNs) for large data lies at the exclusion of features and

the difficulties of adjustment that affect variations in

position, orientation and scale. Hence, it requires a more

intelligent and invariant feature selection and extraction

mechanisms. Our contribution is on the strategy of

partitioning using reordering technique based on [5] for

parallel ANNs training to cope with large data. The solution

of the problem to be tackled is a little bit different from

previous research because it is assumed that each data and

features in the dataset is important. Since the recognition

process for large data is usually very complex and requires

high computational time, a large ANNs size with ensemble

technique is needed to accomplish the task. The

performance

This rest of this paper is organized as follows. Section II

describes the related works in detail. Section III describes

the first strategies in for partitioning data as well as the

diversity technique to prepare the data sequence for

partitioning. Section IV describes the second strategy to

combine the output of each classifier. Section V presents the

experimental task for training and testing for the proposed

strategies. Section VI and VII shows the result discussion

and conclusion respectively.

II. RELATED WORKS

The partitioning of data is trending solution to large

dataset [6]. With a large Multi Layer Perceptron (MLP)

network, online ANNs could lead to thousands of epochs

that require up to months to process [7, 8]. Previous research

on large data have suggested several techniques such as the

use of AdaBoost technique [9] , Rule Extraction technique

[10], ANNs partitioning [11], and Support Vector Machine

(SVM) [12]. The related issues in large datasets are

classification tasks and accuracy of the machine learning

used [13, 14]. Recognizing large dataset requires

computational time that grows rapidly in relation to the data

size, making the time required to be too long when solving

large dataset [15]. ANNs is suitable for highly complex

learning concepts for sufficiently large data in training times

The Use of Output Combiners in Enhancing the

Performance of Large Data for ANNs

Mumtazimah Mohamad, Member, IAENG, Md Yazid Mohd Saman, and Muhammad Suzuri Hitam

M

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

that scales linearly with the data size [16]. Essentially,

ANNs with a larger dataset requires more time to generalize

the learning and minimize the error function with additional

hidden nodes. Additionally, it would be more time

consuming if the datasets hold more than 50 thousand rows

multiclass patterns with multidimensional attributes. SVM

performs faster classification but not suitable for large

dataset classification. It is because it needs to solve the

quadratic programming problem in order to find a separation

hyper-plane, which greatly increases the computational

complexity [17].

A large number of categories can cause the training

procedure unfeasible for many types of classifiers.

Applications such as speech or handwritten character

recognition or other problems containing thousands of

different classes still remain a challenge [18]. ANNs with

thousands of output neurons are impossible to be trained, as

the errors associated with the samples would be too small

for the direction of the gradient to be properly defined[2].

Strictly binary ANNs, which depend on being arranged in

sub ANNs, would contain millions of ANNs or thousands of

large scale binary problems to be solved. Moreover, data

elimination cannot be used, as all samples are considered as

important for a complete training. Regarding large dataset,

the use of parallel processor is practical since it is based on

scalable features and due its ability to accomplish

simultaneous tasks [7, 8]. Due to this facts, the use of

combiners is feasible as they use all the available

information for all available ANNs, hence contributing to

better and more robust solution in most application [19].

The use of a single ANN usually leads to unstable learner;

and in fact it is sensitive to the initial conditions and works

differently for different training data [20]. Therefore, a

combiner technique has to be employed in order to preserve

the capability of ANNs. Kittler et.al (1998) [6] had

investigated the need for a theoretical framework to describe

the combinations of classifiers (or networks). He then

proposed a technique to be used in output combiner strategy,

called the parallel combinations of classification. The

outputs from multiple ANNs are required to be in diverse

conditions [21, 22]. It is because when different areas of

input spaces have been learned by some classifiers, they

become specialized in specific areas of the input spaces, and

consequently have fewer errors in those areas. Furthermore,

the architecture of neural networks itself determined by trial

and error and it is not unique. Thus, integrating different

neural network using output combiner strategy is an elegant

and effective way to solve the variety yielded network’s

output and it is rather easy [4, 12].

The proposed framework in this paper involved disjoint

subsets of data that can be clustered in parallel. This data

can either be used independently or merged to allow

clustering to scale for large datasets. After individual

training, each ANNs has its own diverse results. The results

are then combined in order to get an aggregated output. In

this paper, several methods to combine outputs of each

classifier have been investigated. Individual classifier

performances are not related significantly with combined

performance as they missed out the information about the

team strength of the classifiers [21, 23]. Therefore, the

delegation of ANNs tasks should take into account the

diversity principle that must be applied onto all existing

ANNs. Diversity is important since individual ANNs have

their own identities that are different to each other. Previous

researchers have proven that multiple ANNs can outperform

their base ANNs model since individual ANNs tends to

make errors on different examples [4, 5]. However, there is

no advantage to combine a set of identical ANNs if all

ANNs generalize in the same way. Therefore, in order for

this process to be effective, individual experts must exhibit

some level of diversities among themselves [24].

There are a few techniques that can be used by each of the

multiple ANNs to make different errors. Those diversity

techniques are [25]: a) different initial conditions, b)

different network architectures, c) different training data and

d) different training algorithm. The first technique may

involve an ANNs initialization with random weights, the

learning rate and the momentum or the combination of

them. The second technique is to vary the network

architecture by changing the number of hidden layers or

number of hidden nodes to set up each of ANNs with

different architecture. The next technique is used to

diversify the training data where re-sampling or pre-

processing data methods such as bagging, noise injection,

cross-validation, stacking, boosting and input decimation

can be used. The last technique is by forcing each individual

ANNs to run with a different ANNs learning approach from

each other.

There are two main strategies that contribute to the core

subjects in this paper. They are data partitioning and

combination technique. The data partitioning strategy

involves the pattern reordering and partitioning of the

dataset. The detail of technique will be discussed in Section

III.

III. DATA PARTITIONING

Data partitioning is a popular algorithm for solving

complex problems. It allows problems that are more difficult

than the standard classifiers to be easily solved. Although

the algorithms are naturally implemented as recursive

procedures, they can also be implemented in a non-recursive

way that stores the partial sub-problems in some explicit

data structures. Most solutions designed for pattern

classification composed of the following steps [26]: (i)

breaking the problem into sub-problems, (ii) solving the

trivial cases of the sub-problems and (iii) combining the

sub-problems to form the original problem.

Data partitioning provides a way to design efficient

algorithms. For example, if a base classifier has a

complexity proportional to , where is the number of

samples, then by dividing the problem to R smaller sub

problems, the average sub-problem’s complexity

becomes
 . If R > 1, the new algorithm reduces the

complexity to . This reduction can also be

observed as an advantage on the memory usage as memory

is a very critical limiting factor to any computational

process. Another advantage to this technique, it can be

easily adapted for parallel processing. The sub problems are

usually independent and can run on different processors

without requiring complex strategies for communication

between the different processes [9].

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

For the non-recursive method, instead of forming trivial

cases, simpler versions of the original problem is solved in

order to find the final solution [27]. This approach is

suitable for the classification scenario where powerful

methods for normal-sized problems are available, but are

unable to solve large scale problems. The data partitioning

technique in this paper has been encapsulated with the

technique for creating diversity which will be described in

following sub-sections.

A. Creating Diversity

Many researchers believe that the success of classifier

ensembles not only depends on a set of appropriate

classifiers, but also on the diversity being inherent in from

each classifier [28-30]. A diversity technique is adopted in

assigning vectors for worker processors in order to make

sure the training data is diverse among processors. A

classifier that is diverse would have the ability to find the

extent of diversity among classifiers and estimate the

improvement or deterioration inaccuracy of individual

classifiers when they have been combined [31]. Essentially,

there is no advantage to combine a set of identical ANN if

all ANN generalize in the same way. In addition, the

diversity also has been raised up by [13] as a factor of

increased of ensemble.

In order to have a significant improvement, the individual

classifiers must exhibit some level of diversity of own

identity among themselves [19]. Therefore, there are a few

methods for each of multiple ANNs in making different

errors. They are either with different initial conditions,

different topology, different training data or different

algorithm.

The input data can be presented as pattern matrix

or different matrix. Suppose is a set samples of

input data. A selected reordering is run on each of the

samples of DS that results in B partitions

P= .

Different Initial Conditions

A set of ANN could be varied by random weight

initialization, learning rate, different momentum rate for

each multiple ANNs. Different initial weight to different

networks can converge to different local minima and

independent errors.

Different Topology

By varying the topology or the architecture, with different

hidden layer number or hidden nodes number or different

neural network with different architecture are useful for

diversity; the error made by two modular systems with

different internal structure might well be uncorrelated.

Different Training Data

This method is the most popular used in ensemble

methods, which involve in altering the training data.

Different datasets in each network can lead to a different

space of possible classifiers. It also mean it allows

individual classifiers to generate different decision

boundaries [9]. Each data can be varied using different re-

sampling or pre-processing data. By using pre-processing

technique, the data can be extracted from the raw data for a

different feature sets. Either, the input data for ANN could

be distorted in different ways. The data smoothing or

normalization could be employed in order to make sure

smooth and learnable ensemble learning. In certain cases,

there would be an issue in establishing different training

datasets. In specific, for low number of patterns in a

particular datasets, the subset of training dataset would

appear similarly with other subset and it could caused the

lower degree of diversity and impractical.

Different Training Algorithm

Different algorithm or different multiple ANNs can be

employed, e.g, feedforward ANNs, RProp training,

conjugate gradient, recurrent network and etc. Associate

with varying data, this training algorithm could be used to

assemble a set of potential multiple ANNs. This paper

adopts two techniques, (i) different initial condition

technique and (ii) different training data. The initial

condition is based on the ANN parameter and weight setting

while the later is the reordering technique. The reordering

procedure has been discussed in next sub-section.

B. Reordering Procedure

Reordering procedure is important to make the different

training data for multiple ANN using parallel processors.

Reordering procedure alters sequence of patterns to apply

the concept of diversity[4]. The individual network in each

processor is desperately needed to use batch learning

mechanism with respect to scalability of large dataset.

Furthermore, maintaining the original sequence can let all

ANN falls in the same or very similar configuration and the

training condition is very low. Fig. 1 shows the original

ordering of datasets.

Fig. 1. Original ordering of learning algorithm

This network is impractical for multiple ANN because

there would be no improvement to the classifiers if the

involved training data is the small and similar to the other

network in parallel processors [32]. The reordering is altered

with simple reordering resampling with replacement.

Another reordering technique is Bagging algorithm as in

Fig.2. The bagging algorithm is widely used and has been

proved for data sampling with replacement and efficiently

constructs a reasonable size for training data [12]. A

bagging sampling algorithm such as in Fig.4, adapted from

[9] creates a unique training set with replacement over a

uniform probability distribution on the original data. The

sampling process with replacement means that each sample

Algorithm: Original Reordering

Input: original dataset DS, number of processor P

Output: The new training subsets {

Begin

 Initial weight

 for t=1 to P

 for i=1 to N pattern

 Select from DS

 end for

 end for
 Output the final training subsets

End

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

values are independent where the covariance between two

samples is zero.

Input: original dataset DS, boostrap value S

Output: The new training subsets {

Begin

 for t=1 to N

 for i=1 to N

 RandRow =S*rand()

 if RandRow <= P

 St (i, all columns)=

 DS(randRow,AllColumns)

 End if

 Next i

 Next i
 Output the final training subsets {

End

Fig. 2. Bagging algorithm as [3] for data re-sampling in generating different
data.

C. Delegating Training Tasks to Parallel Processors

Parallel learning plays an important role since the size of

the dataset is expected to grow faster than the capacity

calculation [8]. Although, parallelism could manage long

training time for sequential ANNs within minimal time, it

has been discovered that the accuracy deteriorated when

multiple processing took place [14]. Distributing the training

part to more than one processor enables large scale

computations that are economical and reliable [26].

Parallelism can minimize the usually long training time in

sequential ANNs. However, this paper focuses on the

method to reduce training using parallel training.

In multilabel ANNs classification, problem can be

described as with respect to a given d-dimensional feature

space, , and training dataset  . Each element in

 is associated with class label,

 where for all and . An

ANNs system can be trained on  such that for any

given feature vector  . can be ANNs system

or single ANN where the weights are determined by a

ANNs algorithm.

The training dataset is partitioned into equal parts

 where is the number of parallel

processors used. Each processor has a whole copy of the

network. Each of them presents a different pattern block for

each training cycle as in (1). Each of the processors has their

own ANNs training. Equation (1) shows the first phase

which is to get the individual network response after

representing the pattern data into the network. This feed

forward phase can be formulated based on [5, 33] where

is the number of nodes of the corresponding error while

is the weight of node j of the hidden layer to the nodes.

and are the weights for input node to the node of hidden

layer and the output values. is the threshold for the output

nodes.

 (1)

The error signal is based on the weights of the neural

network [4] as in (2). represent sum square error which

describes the difference between the output the desired

output .

 (2)

The error , is minimized by after the weight is

calculated. The gradient descent weight update starts from

the output layer to the hidden layer by propagating the error

to each layer. In this parallel case, the weight is updated

locally. The component gradient is the result from individual

processors that each represents some part of the batch of the

training pattern as summarized in (3). represents the set of

all weights. represents the weight changes in batch B to

the corresponding sum of the component gradient .

 (3)

The component gradients from each processor are

synchronized using (4). Equation (4) describes the

modification that involved only once in performing the

collection and summation of all component gradients of

 , instead of each pattern in the sequential algorithm.

 (4)

The component gradient in batch B communicates using

neighbor configuration of P processors. Each P processor

will send its component gradient and will receive p-1

processor’s component gradient and implicitly exchange the

component gradient with the predecessor. This process is

repeated until the sum square value is smaller than the

threshold defined.

After vectors of pattern have been generated and assigned

to multiprocessors, the master processor has to wait for each

processor’s response in order to combine the outputs. The

communication of distribution of vectors involved the

parallelization is implemented using Message Passing

Interface (MPI). MPI is a parallel standard application using

message-passing paradigm. It provides portability, and

flexibility in managing and carrying parallel algorithms with

optimized code for all parallel architectures. Fig.3 shows

that the master processor has to identify and allocate vectors

of pattern for available individual processors. This

procedure involves assigning vectors of pattern for each

processor in order to delegate task. The master processors

process feeds the queue with tasks at one end, and the tasks

are shifted down to the queue of worker processors. When a

worker processor process, the neighbor processor sending a

tasks shifted down to workers and the process is idle. Then,

the tasks are to be shuffled to the left so the space held by

the task is filled into the left side end of the queue. When the

master processor receives all weights and output vector from

worker processors, the ensemble combination of outputs

will take place. Detail on the combination technique is to

make sure the best single output obtained from each

processor is discussed in Section IV.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

Master Processor

processor1

processor2

processor3

processorn

 .

 .

 .

< >

< >

< >

Fig. 3. Delegating tasks to processors

In worker processor part, after receiving vector of patterns

from master processor; each processor has its own time with

different training pattern for ANNs learning. Before ANNs

training started, random weights have to be initialized. The

initialization considers the number of processors include

master processor ranging from -1 to 1 floating numbers. The

weights initialization is also considered to be one of

diversity technique for classifier for each worker processor.

The worker processor adopts (1) for batch training in to

complete the hidden and output nodes for feed-forward

ANNs and error term for correcting errors. The errors is as

in (2) are iteratively calculated until the minimum errors

found. The weights updates are performed locally based on

the errors based on (3). The weights are then being saved

after the entire data patterns vector complete. After the

vectors of pattern completes, the worker processors are

considered as a classifier and capable to classify patterns.

All the worker processors weights and outputs will be sent

to master processor for next procedure. At this point, the

worker has their own output classifiers and be ready for

combination process. The combiner technique will take

place to aggregate and combine all the outputs of

multiprocessors and will be discussed in Section IV.

IV. COMBINING MULTIPLE ANNS OUTPUTS

The underlying idea of obtaining the best output among

system is the utilization of the valuable information from

neural networks [20]. There are several important

requirements for both classifiers and combining techniques

to be considered to ensure that they can achieve high

classification performance. Each individual network should

have enough training data and each of the members of the

multiple ANNs must have a complementary set of classifier

[34]. The number of training for each pattern and the

network size are the two important factors in measuring the

performance of neural networks [30]. A combiner can be

developed based on the modification of the training

algorithm or on the modification of learning set. The output

of after combiner procedure for multiple ANNs is often

more accurate than any independent network output. It is

because the independent network within multiple ANNs

network can have potentially different weights and

techniques in creating the diversity of the networks.

Approaches that use high resolution representations usually

have n number of examples for each clustering solution in

the ANNs environment. Hence, affecting its computational

time and memory complexity [35].

Numerous techniques of ensemble are used to model the

combination of multiple outputs such as linear combiner,

output combiner and voting combiner. There are basic rules

for choosing specific combiner in ensuring consistent

behavior among classifier and data. The linear combiner is

dedicated to be used for real-valued number of output model

such in regression or classification combiner. Each

component partition in P is a subset of dataset

 ,

and is the number of clusters in the partition. The

probability of class y is estimated based on [24] by using

input x of a model which is and combiner
 as (5). The weights of each combiner represented

by

 , which uses normalization function for a

valid distribution as in (5).

 (5)

A simple homogeneous averaging of the probability

estimates possibilities of non-homogeneous weighted

average. A non-homogeneous combination could give a

lower error than a homogeneous combination if the

classifiers have different accuracies. In practice, it is

difficult to estimate the parameters without over-fitting

and it will lead to a small gain. Combination of classifiers

by mixing of each expert is non-homogeneous but it

dependant to the input . It is suggested to use the output

combiner as proposed by [5]. The class probability estimates

is assumed to be independent to make sure the determination

of possible and reliable weights . The linear combination

and output combination allows for continuum of combining

strategy. The linear and output combiners are applicable

when the output of classifier is real-value numbers. In order

to aggregate the output of each classifier and also to achieve

the objectives of this research; the following techniques for

ANNs combination have been investigated.

A. Output Average combiner

Output Average combiner is the combiner that utilizes the

average obtained from each classifier processor. The final

output for this simple average is given by [5]. All classifier’s

output is summed and averaged as in (6).

 (6)

Then the class c, yielding maximum of the averaged values,

 is assigned to the pattern. Any argmax returns the

argument, class c, with highest output value in (7).

 (7)

Output Average is a simple type of combiner where it takes

the averages the individual classifiers the average of

 . The notation of super index shown in (7) is

referring to the multiple ANNs network .

B. Weighted average combiner

This technique combines average and weighted majority

voting in which the weights are applied not only to class

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

labels, but also to continuous outputs. This kind of

combination rule can be categorized as trainable or non-

trainable combination rule, depending on how the weights

are obtained. In non-trainable combination rule, the weights

are obtained as a part of regular training during the

combination process just as in AdaBoost. While, for

trainable combination rule, the weights are obtain from

separate training such as in a mixture of experts’ model.

The weights that are generated for each classifier or class

of output, from the training performances are represented by

 weight, . The total support for class is:

 (8)

where is the weight of the classifier for classifying

class instances.

C. Majority voting combiner

Majority voting is the simplest technique for combining

classifiers. The class that receives the largest number of

votes is selected as the final classification decision of

output. Majority voting can be in any class whether when

almost all the classifiers agree [9]. At least more than half of

classifiers, or the highest vote (whether exceeded the 50%

votes or not) will nominate the selected output as in (9).

 (9)

All in all, the votes for class c, is calculated according to

(10).

 (10)

Lastly, the class which is most often voted by the

classifiers, which is the highest , is assigned to the

pattern, x, as in (11).

 (11)

The weakness with this kind of voting is that the

information provided by the network is reduced to a single

vote so the probabilistic information related to each output is

omitted.

V. EXPERIMENTAL STUDY

Evaluation of performance based on strategies of

partitioning and ensemble method are discussed in this

section. The details of the used datasets are given in the

subsequent section. Then the experimental setting and the

result are presented.

A. Dataset

The proposed method is examined over one large

benchmark dataset which is the Modified National Institute

Science & Technology (MNIST) data. The MNIST dataset

is a standard handwritten digit classification and recognition

benchmark. It is originally developed by the National

Institute of Standards and Technology [3]. The dataset

contains the original black and white images of digits 0 to 9.

To date, there are 60 000 training samples and 10 000 test

samples, with a resolution of 28 × 28 pixels and a depth of

256 bits, that can be used to test and verify the effectiveness

of various machine learning algorithms. These images are

normalized using a bipolar technique while preserving their

aspect ratio. The dataset is stored in vectors and

multidimensional matrices. The integer data are stored in

high-endian format used by most non-Intel processors. The

image pixels are organized in row-wise values of 0 to 255.

The value of 0 represents the background color (white)

while 255 represent the foreground color (black). The

network is trained using the bipolar values instead of the

grey scale values. Bipolar in this case refers to the

normalization of both network input and output.

B. Experimental Settings

The pixel intensity of the original data of MNIST is in

gray scale images which ranges from 0 (background) to 255

(maximum foreground intensity). They has been normalized

to their real values as in [11] in (12).

 (12)

A prototype simulator has been developed to simulate the

training of ANNs on parallel computers and for sequential

ANNs. Table I shows the network parameter setup for

processing the MNIST data.

TABLE I. NETWORK SETUP

Network Parameter Values

Number of Patterns 60000

Number of Inputs 784

Number of Outputs 1

Number of Class 30

Hidden Nodes 30

Number of weights 23581

To get more generalized network, the data was

normalized and randomly distributed from all classes related

to its class. The dataset were divided into two groups: the

training (70%) and the testing datasets (30%). The training

parameter values, such as the learning rate and the

momentum were fixed throughout the training. The cluster

was set up in seven nodes using Intel Dual Core Machines.

The algorithm was developed using C language while the

MPI was implemented using MPICH2 and was compiled

using Visual Studio 2005. The sequential training was

simulated with the used of combiner and the exclusion of

combiner part as well as for parallel training. The parallel

training results obtained were significant where major

decrease of time in training were observed with decreasing

trends. The parallel training executed for two mode which is

for bagging reordering (as in Fig. 1) and simple reordering

from the original ordering of datasets (as in Fig. 2). To be

more fair and general, all experiments are averaged up to 10

independent runs. There are seven partitions with respect to

seven processors have been used for this experiment.

C. Performance measure

The performance of multiple ANNs was measured based

on i) the improvement comparison and ii) reduced error. The

Improved of Performance (IP) was calculated for both a

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

single ANNs and multiple ANNs that use combiner. The IP

calculation was based on (13).

 (13)

Equation (13) refers to corrected classified patterns of the

test set for multiple ANNs and single ANNs. On the other

hand, the Percentage of Error Reduction (PER) is calculated

afterwards based on [6]. PER is calculated based on (14).

 (14)

where Error is:

 (15)

Error is refers to total errors of recognition by single and

multiple ANNs. Any negative values for calculations in (13)

and (14) will indicate that multiple ANNs for the particular

technique perform better than a single ANNs.

VI. RESULT AND DISCUSSIONS

The combination techniques were tested to compare their

performance for large dataset. The dataset were normalized

using bipolar technique while preserving their aspect ratio.

The dataset was stored in vectors and multidimensional

matrices. The parallel ANNs was successfully developed

using D & C method and by using the combination phase at

the end of the parallel session. For seven processors, it was

observed that the time taken for a single ANNs learning was

250 hours while it only took 10 hours for parallel ANNs

learning. The speedup factor affecting the performance as

similarly studied by [36]. The performance of three

combiner techniques has been measured. The techniques

were Output Average (OA), Weighted Average (WA) and

Majority Voting (MV) techniques.

The first network has been tested using ANNs with the

various combiner methods with simple modification of

ordering. Fig. 4 shows the mean percentage for Increased of

Performance (IP) for Original reordering ANNs with three

variety of network combiner. The Majority Voting

technique recorded the highest increase of performance that

is nearly up to 9% for seven processors compared to a single

classifier. Meanwhile Output Average recorded 8.6% and

Weighted Average scores 3.14% of improvement

respectively.

Fig. 4. Increased of Performance for original ordering

Fig. 5 shows that the mean percentage of reduced error

for the Output Average technique increased nearly to 53%.

Meanwhile, the Majority Voting method scores 40% error

reduction and Weighted Average method scores 19%. The

reduced error for this network is not more than 53% but

shows the differences among each ensemble methods

especially when processor increased.

Fig. 5. Percentages of error reduction for original ordering

Bagging reordering has been tested using ANNs with the

various combiner methods. Fig. 6 shows the mean

percentage for Increased of Performance (IP) for Bagging

reordering Artificial Neural Network with three variety of

network combiner. The Output Average technique recorded

the highest increase of performance that is nearly up to 10%

for seven processors compared to a single classifier. Both

Majority Voting and Bayesian method scores more 8% of

improved performance. Meanwhile, Weighting Average

method in this case increased 4% of performance.

Fig. 6. Increased of Performance for Bagging reordering

Fig. 7 shows that the mean percentage of reduced error

for the Output Average technique increased nearly to 69%.

This technique has reduced the error in 50% from the use of

single network of Bagging reordering. Meanwhile, the

Majority Vote technique scores more than 48% and the

Weighted Average technique scores 41%. The reduced error

for Majority Voting and Weighted Average scores has been

slightly similar for two to three processors. However, it

shows the significant differences when the processor

increased in Bagging reordering network. This result is

similar to the result in [5, 24] in aspect of error reduced error

when the number of classifier increased. Although it is also

0

2

4

6

8

10

0 2 4 6 8

In
cr

ea
se

d
 o

f
P

er
fo

rm
an

ce

(%
)

Number of processors

OA MV WA

0

10

20

30

40

50

60

70

0 2 4 6 8

p
er

ce
n

ta
g
e

o
f

er
ro

r
re

d
u

ce
d

 (
%

)

Number of processors

OA MV WA

0

2

4

6

8

10

12

0 2 4 6 8

In
cr

ea
se

d
 o

f
p

er
fo

rm
an

ce
 (

%
)

Number of procesors

OA MV WA

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

shown that the Output Average technique demonstrated the

better performance, both Majority Vote and Weighted

Average techniques were capable of providing good results

for any size of multiple ANNs with good accuracy scores.

Fig. 7. The percentage of error reduced (PER) for Bagging reordering

The simple original reordering shows the increased of

(IP) performance between each method compared to Output

Average is so small and negative. This situation can be seen

in Table II. Table II shows the differences of IP values for

Output Average method across Weighted Average and

Majority Voting method for simple reordering network. The

performance of Output Average method improves has been

improved compared to other two methods. Negative values

from Table II show the facts that error for Output Average

has been reduced for most number of processors when

compared to other methods except for Weighted Average.

TABLE II. IP DIFFERENCES COMPARED TO OA FOR SIMPLE REORDERING

Increased of Performance (IP)

 WA MV

N
u

m
 o

f
P

ro
ce

ss
o

rs

1 0 -1

2 0.64 -0.66

3 -0.04 0.36
4 -0.38 -0.68

5 -0.35 -0.33

6 -0.53 -0.18
7 0.14 -1.4E-14

The PER values for Original ordering networks in Table

III also shows the reduction of error for other method are in

small scores and negative especially when compare to

Output Average method. This result shows that the Output

Average outperformed other methods reordering with no

improvement by other methods. Output Average method can

be considered as the best ensemble method. The following

investigations are about to find the significant of Output

Average method compared the other methods.

TABLE III. PER DIFFERENCES COMPARED TO OA FOR SIMPLE REORDERING

Percentage of Error Reduction (PER)

 WA MV

N
u

m
 o

f

P
ro

ce
ss

o
rs

1 0 0
2 -2.9097 -18.5495

3 -9.66243 3.875105

4 6.57188 -15.1612
5 -4.12638 -16.516

6 -5.47551 -20.0724

7 -7.394 -2.59582

Table IV shows the differences of IP for Output Average

method in comparing with Weighted Average and Majority

Voting method in Bagging reordering network. Small and

negative values indicate that the alternative technique have

not been better than Output Average technique. On the other

hand, any positive IP values indicate the opposite. It can be

observed that the differences IP scores with respect to

Output Average are mostly small and negative. This means

that the result of increased of performance percentage

provide by Output Average technique is slightly better than

the results provided from other methods.

TABLE IV. IP DIFFERENCES COMPARED TO OA FOR BAGGING REORDERING

Increased of Performance (IP)

 WA MV

N
u

m
 o

f

P
ro

ce
ss

o
rs

1 0 -1
2 -1 -1.5

3 -3.03333 -3.2

4 -2.6075 -4
5 -3.24 -4.86

6 -4.12 -5.83333

7 -2.03429 -6.22

The PER values for Bagging reordering networks in

Table V also shows the reduction of error for other methods

is small and negative exclude the scores for Weighted

Average method. Weighted Average outperforms Output

Average method for some particular processors. This can be

seen by the occurrence of positive numbers for Weighted

Average method for four to seven processors. Output

Average has been slightly improved but has been sometime

not performed when compared to Weighting Average in this

case. But with Majority Voting method, Output Average is

slightly performed.

TABLE V. PER DIFFERENCES COMPARED TO OA FOR BAGGING

REORDERING

PERCENTAGE OF ERROR REDUCTION (PER)

 WA MV

N
u

m
 o

f

P
ro

ce
ss

o
rs

1 0 0

2 -7.45098 -13.3333

3 -21.5294 0.882353
4 4.803922 -19.9324

5 4.117647 -24.7686

6 5.189706 -31.885
7 8.937255 -27.8

The pair t-test has been applied in order to statistically

compare the simple original reordering and bagging

reordering multiple ANNs. This test has is conducted to

verify the variability of the performance of Bagging with

respect to simple reordering to rank the ensemble method.

These two measurements of IP and PER have been checked

whether they are independent and distributed normally.

Table VI shows the statistical result for pair t-test of IP

mean value for Bagging and simple reordering using three

ensemble methods. This result shows the equal variance

among network for all ensemble methods. Therefore, the t-

test for IP value for improved ensemble methods is

statistically significant. However, there a few cases for

Bagging in which most of value of are above than 0.05.

The Bagging reordering is statistically better than simple

reordering of the original datasets especially for classifier

that employed Output Average (OA) method. The simple

reordering relates significantly for single processor and for

0

10

20

30

40

50

60

70

80

0 2 4 6 8

 P
er

ce
n

ta
g
e

o
f

er
ro

r
re

d
u

ce
d

 (
%

)

Number of processors

OA MV WA

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

five processors (Weighting Average) and 6 processors

(Majority Voting).

TABLE VI. T-TEST FOR MEAN OF IP FOR BAGGING VS SIMPLE REORDERING

Bagging vs

Simple

reordering

OA WA MV

t value t value t value

N
u

m
 o

f

P
ro

ce
ss

o
rs

1 -0.06 0.51 -0.01 0.31 -0.04 0.93

2 0.2 0.32 0.01 0.22 0.3 0.21

3 0.411 0.62 0.06 0.52 0.52 0.46

4 0.510 0.81 0.12 0.41 0.67 0.43

5 0.621 0.11 -0.59 0.31 1.03 0.29

6 0.97 0.90 0.87 0.10 -0.62 0.65

7 1.03 0.27 1.03 0.67 1.56 0.53

Table VII shows the statistical result for pair t-test of PER

mean for Bagging and simple original reordering network.

This result also shows the equal variance among network for

three ensemble methods. The t-test values of PER for

improved ensemble methods is statistically significant.

Bagging reordering technique in this case has been

statistically dispersed compared to simple reordering for

error reduction but with some worse score in all methods

especially for Majority Voting.

TABLE VII. T-TEST FOR MEAN OF PER FOR BAGGING VS SIMPLE

REORDERING

Bagging vs

Simple

reordering

OA WA MV

t value t value t value

N
u

m
 o

f

P
ro

ce
ss

o
rs

1 -0.01 0.31 -0.07 0.43 0.30 0.41

2 0.22 0.22 -0.06 0.21 -0.07 0.52

3 0.42 0.52 0.07 0.46 -0.14 0.12

4 0.79 0.41 0.34 0.43 1.23 0.31

5 0.921 0.31 0.7 0.29 1.35 0.51

6 -0.62 0.10 1.1 0.65 -0.07 0.60

7 1.03 0.67 1.25 0.53 1.03 0.67

The result shows that, with Bagging reordering pattern

diversity, the large dataset classification using multiple

ANNs improves with better performance with the use of

Output Average method. This finding is consistent with the

finding of past research by [37] which suggest output

averaging can outperform other methods. This result is

supported by the t-test that aligned with first result. On the

other hand, the t-test scores shows smaller error reduction

for Bagging reordering compared with most processors used

for simple reordering. The statistical scores are average

among all methods for reduction of error where t-test score

are negatives for some processors.

Generally, the results provided by proposed ensemble

strategy are significant with the use of reordering technique

where there are some specific cases where a combiner

performs better on a few subsets. This finding is consistent

with past study by [21], which there is no combiner

technique that outperforms other combiner techniques

consistently. In addition, the result that have been obtained

shared a similar view of combiner technique comparison

with what has been demonstrated in [32]. In this paper, two

or more combiners can reach a similar general value while

one is more suitable for a set of data, and the other one fits

better on another subset of classification problem. The

overall finding from this research suggests that, the large

data is better managed in multiple ANNs training where the

ANNs workload can be reduced whilst maintaining its

accuracy.

VII. CONCLUSION

In this paper, a new strategy is proposed which is based

on diversity of training data and the ensemble combiner

methods. The alternative representation of ANNs for large

data is also suggested. This strategy that has been conducted

for ANNs tasks to manage large data associated with

recognition tasks. The dataset has been normalized to ensure

the smooth training for each ANNs. The partitioning with

the reordering techniques has been introduced to distribute

and shuffle the order of training pattern. The combination of

multiple ANNs outputs has been worked in compiling all the

outputs of from various ANNs in multiple processors to get

the best result.

Employing several techniques in classification task for

large data requires several integrated strategies. The

partitioning and distributing the different data vector to

different ANNs processor as a good consensus to delegate

tasks from large data is practical. The use of reordering

employed herein is the other alternative in creating diversity

among ANNs processor show performance improvement

among networks tested. The ensemble method to combine

all the output from ANNs processors as a final consensus

function result representation is a worthwhile task for large

data. The sense of using reordering is worthwhile for the

large datasets with significant performance. Although,

Majority Voting and Weighted Average have been provided

good general result and might perform better in specific

cases.

The proposed strategies show significant improvement for

the large dataset in classification task for generalization

ability and accuracy contribute by multiple classifiers. The

results demonstrate that most of strategy are dataset

dependent but good for large dataset. However, this result

also depends on normalization for both input and output.

Otherwise, it performs quite worst than single ANNs. The

need for variety of normalization techniques should be

imposed in future. The study will be extended to consider on

more combiners including the selection and pooling of

output aggregation technique.

REFERENCES

[1] L. Xiaoou, J. Cervantes, and W. Yu, "Fast Classification using Large
Datasets via Random Selection Clustering and Support Vector

Machines", Intelligent Data Analysis, 12:16, 2012.

[2] L. Bottou, "Large-scale Machine Learning with Stochastic Gradient
Descent", in 19th International Conference on Computational

Statistics, Paris: Physica-Verlag HD, 2010, pp. 177-186.

[3] L. Bottou and Y. L. Cun, "Large Scale Online Learning", Advances in
neural information processing systems, 16:217, 2004.

[4] N. C. Oza and K. Tumer, "Classifier Ensembles: Select Real-world

Applications", Information Fusion, 9:1, pp. 4-20, 2008.
[5] J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-

Redondo, "Introducing Reordering Algorithms to Classic Well-Known

Ensembles to Improve Their Performance", in Neural Information
Processing. 7063: Springer Berlin Heidelberg, 2011, pp. 572-579.

[6] V. Turchenko, L. Grandinetti, and A. Sachenko, "Parallel Batch Pattern

Training of Neural Networks on Computational Clusters", in
International Conference on High Performance Computing and

Simulation (HPCS), Madrid, 2012, pp. 202-208.

[7] A. R. M. Kattan, R. Abdullah, and R. A. Salam, "Training Feed-
Forward Neural Networks Using a Parallel Genetic Algorithm with the

Best Must Survive Strategy", in International Conference on

Intelligent Systems, Modelling and Simulation, Liverpool, 2010, pp.
96-99.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

[8] S. Babii, "Performance Evaluation for Training a Distributed

BackPropagation Implementation", in 4th International Symposium on

Applied Computational Intelligence and Informatics, Timisoara 2007,

pp. 273-278.

[9] R. Polikar, "Ensemble Learning", in Ensemble Machine Learning:

Methods and Applications: Springer US, 2012, pp. 1-34.
[10] N. De Silva and N. Thurairajah, "Architecture of Ensemble Neural

Networks for Risk Analysis", in ASC 48th Annual International

Conference, Birmingham City University, U.K. , 2012.
[11] S. Cheng, L. Li, D. Chen, and J. Li, "A Neural Network Based

Ensemble Approach for Improving the Accuracy of Meteorological

Fields Used for Regional Air Quality Modeling", Journal of
Environmental Management, 112:1, pp. 404-414, 2012.

[12] X. Ceamanosa, B. Waske, J. A. Benediktsson, J. Chanussot, M.

Fauvele, and J. R. Sveinsson, "A Classifier Ensemble Based on
Fusion of Support Vector Machines for Classifying Hyperspectral

Data", International Journal of Image and Data Fusion, 1:3, pp.

293–307, 2010.
[13] Y. Bi, "The Impact of Diversity on the Accuracy of Evidential

Classifier Ensembles", International Journal of Approximate

Reasoning, 53:4, pp. 584-607, 2012.

[14] M. Mohamad, M. Y. M. Saman, and M. S. Hitam, "Divide and

Conquer Approach in Reducing ANN Training Time for Small and

Large Data", Journal of Applied Sciences, 13:1, pp. 133-139, 2013.
[15] D. C. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column Deep

Neural Networks for Image Classification", presented at the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)
Providence, RI 2012.

[16] B. M. Wilamowski, "Neural Network Architectures and Learning

Algorithms", IEEE Industrial Electronics Magazine, 3:4, pp. 56-63,
2009.

[17] J. K. Bradley and R. Schapire, "Filterboost: Regression and

Classification on Large Datasets", in Advances in neural information
processing systems, Vancouver, 2008, pp. 185-192.

[18] J. Cervantes, X. Li, W. Yu, and K. Li, "Support Vector Machine

Classification for Large Data Sets via Minimum Enclosing Ball
Clustering", Neurocomputing, 71:4, pp. 611-619, 2008.

[19] L. Yue, T. Zaixia, and Z. Bofeng, "Computational Grid Based Neural

Network Ensemble Learning Platform and Its Application", in

International Conference on Management of e-Commerce and e-

Government (ICMECG '09), Nanchang, 2009, pp. 176-181.
[20] L. Jain, M. Sato-Ilic, M. Virvou, G. Tsihrintzis, V. Balas, C.

Abeynayake, and T. Windeatt, "Ensemble MLP Classifier Design",

in Computational Intelligence Paradigms. 137: Springer Berlin
Heidelberg, 2008, pp. 133-147.

[21] Z.-H. Zhou and N. Li, "Multi-information Ensemble Diversity", in

Multiple Classifier Systems. 5997, Cairo: Springer Berlin
Heidelberg, 2010, pp. 134-144.

[22] M. Salkhordeh Haghighi, A. Vahedian, and H. Sadoghi Yazdi,

"Making Diversity Enhancement Based on Multiple Classifier
System by Weight Tuning", Neural Processing Letters, 35:1, pp. 61-

80, 2012/02/01 2012.

[23] H. Alizadeh, H. Parvin, and S. Parvin, "A Framework for Cluster
Ensemble Based on a Max Metric as Cluster Evaluator", IAENG

International Journal of Computer Science, 39:1, pp. 10-19, 2012.

[24] L. Kuncheva and J. Rodríguez, "A Weighted Voting Framework for
Classifiers Ensembles", Knowledge and Information Systems, 38:2,

pp. 259-275, 2012/12/01 2014.

[25] M. W. Shields and M. C. Casey, "A Theoretical Framework for
Multiple Neural Network Systems", Neurocomputing, 71:7–9, pp.

1462-1476, 2008.

[26] S. Bhagat, "Divide and Conquer Strategies for MLP Training",
presented at the Proceedings of the International Joint Conference

on Neural Networks (IJCNN), Vancouver, 2006.

[27] H. Parvin, H. Alinejad-Rokny, and S. Parvin, "Divide and Conquer
Classification", Australian Journal of Basic and Applied Sciences,

5:12, pp. 2446-2452, 2011.

[28] K. Li and Y. Han, "Study of Selective Ensemble Learning Method
and its Diversity Based on Decision Tree and Neural Network", in

Chinese Control and Decision Conference (CCDC), Xuzhou, 2010,

pp. 1310-1315.
[29] K. W. Hsu and J. Srivastava, "Diversity in Combinations of

Heterogeneous Classifiers", in Advances in Knowledge Discovery

and Data Mining. 5476: Springer Berlin Heidelberg, 2009, pp. 923-
932.

[30] H. K. Butler, "The Relationship Between Diversity and Accuracy in

Multiple Classifier Systems," Air Force Inst of Tech Wright-
Patterson AFB Graduate School of Engineering & Managementt,

2012.

[31] C. Fernández, C. Valle, F. Saravia, and H. Allende, "Behavior

Analysis of Neural Network Ensemble Algorithm on A Virtual

Machine Cluster", Neural Computing & Applications, 21:3, pp. 535-

542, 2012.

[32] B. Minaei-Bidgoli, H. Parvin, H. Alinejad-Rokny, H. Alizadeh, and

W. F. Punch, "Effects of Resampling Method and Adaptation on
Clustering Ensemble Efficacy", Artificial Intelligence Review, 41:1,

pp. 1-22, 2014.

[33] C.-L. Liu and H. Fujisawa, "Classification and Learning Methods for
Character Recognition: Advances and Remaining Problems Machine

Learning in Document Analysis and Recognition", in Machine

Learning in Document Analysis and Recognition vol. 90, S. Marinai
and H. Fujisawa, Eds., ed: Springer Berlin Heidelberg, 2008, pp.

139-161.

[34] P. Hanafizadeh, E. S. Parvin, P. Asadolahi, and N. Gholami,
"Ensemble Strategies to Build Neural Network to Facilitate Decision

Making", Journal of Industrial Engineering International, 4:6, pp.

32-38, 2008.
[35] T. Windeatt, "Accuracy Diversity and Ensemble MLP Classifier

Design", IEEE Transactions on Neural Networks, 17:5, pp. 1194-

1211, 2006.

[36] N. P. Khanyile, J.-R. Tapamo, and E. Dube, "An Analytic Model for

Predicting the Performance of Distributed Applications on Multicore

Clusters", IAENG International Journal of Computer Science 39:3,
pp. 312-320, 2012.

[37] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F.

Herrera, "An Overview of Ensemble Methods for Binary Classifiers
in Multi-class Problems: Experimental Study on One-vs-One and

One-vs-All Schemes", Pattern Recognition, 44:8, pp. 1761-1776,

2011.

Mumtazimah Mohamad (M’2013) is from Malaysia. She received her
BSc. (2000) in Information Technology from University Kebangsaan

Malaysia, Malaysia, and her MSc in Software Engineering (2005) from

University Putra Malaysia. She is currently towards her PhD degree in

computer science at University Malaysia Terengganu, Malaysia. Her

research interests include ensemble learning for large datasets in parallel
processing.

 Prof. Mohd Yazid Md Saman received his B.Sc (1981) in computer

science from Essex University, U. K and M. Sc.(1987) in computer science
from University Teknologi Malaysia. He received his Ph.D (1993) from

Loughborough University of Technology, UK, also in computer science.

His joined University Putra Malaysia in 1981 and had employed as an
Associate Professor in 1997. He then joins University Malaysia Terengganu

in 2001 where he is currently employed as a Professor since 2004. His

research spans various aspects of technology and engineering, software
development, distributed and parallel computing, computer networks,

simulation and performance modeling.

 Dr Muhammad Suzuri Hitam received his B.Tech. Hons. in Quality
Control and Instrumentation Technology from University Sains Malaysia,

Malaysia and his Ph.D from Leeds University, U.K. He is currently an

associate professor and the director of Information Technology
Management Center, University Malaysia Terengganu, Malaysia. His main

research interests are in image processing, soft-computing and robotics.

IAENG International Journal of Computer Science, 41:1, IJCS_41_1_04

(Advance online publication: 13 February 2014)

__

