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Abstract—To determine the mechanism of molecular evo-
lution, identifying the differences between two heterogeneous
phylogenetic trees and the between a phylogenetic tree and a
taxonomic tree is an important task for molecular biologists.
Phylogenetic trees and taxonomic trees are referred to as
ordered trees. In the process of comparing ordered trees, a
graph, which is called a reconciliation graph, is created using
the ordered trees. In the reconciliation graph, the leaf nodes
of the two ordered trees face each other. Furthermore, leaf
nodes with the same label name are connected to each other by
an edge. It is difficult to compare two heterogeneous ordered
trees, if there are many crossed edges between leaf nodes in
the reconciliation graph. Therefore the number of crossovers
in the reconciliation graph should be decreased; then reduc-
ing crossovers in a reconciliation graph is the combinatorial
optimization problem that finds the state with the minimum
number of crossovers. Several heuristics have been proposed
for reducing crossovers in a reconciliation graph. One of the
most successful heuristics is the modified extremal-optimization-
based heuristics (the MEO-based heuristics). In this paper,
we propose a novel MEO-based heuristic called distributed
modified extremal optimization with tabu lists (DMEOTL).
This heuristic is a hybrid of distributed modified extremal
optimization (DMEO) and the tabu search mechanism. We have
evaluated DMEOTL using actual data sets. DMEOTL shows
better performance compared with DMEO.

Index Terms—extremal optimization, distributed genetic al-
gorithm, island model, tabu list, reconciliation graph

I. INTRODUCTION

C
OMPARATIVE genomics is one of the most impor-

tant research fields to reveal evolutionary relationship

between organisms and the mechanism of evolutions. Espe-

cially, molecular biologists need to detect the main difference

between two heterogeneous trees, which are phylogenetic

trees and taxonomic trees, for determining the mechanism

of molecular evolution in organisms [1], [2], [3], [4]. Phy-

logenetic trees and taxonomic trees are evolutionary trees

showing the inferred evolutionary relationships among vari-

ous biological organisms. A phylogenetic tree is a branching

tree inferred from evolutionary relationships among species.

A taxonomy tree is also a branching tree based on traditional

biological classification. Identifying the difference between

these heterogeneous trees is beneficial for many different

application domains in comparative genomics.
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Fig. 1. Examples of reconciliation graphs (In this figure, phylogenetic tree 1
and phylogenetic tree 2 are inferred from different molecular sequences with
four identical species “a,” “b,” “c,” and “d.” Fig. 1(a) shows a reconciliation
graph that has two crossovers, and Fig. 1 (b) shows a reconciliation graph
that has no crossovers).

In this study, tasks that compare two heterogeneous trees

and clarify differences between the two tree structures are

called reconciliation work. In reconciliation work, a graph

called a reconciliation graph that consists of two hetero-

geneous phylogenetic trees or a phylogenetic tree and a

taxonomic tree is constructed. In a reconciliation graph,

phylogenetic trees and taxonomic trees are referred to as

ordered trees. Moreover, the leaf nodes of these ordered trees

face each other and leaf nodes with the same label name are

connected to each other by an edge. Fig. 1 shows an example

of a reconciliation graph, which is composed phylogenetic

tree 1 and phylogenetic tree 2.

It is difficult to compare two heterogeneous ordered trees,

if there are many crossed edges between leaf nodes in

the reconciliation graph. To accomplish reconciliation work

efficiently, reducing crossed edges between leaf nodes in

the reconciliation graph is required. The reconciliation graph

shown in Fig. 1(a) has two crossovers. If order of node “1”

and node “d” are replaced, we can obtain a optimal recon-

ciliation graph shown in Fig. 1(b), which has no crossovers.

Molecular biologists used to perform reducing crossovers in

reconciliation graphs manually. Even though they can do this

task using visualization tools, it is persnickety work for them

to reduce large scale reconciliation graphs. Therefore, with

increase in the number of nodes in a reconciliation graph, it

is very difficult to make it manually, because the number of

combinations increases exponentially as the number of leaf

nodes increases.

To overcome this issue, there are several heuristics that can
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be used for reducing crossovers in a reconciliation graph.

The most simplest computational heuristic was proposed

in [5]. This heuristic finds only a local optimal solution

with a kind of local search. To improve the performance

of search, a GA-based heuristic was proposed in [6]. There

are two steps in the GA-based heuristic. First, the GA-based

heuristic searches quasi-optimal solutions with simple GA.

Second, the GA-based heuristic finds more better solutions

from quasi-optimal solutions by using the local search. One

of the most successful heuristics is the modified extremal-

optimization-based heuristics (the MEO-based heuristics),

which was proposed in [7].

In our previous study [8], we proposed a MEO-based

heuristic called the distributed modified extremal optimiza-

tion (DMEO), which is a hybrid of population-based mod-

ified extremal optimization (PMEO) [9] and the distributed

genetic algorithm (DGA) [10], [11] using the island model

[12], [13]. The MEO-based heuristics are based on extremal

optimization (EO) [14], [15], [16]. EO is a general-purpose

heuristic inspired by the Bak-Sneppen model [17] of self-

organized criticality from the field of statistical physics. EO

generates a neighbor individual, which is represented as

a solution, randomly at an alternation of generations. On

the other hand, modified extremal optimization (MEO) [7]

generates multiple neighbor individuals and selects the best

individual that has the best fitness value.

Generating multiple neighbor solutions results in improv-

ing the ability of search, because MEO can avoid falling into

local optimal in regard to reducing crossovers in a reconcilia-

tion graph; however MEO has a drawback in the mechanism

of generating neighbor individuals. MEO often becomes

stuck in poor-evaluated areas or areas where evaluate plateau

at the end of alternation of generations because multiple

neighbor solutions are generated at random and the best

individual in them are selected as the next generation. MEO

does not have the mechanism to avoid pitfalls and explore

regions of the search space that would be left unexplored.

Therefore, MEO needs to carefully explore the neighborhood

of each individual as the search progresses.

To address this performance issue, we propose a novel

MEO-based heuristic called MEO with a tabu list (MEOTL)

that involves the mechanism of tabu search [18]. More-

over, we incorporate MEOTL into DMEO. This MEO-based

heuristic called DEMO with tabu lists (DMEOTL) [19]. The

main contributions of this study are as follows.

• To avoid pitfalls and explore the regions in the search

space that would be left unexplored, MEOTL is pro-

posed. MEOTL utilizes the mechanism of tabu search,

which can avoid generating recently visited individuals

as neighbor individuals at each alternation of genera-

tions using tabu lists. A tabu list in MEOTL contains

two or more ancestors of an individual. If a generated

neighbor individual is contained in the tabu list, MEOTL

generates another neighbor individual iteratively until

MEOTL generates different individual from the ancestor

individuals in the tabu list.

• To improve the performance of DMEO for reducing

crossovers in a reconciliation graph, we incorporate

MEOTL in DMEO. In DMEOTL, a population is di-

vided into two or more sub-populations called islands

and each island evolves individually. Each individual

has a tabu list, individuals located in islands evolve

using MEOTL, in DMEOTL.

• To evaluate MEOTL and DMEOTL, we implemented

MEOTL and DMEOTL for reducing crossovers in a

reconciliation graph. We evaluated MEOTL and its per-

formance outperforms MEO. Moreover, we evaluated

DMEOTL using two actual data sets for experiments.

and compared DMEOTL with DMEO and MGG [20].

Experimental results shows that DMEOTL outperforms

DMEO and MGG.

The rest of the paper is organized as follows. In Section II,

the data structure of a reconciliation graph and the problem

definition of reducing crossovers in a reconciliation graph are

briefly explained. In Section III, we describe the details of

the MEO-based heuristic. In Section IV, a new MEO-based

heuristic called MEOTL is proposed. In Section V, the details

of DMEOTL for reducing crossovers in reconciliation graph

are presented. In Section VI, the results of experimental

results are reported, and Section VII is the conclusion of

the paper.

II. REDUCING CROSSOVERS IN RECONCILIATION GRAPH

In this section, the data structure of a reconciliation graph

and the problem definition of reducing crossovers in a

reconciliation graph are briefly explained.

A. Reconciliation Graph

a aa a
v14 v24

d b
v11 v21

3 wv12 v15
v22v25

2 b vc
v13

v23

1 uv16 v26

c dc d
v17 v27

phylogenetic tree 1 phylogenetic tree 2

Fig. 2. Example of reconciliation graph (Order list OL1 is given by
OL1 = [v14, v15, v16, v17] and order list OL2 is given by OL2 =
[v24, v25, v26, v27]).

Phylogenetic trees and taxonomic trees are referred to as

ordered trees. A reconciliation graph (RG) consists of two

ordered trees, OT1 = (V1, E1) and OT2 = (V2, E2), where

V1 and V2 are finite sets of nodes and E1 and E2 are finite

sets of edges. A node has a parent and multiple child nodes.

Let PT (v) be the parent node of node v. If PT (v) is NULL,

the node v is the root node. Let CN (v) be child nodes of

node v. A node that has no child nodes is a leaf node. The

leaf node sets of OT1 and OT2 are denoted by L1 ∈ V1

and L2 ∈ V2, respectively. If the number of species is n, the

number of leaf nodes is n. A leaf node has a label name,

which is a species’ name. The label name set is denoted by

Lleaf .

Let OL1 and OL2 be the order lists of leaf nodes:

OL1 = [ol1,1, ol1,2, · · · , ol1,n](ol1,i ∈ L1,L(ol1,i) ∈ Lleaf ),

OL2 = [ol2,1, ol2,2, · · · , ol2,n](ol2,i ∈ L2,L(ol2,i) ∈ Lleaf ),

where function L returns the label name of an input node.
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The function NC(M) returns the number of crossovers:

NC(CM)=
∑

cmj,βcmk,α[1 ≤ j<k ≤ n,

1 ≤ α<β ≤ n], (1)

where cmi,j is (i, j)th-element of the connection matrix CM
that is defined as

cmi,j =

{

1 if L(ol1,i) = L(ol2,j),
0 otherwise.

(2)

In Fig. 2, OL1 is given by OL1 = [v14, v15, v16, v17].
Similarly, there are four leaf nodes in phylogenetic tree 2,

ol2,1 = v24, ol2,2 = v25, ol2,3 = v26, and ol2,4 = v27.

Therefore OL2 is given by OL2 = [v24, v25, v26, v27]. For

example, the (0, 0)th-element cm0,0 is 1 because L(v14)
equals L(v24). Similarly, the (1, 1)th-element cm1,1 is 0

because L(v15) does not equal L(v25). The following matrix

is the connection matrix of the reconciliation graph shown

in the Fig. 2.

CM =









a b c d

a 1 0 0 0
d 0 0 0 1
b 0 1 0 0
c 0 0 1 0









B. Problem Definition

The task of reducing crossovers in the reconciliation graph

is defined as follows:

min : NC(CM),
subject to : (1) CM is the connection matrix of

the RG,
(2) There are no crossovers on edges

between non-leaf nodes in the RG.

There should be no crossovers on edges between non-leaf

nodes in the reconciliation graph. For this constraint, we

need to change order of leaf nodes by changing the order

of child nodes in intermediate nodes. We cannot change the

order between v15 and v17 (Fig. 2) because it will lead to

the presence of crossovers on edges between non-leaf nodes.

If we want to change the order between v15 and v17, it is

necessary to replace v15 and v13, which are child nodes of

v12. If we replace v15 and v13, the number of crossovers in

the reconciliation graph becomes zero, and OL1 is changed

to OL1 = [v14, v16, v17, v15].

III. MODIFIED EXTREMAL OPTIMIZATION

EO [14], [15], [16] follows the spirit of the Bak-Sneppen

model, updating variables that have one of the worst values

in a solution and replacing them by random values without

ever explicitly improving them. There are many studies [14],

[15], [16], [21], [22], [23], [24] that utilize EO to find optimal

solutions for combinatorial optimization problems such as

the traveling salesman problem, graph partitioning problem,

and image rasterization. Some studies [25], [26] focus on

improving EO mechanism and hybrid heuristics of EO and

other heuristics.

In EO, an individual I consists of n components Oi

(1 ≤ i ≤ n). Let λi be the fitness value of Oi (Fig. 3).

For each component, the fitness value of the component is

Select the worst 

component O
worst

Evaluate  
i
for 

each component

Component O
iIndividual

 
i
: fitness value of component i

Change the state of 

O
worst

at random

Fig. 3. Extremal optimization (There are multiple component in a
individual. The state of the worst component is changed at random at
alternation of generations).

Select the best clone

Evaluate  
i
for 

each component

Generate 

multiple clones of 

individual   

Select one component O
selected

using roulette selection (selection rate is 1/  
i
) for each 

clone

Change state of 

O
selected

at random for 

each clone

Fig. 4. Modified extremal optimization (In this heuristic, multiple neighbor
individuals are generated. Then, the best of them is selected for the next
generation).

evaluated. Then, we select the worst component. Finally, the

state of the worst component is changed at random. The

component with the worst fitness value has a high possibility

that the fitness value of it will become better by changing

state. Consequently, the fitness value of the individual also

gets better because the fitness value of the component with

worst fitness value gets better. While interactively changing

the state of the worst component, the individual also im-

proves overall, because the worst component might be getting

better and better. Algorithm 1 shows the details of processing

steps of EO. First, EO selects Oworst, which has the worst

fitness value. Second, the state of component Oworst is

changed at random. Henceforth, selection and change state

Algorithm 1 EO

1: Generate initial individual I at random.

2: Ibest ← I
3: m← 0
4: while m < max of generations do

5: Evaluate fitness value λi of each component Oi.

6: Select Oworst with the worst fitness value.

7: Change the state of Oworst at random.

8: if F(I) > F(Ibest) /* The function which returns the

fitness value of an individual is denoted as F. */ then

9: Ibest ← I
10: end if

11: m← m+ 1
12: end while
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Algorithm 2 MEO

1: Generate initial individual I at random.

2: Ibest ← I
3: m← 0
4: while m < max of generations do

5: Evaluate fitness value λi of each component Oi.

6: Candidates← φ
7: n← 0
8: while n < num of candidates do

9: Select Oselected with roulette selection according to

fitness values of components.

10: Generate new individual I ′ from I by changing the

state of Oselected .

11: Candidates← Candidates ∪ I ′

12: n← n+ 1
13: end while

14: I ← BEST(Candidates)
15: if F(I) > F(Ibest) then

16: Ibest ← I
17: end if

18: m← m+ 1
19: end while

of a component are repeated.

MEO improves the methodology of generating neighbor

individuals in EO. EO uses the first admissible move strat-

egy for the alternation of generations. Conversely, MEO

utilizes the approximate best admissible move strategy. In

EO, a neighbor individual is generated at random. In reduc-

ing crossover in reconciliation graph, global change occurs

more easily than other combinatorial optimization problems.

Therefore, only generating one neighbor individual results

in generating worse neighbor individual. To overcome this

issue, MEO [7] generates multiple neighbor individuals as

candidates for the next generation individual (Fig. 4). The

experimental results in [7] show that MEO outperforms EO.

Moreover, MEO is good performance compared with the

GA-based heuristic [5], [6].

Algorithm 2 shows the details of processing steps of MEO.

MEO generates multiple neighbor individuals at each alterna-

tion of generations through the following steps (step 8 - step

13). First, MEO selects Oselected with roulette selection (step

9). The selection rates of roulette selection are reciprocals of

fitness values with components. Second, MEO generates new

individual I ′ from I by changing the state of Oselected (step

10). Third, the generated I ′ is stored into Candidates (step

11). After generating multiple neighbor individuals, MEO

selects the best individual from Candidates (step 14).

IV. MODIFIED EXTREMAL OPTIMIZATION WITH TABU

LIST

In this section, we propose a novel MEO-based frame-

work called modified extremal optimization with tabu lists

(MEOTL), which is a hybrid of MEO and the tabu search

mechanism. The tabu search has a tabu list, which contains

a set of ancestor solutions, in order to avoid visiting the

search space that has been explored. MEOTL has a tabu list

the same as the tabu search (Fig. 5). The original intent of

the tabu list is not to prevent a previous move from being

repeated, but rather to insure it is not reversed. MEOTL can

Select the best clone

Evaluate  
i
for 

each component

Generate 

multiple clones of 

individual   

Select one component O
selected

using roulette selection (selection rate is 1/  
i
) for each 

clone

Change state of 

O
selected

at random for 

each clone

Tabu List
ancestors

(i!1)!th(i!2)!th(i!3)!th

Check and

Re change!state

Fig. 5. Modified extremal optimization with a tabu list (MEOTL has a tabu
list. At each changing state, each generated neighbor individual is checked
using the tabu list).

improve the efficiency of search through the use of the tabu

search mechanism.

Algorithm 3 shows the details of processing steps of

MEOTL. MEOTL has a tabu list TL. The tabu list TL is a

list of previous visited individuals. MEOTL generates mul-

tiple neighbor individuals at each alternation of generations

through the following steps (step 9 - step 16) like MEO. First,

MEOTL selects Oselected with roulette selection (step 10).

The selection rates of roulette selection are reciprocals of

fitness values with components. Second, MEOTL generates

new individual I ′ from I by changing the state of Oselected

(step 11). Third, if the generated I ′ is not in TL, the

generated I ′ is stored into Candidates (step 12 - step 15).

Otherwise, MEOTL generates new individual I ′ from I by

changing the state of Oselected until I is not in TL. After

generating multiple neighbor individuals, MEOTL selects the

best individual from Candidates (step 17). Finally, TL is

updated (step 21).

V. DISTRIBUTED MODIFIED EXTREMAL OPTIMIZATION

WITH TABU LISTS

In this section, the details of DMEOTL for reducing

crossovers in a reconciliation graph are explained.

A. Alternation of Generations Model

DMEOTL is based on a MEO-based heuristic DMEO,

which is a hybrid of PMEO and the island-model. In PMEO,

there are two or more individuals in a population. Alternation

of generations is repeatedly performed for every individual

by using MEO. In the island model, a population is divided

into two or more sub-populations called islands and each

island evolves individually. The island model also has the

migration mechanism that some individuals are transferred

to another island. Each island can maintain different types

of individuals at the end of alternation of generations. There-

fore, DMEO can maintain diversity at the end of alternation

of generations.

DMEOTL divides the entire population into two or more

sub-populations, as islands like DMEO. In an island, each

individual in the sub-population on the island evolves using

MEOTL. Fig. 6 shows an example of the DMEOTL. There

are two main steps in DMEOTL for reducing crossovers in
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Algorithm 3 MEOTL

1: Generate initial individual I at random.

2: Ibest ← I
3: m← 0
4: TL← φ
5: while m < max of generations do

6: Evaluate fitness value λi of each component Oi.

7: Candidates← φ
8: n← 0
9: while n < num of candidates do

10: Select Oselected with roulette selection according to

fitness values of components.

11: Generate new individual I ′ from I by changing the

state of Oselected .

12: if IS INCLUDED(I ′, TL) == false then

13: Candidates← Candidates ∪ I ′

14: n← n+ 1
15: end if

16: end while

17: I ← BEST(Candidates)
18: if F(I) > F(Ibest) then

19: Ibest ← I
20: end if

21: TL← UPDATE TABU LIST(I, TL)
22: m← m+ 1
23: end while

sub population!1

sub population!2

sub population!3

island!1

island!3

island!2

Fig. 6. Distributed modified extremal optimization with tabu lists
(DMEOTL divides the entire population into two or more sub-populations,
as many islands).

a reconciliation graph: (1) Evolution Step and (2) Migration

Step.

(1) Each individual in the sub-population on a island

evolves using MEOTL. Moreover, good sub-structures

of a selected individual are copies to the other indi-

viduals in the sub-population at each alternation of

generations.

(2) Some individuals in islands are migrated to other

islands.

B. Definition of Individual and Component

In the MEO-based heuristics, we need to define the

structure of individual representing a solution and the com-

ponents. In this study, a reconciliation graph is referred as

to as an individual. A pair of leaf nodes with the same label

name is defined as a component:

Oi = {ol1,i, ol2,δ(i)} (L(ol1,i) = L(ol2,δ(i))). (3)

Algorithm 4 DMEOTL

1: Generate initial population Pinit at random.

2: Ibest ← BEST(Pinit)
3: Divide Pinit into p sub-populations.

4: For each sub-population SubPi, create initial tabu list

set STLi.

5: Store sub-populations SubPi into island ISLNDi.

6: for i = 1 to max generations/m do

7: (Evolution Step) For each ISLNDi, sub-

population SubPi should be made to evolve

through m generations by using the function

P MEOTL(SubPi, STLi,m).
8: (Migration Step) For each ISLNDi, migrate some

individuals of a sub-population in the island to another

island.

9: if F(BEST(SubP1∩· · ·∩SubPp)) > F(Ibest) then

10: Ibest ← BEST(SubP1 ∩ · · · ∩ SubPp)
11: end if

12: end for

Let ol1,i be a leaf node of OL1 and ol2,δ(i) be a leaf node

of OL2. The function δ(i) returns the subscript number of an

element of OL2 whose label name is the same as the label

name of ol1,i. To change the state of Oi, it is necessary to

change the order of child nodes of ancestor nodes of ol1,i
or ol2,δ(i). Here, AS(OT, lname) is a set of ancestor nodes

of a leaf node in OT that has the label name lname. For

example, AS(OT1, O2) returns {v12, v11} in Fig. 2.

C. Definition of Fitness

The number of crossovers between ol1,i and ol2,δ(i) is

denoted by NC(CM, i). The following are the definitions

of NC(CM, i) and the fitness value λi of Oi:

λi =
NC(CM)−NC(CM, i)

NC(CM)
, (4)

NC(CM, i)=

n
∑

l=i+1

δ(i)−1
∑

m=1

cml,m

2
+

i−1
∑

l=1

n
∑

m=δ(i)+1

cml,m

2
. (5)

In Fig. 2, there are four components, O1 =
{ol1,1, ol2,1}(= {v14, v24}), O2 = {ol1,2, ol2,4}(=
{v15, v27}), O3 = {ol1,3, ol2,2}(= {v16, v25}), and O4 =
{ol1,4, ol2,3}(= {v17, v26}), with δ(1) = 1, δ(2) = 4,

δ(3) = 2, and δ(4) = 3. The fitness values of the components

are λ1 = 1, λ2 = 1/2, λ3 = 3/4, and λ4 = 3/4.

D. Algorithm

Algorithm 4 shows the processing steps of DMEOTL.

First of all, an initial population consisting of multiple indi-

viduals is generated at random. Then the initial population

is divided into p sub-populations (p is the number of sub-

populations) (step 3). Moreover, for each sub-population, the

initial tabu list set is created (step 4). Sub-population SubPi

is located in an island ILNDi (step 5). In the Evolution

Step (step 7), the sub-populations in all the islands are

made to evolve through m generations by using the function

P MEOTL(SubPi, STLi,m) (m is migration interval). In

Migration Step (step 8), for each island, some individuals

of the sub-population on the island are migrated to another
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Algorithm 5 P MEOTL(P,STL,m)

1: for i = 1 to m do

2: for all I ∈ P do

3: Evaluate fitness value λi of each component Oi of

I .

4: C ← φ
5: n← 0
6: while n < num of candidates do

7: Select Oselected by roulette selection (selection

rates are the reciprocal of fitness values with

components).

8: I ′ ← GNI(I, Oselected)
9: if IS INCLUDED(I ′, STL[I]) == false then

10: C ← C ∪GNI(I, Oselected)
11: n← n+ 1
12: end if

13: end while

14: I ← BEST(C)
15: end for

16: for all I ∈ P do

17: Select Oselected by roulette selection. Copy the

good structure of Oselected to I using the function

CGS(I ,P ).

18: end for

19: STL[I]← UPDATE TABU LIST(P, STL[I])
20: end for

island. Finally, the best individual is selected from all the

islands (step 9 and step 10).

E. Evolution Step

For each island, the sub-population on the island evolves

through m generations by using the function P MEOTL

(Algorithm 5). At each alternation of generations, first,

for each individual in a sub-population, the state of the

individuals in P is changed by using the MEOTL scheme.

Second, for each individual, the individual copies a good

sub-structure of another individual using the function CGS.

At each alternation of generations, each individual in

a sub-population evolves following steps in the function

P MEOTL. Initially, for each component, the fitness value

λi (step 3) is evaluated. Next, the following three steps are

repeated while n is less than num of candidates. First,

component Oselected in I is selected by using the roulette

selection (step 7). Second, a neighbor individual from I is

generated by using the function GNI. The function GNI

generates a neighbor individual I ′ by changing the state of

component Oselected . Third, I ′ is stored in C (step 10),

if I ′ is not in STL[I], where STL[I] is the tabu list of

individual I . Finally, the best individual in C is selected

and I is replaced by it (step 14). After evolving, for each

individual, the individual copies a good sub-structure of

another individual using the function CGS and STL is

updated.

Changing state of a selected component Oselected is

performed by changing the order of child nodes in an

intermediate node, which is an ancestor node of Oselected .

The processing steps of GNI are as follows. First,

OT1 or OT2 is selected at random. If OT1 is selected,

Algorithm 6 CGS(I,P)

1: Select individual SI ∈ P by roulette selection (selection

rates are the fitness values of components).

2: for i = 1 to n do

3: Calculate the difference diffi between the fitness

value of Oi in SI and the fitness value of Oj in I ,

where Oi and Oj have the same label name.

4: end for

5: Select Oselected by roulette selection (selection rates are

diffi).
6: A ← AS(OT1,L(Oselected)) or

AS(OT2,L(Oselected))
7: C ← φ
8: for all a ∈ A do

9: Generate a new individual I ′ from I by changing the

order of child nodes in a.

10: C ← C ∪ I ′

11: end for

12: I ← BEST(C)

AS(OT1,L(Oselected)) is put into the set Ancestor. If

OT2 is selected, AS(OT2,L(Oselected)) is put into the set

Ancestor. Then, node a is selected at random from A.

Finally, the order of the child nodes in a is changed. Suppose

that the selected component is O2 in Fig. 2. The function

AS(OT1,L(O2)) returns {v12, v11} and AS(OT2,L(L2))
returns {v22, v21}. If Ancestors = {v12, v11} and v12 is

selected as a, the order of child nodes in v12 is changed. In

this case, order of node v15 and v13 are changed. As a result,

a new individual I ′ is obtained by the change state.

Algorithm 6 shows the function CGS. At the beginning,

an individual SI in P is selected by roulette selection (step

1). The individual I copies a sub-structure of SI by the

following steps. First, the function calculates the difference

diffi between the fitness value of Oi of SI and the fitness

value of Oj of I , where Oi and Oj have the same label

name (steps 2, 3, and 4). Second, Oselected is selected by

roulette selection (step 5). Next, AS(OT1,L(Oselected)) or

AS(OT2,L(Oselected)) is stored in A (step 6). Then, for all

a ∈ A, a new individual I ′ is generated from I by changing

the order of child nodes in a, and I ′ is stored in C (steps 8, 9,

10, and 11). Finally, the function selects the best individual

from C (step 12).

F. Migration Step

In the population-based evolutionary computation, it is

difficult to maintain the diversity of population. Evolving

sub-population independently has efficacy for conservation of

diversity. However, this method increases risk of falling local

optimal solutions in the island because the size of population

usually becomes smaller than the population-based model.

To avoid falling local optimal solutions in each island, the

island has the mechanism of migration. In the Migration

Step, some individuals in each island are migrated to another

island. Therefore, different types of individual can make sub-

populations avoiding falling local optimal solutions.

The island model requires number of sub−populations,

migration rate, migration interval, and

migration model. The first three items are user-
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TABLE I
DATA SETS

Taxonomic tree Phylogenetic tree
Number of nodes Number of leaf nodes Number of nodes Number of leaf nodes

Housekeeping 241 40 79 40

Moss 290 207 394 207
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Fig. 7. Experiment 1 (This experiment compares MEOTL with MEO. Figure (a) and (b) shows the number of crossovers of the best individual using
Housekeeping data set and Moss data set respectively) .

given parameters. The last item consists of two things:

selection method and topology. The method used for

the selection of individuals for migration is referred as

selection method. The structure of the migration of

individuals between sub-populations is referred as topology.

In this study, we use uniform random selection as the

selection method. In the Migration Step, some individual

are selected from a sub-population in each island according

to migration rate. Moreover, the proposed algorithm uses

the random ring migration topology. In this topology, the

ring includes all islands, and the order of the islands is

determined randomly every Migration Step. Each island

transfers some individuals to the next inland based on the

direction of the ring.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of DMEOTL, five experi-

ments were conducted in the performance evaluation. In this

section, we report the result of experimental results.

A. Setup

In the performance evaluation, we conducted five exper-

iments and the two actual data sets listed in Table I were

used. The Housekeeping data set consists of a phylogenetic

tree of the housekeeping gene and its taxonomic tree. The

Moss data set consists of a phylogenetic tree of the rps4

gene and its taxonomic tree. The number of species in

the Housekeeping data set is 40 and that in the Moss
data set is 207. In Experiment 1, we measured the number

of crossovers of the best individual at each generation to

compare MEOTL with MEO. In Experiment 2, we also

measured the number of crossovers of the best individual

at each generation to compare DMEOTL with DMEO. In

Experiment 3, we measured the number of crossovers of the

best individual at different time instants. In Experiment 4,

we measured frequency of the number of crossovers of best

individuals in fixed generations. In Experiment 5, DMEOTL

is compared with MGG.

B. Experiment 1

In Experiment 1, we compared MEOTL with MEO.

We measured the number of crossovers of the best

individual in each generation. In MEO and MEOTL,

num of candidates was set to 50. The maximum number

of generations of the Housekeeping data set and the Moss
data set were set to 1000 and 5000 respectively. In MEOTL,

the length of a tabu list was set to 10. Fig. 7(a) and Fig. 7(b)

show the number of crossovers (vertical axis: the number of

crossovers, horizontal axis: generations) at each generation.

The number of crossovers is the average of five trials in these

graphs.

Fig. 7(a) shows that the number of crossovers of MEOTL

is less than that of MEO at the end of alternation of

generations. MEO fell into a cycle of local optimal solutions;
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Fig. 8. Experiment 2 (This experiment compares MEOTL with MEO. Figure (a) and (b) shows the number of crossovers of the best individual using
Housekeeping data set and Moss data set respectively) .

however MEOTL could get away from local optimal solu-

tions. Fig. 7(b) shows the results of the Moss data set. The

number of crossovers of MEOTL is less than that of MEO

after 100-th generations. Experiment 1 shows that MEOTL

outperforms MEO.

C. Experiment 2

In Experiment 2, we compared DMEOTL with DMEO.

We also measured the number of crossovers of the best indi-

vidual in each generation. In DMEO and DMEOTL, the num-

ber of individuals in the population was set to 50. The user

parameters num of candidates, migration interval(m),
number of sub-populations(p), and migration rate were

set to be 50, 10, 5 and 0.1, respectively. In DMEOTL, the

length of a tabu list was set to 10. The number of individuals

in a sub-population is 10. The number of crossovers was the

average of five trials. Since the size of Housekeeping data

set is small, the results of both heuristics are not different.

Fig. 8(b) shows that the number of crossovers of DMEOTL

is less than that of DMEO when we used the Moss data

set. The number of crossovers of DMEOTL is less than that

of DMEO after 100-th generations. Experiment 2 shows that

DMEOTL outperforms DMEO.

D. Experiment 3

The computation time of DMEOTL is longer than that in

the case of DMEO because the former includes the matching

generated individuals to individuals in tabu lists. Therefore,

it is necessary to compare the number of crossovers for the

same computation time. In Experiment 3, we measured the

number of crossovers of the best individual at each elapsed

processing time. Fig. 9 shows the number of crossovers at at

wash elapsed processing time (vertical axis: the number of

crossovers, horizontal axis: elapsed processing time), when
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Fig. 9. Experiment 3 (Moss data set).

the Moss data set is used. At the end of the processing,

DMEOTL have fewer crossovers than DMEO. This result

indicates DMEOTL performs better with fewer crossovers

than DMEO.

E. Experiment 4

The number of crossovers of the best individual was

measured 100 times for the 5,000-th alternation genera-

tion. In DMEO and DMEOTL, the number of individu-

als in the population was set to 50. The user parameters

num of candidates, migration interval(m), number
of sub-populations(p), and migration rate were set to be

50, 10, 5 and 0.1, respectively. In DMEOTL, the length of a

tabu list was set to 10. The number of individuals in a sub-

population is 10. Fig. 10(a) and Fig. 10(b) show frequency

of the number of crossovers when Housekeeping data set is

used. Fig. 11(a) and Fig. 11(b) show frequency of the number

of crossovers when Moss data set is used. In DMEO, 32%

of optimal solutions were between 225 and 250. On the other

hand, in DMEO, 60% of optimal solutions were between 225
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Fig. 10. Experiment 4 (This experiment compares DMEOTL with DMEO. Figure (a) and (b) shows frequency of the number of crossovers of the best
individual when we used Housekeeping data set) .
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Fig. 11. Experiment 4 (This experiment compares DMEOTL with DMEO. Figure (a) and (b) shows frequency of the number of crossovers of the best
individual when we used Moss data set) .

and 250. This result indicates the search ability of DMEOTL

is better than that of DMEO.

F. Experiment 5

In Experiment 5, we compared DMEOTL with MGG, ,

which is the one of the best generation alternation mod-

els. In DMEO and DMEOTL, the number of individu-

als in the population was set to 50. The user parameters

num of candidates, migration interval(m), number
of sub-populations(p), and migration rate were set to

be 50, 10, 5 and 0.1, respectively. In DMEOTL, the length

of a tabu list was set to 10. The number of individuals in a

sub-population is 10. In MGG, the number of individuals is

50, the number of children is 100, and the rate of mutation

is 5%.The number of crossovers was the average of three

trials. Fig. 12 show the number of crossovers (vertical axis:

the number of crossovers, horizontal axis: generations). The

number of crossovers using DMEOTL at the 5000-th gener-

ation is 255. In MGG, at more than 30000-th generation, the

number of crossovers became less than 255. The performance

of DMEOTL is better than that of MGG. Especially, the

speed of convergence in DMEOTL is faster than that in

MGG.

VII. CONCLUSION

In this paper, we have proposed a novel MEO-based

heuristic called MEOTL, which is a hybrid of MEO and
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Fig. 12. Experiment 5 (Moss data set).

the tabu search mechanism. MEOTL has a tabu list to

avoid pitfalls and explore regions of the search space that

would be left unexplored. Moreover, MEOTL is integrated

in DMEO, which was proposed in our previous work. This

new MEO-based heuristic is called DMEOTL. DMEOTL

is a hybrid of distributed modified extremal optimization

(DMEO) inspired by the island model and the tabu search

mechanism. In the island model, a population is divided into

two or more sub-populations called islands and each island

evolves individually. Each island can maintain different types
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of individuals at the end of alternation of generations.

Therefore, DMEOTL can maintain diversity at the end of

alternation of generations. Moreover, each individual has a

tabu list, individuals located in islands evolve using MEOTL,

in DMEOTL. Therefore, DMEOTL also can avoid pitfalls

and explore regions of the search space that would be left

unexplored. To evaluate MEOTL and DMEOTL, we used

two actual data sets composed of a phylogenetic tree and

its taxonomic tree. Experimental results show that MEOTL

and DMEOTL is better performance compared with MEO

and DMEO respectively. In the future work, we are going to

develop improving the Migration Step. The Migration Step

uses the simple island model. The migration topology and

migration rate is required to improve. We are also going to

develop extended DMEOTL for making it applicable to other

combination optimization problems.

ACKNOWLEDGMENT

This work was supported in part by Hiroshima City

University Grant for Special Academic Research (General

Studies) and JSPS KAKENHI Grant Number 26330139.

REFERENCES

[1] M. Goodman, J. Czelusniak, G. Moore, A. Romero-Herrera, and
G. Matsuda, “Fitting the gene lineage into its species lineage, a
parsimony strategy illustrated bycladograms constructed from globin
sequences,” Systematic Zoology, vol. 28, pp. 132–163, 1979.

[2] R. Page, “Maps between trees and cladistic analysis of historical
associations among genes, organisms, and areas,” Systematic Biology,
vol. 43, pp. 58–77, 1994.

[3] R. D. M. Page and M. A. Charleston, “Reconciled trees and incon-
gruent gene and species trees,” Discrete Mathametics and Theoretical

Computer Science, vol. 37, pp. 57–70, 1997.

[4] R. D. M. Page, “Genetree: comparing gene and species phylogenies
using reconciled trees,” Bioinformatics, vol. 14, no. 9, pp. 819–820,
1998.

[5] H. Kitakami and M. Nishimoto, “Constraint satisfaction for reconciling
heterogeneous tree databases,” in Proceedings of DEXA 2000, 2000,
pp. 624–633.

[6] H. Kitakami and Y. Mori, “Reducing crossovers in reconciliation
graphs using the coupling cluster exchange method with a genetic
algorithm,” Active Mining, IOS press, vol. 79, pp. 163–174, 2002.

[7] K. Tamura, Y. Mori, and H. Kitakami, “Reducing crossovers in
reconciliation graphs with extremal optimization (in japanese),” Trans-

actions of Information Processing Society of Japan, vol. 49, no.
4(TOM 20), pp. 105–116, 2008.

[8] K. Tamura, H. Kitakami, and A. Nakada, “Distributed modified
extremal optimization using island model for reducing crossovers in
reconciliation graph,” Engineering Letters, vol. 21, no. 2, pp. 81–88,
2013.

[9] N. Hara, K. Tamura, and H. Kitakami, “Modified eo-based evolu-
tionary algorithm for reducing crossovers of reconciliation graph,” in
Proceedings of NaBIC 2010, 2010, pp. 169–176.

[10] R. Tanese, “Distributed genetic algorithms,” in Proceedings of the 3rd

International Conference on Genetic Algorithms, 1989, pp. 434–439.
[11] T. C. Belding, “The distributed genetic algorithm revisited,” in Pro-

ceedings of the 6th International Conference on Genetic Algorithms,
1995, pp. 114–121.

[12] W. D. Whitley, S. B. Rana, and R. B. Heckendorn, “Island model ge-
netic algorithms and linearly separable problems,” in Selected Papers

from AISB Workshop on Evolutionary Computing, 1997, pp. 109–125.
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