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Abstract—A reasonable solution to a multi-objective problem
is to determine an entire Pareto optimal solution set. Another
general approach is to transform a multi-objective optimization
problem into a mono-objective one. Determination of a single
objective is possible with methods such as weighted sum
method, but the problem lies in the right selection of the weights
to characterize the decision makers preferences. In this paper,
we study the problem where the decision maker tries to balance
the objective function weights. This task is not easy for both
decision maker and system analyser. To remedy this problem
we introduce a solution method based on a genetic algorithm
which automates the choice of the weights by varying them
at each iteration of the algorithm. Our algorithm is tested
on five academic problems and is applied to a UMTS base
station location planning problem. The obtained results show
that the proposed approach ensures an equitable treatment of
each objective function.

Index Terms—genetic algorithm, multi-objective optimiza-
tion, weighted sum method, UMTS problem.

I. I NTRODUCTION

M OST of the real-life decision-making problems have
more than one conflicting objective function. Resear-

chers studied multi-objective optimization problems from
different viewpoints and, thus, there exist different solution
methods and goals for solving them. The goal may be finding
a representative set of Pareto optimal solutions, or quan-
tifying the trade-offs in satisfying the different objectives,
or finding a single solution that satisfies the preferences of
a decision maker. The approaches used for solving multi-
objective problems (MOPs) can be classified into three cate-
gories: approaches based on the transformation of the prob-
lem into a mono-objective problem, non-Pareto approaches
and Pareto approaches (see [12], [20], [24], for instance).

In the literature, a special and particular attention is given
to multi-objective problems using exact and approximate
algorithms. Exact methods such as Branch and Bound, the
A* algorithm and Dynamic Programming are effective for
problems of small sizes. When problems become harder,
usually because of their NP-hard complexity, approximate
algorithms are mandatory. Several adaptations of metaheuris-
tics have been proposed in the literature for solving multi-
objective problems [21], [31]. In [5] authors described a
simulated annealing based multi-objective optimization al-
gorithm (AMOSA) that incorporates the concept of archive
in order to provide a set of trade-off solutions for the problem
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under consideration. In [19], an improved multi-objective
genetic algorithm (MOGA), named SMGA, was proposed
for solving multi-objective optimization problems. In [27]
author presented genetic algorithms for solving fuzzy multi-
objective optimization. In [1] authors proposed three multi-
objective Artificial Bee Colony (ABC) algorithms based
on synchronous and asynchronous models using Pareto-
dominance and non-dominated sorting. Some proposal for
extending particle swarm optimization algorithms to treat
MOPs, have been published in [6] and [36]. A new multi-
objective algorithm based on Monte Carlo tree search is
proposed in [26]. In [4] authors presented a new method of
solving non-linear multi-objective optimization problems by
adding a control function that guides the optimization process
over the Pareto set which does not need to be found explicitly.
In [37] authors proposed a method, called MOEA/D-EGO, to
deal with expensive multi-objective optimization. Recently,
new metaheuristic search algorithms have been developed.
In [33] and [32] authors extended, respectively, the flower
algorithm and the firefly algorithm to solve multi-objective
optimization problems.

Several methods and approaches using genetic algorithms
(GAs) have been developed for solving MOP, for example,
Vector Evaluated Genetic Algorithm (VEGA) [29], Multi-
Objective Genetic Algorithm (MOGA) [13], Niched Pareto
Genetic Algorithm (NPGA) [18], Strength Pareto Evolution-
ary Algorithm (SPEA) [38], Fast Non-dominated Sorting
Genetic Algorithm (NSGA-II) [8], Multi-objective Evolu-
tionary Algorithm (MEA) [28], Dynamic Multi-objective
Evolutionary Algorithm (DMOEA) [35], Pareto Fitness Ge-
netic Algorithm (PFGA) [11], Sharing Mutation Genetic
Algorithm(SMGA) [19] and others. Coello [7] maintains
an updated list with more than 5000 titles of publications
involving different genetic algorithms.

The weighted sum method is the simplest approach and
probably the most widely used classical method [25]. If
multiple solutions are desired, the problem should be solved
multiple times with different weight combinations. The main
difficulty with this approach is the selection of a weight
vector for each run of the program. In [23] researchers
have proposed a multi-objective genetic algorithm based on
a weighted sum of multiple objective functions where a
normalized weight vector is randomly generated for each
solution during the selection phase at each generation. In [34]
the results show that weighted sum method combined with
genetic algorithm can quickly search the solution of a high-
speed gasoline engine problem.

In this paper we are interested in the weighted sum method
which transforms the multi-objective optimization problem
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into a mono-objective one. More precisely we are interested
in the interactive method. The problem lies in the right
selection of the weights to characterize the decision makers
preferences. Here, we concentrate on the case where the
decision maker tries to ensure an equitable treatment of
each objective function. For this we introduce a solution
method based on a genetic algorithm which automates the
choice of the weights by varying them at each iteration of
the algorithm. As an application of our solution method we
consider a telecommunication base station location problem.

The remaining of the paper is outlined as follows. We
describe the problem in Section II. In Section III, we intro-
duce a solution method based on a genetic algorithm (GA)
which automates the choice of the weights at each iteration
of the algorithm. Section IV provides the obtained experi-
mental results corresponding to five academic problems. As
application, we study a UMTS base station location planning
problem. The results of this problem are presented in section
V. Finally, in Section VI we give some concluding remarks.

II. PROBLEM PRESENTATION

A multi-objective optimization problem is a problem that
involves more than one objective function to be optimized
simultaneously. In mathematical terms, a multi-objective
optimization problem can be formulated, in the context of
maximization, as (see [36], for instance):

Maximize
x

(f1(x), f2(x), · · · , fI(x))
T

S.t. gj(x) ≥ 0, j = 1, 2, · · · , J

hm(x) = 0, m = 1, 2, · · · ,M

xn ∈ [xnl, xnu] , n = 1, 2, · · · , N

(1)

where the integerI ≥ 2 is the number of objective functions,
fi(x) is the i-th objective or criterion,gj(x) is the j-th
inequality constraint,hm(x) is them-th equality constraint,
x = (x1, x2, · · · , xN )

T
∈ ℜN (search space) is the vector

(solution) of decision variable,xnl andxnu are the superior
boundary value and the inferior boundary value of each
componentxn of the vectorx, respectively. In the following,
we replace all these constraints byx ∈ C, C is the feasible
set of decision variable, called also constrained set. The
maximization in (1) is understood compenentwise.

In this paper we are interested in the weighted sum method
which transforms the multi-objective optimization problem
(1) into a mono-objective one as follows.

Maximize
x

h(x) =

I
∑

i=1

wifi(x)

S.t. x ∈ C,

(2)

where the weightswi, 1 ≤ i ≤ I, are positive values
satisfying

0 ≤ wi ≤ 1 and
I

∑

i=1

wi = 1. (3)

When we transform problem (1) into problem (2), the choice
of the weightswi is not an easy task for both the decision
maker and the system analyser. Assume that the decision
maker tries to balance the objective function weights, then

problem (2) becomes

Maximize
x

h(x) =

I
∑

i=1

wifi(x)

|wifi(x)− wjfj(x)| ≺ ǫ, i, j = 1, 2, · · · , I

S.t x ∈ C,

(4)

whereǫ is a positif number in the vicinity of0.
In the literature, the weights are usually taken constants. In
Section III-A, we show that, when using genetic algorithm
(GA) to solve problem (4), it is not always appropriate to
takewi as constants. Instead, we introduce dynamic weights.
Then, the problem (4) becomes:

Maximize
x

h(x, t) =
I

∑

i=1

wi(t)fi(x)

|wi(t)fi(x)− wj(t)fj(x)| ≺ ǫ, i, j = 1, 2, · · · , I

S.t x ∈ C,

(5)

where t is a time-step, andwi(t) is the dynamic weight
satisfying

0 ≤ wi(t) ≤ 1 and
I

∑

i=1

wi(t) = 1. (6)

In this paper,t represents an iteration step of the GA.

III. G ENETIC ALGORITHM AND DYNAMIC WEIGHTED

METHOD

Genetic algorithm (GA) is a search and optimization
technique that mimics natural evolution. GA has already a
relatively old history since the first work of John Holland
on the adaptive systems goes back to 1962 [17]. The work
of David Goldberg [15] largely contributed to popularize
the GA. GA is inspired by the evolutionist theory explaining
the origin of species. The main components of a GA are:
selection, crossover and mutation.

A. Limits of Choosing the Weights as Constants

In this section we will show the drawback of taking
the weightswi, in problem (4), as constants when solving
this problem by using GA. Without loss of generality, we
consider a multi-objective maximization problem with two
objective functions (I= 2).

Maximize
x

h(x) = w1f1(x) + w2f2(x)

|w1f1(x)− w2f2(x)| ≺ ǫ,

S.t. x ∈ C.

(7)

Assume thatf1 is much greater thanf2. When applying GA
to maximize the objective functionh, if we take the weights
w1 andw2 as constants, then there is a great risk that the GA
selection procedure chooses only solutions which improve
f1 by neglectingf2, since the functionf1 dominatesf2. We
illustrate the drawback through the following example.
Let [a, b] be a real interval, andf1 and f2 be two real
functions satisfying:

103 ≤ f1(x) ≤ 5× 104 and 0 ≤ f2(x) ≤ 1, x ∈ [a, b].
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The problem is to maximize:

h(x) = w1f1(x) + w2f2(x), x ∈ [a, b].

For example, letw1 = 0.0001 andw2 = 0.9999. Suppose
that in the iterationk of the GA, the solutionxk satisfying:
f1(xk) = 9× 103 andf2(xk) = 0.1 is retained as a solution
for h, i.e. the best among solutions of the current population.
Then we have:

h(xk) = w1f1(xk) + w2f2(xk) = 0.9 + 0.09999 ≈ 1.

Assume that in the next iteration of the GA, we find two
solutionsx(1)

k+1 andx(2)
k+1 satisfying:

f(x
(1)
k+1) = 5× f(xk) and g(x

(1)
k+1) ≈ g(xk)

f(x
(2)
k+1) ≈ f(xk) and g(x

(2)
k+1) = 5× g(xk)

Then we have:

h(x
(1)
k+1) = w1f1(x

(1)
k+1) + w2f2(x

(1)
k+1) ≈ 4.6

and

h(x
(2)
k+1) = w1f1(x

(2)
k+1) + w2f2(x

(2)
k+1) ≈ 1.4.

It is clear that althoughx(1)
k+1 andx(2)

k+1 improve, respectively,
the objective functionsf1 and f2 in the same way, the
probability that GA selectsx(2)

k+1 is weak compared to the

probability of selectingx(1)
k+1. When one takesw1 and w2

fixed, the fact that an objective function dominates another
is extremely probable. In this example, a solution which
improves the value off2 does not have the same influence
on maximizingh as the one which improves the value off1.
To remedy this problem we should not take the value of
weights as constants, but rather this value must be dynamic
and it changes in each iteration of the GA.

B. A GA Method with Dynamic Weights

Now, we present a GA approach applied to the optimiza-
tion model (5), using dynamic weights.

Let h =
I

∑

i=1

wi(t)fi, I ≥ 2, be the fitness function of the

GA. In each iterationt of the GA we take:

wi(t) :=

I
∑

j=1
j 6=i

|fj(xt−1)|

(I − 1)×
∑I

j=1 |fj(xt−1)|
, i = 1 . . . I,

where xt−1 is the best individual among solutions of the
population P (t − 1), with respect to the fitness func-
tion h; if fj(xt−1) = 0 for any 1 ≤ j ≤ I, we take
wi(t) := wi(t− 1). It is easy to see that0 ≤ wi(t) < 1,
1 ≤ i ≤ I, and

∑I

i=1 wi(t) = 1. Then the algorithm is
outlined as follows:

Step 0. At the initialization step of the GA, we assign ar-
bitrary positive real numbers towi(0), i = 1, . . . , I,
satisfying the condition (6);

Step 1. Run an iterationt of the GA, with the fitness
function h =

∑I

i=1 wi(t)fi;
Step 2. Letxt be the best solution among solutions of the

current population;
Step 3. Calculatefi(xt), i = 1, · · · , I;

Step 4. If
∑I

i=1 |fi(xt)| 6= 0 then take

wi(t+1) =

I
∑

j=1
j 6=i

|fj(xt)|

(I − 1)×
∑I

j=1 |fj(xt)|
, i = 1, . . . , I;

Step 5. t := t+ 1;
Step 6. Repeat steps1 through5 until a stopping criterion

is satisfied.

Our algorithm has two immediate advantages:

• It automates the choice of the weights. The utility
resides, therefore in the fact that we do not need to
define this factor in advance. This task turns out to be
a very delicate question.

• It ensures an equitable treatment of each objective
function, so we have an equitable chance to maximize
the functionsfi, i = 1, · · · , I, simultaneously. For
example, forI = 2, in the iterationt, the function
h(x, t) = w1(t)f1(x) + w2(t)f2(x) becomes:

h(x, t) =
|f2(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
f1(x)

+
|f1(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
f2(x).

Wherext−1 is the best solution of the iteration(t− 1)
of the GA.

C. Explanation

In this section we will explain our algorithm for only two
objective functions. The generalization is trivial. For this, we
are interested in linear scaling method (see [15], [22], [27],
for instance), where the fitnessh is transformed intohsc

according to
hsc = a× h+ b,

where the coefficientsa and b are determined so that the
mean fitnesshmean of the population should be a fixed
point and the maximal fitnesshmax of the population should
be equal toc × hmean. The constantc, usually set as
1.2 ≤ c ≤ 2, means the expected value of the number of
the best individual in the current generation surviving in the
next generation (see for instance [27]).
We use linear scaling method and we take the coefficienta
very smaller than1. For I = 2, we have

h(x, t) = w1(t)f1(x) + w2(t)f2(x).

Therefore,

hsc(x, t) = w1(t)× a× f1(x) + w2(t)× a× f2(x) + b.

Then, the application of scaling ath induces an application
of scaling atf1 and f2. Thus, the optimization model (5)
becomes:

hsc(x, t) =
a× |f2(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
f1(x)

+
a× |f1(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
f2(x) + b.

Where xt−1 is the best solution ofhsc selected for the
previous iteration(i − 1). Therefore,xt−1 survives in the
current population. Then, the difference betweenf1(x) and
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f1(xt−1), on the one hand, and the difference betweenf2(x)
andf2(xt−1), on the other hand, are reduced. Therefore, the
difference between the two terms of the objective function
hsc is reduced.

D. Example

Consider the example of the objective functionsf1 andf2
presented in Section III-A. We apply the proposed algorithm,
given in Section III-B, to maximizeh = w1f1 + w2f2.

• Let xt−1 be the best solution among solutions of the
population in the iteration(t − 1) of the GA. Assume
that the solutionxt−1 satisfiesf1(xt−1) = 9× 103 and
f2(xt−1) = 0.1. Then the weights, in the iterationt, are
defined as:

w1(t) =
|f2(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
≈ 1.11109× 10−5

and

w2(t) =
|f1(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
≈ 0.99998.

Thereforeh(xt−1, t) = w1(t)f1(xt−1)+w2(t)f2(xt−1)

≈ 1.999961× 10−1.

• Then, in the next iteration of the GA we have to
maximize the function

h(x, t) = 1, 11109× 10−5f1(x) + 0, 99998f2(x).

Let x1 andx2 be two solutions such as:

f1(x1) = 5× f1(xt−1) and f2(x1) ≈ f2(xt−1)

and

f1(x2) ≈ f1(xt−1) and f2(x2) = 5× f2(xt−1).

Then we have:

h(x1, t) = w1(t)f1(x1)+w2(t)f2(x1) ≈ 5.999885×10−1

and

h(x2, t) = w1(t)f1(x2)+w2(t)f2(x2) ≈ 5.999881×10−1.

It is clear that the probabilities to selectx1 andx2 are nearly
equal. The solutionx2, thus, has almost the same chance as
x1 to be selected in the next generation of the GA, which is
not the case with the choice of fixed weights.

IV. EXPERIMENTATION: FIVE TEST PROBLEMS

We test our algorithm on five optimization problem given
in the literature. In these experimentations:

• We will compare the two terms of the objective function
using, first, classical weighted method and secondly our
dynamic weighted method;

• We will observe the behavior of solutions for nine
iterations of GA.

 1           2          3           4          5          6          7           8          9         100

0

 0.005
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 0.02
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 0.03

0.035
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0.045
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     Iteration

 

 w2 f2

 

 

w1f1

 
 

Fig. 1. SCH1: comparison betweenw1f1 andw2f2 for 10 tests using
dynamic weighted method

A. Test Function: SCH1

The functionSCH1 was proposed by Schaffer [30] and
cited in [10] and [8] for instance.

SCH1 :

Minimize f1(x) = x2

Minimize f2(x) = (x− 2)2

S.t. − 5 ≤ x ≤ 5.

SCH1 has a Pareto optimal set in0 ≤ x ≤ 2. We transform
this problem into the mono-objective optimization problem.

Maximize h(x) = −w1f1(x)− w2f2(x)

S.t. − 5 ≤ x ≤ 5.

The objective functionsf1 andf2 satisfy:0 ≤ f1 ≤ 25 and
0 ≤ f2 ≤ 49. f1 has the minimum in the vicinity ofx = 0.
In this case, the functionf2 is far from its minimum. On
the other hand,f2 has the minimum in the neighborhood of
x = 2. In this case, the functionf1 is far from its minimum.
We apply the GA with dynamic weights presented in Section
III-B. The parameters of GA are set as follows: crossover
probability pc = 0.4, mutation probabilitypm = 0.01,
population size20, and maximum number of generations
30. The experiment was conducted on ten times. The results
are presented in Table I. The second column specifies the
choice ofwi and the third column shows the best solution
after ten trials of each experiment. The fourth column tests
if the solution belongs to the Pareto set or not. The right
hand part of Table I calculatesw1f1 and w2f2 of the last
iteration.
When comparing the two terms of the objective function
h (w1f1 and w2f2), using dynamic weighted method, we
find that our algorithm ensures an equitable treatment of
each objective. Indeed, in10 experiments, we always have
|w1f1 − w2f2| ≤ 0.006, see Fig 1.
However, when we use classical weighted method to compare
w1f1 and w2f2, we see that the difference between the
two terms is very important. Indeed, this difference reached
|w1f1 − w2f2| ≥ 0.6 in the sixth iteration, see Fig 2.
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TABLE I
RESULTS FOR TEST PROBLEMSCH1

Method wi Best solutionx Pareto Time in Secondes

classical Weighted Sum
w1 = 0, 7 andw2 = 0, 3 0,5999 Yes 0,67

w1 = 0, 3 andw2 = 0, 7 1,4001 Yes 0,67

Dynamic Weighted Sum Dynamic 1,094 Yes 0,86

w1f1 w2f2

0,2519 0,5880

0,5880 0,2518

0,0110 0,0113

TABLE II
RESULTS FOR TEST PROBLEMSCH2

Method wi Best solutionx Pareto Time in Secondes

Classical Weighted Sum
w1 = 0, 7 andw2 = 0, 3 4,00006 Yes 0,91

w1 = 0.3 andw2 = 0.7 4.785 Yes 0,91

Dynamic Weighted Sum Dynamic 4.2372 Yes 1,2

w1f1 w2f2

0.00048 0.29994

0.23571 0.03213

0.2609 0.2621

TABLE III
RESULTS FOR TEST PROBLEMM IN-EX

Method wi Best solutionx1 Best solutionx2 Time in Secondes

Classical Weighted Sum
w1 = 0.7 andw2 = 0.3 0.949 0.053 1

w1 = 0.3 andw2 = 0.7 0.909 0.048 1

Dynamic Weighted Sum Dynamic 0.252 0.005 1.09

w1f1 w2f2

0.664 0.332

0.27 0.80

0.21 0.21

TABLE IV
RESULTS FOR TEST PROBLEMCONST-M IN-EX

Method wi Best solutionx1 Best solutionx2 Time in Secondes

Classical Weighted Sum
w1 = 0.7 andw2 = 0.3 0.74 0.16 1.34

w1 = 0.3 andw2 = 0.7 0.82 0.04 1.34

Dynamic Weighted Sum Dynamic 0.66 0.017 1.4

w1f1 w2f2

0.24 0.88

0.51 0.47

0.46 0.46
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Fig. 2. SCH1: comparison betweenw1f1 and w2f2 for 10 tests using
classical weighted method (w1 = 0.3 andw2 = 0.7)

B. Test Function: SCH2

This problem proposed by Schaffer [30] and cited in
[10] for instance, aims to minimize two cost functions with
a single variable. It is given by:

 1           2          3           4          5          6          7           8          9         100
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 0.27
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 w2 f2

Fig. 3. SCH2: comparison betweenw1f1 andw2f2 for 10 tests using
dynamic weighted method

SCH2 :

Minimize f1(x) =



















−x if x ≤ 1

x− 2 if 1 < x ≤ 3

4− x if 3 < x ≤ 4

x− 4 if x > 4
Minimize f2(x) = (x− 5)2

−5 ≤ x ≤ 10

IAENG International Journal of Computer Science, 41:2, IJCS_41_2_03

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



TABLE V
RESULTS FOR TEST PROBLEMMAX -EX

Method wi Best solutionx1 Best solutionx2 Time in Secondes

Classical Weighted Sum
w1 = 0.7 andw2 = 0.3 0.655 0 1,24

w1 = 0.3 andw2 = 0.7 0.9992 0.0003 1,24

Dynamic Weighted Sum Dynamic 0.3450 0.0120 1,85

w1f1 w2f2

0.3112 17.5422

0.0302 41.2992

0.9570 0.9339

TABLE VI
RESULTS FORUMTS PROBLEM

Method wi w1f1 w2f2 Time in Seconds

Classical Weighted Sum w1 = 0.5 andw2 = 0.5 47.5 8.2 16,04

Dynamic Weighted Sum Dynamic 54.97 55.88 17,93
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Fig. 4. SCH2: comparison betweenw1f1 and w2f2 for 10 tests using
classical weighted method (w1 = 0.3 andw2 = 0.7)
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Fig. 5. Min-Ex: comparison betweenw1f1 andw2f2 for 10 tests using
dynamic weighted method

The Pareto optimal set is formed by two discontinuous areas:
x ∈ [1, 2] ∪ [4, 5], which results in a discontinuous Pareto
optimal front. This problem is transformed into the mono-
objective optimization problem.

Maximize h(x) = −w1f1(x)− w2f2(x)

S.t. − 5 ≤ x ≤ 10.
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Fig. 6. Min-Ex: comparison betweenw1f1 andw2f2 for 10 tests using
classical weighted method (w1 = 0.7 andw2 = 0.3)
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Fig. 7. Const-Min-Ex: comparison betweenw1f1 andw2f2 for 10 tests
using dynamic weighted method

The objective functionsf1 andf2 satisfy:−1 ≤ f1 ≤ 6 and
0 ≤ f2 ≤ 100. f1 has the minimum in the vicinity ofx = 1.
In this case, the functionf2 is far from its minimum. On
the other hand,f2 has the minimum in the neighborhood of
x = 5. In this case, the functionf1 is far from its minimum.
We apply the GA with dynamic weights. We run our algo-
rithm ten times. The maximum number of generations is40.
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Fig. 10. Max-Ex: The behavior of solutions for nine iterations

The results are presented in Table II. When we compare the
two termsw1f1 andw2f2 of the objective functionh, using
dynamic weighted method, we find that our algorithm, in
this example also, ensures almost an equitable treatment of
each objective. Indeed, in10 experiments, we always have
|w1f1 − w2f2| ≤ 0.008, see Fig 3.
However, when we use classical weighted method to compare
w1f1 and w2f2, we see that the difference between the
two terms is very important. Indeed, this difference reached
|w1f1 − w2f2| ≥ 0.3 in the fifth iteration, see Fig 4.

C. Test Function: Min-Ex

Min-Ex is a minimization problem with two cost functions
and two variables. It was proposed by Deb [9] and cited
in [10] for instance. Its solution is a convex Pareto optimal
front. It is given by:

Min-Ex :

Minimize f1(x1, x2) = x1

Minimize f2(x1, x2) = (1 + x2)/x1

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5.

Since the optimal Pareto value ofx2 is exactly0, then the
analytical Pareto front is written as:

f2(x1, x2) =
1

f1(x1, x2)

Theproblem Min-Ex is transformed into the mono-objective
optimization problem.

Maximize h(x1, x2) = −w1f1(x1, x2)− w2f2(x1, x2)

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5.

We apply the GA with dynamic weights presented in Section
III-B. The parameters of GA are set as follows: crossover
probability pc = 0.4, mutation probabilitypm = 0.01,
population size20, and maximum number of generations30.
The experiment was conducted on ten times. The results are
presented in Table III.
When we compare the two termsw1f1 and w2f2 of the
objective functionh, using dynamic weighted method, we
find that our algorithm ensures an equitable treatment of
each objective. Indeed, in10 experiments, we always have
|w1f1 − w2f2| ≤ 0.0001, see Fig 5.
However, when we use classical weighted method to compare
w1f1 and w2f2, we see that the difference between the
two terms is very important. Indeed, this difference reached
|w1f1 − w2f2| ≥ 0.5 in the eighth iteration, see Fig 6.

D. Test Function: Const-Min-Ex

Const-Min-Ex is a minimization problem with two cost
functions and two variables with two constraints. It was
proposed by Deb [9] and cited in [10] for instance. It is
given by:

Const-Min-Ex:

Minimize f1(x1, x2) = x1

Minimize f2(x1, x2) = (1 + x2)/x1

x2 + 9x1 ≥ 6

−x2 + 9x1 ≥ 1

0.1 ≤ x1 ≤ 1 ; 0 ≤ x2 ≤ 5.
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The problem Const-Min-Ex is transformed into the mono-
objective optimization problem.

Maximize h(x1, x2) = −w1f1(x1, x2)− w2f2(x1, x2)

x2 + 9x1 ≥ 6

−x2 + 9x1 ≥ 1

0.1 ≤ x1 ≤ 1 ; 0 ≤ x2 ≤ 5.

We apply the GA with dynamic weights presented in Section
III-B. The parameters of GA are set as follows: crossover
probability pc = 0.5, mutation probabilitypm = 0.01,
population size20, and maximum number of generations40.
The experiment was conducted on ten times. The results are
presented in Table IV.
When we compare the two termsw1f1 and w2f2 of the
objective functionh, using dynamic weighted method, we
find that our algorithm ensures an equitable treatment of
each objective. Indeed, in10 experiments, we always have
|w1f1 − w2f2| ≤ 0.0001, see Fig 7.
However, when we use classical weighted method to compare
w1f1 and w2f2, we see that the difference between the
two terms is very important. Indeed, this difference reached
|w1f1 − w2f2| ≥ 0.57 in the third iteration, see Fig 8.

E. Test Function: Max-Ex

Max-Ex is a maximization problem with two cost func-
tions and two variables. It was proposed by Deb [9] and
cited in [10] for instance. Its solution is a non-convex Pareto
optimal front. It is given by:

Max-Ex :

Maximize f1(x1, x2) = 1.1− x1

Maximize f2(x1, x2) = 60− ((1 + x2)/x1)

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5.

Max-Ex has a Pareto optimal set inx2 = 0 and0.1 ≤ x1 ≤
1. Since the optimal Pareto value ofx2 is exactly 0, then
the objective functionsf1 andf2 satisfy:0.1 ≤ f1 ≤ 1 and
50 ≤ f2 ≤ 59. The problem Max-Ex is transformed into the
mono-objective optimization problem.

Maximize h(x1, x2) = w1f1(x1, x2) + w2f2(x1, x2)

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5.

Using classical weighted sum method, the fact that the
objective functionf2 dominatesf1 is extremely probable.
Now we apply our algorithm presented in Section III-B to
Max-Ex problem. For genetic algorithm, the parameters are
set as follows: crossover probabilitypc = 0.4, mutation
probability pm = 0.01, population size20, and maximum
number of generations40. The experiment was conducted
on ten times. First, we will compare the two terms of the
objective functionh. The results are presented in Table V.
When comparing the two termsw1f1 andw2f2, we find that
our algorithm ensures almost an equitable treatment of each
objective. Indeed, in the 10 experiments, we always have
|w1f1 − w2f2| ≤ 0.03, see Fig 9.
The second task is to observe the behavior of individuals of
the population in each generation of GA. For simplicity, we
consider a population of only 10 individuals and we limit the
observation for only nine iterations. The results are presented

in Fig 10. In the first iteration, the solutions (individuals) are
randomly distributed on the interval[0.1, 1]. We see that the
two solutionsx1

1 = 0.1 and x2
1 = 0.2 belong to the area

which promotes the functionf1 and neglects the function
f2, and the solutionx3

1 = 0.9 belongs to the region which
promotes the functionf2 and neglects the functionf1. In
the second iteration, the solutionsx1

1 andx3
1 disappear, and

in the third iteration, the three solutions disappear. In the
sixth iteration, a solutionx = 0.85 appears because of the
crossover and mutation operators. This solution disappears in
the eighth iteration. In the ninth iteration, only the solutions
that optimize simultaneously both functionsf1 andf2 resist.

V. A PPLICATION: UMTS BASE STATION LOCATION

PLANNING PROBLEM

In this section, we address the problem of planning the
universal mobile telecommunication system (UMTS) base
stations location presented in [2], [3], [14].

A. Problem Statement and Model Presentation

Consider a territory to be covered by a UMTS service.
Let S = {1, ...,m} be a set of candidate sites (CS) where
a base station (BS) can be installed andI = {1, ..., n} be a
set of test points (TPs). Each base station BSj , j ∈ S, has
a cost of installation denoted bycj. We denote byui the
required number of simultaneously active connections for a
TP of indexi (TPi). Let us define the two following classes
of decision variables:

yj =

{

1 if a BS is installed in a sitej,

0 otherwise,
for j ∈ S,

(8)
and

xij =

{

1 if a TPi is assigned to aBSj ,

0 otherwise,
(9)

for i ∈ I and j ∈ S.
We consider a power-based PC mechanism. Suppose we have
directive BSs with three identical 120 degree sectors and
with an omnidirectional antenna diagram along the horizontal
axis. Let the index setIσj ⊆ I denotes the set of all TPs that
fall within the sectorσ of the BS installed in the candidate
siteCSj . Since we wish to maximize the total trafic covered
and minimize the total installation cost subjected to some
constraints, then the problem can be expressed as [2], [3]:

Maximize f1(x) =

n
∑

i=1

m
∑

j=1

uixij ,

Minimize f2(y) =

m
∑

j=1

cjyj ,

(10)

subject to:
∑m

j=1 xij ≤ 1 , i ∈ I, (11)

xij ≤ min{1, gijPmax

Ptarget
}yj , i ∈ I , j ∈ S, (12)

yj
∑

i∈Iσ
j

m
∑

t=1

(
uigij
git

xit − 1) ≤
SF

SIRmin

, j ∈ S, σ ∈ Σ,(13)

xij , yj ∈ {0, 1}, i ∈ I, j ∈ S. (14)
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Where the propagation factor of the radio link between a
TPi and a candidate siteCSj is given by:

gij = (10
Lu(dij)

10 )−1,

wherethe attenuationLu is calculated by the Hata’s propa-
gation model presented in [16].
The multi-objective problem (10) can be transformed into a
mono-objective one as follows:

Maximize w1

n
∑

i=1

m
∑

j=1

uixij − w2

m
∑

j=1

cjyj , (15)

Subject to the constraints (11), (12), (13) and (14), where
w1 andw2 are the weights off1 andf2.

B. Data Description and Computational Results

We consider a rectangular service area, a number of candi-
date sites (CSs) in which to locate omnidirectional antennas,
and a number of TPs. Using a pseudorandom number gener-
ator each CS and each TP is assigned a position with uniform
distribution in the service area. We consider an instance of
an urban environment. The simulation parameters are:

• Size of the service area (inkm): 0.4× 0.4;
• Number of TPs:95, and number of BSs:22;
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Fig. 13. UMTS: comparison ofw1f1 andw2f2 for 10 tests

• ui = 1,
• Signal frequencyF = 2000 MHz;
• Height of the mobile stationHm = 1 meter;
• Height of the baseHb =10 meters;
• Target powerPtarget = −100 dBm;
• Maximum powerPmax = 30 dBm;
• Ratio between spread signal and user rateSF = 128;
• Target signal-to-Interference RatioSIRtarget = 6 dB;
• SIRmin = 0.03125 dB;
• Costsci: are taken randomly between1 and20 units.

Figure 11 illustrates the distribution of the TPs and BSs in
the area service, and Figure 12 shows the cost of installation
of each BS. The GA parameters are set as follows: crossover
probability pc = 0.4, mutation probabilitypm = 0.01,
population size 30, and maximum number of generations
1000. We run our algorithm ten times. The best solution
consists of installing 21 BSs instead of 22, which cover 93
TPs among 95, with a cost equal to 179. Then we have a gain
of 10 (approximately 5.3% of costs of BSs), since the cost
of installing all BSs is 189. When comparing the two terms
of the objective function (15), we find that our algorithm
ensures almost an equitable treatment of each objective, see
Fig 13 and Table VI.

VI. CONCLUSION

In this paper we are interested in the weighted sum method
where a multi-objective problem is transformed into a mono-
objective one. The problem lies in the right selection of
the weights to characterize the decision makers preferences.
Here, we tried to solve the following main problem: How to
ensure an equitable treatment of each objective function?
In order to solve this problem we have introduced a solu-
tion method based on a genetic algorithm approach which
automates the choice of the weights by varying them at each
iteration of the algorithm. The utility of choosing dynamic
weights lies mainly in the two following points:

• It automates the choice of the weights. Therefore we do
not need to define these factors a priori.

• It ensures an equitable treatment of each objective
function.
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Our algorithm is tested on five academic problems and is
appliedto a UMTS base station location planning problem.
The obtained results validate the method proposed in this
paper.
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