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Abstract—Fuzzy Similarity measures are used to compare
different kinds of objects such as images. Their definitions
are based on proximity measures, operations on fuzzy sets etc.
which makes different propositions of properties of similarity
measures. Consequently, the latter are not common for all
similarity measures presented in literature. In this paper we
present and discuss the properties of fuzzy similarity and
distance measures. We present fuzzy similarity measures from
literature and we discuss their validation to the common existing
properties.
In order to compare and show the differences between fuzzy
similarity measures, we apply them to three applications using
different data sets defined with fuzzy attributes. The obtained
results are good for most existing similarity measures, but
some measures give best results and some others worst results.
Therefore, relationships between obtained results and measures
validation to their properties are discussed to know the influence
of some properties on the results.

Index Terms—similarity measures, distance measures, fuzzy
sets, Arabic sentence recognition, classification of shapes, simi-
larity measure properties, distance measure properties, mosaic
recognition.

I. INTRODUCTION

IN literature, while some similarity measures are pro-
posed, properties of fuzzy similarity and fuzzy distance

measures are still not common for all proposed measures
even though studied and discussed. The studies on fuzzy
similarity measures are mostly theoretic [1]–[5] and were
the subject of several publications. [6]–[8] applied fuzzy
similarity measures to image processing. [9] presented a
fuzzy similarity inference method for fuzzy reasoning. [10]
proposed and applied a similarity measure to shape retrieval
using the SQUID data set described with Fourier descriptor.
[11] aggregated implication operators to a similarity measure
applied to shape classification and [12], [13] applied fuzzy
similarity measures to handwritten Arabic sentences recog-
nition. [14] presented a recognition system for handwritten
Latin words described with Gabor filters and used a process
recognition based on fuzzy logic to study the variations
of handwriting style of different writers. [15] presented an
off-line Arabic signature recognition and verification using
fuzzy concepts, other works are found in [16]–[19]. In
these works, similarity measures are applied or proposed,
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some comparisons between some measures are done in some
specific domains like image processing [6], [7] but still
specific to some treatments on images.
Similarity measures between fuzzy sets are numerous. It
is not trivial to predict the measure that provides the best
results in any application. Therefore, numeral comparisons
between fuzzy similarity measures (FSMs) are important to
show experimental differences between them.
In this paper, we sum up common existing properties of
Fuzzy similarity and distance measures. We apply FSMs,
from literature, to classification of shapes, mosaic recognition
and Arabic sentence recognition. These applications allow
us to find the measures giving best results for used data
sets. Consequently, selection of similarity measures can be
easy for application in other topics. Experimental results are
discussed and deductions are made according to the measures
results and their validation to the properties.
This paper is organized as follows: In the second section we
present preliminaries, followed by presentation, discussion
and summary of common existing properties for similarity
and distance measures. In the forth section we expose FSMs
from literature, followed by their validation to common
properties. In the sixth , seventh and eighth sections we apply
fuzzy similarities respectively to classification of shapes,
mosaic recognition and Arabic sentence recognition. In last
sections, we compare results and we give conclusions.

II. PRELIMINARIES

Let X the discourse universe, a sample x ∈ X having p
attributes as: x = (x1, x2, . . . , xp)

• Let P (X) the set of all crisp sets in X , FS(X) the set
of all fuzzy sets in X , A and B tow fuzzy sets in X
defined as: A = {(x, µA(x))|x ∈ X,µA(x) ∈ [0, 1]} ,
B = {(x, µB (x)) |x ∈ X,µB (x) ∈ [0, 1]}

• Let Ac ∈ FS(X) the complement of A ∈ FS(X) and
µAc(x) = 1− µA(x), ∀x ∈ X .

• The intersection and the union operators used for all
formulas are the minimum and the maximum proposed
in [20].

• The cardinality of a fuzzy set A in a universe X is
defined as: |A| =

∑
x∈X µA(x)

III. DISTANCE MEASURES VERSUS SIMILARITY
MEASURES

A measure of similarity or dissimilarity defines the re-
semblance between two samples or objects. For a similar-
ity measure the resemblance is more important when its
value increases. However, for a dissimilarity measure (i.e.
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a distance measure) the resemblance is stronger when its
value decreases. So, similarity and distance measures are
dual concepts, if they are normalized: similarity measure=
1-distance measure and vice versa.
The properties of FSMs are discussed in some works as [4],
[21], [22] which presented properties based on proximity
measures. In addition [9] and [23] presented some modifica-
tion on these properties and provided some other properties.
In the following, we discuss the properties of fuzzy similar-
ity and distance measures. Our discussion begins with the
presentation of crisp distance measure properties.

A. Crisp Distance Measure Properties

A distance measure is a metric d defined as a function:
d : X2 → R

+ and have the following properties:
1) ∀ x ∈ X, d(x, x) = 0
2) ∀ x, y ∈ X, d(x, y) = 0⇒ x = y
3) ∀ x, y ∈ X, d(x, y) = d(y, x)
4) ∀ x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y)

B. Fuzzy Distance Measure Properties

In [2] the following properties of a fuzzy distance measure
between two sets A and B are defined.

1) d(A,B) = d(B,A) ∀ A,B ∈ FS(X)
2) d(A,A) = 0, ∀A ∈ FS(X)
3) d(D,Dc) = maxA,B∈FS(X)d(A,B) for all D ∈

P (X)
4) ∀ A,B,C ∈ FS(X), if A ⊆ B ⊆ C then d(A,B) ≤

d(A,C) and d(B,C) ≤ d(A,C)

C. Fuzzy Similarity Measure Properties

1) Definition 1: The properties of a fuzzy similarity
measure S(A,B) between two sets A and B of FS(X) are
proposed in [4], [21], [22], based on properties of proximity
measures, as follows:

1) S(A,B) = S(B,A) ∀ A,B ∈ FS(X)
2) S(E,E) = maxA,B∈FS(X)S(A,B) for all E ∈

FS(X)
3) S(D,Dc) = 0, if D is a crisp set
4) ∀ A,B,C ∈ FS(X), if A ⊆ B ⊆ C then S(A,B) ≥

S(A,C) and S(B,C) ≥ S(A,C)

[21] noted that if a similarity measure satisfies
maxA,B∈FS(X)S(A,B) = 1 then it is called normal
similarity measure on FS(X). Similarly, if a distance
measure satisfies maxA,B∈FS(X)d(A,B) = 1 then it is
called normal distance measure on FS(X).

2) Definition 2: In [9] the following definition of fuzzy
similarity measure properties is given:

1) S(A,B) = S(B,A)
2) A = B ⇒ S(A,B) = X
3) S(X, ∅) = ∅
4) ∀ A,B ∈ FS(X) , if A ⊂ B ⊂ C then S(A,C) ≤

min(S(A,B), S(B,C)).
The author consider that the similarity between two objects
can not be limited to a number between 0 and 1 because it can
not represent well the knowledge, for example, a similarity

between two persons can be: “a little” or “very resemble”.
This is expressed by the second property where the similarity
between two fuzzy sets is the whole discourse universe. We
find that this property is ambiguous and represent limitation
for the use of similarity measures in recognition or classifi-
cation systems.

3) Definition 3: In [23] the following definition of fuzzy
similarity measure properties is given:

1) S(B,A) = S(A,B)
2) 0 ≤ S(A,B) ≤ 1
3) S(A,B) = 1 if and only if A = B
4) ∀ A,B ∈ FS(X) , if A ⊂ B ⊂ C then S(A,C) ≤

min(S(A,B), S(B,C)).
5) For two fuzzy sets A and B not null, if S(A,B) = 0

then min(µA(x), µB(x)) = 0 ∀ x ∈ FS(X)

D. Notes on Fuzzy Similarity and Distance Properties

The propositions of similarity measure properties are var-
ied. Measures in literature do not validate all given defini-
tions. In this section we summarize all common presented
properties for similarity and distance measures. Therefore,
we present definitions of similarity and distance measures
with most common properties. In the following we discuss
all properties definitions for similarity and distance measures.
• The forth property exists in all given definitions of sim-

ilarity measures. It corresponds to the fourth property
in distance measures. Thus, this is a common property
in all definitions.

• For the third property proposed in [21] (definition 1)
maxA,B∈FS(X)S(A,B) = 1 for normal similarity
measures, it corresponds the third property cited in
definition 3. Also, This property much properties for
crisp distance measures. However, it is not present in
all definitions of FSMs and is replaced in definition
1 with the comparison between crisp sets and their
complements as:
S(D,Dc) = 0, if D is a crisp set
We find that this comparison is not interesting for
comparing two fuzzy sets (i.e, we did not find the
relation between the comparison of two fuzzy sets with
comparing crisp sets to their complements). Therefore,
the most suitable third property is given in [21], [23]
(definition 1, definition 3):
(3) ∀ A,B ∈ FS(X), S(A,B) = 1⇐⇒ A = B
The third property in distance measures definition is
given as:
d(D,Dc) = maxA,B∈FS(X)d(A,B) for all D ∈ P (X)
This property compare between crisp sets and their
complements. For the same reason given previously
and according to the duality between fuzzy distance
and similarity measures, the third property of distance
measures will be:
(3) ∀ A,B ∈ FS(X), d(A,B) = 0⇐⇒ A = B
We note that the third property proposed in [9], defini-
tion 2, is obvious.

• For the second property of fuzzy distance measures [2]
(see Sect. III-B)
d(A,A) = 0,∀A ∈ FS(X) it corresponds the second
property of similarity measures proposed in [4], def-
inition 1: S(E,E) = maxA,B∈FS(X)S(A,B),∀A ∈
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FS(X) [22]. This property is not common for all
definitions of FSMs.
If we rely on duality between similarity and distance
measures, we conclude that their properties must be
complementary and not contradictory. In addition, prop-
erties presented in definition 1 are based on proximity
measures and can not be very suitable for FSMs. Thus,
according to the cited reasons, the second property of
FSMs will be:
(2) S(A,A) = 1,∀A ∈ FS(X)
However this property is redundant for both similarity
and distance measures and can be deduced from the
third property. In addition, the similarity and distance
measures must be positive and if they are normalized
they must be less or equal 1, this is mentioned in
definition 3. Thus, the second property of FSMs will
be:
(2) 0 ≤ S(A,B) ≤ 1,∀A ∈ FS(X)
and the second property of distance measures will be:
(2) 0 ≤ d(A,B) ≤ 1,∀A ∈ FS(X)

• The first property is present in all proposed definitions
of FSMs, and it corresponds to the first property of
distance measures.

• The fifth property proposed in definition 3 indicates that
intersection must be 0 if the sets are dissimilar. This
property is included in the common third property.

To sum up, the common existing properties of fuzzy simi-
larity measures are:

1) S(A,B) = S(B,A) ∀ A,B ∈ FS(X)
2) 0 ≤ S(A,B) ≤ 1,∀A ∈ FS(X)
3) ∀ A,B ∈ FS(X), S(A,B) = 1⇐⇒ A = B
4) ∀ A,B,C ∈ FS(X), if A ⊆ B ⊆ C then S(A,B) ≥

S(A,C) and S(B,C) ≥ S(A,C)

The properties of fuzzy distance measures are:
1) d(A,B) = d(B,A) ∀ A,B ∈ FS(X)
2) 0 ≤ d(A,B) ≤ 1,∀A ∈ FS(X)
3) ∀ A,B ∈ FS(X), d(A,B) = 0⇐⇒ A = B
4) ∀ A,B,C ∈ FS(X), if A ⊆ B ⊆ C then d(A,B) ≤

d(A,C) and d(B,C) ≤ d(A,C)

We note that we did not give new properties in these
definitions. However, we retain all common properties in
existing definitions and we altered some of them according to
the duality concept between similarity and distance measures.

IV. SIMILARITY MEASURES BETWEEN FUZZY SETS
FROM LITERATURE

In the following, we present FSMs defined in literature.
We mention that in all formulas µiA and µiB are respectively
the membership degree of the ith elements in sets A and B
of n elements.

A. Measures Based on Operations on Fuzzy Sets

In the sequel, similarity measures based on union, intersec-
tion and cardinality operations on fuzzy sets are presented.
[4] proposed this measure:

M(A,B) =

∑n
i=1min

(
µiA, µ

i
B

)∑n
i=1max

(
µiA, µ

i
B

) (1)

[1] proposed the following similarity measures between
fuzzy values:

T (A,B) = maxi(min(µiA, µ
i
B)) (2)

P =

∑n
i=1 µ

i
A.µ

i
B

max
(∑n

i=1 µ
i
A.µ

i
A,
∑n
i=1 µ

i
B .µ

i
B

) (3)

[22] proposed the following similarity measure:

S1(A,B) =
1

n

n∑
i=1

(
min

(
µiA, µ

i
B

)
max

(
µiA, µ

i
B

)) (4)

If the denominator equalizes to zero then S1(A,B) = 1.
In [8] these similarity measures are presented.

S4(A,B) =
|Ac ∩Bc|
|Ac ∪Bc|

(5)

S5(A,B) =
|A ∩B|

max(|A|, |B|)
(6)

S6(A,B) =
|Ac ∩Bc|

max(|Ac|, |Bc|)
(7)

S7(A,B) =
|A ∩B|

min(|A|, |B|)
(8)

S8(A,B) =
|Ac ∩Bc|

min(|Ac|, |Bc|)
(9)

In [9], this similarity measure is proposed.

S3(A,B) =
n∑
i=1

2 ∗min(µiA, µ
i
B)

µiA + µiB
(10)

if µiA + µiB = 0 then S3(A,B) = 1.
To be normalized, this measure must be divided by n.

B. Measures Based on Symmetric Difference of Fuzzy Sets

In [8] similarity measures based on symmetric difference
of two fuzzy sets are presented. First, the authors defined the
difference between two fuzzy sets A and B as: A\B = A∩
Bc. Thus, they defined the symmetric difference as: A∆B =
(A \B) ∪ (B \A). The proposed measures are:

S9(A,B) =
|(A∆B)c|

max(|(A \B)c|, |(B \A)c|)
(11)

S10(A,B) =
|(A∆B)c|

min(|(A \B)c|, |(B \A)c|)
(12)

S11(A,B) = 1− 1

n

n∑
i=1

(A∆B)(xi) (13)

C. Measures Based on Distance Measures

[4] proposed The following similarity measures:

L(A,B) = 1−maxi
(
|µiA − µiB |

)
(14)

S(A,B) = 1−
∑n
i=1 |µiA − µiB |∑n
i=1(µiA + µiB)

(15)

[1] studied the measures proposed by [4] and demonstrated
that the measure (14) is based on the geometric distance
model proposed in [24] as:

dr(A,B) =

(
n∑
i=1

(ai − bi)r
) 1

r

(16)
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where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are two
points in a n-dimensional space. When r approaches ∞ dr
becomes:

d∞ = maxi|ai − bi| (17)

Then, [1] proposed the following measure between fuzzy
values:

W (A,B) = 1−
∑n
i=1 |µiA − µiB |

n
(18)

[22] proposed the following similarity measure:

S2(A,B) =
1

n

n∑
i=1

(
1−

∣∣µiA − µiB∣∣) (19)

[25] presented the following distance measure which is a
divergence measure between two fuzzy sets A and B:

DE(A,B) =
n∑
i=1

(
2−

(
1− µiA + µiB

)
e(µ

i
A−µ

i
B)

−
(
1− µiB + µiA

)
e(µ

i
B−µ

i
A)
) (20)

where 0 ≤ DE(A,B) ≤ n(2− 2e−1)
and demonstrated that the following divergence measure
presented in [26] is a distance measure.

DL(A,B) =
n∑
i=1

((
µiA − µiB

)
ln

1 + µiA
1 + µiB

+
(
µiB − µiA

)
ln

2− µiA
2− µiB

) (21)

Therefore, [25] presented the following distance measure:

d(A,B) = 1− 1

n

n∑
i=1

max(min(µiA, µ
i
B),min(µiAc , µiBc))

max(max(µiA, µ
i
B),max(µiAc , µiBc))

(22)

In [8] a similarity measure using the distance (21) is pre-
sented as:

SDL(A,B) = 1− 1

2 ln 2

n∑
i=1

((
µiA − µiB

)
ln

1 + µiA
1 + µiB

+
(
µiB − µiA

)
ln

2− µiA
2− µiB

) (23)

D. Measures Based on Implication Operators

Similarity measures based on implication operators are
proposed in [5] as follows:

Ep = min(infi∈{1...n}p(ai, bi), infi∈{1...n}p(bi, ai)) (24)

Implication operators which can be used in (24) are:
• Lukasiewiez implication operator:
Min(1− a+ b, 1)

• Gödel implication operator:{
1 if a ≤ b
b else

• Goguen implication operator:{
min( ba , 1) if a 6= 0

1 else
Similarity measures obtained with each implication are called
respectively SL, SGO and SG.

E. Notes on Presented Measures

The presented measures from literature are based on some
operators on fuzzy sets. Some of them are based on distance
measures between crisp sets. We cite the measures W (18)
and S2 (19) which are dual concepts of Hamming distance
(W = 1−Hamming distance). We recall that Hamming
distance between two crisp vectors x and y is defined as:
d(x, y) = 1

n

∑n
i=1 |xi − yi| .

According to its frequency of use in most systems treating
crisp values, we will use the Euclidean distance between two
fuzzy sets, based on the distance dr (16) with r = 2, defined
as:

d2(A,B) =
1√
n

√√√√ n∑
i=1

(
µiA − µiB

)2
(25)

V. MEASURES PROPERTIES VALIDITY

In this section, we verify the satisfaction of the measures
presented above to the properties of similarity and distance
measures deduced and presented in Sect. III-D.
It is obvious that all measures verify the properties 1 and
2. Thus, we present the properties 3 and 4 verification for
each measure. If the measure is a distance measure the
properties of distance are verified, inversely, if the measure
is a similarity, the properties of similarity are verified. In
table I below, we present the results of validation of the
measures to the properties noted P3 and P4. We note that
we indicate “yes” if the property is verified and we indicate
“no” otherwise.

TABLE I
VALIDATION OF FUZZY SIMILARITY MEASURES TO COMMON

PROPERTIES

FSMs P3 P4
M (1), L (14), S2 (19), SG (24)

W (18), S4 (5), SL (24) yes yes
S5 (6), S6 (7), d2 (25)
S (15), P (3), SDL

(23)
d (22), S3 (10) yes no

S1 (4), DE (20), S9 (11)
T (2), S11 (13)
S7 (8), S8 (9) no no

S10(12), SGO (24)

VI. CLASSIFICATION OF SHAPES

A. Presentation of Shapes Data Set

We use the SQUID data set, which contains about 1100
images of marine creatures (fish). Each image shows a
distinct species on a uniform background and is processed
to recover the boundary edge, which is then represented by
extended Curvature Scale Space (CSS) descriptors.
The CSS descriptors introduced by [27], permit to register
the concavities of a curve through successive filtering. They
have the advantage of being invariant to scale, translation,
and rotation, and are shown to be robust and tolerant of
noise, however, they are inadequate to represent the convex
segments of a shape. To solve this problem, [28] presented
a solution to remedy the inability of the CSS descriptors to
represent convex segments of a shape. The proposed idea is
to create a dual shape of the input shape where all convex
segments are transformed to concave segments.
The CSS descriptors are considered as local features and do

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_01

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



not capture the global features of an image edge. Thus, two
extra global features: circularity and eccentricity are used.
for more details see [11], [29].
In conclusion, the features used to describe the shapes data
set are called “extended CSS descriptors” and are:
• Circularity
• Eccentricity
• CSS descriptors of original shape
• CSS descriptors of dual shape

All shapes are labeled with the clusters in which they are
assigned. We note thirty classes of shapes.

B. Constitution of Fuzzy Features of Shapes
In this section, we are interested in creating fuzzy features

of shapes. This stage permits us to pass from a crisp data
set constructed by crisp values of extended CSS descriptors
to a fuzzy data set. The last-mentioned data contains values
between 0 and 1, appointing membership degrees to fuzzy
sets. To choose membership functions, we divided the data
set of shapes into two data sets: the first which is constituted
of 738 shapes serves as reference data set and the second
which is constituted of 362 shapes serves as test data set.
Every shape, in the test data set, corresponds to the shapes
of same cluster in the reference data set (i.e., the number
of reference shapes of the same cluster of the test shape
is between one and fifteen). The process of fuzzification
is described in figure 1 [12]. We specify that The features
of every shape are: one value of eccentricity, one value of
circularity, a vector of concavity points (abscissas, ordinates)
and a vector of convexity points. We note, that one shape
can take different positions, so, two shapes can be similar
if concavity ordinates are equal independently of abscissas
(i.e. an abscissa can be on the right and the other on the
left) see figure 2. Consequently, abscissas are not important
to retain for features concavity and convexity. Therefore, we
fuzzify for each shape : eccentricity, circularity, ordinates of
concavity points and ordinates of convexity points.

Fig. 1. Process of Features Fuzzification

Fig. 2. Different Positions of a Shape

The reference data set is used to constitute membership
functions for each feature (figure 1). Therefore, we present
each feature in the plan to determine its linguistic variables
(i.e. linguistic variables corresponding to each membership
function). This is shown in figure 3 and figure 5 [12].

(a) (b)

Fig. 3. Representation in the Plan of (a) Ordinates of Convexity Points
and (b) Ordinates of Concavity Points of Data Set of Reference Shapes

Figure 3-(a) shows that the convexity points are less
frequent than the concavity points on figure 3-(b). The
first figure has two peaks and the second has three peaks.
However, the condensation of the points is the same. So, if
we examine (a) and (b) in figure 3, we can conclude that
we can divide each of them, in the top-down direction, into
three sets representing low, medium and high convexity or
concavity.
Figure 4 [12], represents the sets obtained after the division
of convexity sets and shows the low convexity figure 4-(a),
the medium convexity figure 4-(a) and the high convexity,
figure 4-(c). We note that the points ordinates of convexity
and concavity are represented from the lower value to the
higher value in the top-down sense of the figure.

(a) (b) (c)

Fig. 4. (a) Low convexity (b) Medium convexity (c) High Convexity

Figure 5 represents the features circularity and eccentricity.
It is easy to remark that the eccentricity can be divided, in
the top-down sense, into two sets: low and high eccentricity,
however circularity, can be divided, into three sets: low,
medium and high circularity.

(a) (b)

Fig. 5. Representation in the Plan of (a) Circularity Values and (b)
Eccentricity Values of Reference Data Set of Shapes
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In conclusion, the features convexity, concavity and
circularity are fuzzified into three fuzzy sets of three
fuzzy values: low, medium and high. However, the feature
eccentricity is fuzzified into two fuzzy sets of two fuzzy
values: low and high. Each fuzzy set is represented by a
fuzzy membership function.
We choose trapezoidal function to represent fuzzy sets.
Figure 6 [12] below represents the fuzzy sets ”low, medium
and high” for the feature convexity.

Fig. 6. Convexity Membership Functions

The crisp values of the features of shapes are fuzzified
by computing the membership degrees to correspondent
functions. After fuzzification, each shape is defined by fuzzy
values as:
• two fuzzy values for eccentricity (i.e. membership de-

gree to the fuzzy set ”low” and membership degree to
the fuzzy set ”high”)

• three fuzzy values for circularity
• three fuzzy vectors for concavity (i.e. vectors corre-

sponding to membership degrees of ordinates of con-
cavity points to fuzzy sets ”low”, ”medium” and ”high”
respectively).

• three fuzzy vectors for convexity

C. Application of Fuzzy Similarity Measures to Classifica-
tion of Shapes

Our objective is to compare two shapes having fuzzi-
fied attributes according to fuzzy sets of features. Consider
shapes A and B described by M linguistic variables vi
(i.e. eccentricity, circularity, concavity and convexity) and
for each linguistic variable vi, k linguistic values Lik (i.e.
low, medium, high) are defined. Each linguistic value Lik is
represented by a fuzzy set with a membership function µLi

k
.

The similarity of two shapes A and B is computed on two
steps:
• Compute similarity Svi(A,B) according to each vari-

able vi
• Compute the similarity S(A,B) according to all lin-

guistic variables. This is done by computing the mean
of all similarity degrees Svi(A,B) using the following
formula.

S(A,B) =

f∑
i=1

Svi(A,B)

f
(26)

Where f is the number of fuzzy linguistic variables.
We note that for the linguistic variables convexity and
concavity Svi(A,B) is computed by this formula:

Svi(A,B) =

∑n

k=1
S
Li
k

n

with n is the number of fuzzy values of the ith linguistic
variable.

D. Experimentation and Results

In the classification process, test shapes are compared to
reference shapes according to K-Nearest Neighbors algo-
rithm. Table II presents the obtained results after applying
similarity measures from literature. We note that 10-best rep-
resents the rate of classified shapes in 10-Nearest Neighbors.

TABLE II
RESULTS OF SHAPE CLASSIFICATION USING FUZZY SIMILARITY

MEASURES

FSM 10-Best Error rate (%)
S3(10) 89.23 10.77
S1(4) 88.95 11.05
DE(20) 88.4 11.6
M (1) 88.12 11.88

S(15), S5(6), S4(5) 87.85 12.15
S6(7), S9(11), L(14) 87.57 12.43
SL (24), d(22), d2(25) 87.29 12.7

W (18), S2(19) 87.29 12.7
S11(13) 87.01 12.98
SG (24) 86.19 13.81
SGO (24) 85.91 14.09
T (2) 82.04 17.96

S8 (9), S10 (12) 70.17 29.83
S7 (8) 69.89 30.11
P (3) 68.78 31.22

SDL (23) 65.75 34.25

The results of classification in table II show that the first, the
second and the third rank of similarity measures results are
very closed and are obtained by S3, S1 and DE respectively.
The forth rank is obtained by the measure M followed by
the results of the measures S, S4 and S5. In the sixth rank,
the measures S6, S9, L produce very close results to their
previous and their successors SL, d, d2,W, S2 and S11. The
results decrease slightly with the measures SG, SGo and
decrease more with the measure T . With the measures S8,
S10, S7, P and SDL

the results decrease more and more and
reach the last ranks.

VII. MOSAIC RECOGNITION

A. Data Set Images Presentation

We use images from the national library of Tunisia 1

which contain colored and gray scaled images with important
historical value. We have only nineteen images. So, we
experiment fuzzy similarity on two images of them.

B. Features Description

The features of images concern the shapes which compose
them. So, the edges of some shapes in the image are
described by the extended CSS descriptor defined in section
VI by [29]. The features are fuzzified according triangular
memberships ( [11], [29]), the process of fuzzification is
the same presented in figure 1. Despite that the features
are the same used for shape classification presented in
the precedent section, the application of fuzzy similarity
measures to mosaic recognition is a different application
and the experimentation results should give new ideas about
FSMs.

1http://www.bibliotheque.nat.tn
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C. Experimentation and Results

The images are compared according to their shapes. For
each shape contained in the test images, a number of ref-
erence images are found, we present an example in figure
7 which contains some shapes. In this image, only the
animal and the person are described with fuzzy extended
CSS descriptors.

Fig. 7. An Image Containing some Shapes as a Tree, a Person and an
Animal

The program matches images using the fuzzy features of
animal edge. The expected images are all those containing
animal shapes. The obtained images using the fuzzy similar-
ity S (15) are presented in figure 8.

Fig. 8. Images Found while Comparing the Animal Shape in Figure 7.

Note that the resulting images shown in figure 8 contain
animals.
In order to compare FSMs from literature, we apply them, to
two images test: image1 and image2. We present the results
in the tables IV, V and VI. Each table presents the results
for one image compared according to one of its shapes. The
comparison is done according to two shapes for image1 (i.e.
shape1 and shape2) and to one shape for image2. The number
of reference images containing shapes similar to shape1 in
image1, is three and the number of shapes similar to shape1
in the three images is 10 (i.e., the first image contains 6
shapes, the second contains 3 and the third image contains
1 shape). So, the results of matching between shape 1 and
reference images must be 10. The table below resumes for
each test shape/image the number of reference images.

TABLE III
NUMBER OF SHAPES FOR IMAGES REFERENCE EXPECTED AS RESULTS

TO TEST IMAGES

Image1

Shape1 Reference Images Number 3
Shapes Number 10

Expected Images Number 10
Shape2 Reference Images Number 4

Shapes Number 8
Expected Images Number 8

Image2
Shape Reference Images Number 3

Shapes Number 4
Expected Images Number 4

In the following, results are obtained according to KNN
classifier. We choose k=10 for the shape1 of image1, k=8
for shape2 of image1 and k=4 for the shape in image2.
The values of k correspond, respectively, to the number of
reference images containing similar shapes of the test images.

TABLE IV
MOSAICS OBTAINED WITH FUZZY SIMILARITY MEASURES FOR IMAGE1,

SHAPE1

FSMs 10-best (%)
W, S4, S8, d, S10, DE , d2 90

S1, S11 80
S, S2, S7, S9, SDL

70
S6 60

SL, S3 50
M , L, S5 40

SG 10
T , P , SGO 0

TABLE V
MOSAICS OBTAINED WITH FUZZY SIMILARITY MEASURES FOR IMAGE1,

SHAPE2

FSMs 8-best (%)
W , S4 50

S1, S2, S8, S11, DE , d,d2, S3 37.5
M , S, L, S10, S5 25

SDL
, SL 12.5

T , P , SGO , SG, S9, S6, S7 0

TABLE VI
MOSAIC OBTAINED WITH FUZZY SIMILARITY MEASURES FOR IMAGE2,

SHAPE

FSMs 4-best (%)
S, SDL

, S1, S9, S2, S8, P 50
S11, DE , d, d2, SL 50

S3, W , S4, M , S, L, S10 50
T , SGO , SG 0

In table VI, there are two results. All measures produce
50% except measures T , SGO and SG which produce 0%
as recognition rate in 4-best . The tables IV and V present
different results for the comparisons between the mosaics
based on two shapes in the test image. In the two tables, W
and S4 are in first rank and S1 and S11 are in second rank.
The measures S8, d,DE , d2 are in first rank in the table IV
and in second rank in the table V. However, the measures
S2, S3 are in second rank in the the table V and in third and
fifth rank, respectively, in the table IV. The measure S10 is
in the the first rank in table IV and the third rank in table
V. Thus, we can deduce that best results in the tables (IV,
V) are given by the measures: S8, d, DE , d2, W, S4, d.
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Results decrease with measures S, SDL
which are in third

rank in table IV and in forth and fifth rank, respectively in
table V. S6 is in forth rank in table IV with modest results
and in last rank in table V with 0% recogntion rate. S9 and
S7 are in third rank in table IV with 70% recogntion rate
and in fifth rank in table V with 0% recogntion rate. Modest
results are given by SL which is in fifth rank in table IV and
in forth rank in table V followed by the results of M, L, S5

which are in third rank in table V and in sixth rank in table
IV. The worst results are obtained with the measures T, SGO
and P , SG with 0% recognition rate in the three Image/shape
comparisons, except the results of SG for image1, shape1
with a recognition rate of 10% in table IV. Also S9, S6, S7

produce 0% of recognition rate for image1, shape2 in table
V.
In this application there is a few number of test images. So,
the decision for better results is not clear, but indicates that
the measures d2, W, S4, S1, S11, d, DE , S8 produce best
results. The results of measures S1, DE , S4, d, d2, W, S11

confirm those found in shape classification in section VI-D.
The results produced with P, T, SG, SGO, are in last ranks
in shapes classification but better than those obtained for
mosaic recognition.

VIII. ARABIC SENTENCES RECOGNITION

A. Data Set Sentences Presentation

We use 6537 images of 824 handwritten Tunisian
town/village names extracted from the IFN/ENIT data set
[30]. The images of data set are written by different writers
and undergo some preprocessing like noise reduction but are
not normalized. In this data set, every image is described
by some information like the number of characters and the
number of connected compounds. We divide data set into two
data sets: the first serves as reference data set constituted of
4357 word images and the second serves as test data set
constituted of 2180 word images. The recognition process is
done using fuzzy sets on two steps:
• the description of images by fuzzy features.
• the comparison between test data set and reference data

set using a fuzzy similarity measure
In the following subsections, we describe these processes
with more details.

B. Features Extraction

We extract features based on some information existing
in the IFN/ENIT data set [30] and without normalization of
images. The data set is described with these information:
• the number of sentence characters
• the number of sentence connected compounds
• the coordinates of the top line and those of the base line

of the word
• the description of each sentence connected compound

edge with Freeman chain code [31]
We are interested in extracting features from word connected
compounds, so we delete diacritic signs from images because
they can be misplaced and cause noise for recognition. The
extracted features from the word connected compounds are:
• sum of black pixel distances from the base or the top

lines

• higher black pixel coordinates
• code frequencies of freeman chain code

a) Sum of Black Pixel Distances From the Base or the
Top Lines: We consider the top line and the base line of an
image as lines in a plan having the equation: y = ax + b.
Each pixel in the image is considered as a point in the plane.
So, the distance of a pixel to the baseline of the image or
to the top line of the image is computed as mathematical
distance of a point to a line. For each black pixel, in the
edge of connected compounds, three mathematical distances
are computed as:
• d1: the sum of distances of each pixel from the top line

if the pixel is upper this last (figure 9. A)
• d2: the sum of distances of each pixel from the baseline

if the pixel is under top line and upper the baseline
(figure 9. B)

• d3: the sum of distances of each pixel from the baseline
if the pixel is under this last (figure 9. C).

Each distance is divided by the sum of all black pixels of
connected compound edge denoted s. We obtained: d1 = d1

s ,
d2 = d2

s and d3 = d3
s .

Figure 9 shows two words of a sentence, the first word is
constituted with two connected compounds and the second
is composed by four connected compounds.

Fig. 9. Connected Compounds of Two Words of a Sentence

b) Higher Black Pixel Coordinates: Finding the coor-
dinates of the higher black pixel in a connected compound
can indicate the presence of a stroke. This information can be
determinative to differentiate between connected compounds
and for consequence, it can differentiate between words. The
searched pixel can be in the beginning, in the middle or in
the end of the connected compound.

c) Direction Frequency of Freeman Chain Code: Each
connected compound is described by a chain code of freeman
which is constituted by a succession of numbers from zero to
seven. The numbers indicate directions of a pixel construct-
ing the connected compound edge. This directions can be
vertical, horizontal or representing a curvature. We compute
the frequency of each number in the freeman chain code as
N/T where N is the number of the code in freeman chain
code and T is the total number of codes. So, we obtain eight
informations. It is obvious that all obtained informations are
in the interval [0, 1] (i.e. N is less than T ).

C. Features Fuzzification

The crisp features presented in the precedent section are
fuzzified in order to be represented with fuzzy sets. The
process of fuzzification is presented in figure 1.
• The sum of pixel distances presented in the section

VIII-B0a are fuzzified by computing the membership
degree of each of them to trapezoidal functions.

• The ordinates of the higher black pixel found in the
section VIII-B0b are fuzzified by computing their
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membership degrees according to triangular fuzzy sets.
For each connected compound, we retain three degrees
of belongingness. The first, represents the membership
degrees of a pixel in the beginning of connected com-
pound. The second, represents the membership degree
of a pixel in the middle of connected compound and the
last represents the membership degree of a pixel at the
end of connected compound.

• We are interested to the pixels indicating the curvature
direction because of their importance. In Freeman chain
code, the codes of pixel directions are from 0 to 7. The
codes 1, 3, 5 and 7 indicates the pixel belongingness
to a curvature. Thus, we consider that the frequencies
of these codes (see Sect. VIII-B0c) represent their
membership degrees to indicate curvature. The codes 0,
2, 4 and 6 indicates the pixel belongingness to a vertical
or horizontal direction. Therefore their frequencies (see
Sect. VIII-B0c) represent their membership degrees to
indicate horizontal or vertical positions.

D. Experimentation and Results

Table VII. shows the results of Arabic sentences recogni-
tion with applied fuzzy similarity and distance measures. We
recall that 10-best is the rate of found sentences in the first
10 positions to be similar to the test sentence. The results of

TABLE VII
ARABIC SENTENCE RECOGNITION RESULTS OBTAINED WITH FUZZY

SIMILARITY MEASURES

FSMs 10-best (%) Error rate (%)
S1 (4) 91.10 8.89
S3(10) 90.92 9.08
SDL

(23) 90.6 9.4
d2 (25) 90.28 9.72

L (14), SL (24) 90.23 9.77
d (22) 89.82 10.18
S4 (5) 89.68 10.32
S9 (11) 89.59 10.41
S6 (7) 89.59 10.41

W (18), S2 (19) 89.59 10.41
S7 (8) 89.31 10.69
DE (20) 87.47 12.52
S11(13) 85.55 14.45
S10(12) 84.68 15.32
S8(9) 84.59 15.41
S(15) 84.27 15.73
S5(6) 75.6 24.4
M (1) 62.93 37.06
P (3) 49.95 50.05

SG (24) 2.06 97.93
T (2) 1.83 98.17

SGO (24) 0 100

the measures S3, S1, SDL
, d2 are respectively in first, second,

third and fourth rank with very close results and a difference
varying from 0.18 to 0.32. The results of the measures L, SL
are in fifth rank and are very closed to those of d2 with a
difference in results of 0.05. The results of the measure d
are in sixth rank having a difference of 0.41 from previous
results, followed by the results of S4 with a difference 0.09
in results, then, S9, S6, W and S2 with a difference in
results of 0.23. The results of the measure S7 are in eighth
rank with a difference of 0.27 from the previous results. The
results decrease using the measure DE with a difference of
1.84 and using the measure S4 with a difference of 1.74,
from their previous. Results continue decreasing with the

measures S11, S10, S8, S with bit differences. The decrease
in results becomes more important with the measure S5 and
M which present differences of 8.67 and 21.34, respectively,
from previous results. The measure P produces low results
followed by the measures SG, T and SGO which produce the
worst results.

IX. COMMENTS ON OBTAINED RESULTS WITH
APPLICATION OF THE SIMILARITY MEASURES ON THE

THREE DATA SETS

In this section, we develop the relationship between the
obtained results and the similarity and distance properties’
validation. Our intention is to examine the influence of
the latter on the results obtained in three applications with
three data sets. The measures producing low results for each
application are in the following:
• classification of shapes : S8, S10, S7, P and SDL

.
• Recognition of mosaics: P , SG and SGO for all tests im-

ages, T for two tests images and SDL
, SL, S9, S6, S7

for one test image among three.
• Recognition of handwritten Arabic sentences:
S5, M, T , P , SG and SGO.

In conclusion, for the three applications the results of the
measures S5, M , P , SG, T , SGO, SDL

, S9, S6, S10 and S8

did not produce good results. Let us examine their properties:
• T , S7, S8, SGO, S10 do not verify the properties 3 and

4
• P , SDL

do not satisfy the property 4
• SG, SL,M, S6, S5 validates all properties

These results show that:
• The properties 3 and 4 must be satisfied by the mea-

sures, otherwise the results of classification can be not
good (i.e., S11 produced acceptable results in the three
applications).

• The validation of the property 4 by measures is without
effect in results in general. Most measures which does
not validate this property produce good results such as
S3.

We can conclude that the satisfaction of the third property by
similarity and distance measures is essential to obtain accept-
able results for classification. In addition, the satisfaction of
all properties by the similarity measures does not imply that
they produce good results (i.e, low results in all applications
are obtained with SG which satisfies all properties).

X. CONCLUSION

We presented and discussed properties of similarity and
distance measures. Thus, we provided common existing
properties for distance and similarity measures and we val-
idated measures from literature according to these common
properties. We presented three data sets described with
fuzzy features and we applied FSMs for classification and
recognition of test data sets. These applications permit us to
conclude that good results can be produced using measures
S3, S1, d2 and low results can be obtained using measures
T, S7, S8, S10, SGO, P and SG despite that some of them
can produce good results in some cases.
This study, shows the importance of validation of FSMs to
the modified properties (i.e. third property) and classifies
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measures according to their results in three applications.
Therefore, the obtained results can simplify the choice of
similarity measures, from numerous existing measures in
literature, for any research topic.
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