TAENG International Journal of Computer Science, 41:2, [JCS 41 2 03

A Genetic Algorithm Approach for an Equitable
Treatmentof Objective Functions in
Multi-objective Optimization Problems
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Abstract—A reasonable solution to a multi-objective problem under consideration. In [19], an improved multi-objective
is to determine an entire Pareto optimal solution set. Another genetic algorithm (MOGA), named SMGA, was proposed
general approach is to transform a multi-objective optimization for solving multi-objective optimization problems. In [27]

problem into a mono-objective one. Determination of a single . . . .
objective is possible with methods such as weighted sum author presented genetic algorithms for solving fuzzy multi-

method, but the problem lies in the right selection of the weights Objective optimization. In [1] authors proposed three multi-
to characterize the decision makers preferences. In this paper, objective Artificial Bee Colony (ABC) algorithms based
we study the problem where the decision maker tries to balance on synchronous and asynchronous models using Pareto-
the objective function weights. This task is not easy for both dominance and non-dominated sorting. Some proposal for

decision maker and system analyser. To remedy this problem . - A .
we introduce a solution method based on a genetic algorithm extending particle swarm optimization algorithms to treat

which automates the choice of the weights by varying them MOPS, have been published in [6] and [36]. A new multi-
at each iteration of the algorithm. Our algorithm is tested objective algorithm based on Monte Carlo tree search is
on five academic problems and is applied to a UMTS base proposed in [26]. In [4] authors presented a new method of
station location planning problem. The obtal.ned results show solving non-linear multi-objective optimization problems by
that the proposed approach ensures an equitable treatment of ddi trol function that quides th timizati
each objective function. adding a control function that guides the optimization process
] ) S o over the Pareto set which does not need to be found explicitly.
Index Terms—genetic algorithm, multi-objective optimiza- In [37] authors proposed a method, called MOEA/D-EGO, to
tion, weighted sum method, UMTS problem. . . A L !
deal with expensive multi-objective optimization. Recently,
new metaheuristic search algorithms have been developed.
I. INTRODUCTION In [33] and [32] authors extended, respectively, the flower

OST of the real-life decision-making problems hava/gorithm and the firefly algorithm to solve multi-objective
M more than one conflicting objective function. ReseaPPtimization problems. _ _ _
chers studied multi-objective optimization problems from Several methods and approaches using genetic algorithms
different viewpoints and, thus, there exist different solutioff>AS) have been developed for solving MOP, for example,

methods and goals for solving them. The goal may be findﬁqor. Evaluated Genetic Algorithm (VEGA) [29], Multi-
a representative set of Pareto optimal solutions, or quddpiective Genetic Algorithm (MOGA) [13], Niched Pareto

tifying the trade-offs in satisfying the different objectivesCenetic Algorithm (NPGA) [18], Strength Pareto Evolution-
or finding a single solution that satisfies the preferences @ Algorithm (SPEA) [38], Fast Non-dominated Sorting
a decision maker. The approaches used for solving muft€netic Algorithm (NSGA-II) [8], Multi-objective Evolu-
objective problems (MOPSs) can be classified into three cafi?nary Algorithm (MEA) [28], Dynamic Multi-objective
gories: approaches based on the transformation of the pr&iyelutionary Algorithm (DMOEA) [35], Pareto Fitness Ge-
lem into a mono-objective problem, non-Pareto approachgglic Algorithm (PFGA) [11], Sharing Mutation Genetic
and Pareto approaches (see [12], [20], [24], for instance)Al9Orithm(SMGA) [19] and others. Coello [7] maintains
In the literature, a special and particular attention is give! UPdated list with more than 5000 titles of publications
to multi-objective problems using exact and approximat8Velving different genetic algorithms.
algorithms. Exact methods such as Branch and Bound, thel € weighted sum method is the simplest approach and
A* algorithm and Dynamic Programming are effective foprob'ably the. most Wldely used classical method [25]. If
problems of small sizes. When problems become hard8Hultiple solutions are desired, the problem should be solved
usually because of their NP-hard complexity, approxima{H_U_lt'ple tlm_es W|_th different wglght combm:_:ltlons. The main
algorithms are mandatory. Several adaptations of metaheuflfficulty with this approach is the selection of a weight
tics have been proposed in the literature for solving mulfector for each run of the program. In [23] researchers
objective problems [21], [31]. In [5] authors described have 'proposed a multl-obJectlve genetlc algorlthm based on
simulated annealing based multi-objective optimization & Weighted sum of multiple objective functions where a
gorithm (AMOSA) that incorporates the concept of archivBormalized weight vector is randomly generated for each

in order to provide a set of trade-off solutions for the problersPlution during the selection phase at each generation. In [34]
the results show that weighted sum method combined with
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into a mono-objective one. More precisely we are interestpdoblem (2) becomes

in the interactive method. The problem lies in the right s

selection of the weights to characterize the decision makers Maximize h(z) = Zwifi(x)

preferences. Here, we concentrate on the case where the x P

decision maker tries to ensure an equitable treatment of lwifi(z) —w;ifi(x)| <€, 4,j=1,2,-- 1 (4)
each objective function. For this we introduce a solution

method based on a genetic algorithm which automates the Stz e,

choice of the weights by varying them at each iteration \)/\f/heree is a positif number in the vicinity 06

the ?'90”‘”“- As an ap_phc_atlon of our golutlon _method W the literature, the weights are usually taken constants. In
consider a telecommunication base station location prOble@ection llI-A, we show that, when using genetic algorithm
The remaining of the paper is outlined as follows. W?GA) to solve problem (4), it is not always appropriate to

describe the.problem in Section II. In Sect|_on i, we 'ntrofakewi as constants. Instead, we introduce dynamic weights.
duce a solution method based on a genetic algorithm (G%en the problem (4) becomes:

which automates the choice of the weights at each iteration

of the algorithm. Section IV provides the obtained experi- o !

mental results corresponding to five academic problems. As MaX|$m|ze h(z,t) = Zwi(t)fi(fc)

application, we study a UMTS base station location planning _ N i_:1 L _ (5)
problem. The results of this problem are presented in section wit) fi(w) —w;(O) f;(2)] <& d,5=1,2,--,1

V. Finally, in Section VI we give some concluding remarks. gt ¢ c,

where ¢t is a time-step, andu;(t) is the dynamic weight
II. PROBLEM PRESENTATION satisfying

A multi-objective optimization problem is a problem that I
involves more than one objective function to be optimized 0<w(t) <1 and Zwi(t) =1. (6)
simultaneously. In mathematical terms, a multi-objective i=1

optimization problem can be formulated, in the context qf, this paper; represents an iteration step of the GA.
maximization, as (see [36], for instance):

Maximize (f1(z), fo(z), -, f1(z))" I1l. GENETIC ALGORITHM AND DYNAMIC WEIGHTED
St gj(x)>0, j=1,2,---,J L METHOD
hm(z) =0, m=1,2,--- M (1) Genetic algorithm (GA) is a search and optimization

technique that mimics natural evolution. GA has already a
relatively old history since the first work of John Holland
where the integef > 2 is the number of objective functions,on the adaptive systems goes back to 1962 [17]. The work
fi(z) is the i-th objective or criterion,g;(x) is the j-th Of David Goldberg [15] largely contributed to popularize
inequality constrainth,, (z) is them-th equality constraint, the GA. GA is inspired by the evolutionist theory explaining
r = (z1,2, - 7;L»N)T € RV (search space) is the vectofthe origin of species. The main components of a GA are:
(solution) of decision variabley,,; andz,,, are the superior Selection, crossover and mutation.
boundary value and the inferior boundary value of each
componente,, of the vectorz, respectively. In the following,
we replace all these constraints by C, C' is the feasible . ) i ]
set of decision variable, called also constrained set. Theln this section we will show the drawback of taking
maximization in (1) is understood compenentwise. the weightsw;, in problem (4), as constants when solving
In this paper we are interested in the weighted sum methBiS Problem by using GA. Without loss of generality, we
which transforms the multi-objective optimization problenfonSider a multi-objective maximization problem with two
(1) into a mono-objective one as follows. objective functions (£ 2).

Ty € [337Ll7.ﬁﬁnu]7 n = 1727.,, 7]\/’

A. Limits of Choosing the Weights as Constants

I Maxignize h(z) = wy fi1(x) + we fo(x)
Maximize h(z) = ;w fi(x) @ lwy f1(x) — wafolx)| < e, @
Stze(, StzeC.
where the weightsw;, 1 < i < I, are positive values Assume thatf; is much greater thafi,. When applying GA
satisfying to maximize the objective functioh, if we take the weights
I w; andws as constants, then there is a great risk that the GA
0<w; <1 and Zwl =1 (3) selection procedure chooses only solutions which improve
= f1 by neglectingfs, since the functiory; dominatesf,. We

) _illustrate the drawback through the following example.
When we transform problem (1) into problem (2), the choicggy; [a,b] be a real interval, andf, and f, be two real
of the weightsw; is not an easy task for both the decisioR nctions satisfying:

maker and the system analyser. Assume that the decision
maker tries to balance the objective function weights, them0® < f; () <5 x 10* and 0 < fa(x) <1, =z €la,b].
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The problem is to maximize: Step 4. IfZiI:1 | fi(x)| # 0 then take
h(z) = w1 f1(x) + wafo(x), x € [a,b].

I
S 1 (@)
For example, letw; = 0.0001 andw, = 0.9999. Suppose i=1

i

that in the iteratiork of the GA, the solutionz;, satisfying: w;(t+1) = 7 ,1=1,...,1;

fi(xr) = 9% 103 and fo(z1,) = 0.1 is retained as a solution (I = 1) x 35 [fi(ze)]

for h, i.e. the best among solutions of the current population. Step 5. ¢ := ¢ + 1;

Then we have: Step 6. Repeat stefsthrough5 until a stopping criterion
is satisfied.

h(xzk) =w Tr) +w zr) = 0.940.09999 ~ 1.
(@) 1ilzi) 2/2(1) Our algorithm has two immediate advantages:

Assume that in the(next iteration of the GA, we find two , |+ automates the choice of the weights. The utility
. 1 2 P :
solutionsz; [, andz,”, satisfying: resides, therefore in the fact that we do not need to
1\ _ 1\ define this factor in advance. This task turns out to be
F@ign) =5 flay) and glayy) ~ g(wr) a very delicate question.

f(w?fll) ~ f(zx) and 9(565321) =5 x glax) o It ensures an equitable tregtment of each objgctilve
function, so we have an equitable chance to maximize

Then we have: the functionsf;, i = 1,---,1I, simultaneously. For

Rz ) = wy £ (2D ) 4 ws Fol(zD) ) & 4.6 example, for/ = 2, in the iterationt, the function

(Fhra) = WS +wafolti) h(z, t) = wi(t) fy () + wa(t) f2(x) becomes:

" (2) (2) (@) h(z,t) = Falee ) fi(@)

h(zyy) = wifi(z]y) +wafe(r)y) = 1.4. ’ | f1(zi—1)| + | fa(xi—1)]

2) |fi(ze—1)]

It is clear that althouglfx,(cﬂi1 andz,/, improve, respectively, + : fa(z).

the objective functionsf; and f, in the same way, the (@)l + | F2(@e1)]

probability that GA selects\”, is weak compared to the ~ Wherez,_, is the best solution of the iteratiof — 1)
probability of selectinga:,(cﬁl. When one takesv; and ws of the GA.

fixed, the fact that an objective function dominates another

is extremely probable. In this example, a solution whic. Explanation

improves the value of, does not have the same influence |, this section we will explain our algorithm for only two
on maximizingh as the one which improves the valuefat  gpjective functions. The generalization is trivial. For this, we
To remedy this problem we should not take the value %fre interested in linear scaling method (see [15], [22], [27],

weights as constants, but rather this value must be dynamj¢ instance), where the fitneds is transformed intoh.
and it changes in each iteration of the GA. according to

hse =a x h+Db,

B. A GA Method with Dynamic We|ghts. ~_ where the coefficientsa and b are determined so that the
Now, we present a GA approach applied to the optimizgiean fitnessh, .., of the population should be a fixed

tion modei (5), using dynamic weights. point and the maximal fitnegs,,,., of the population should

' : be equal toc x h . The constante, usually set as
Let h = (t) fi, I > 2, be the fitness function of the mean !
Zw ®)f - 1.2 < ¢ < 2, means the expected value of the number of

GA. In eéEh iteratiort of the GA we take: the best individual in the current generation surviving in the
I next generation (see for instance [27]).
> | fi(ze—1)] We use linear scaling method and we take the coeffiaient
@ = very smaller thari. For I = 2, we have

, i=1...1
(I =1) % Xy | fi(mea)] h(z,t) = wi(t) fi(z) + w2 () fa(z).

where z;_; is the best individual among solutions of therherefore,
population P(t — 1), with respect to the fithess func-
tion h; if fi(zi—1) = 0 forany 1 < j < I, we take hse(, 1) = wi(t) X ax fi(z) + w2 (t) X ax fo(r) +b.

wi(t) := wi(t —1). Itis easy to see thal < wi(t) <1, Then, the application of scaling atinduces an application
L << and}’;_,wi(t) = 1. Then the algorithm is of scaling atf, and f,. Thus, the optimization model (5)
Step 0. At the initialization step of the GA, we assign ar- ax |fo(zi_1)]
bitrary positive real numbers t0;(0),i = 1,...,1, hse(w,t) = Fa Dl + 1 h@ )|f1(33)
satisfying the condition (6); ; |}_(1x ) 2t
Step 1. Run an iteration of the GA, with the fitness el A |
function b = S0 wi(t) fi; [fi(ze-0)l + [fa(@e-1)]
Step 2. Letx; be the best solution among solutions of th&/here x;_; is the best solution ofi,. selected for the
current population; previous iteration(i — 1). Therefore,z;_; survives in the
Step 3. Calculatef;(z;),i=1,--- ,I; current population. Then, the difference betwegfr) and
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fi1(z¢—1), on the one hand, and the difference betwggn) %% - :,';,:
and fa(z;—1), on the other hand, are reduced. Therefore, the ,
difference between the two terms of the objective function
hsc is reduced. 0.035 Wf 2
0.03
D. Example 0.025
Consider the example of the objective functiohsand f> | . "
presented in Section IlI-A. We apply the proposed algorithm,
given in Section 1lI-B, to maximizé, = w; f1 + wa fo. 0.015
o Let z;,_; be the best solution among solutions of theoo1
population in the iteratior{t — 1) of the GA. Assume
that the solutionr; ; satisfiesf;(x;_1) =9 x 10%> and .05
fa(x:—1) = 0.1. Then the weights, in the iteratianare
defined as: 00 1 2 3 4 5 6 7 8 9 10

Iteration
|f2(33t71)\ -5
wi(t) = ~ 1.11109 x 10 : . : :
1( ) |f1(33t—1)‘ + |f2(17t—1)| z;/%arlﬁic vsvggr]lt.egonr:lgirc;s&on betweem f1 and ws fo for 10 teds using

and

wa(t) = [f1 (i) ~ 0.99998. A. Test Function: SCH1

@)+ [ fa(z)]
The functionSC H1 was proposed by Schaffer [30] and
Thereforeh(x;—1,t) = wi(t) fi(zi-1) +wa(t) f2(2i-1)  cited in [10] and [8] for instance.
~ -1

. Then, in the next iteration of the GA we have to SCH1: Minimize fa(z) = (z —2)?
maximize the function St. —5<x<5.

h(z,t) = 1,11109 x 107° f1(z) + 0,99998 f2 (). SCH1 has a Pareto optimal set (h< z < 2. We transform

) this problem into the mono-objective optimization problem.
Let z; andzo be two solutions such as:

fi(z1) =5 X fi(ze—1) and fo(x1) = fo(zi—1)

and

Maximize h(z) = —w1 f1(z) — wa fo(x)
St. —5<ax<h.

The objective functiong; and f, satisfy:0 < f; < 25 and
fi(ze) = fi(zi—1) and fa(z2) =5 X fa(zi—1). 0 < fo <49. f1 has the minimum in the vicinity of = 0.

In this case, the functiorf, is far from its minimum. On
Then we have: the other handf, has the minimum in the neighborhood of

x = 2. In this case, the functioff; is far from its minimum.
h(a1,t) = wi(t) fi(a1)+we(t) f2(z1) ~ 5.999885x 107" We apply the GA with dynamic weights presented in Section
[lI-B. The parameters of GA are set as follows: crossover
probability p. = 0.4, mutation probabilityp,, = 0.01,
population size20, and maximum number of generations
30. The experiment was conducted on ten times. The results

Itis clear that the probabilities to select andz, are nearly &€ presented in Table I. The second column specifies the

equal. The solutiom:,, thus, has almost the same chance &Qoice ofw; and the third column shows the best solution

21 to be selected in the next generation of the GA, which @'ter ten trials of each experiment. The fourth column tests
not the case with the choice of fixed weights. if the solution belongs to the Pareto set or not. The right

hand part of Table | calculates, f; and ws f> of the last
iteration.
IV. EXPERIMENTATION: FIVE TEST PROBLEMS When comparing the two terms of the objective function
, i o . h (w1 f1 and ws f5), using dynamic weighted method, we
_ We t(_est our algorithm on flve_optlmlz_atlon problem giveRing that our algorithm ensures an equitable treatment of
in the literature. In these experimentations: each objective. Indeed, ih0 experiments, we always have
» We will compare the two terms of the objective functionw; f; — wa f2| < 0.006, see Fig 1.
using, first, classical weighted method and secondly odiowever, when we use classical weighted method to compare

and

h(ajg,t) = wl(t)fl ($2)+1U2(t)f2($2) ~ 5.999881x 107!,

dynamic weighted method,; wi fi1 and wy fy, we see that the difference between the
« We will observe the behavior of solutions for ningwo terms is very important. Indeed, this difference reached
iterations of GA. |wy f1 —wafo| > 0.6 in the sixth iteration, see Fig 2.
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TABLE |
RESULTS FOR TEST PROBLEMSCH1
Method w; Bed solutionz  Pareto  Time in Secondes wi f1 w2 fa2
. . =0,7andws = 0,3 0,5999 Yes 0,67 0,2519 0,5880
classical Weighted Sum v w2
wy = 0,3 andwy = 0,7 1,4001 Yes 0,67 0,5880 0,2518
Dynamic Weighted Sum Dynamic 1,094 Yes 0,86 0,0110 0,0113
TABLE I
RESULTS FOR TEST PROBLEMSCH2
Method w; Bed solutionz  Pareto  Time in Secondes  w; f1 w2 f2
. . wp =0,7 andwz = 0,3 4,00006 Yes 0,91 0.00048 0.29994
Classical Weighted Sum
w1 = 0.3 andwy = 0.7 4.785 Yes 0,91 0.23571 0.03213
Dynamic Weighted Sum Dynamic 4.2372 Yes 1,2 0.2609 0.2621
TABLE Il
RESULTS FOR TEST PROBLEMMIN-EX
Method w; Bed solutionz;  Best solutionzo  Time in Secondes w1 f1  waf2
. . = 0.7 andwy = 0.3 0.949 0.053 1 0.664 0.332
Classical Weighted Sum w w2
wi = 0.3 andwg = 0.7 0.909 0.048 1 0.27 0.80
Dynamic Weighted Sum Dynamic 0.252 0.005 1.09 0.21 0.21
TABLE IV
RESULTS FOR TEST PROBLEMCONST-MIN-EX
Method w; Bed solutionz;  Best solutionzo  Time in Secondes w1 f1  waf2
. ) = 0.7 andwy = 0.3 0.74 0.16 1.34 0.24 0.88
Classical Weighted Sum w w2
wy; = 0.3 andwe = 0.7 0.82 0.04 1.34 0.51 0.47
Dynamic Weighted Sum Dynamic 0.66 0.017 1.4 0.46 0.46
0.8 — Wil —_— wifl
wif1 w2i2 0.275 w2i2
07 !
0.6 w2 f2
0.27
05 wifl
04 0.265
0.3
0.2 0.26
0.1 I
w2 f2
0 1 2 3 4 5 6 7 8 9 10 00 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
Fig. 2. SCH1: comparison betweem f; andwa fo for 10 teds using Fig. 3. SCH2: comparison betweem f; and ws fo for 10 teds using

classical weighted method (u= 0.3 andws = 0.7) dynamic weighted method

—zif x <1
r—2ifl<xz<3
4—zif3<x<4

B. Test Function: SCH2

Minimize fi(x)
SCH?2 :

This problem proposed by Schaffer [30] and cited in
[10] for instance, aims to minimize two cost functions with
a single variable. It is given by:

x—4ifr>4
Minimize fo(x) = (z — 5)*
—-5<z<10

(Advance online publication: 27 May 2014)
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TABLE V
RESULTS FOR TEST PROBLEMMAX-EX
Method w; Bed solutionz;  Best solutionzo  Time in Secondes w1 f1 w3 fa2
. . = 0.7 andwz = 0.3 0.655 0 1,24 0.3112 17.5422
Classical Weighted Sum i w2
wy = 0.3 andwz = 0.7 0.9992 0.0003 1,24 0.0302  41.2992
Dynamic Weighted Sum Dynamic 0.3450 0.0120 1,85 0.9570  0.9339
TABLE VI
RESULTS FORUMTS PROBLEM
Method w; wifi1  wafe Timein Seconds
Classical Weighted Sum w; = 0.5 andws = 0.5  47.5 8.2 16,04
Dynamic Weighted Sum Dynamic 54.97 55.88 17,93

0.4 0.8 —_— wifl
w2f2
0.35 0.7 wifl
0.3 0.6
0.25 0.5
0.2 0.4
0.15 0.3
0.1 0.2 I
w2 f2
0.05 0.1
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Iteration Iteration

Fig. 4. SCH2: comparison betweem f; andws f2 for 10 teds using Fig. 6. Min-Ex: comparison betweem; f; andws f» for 10 teds using

classical weighted method (u= 0.3 andwz = 0.7) classical weighted method gu= 0.7 andws = 0.3)
08 0.8 — wift
w2f2
0.7 0.7
0.6 0.6 wift
05 05 /\W
0.4 o4 w2 f2
0.3 0.3
0.2 0.2
0.1 0.1
0 1 2 3 4 5 6 7 8 9 10 1] 1 2 3 4 5 6 7 8 9 10
Iteration Iteration

Fig. 5. Min-Ex: comparison betweemn; f1 andws f2 for 10 teds using Fig. 7. Const-Min-Ex: comparison between f1 andws f2 for 10 tegs
dynamic weighted method using dynamic weighted method

The Pareto optimal set is formed by two discontinuous aredsie objective functiong; and f, satisfy: —1 < f; < 6 and
r € [1,2]U[4,5], which results in a discontinuous Paret < f, < 100. f; has the minimum in the vicinity of = 1.
optimal front. This problem is transformed into the monom this case, the functiorf, is far from its minimum. On

objective optimization problem. the other handf, has the minimum in the neighborhood of
x = 5. In this case, the functioff; is far from its minimum.

Maximize h(x) = —w1 f1(z) — wa f2(x) We apply the GA with dynamic weights. We run our algo-
St. —5<z<10. rithm ten times. The maximum number of generation$0is
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0.9

0.8 — wifl
w2f2

0.7
wif1

0.6

0.5

0.4

w2 f2
0.3

0.1

0 1 2 3 4 5 6 7 8 9 10
Iteration

Fig. 8. Const-Min-Ex: comparison between f1 andws f2 for 10 teds
using classical weighted method {w= 0.7 andws = 0.3)

0.96
—_— wifl

w2f2
0.95 wif1

0.94
0.93
0.92

w2 f2

0.91

0.9

9 10
Iteration

Fig. 9. Max-Ex: comparison af; f1 andws f2 for 10 teds using dynamic
weighted method

This area promotes the function f2 and neglects the function 1
0

09
\ °o_0 /

0.8 I I . S S S S S S . —

0.7 X X X

0.6
XX XX X

0.5 X XXX XXXXX XX&XX XX&XXXX )S&(XX WX Xw XXXXXXX

0.4 X XX XXX XXXX X XX X

X X X
0.3 X
0 Th(/,s area promotes the function f1and neglects the function f2
0 ! 2 s 4 5 6 7 Iterat?on

Fig. 10. Max-Ex: The behavior of solutions for nine iteragon

Theresults are presented in Table Il. When we compare the
two termsw, f; andws f> of the objective functiorh, using
dynamic weighted method, we find that our algorithm, in
this example also, ensures almost an equitable treatment of
each objective. Indeed, ih0 experiments, we always have
|w1f1 — ’waQ‘ < 0.008, see Flg 3.

However, when we use classical weighted method to compare
w1 f1 and wyfy, we see that the difference between the
two terms is very important. Indeed, this difference reached
|wy f1 — wafo| > 0.3 in the fifth iteration, see Fig 4.

C. Test Function: Min-Ex

Min-Ex is a minimization problem with two cost functions
and two variables. It was proposed by Deb [9] and cited
in [10] for instance. Its solution is a convex Pareto optimal
front. It is given by:

Minimize fl(xl,.’lig) =T
Minimize fQ(iChZL'Q) = (]. + (EQ)/IL‘l
0.1<z <1

0 S xZ9 S 5.

Min-Ex :

Since the optimal Pareto value of is exactly0, then the
analytical Pareto front is written as:

1
fa(w1,20) = Fi@n o)

The problem Min-Ex is transformed into the mono-objective
optimization problem.

Maximize h(xy,z2) = —wy f1(x1, x2) — wa f2(@1, T2)
01<z; <1

We apply the GA with dynamic weights presented in Section
[lI-B. The parameters of GA are set as follows: crossover
probability p. = 0.4, mutation probabilityp,, = 0.01,
population size0, and maximum number of generatiods

The experiment was conducted on ten times. The results are
presented in Table IlI.

When we compare the two terms; f; and w,f> of the
objective functionh, using dynamic weighted method, we
find that our algorithm ensures an equitable treatment of
each objective. Indeed, ih0 experiments, we always have
|w1f1 — ’U.)Qfg‘ < 0.0001, see Flg 5.

However, when we use classical weighted method to compare
w1 f1 and wyfy, we see that the difference between the
two terms is very important. Indeed, this difference reached
|wy f1 —wafo| > 0.5 in the eighth iteration, see Fig 6.

D. Test Function: Const-Min-Ex

Const-Min-Ex is a minimization problem with two cost
functions and two variables with two constraints. It was
proposed by Deb [9] and cited in [10] for instance. It is
given by:

Minimize f1($1,$2) =T

Minimize fz((El,xz) = (1 + [EQ)/CL'l
Const-Min-Ex: x5 +9x; > 6

—x2+9z; >1

01<z1<1;0< 29 <5,

(Advance online publication: 27 May 2014)
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The problem Const-Min-Ex is transformed into the monan Fig 10. In the first iteration, the solutions (individuals) are
objective optimization problem. randomly distributed on the intervfl.1, 1]. We see that the
two solutionsz} = 0.1 and 23 = 0.2 belong to the area

Maximize (1, 22) = —ws fi(w1,22) = w2 fo(w1, 72) which promotes the functiorf; and neglects the function
Tz + 971 2 6 fo, and the solutionz = 0.9 belongs to the region which
—x2+9x; >1 promotes the functiorys and neglects the functiorf;. In

01<2;,<1:0<zy<5. the second iteration, the solutior$ and 3 disappear, and

. . ) . . in the third iteration, the three solutions disappear. In the
We apply the GA with dynamic weights presented in Sectiq),, iteration, a solution: = 0.85 appears because of the
”I'i’ :;_T.e paraTeters of G'A,‘ are set} %ﬁ.follows_: CrosSov&fossover and mutation operators. This solution disappears in
probability p. = 0.5, mutation probabilityp,, = 0.01, ¢ eighth iteration. In the ninth iteration, only the solutions

populatlon_ siz&0, and maximum number_ of generatioffs that optimize simultaneously both functiofisand f- resist.
The experiment was conducted on ten times. The results are

presented in Table IV.

When we compare the two terms; f; and w,f> of the
objective functionh, using dynamic weighted method, we
find that our algorithm ensures an equitable treatment ofin this section, we address the problem of planning the
each objective. Indeed, ih0 experiments, we always haveuniversal mobile telecommunication system (UMTS) base
|wy f1 — wa fo| <0.0001, see Fig 7. stations location presented in [2], [3], [14].

However, when we use classical weighted method to compare

wifi and wyf>, we see that the difference between thg o\ oiotement and Model Presentation

two terms is very important. Indeed, this difference reached _ _ _
lwy f1 — wa f2| > 0.57 in the third iteration, see Fig 8. Consider a territory to be covered by a UMTS service.

Let S = {1,...,m} be a set of candidate sites (CS) where
a base station (BS) can be installed @né¢ {1,...,n} be a

) o ) set of test points (TPs). Each base station;,BSe S, has

_ Max-Ex is a ma_X|m|zat|on problem with two cost func-z ¢ost of installation denoted by;. We denote byu; the
tions and two variables. It was proposed by Deb [9] andqyired number of simultaneously active connections for a
cited in [10] for instance. Its solution is a non-convex Paretep ot indexi (TP,). Let us define the two following classes

V. APPLICATION: UMTS BASE STATION LOCATION
PLANNING PROBLEM

E. Test Function: Max-Ex

optimal front. It is given by: of decision variables:
Max?m?ze hwy, @) = 11— 1 if a BSis installed in a sitej, or i ¢ S
Max-Ex Maximize fo(z1,z2) = 60 — ((1 + x2)/x1) Yj 0 otherwise. J ;
0.1<z <1 ®)
0<x9 <5. and
Max-Ex has a Pareto optimal setin = 0 and0.1 < z; < o 1 if a TP, is assigned to &5, ©)
1. Since the optimal Pareto value of is exactly 0, then Tij 0 otherwise,

the objective functiong; and fs satisfy:0.1 < f; <1 and

50 < f» < 59. The problem Max-Ex is transformed into thefor : € I andj € S.
mono-objective optimization problem. We consider a power-based PC mechanism. Suppose we have

o directive BSs with three identical 120 degree sectors and
Maximize h(x1, x2) = w1 fi(z1,22) + wa fo (21, 22) with an omnidirectional antenna diagram along the horizontal
01<z <1 axis. Let the index sef? C I denotes the set of all TPs that
0< 2y <5. fall within the sectoro of the BS installed in the candidate

. . . site C'S;. Since we wish to maximize the total trafic covered
Using classical weighted sum method, the fact that trgl J

.2 . . . fhd minimize the total installation cost subjected to some
objective function f dommatesfl IS extrgmely probable. constraints, then the problem can be expressed as [2], [3]:
Now we apply our algorithm presented in Section 1lI-B to
Max-Ex problem. For genetic algorithm, the parameters are .
set as follows: crossover probability, = 0.4, mutation Maximize f1(x) = ) > wiwij,
probability p,, = 0.01, population size20, and maximum =1 g=l (10)
number of generationd0. The experiment was conducted Minimize f2(y) = chyj7
on ten times. First, we will compare the two terms of the =
objective functionh. The results are presented in Table V. .

When comparing the two terms; f; andws, f», we find that subject to:

our algorithm ensures almost an equitable treatment of each ST <1, del, (11)
objective. Indeed, in the 10 experiments, we always have ) ]’gi_me ) )

lwy f1 — wa fo| < 0.03, see Fig 9. vy <min{l, Frwetly;, el jes,  (12)
The second task is to observe the behavior of individuals of LI

the population in each generation of GA. For simplicity, we Y Z Z(uf” Ty — 1) < %J’ € 5,0 € £,(13)
consider a population of only 10 individuals and we limit the iely =1 7 e

observation for only nine iterations. The results are presented i ,y; €{0,1}, iel,jes. (14)

n m

(Advance online publication: 27 May 2014)
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Fig. 11. Location ob5 TPsand22 BSs in a service area 6f4x0.4(Km)  Fig. 13. UMTS: comparison ofv; f; andws f> for 10 tegs

15
Cost

e U = 1,

« Signal frequencyr' = 2000 MHz;

« Height of the mobile statiorf,,, = 1 meter

10} 1 « Height of the basdi, =10 meters;

o Target powerP;q,qe: = —100 dBm;

o Maximum powerP,,,, = 30 dBm;

« Ratio between spread signal and user rafe= 128;
51 | « Target signal-to-Interference Rathy R;4ge¢ = 6 dB;
e SIR,,;n = 0.03125 dB;

v‘ ‘v o Costsc;: are taken randomly betwednand 20 units.

Figure 11 illustrates the distribution of the TPs and BSs in
the area service, and Figure 12 shows the cost of installation
BSs of each BS. The GA parameters are set as follows: crossover
probability p. = 0.4, mutation probabilityp,, = 0.01,
Fig. 12. Costs o022 BSs population size 30, and maximum number of generations
1000. We run our algorithm ten times. The best solution
consists of installing 21 BSs instead of 22, which cover 93
Where the propagation factor of the radio link between gps among 95, with a cost equal to 179. Then we have a gain

T'P; and a candidate sit€'S; is given by: of 10 (approximately 5.3% of costs of BSs), since the cost
Lu(dip) of installing all BSs is 189. When comparing the two terms
gij = (107 )7, of the objective function (15), we find that our algorithm
wherethe attenuatiorf.,, is calculated by the Hata’s propa-€nsures almost an equitable treatment of each objective, see
gation model presented in [16]. Fig 13 and Table VI.

The multi-objective problem (10) can be transformed into a
mono-objective one as follows: VI. CONCLUSION
Maximize w; Z Z UiTij — Wy Z cjyj,  (15) In this paper we are interested in the weighted sum method
im1 =1 =1 where a multi-objective problem is transformed into a mono-
Subject to the constraints (11), (12), (13) and (14), Wheféajectwehone. Lhe prot_)Iemhllej n .the ”gl?t selecft|on of
andw, are the weights of, and f e weights to characterize the decision makers preferences.
w1 2 ! z Here, we tried to solve the following main problem: How to
o _ ensure an equitable treatment of each objective function?
B. Data Description and Computational Results In order to solve this problem we have introduced a solu-
We consider a rectangular service area, a number of cariifin method based on a genetic algorithm approach which
date sites (CSs) in which to locate omnidirectional antenn@gitomates the choice of the weights by varying them at each
and a number of TPs. Using a pseudorandom number geritgtation of the algorithm. The utility of choosing dynamic

ator each CS and each TP is assigned a position with unifowgights lies mainly in the two following points:
distribution in the service area. We consider an instance of, It automates the choice of the Weights_ Therefore we do

an urban environment. The simulation parameters are: not need to define these factors a priori.
« Size of the service area (km): 0.4 x 0.4; « It ensures an equitable treatment of each objective
o Number of TPs95, and number of BS22; function.

(Advance online publication: 27 May 2014)
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Our algorithm is tested on five academic problems and [&5] G. Narzisi,Classic Methods for Multi-Objective Optimization,3rd ed.
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The obtained results validate the method proposed in tijg;
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