
CC-SLIQ: Performance Enhancement with 2k Split
Points in SLIQ Decision Tree Algorithm

Narasimha Prasad L V, Member, IAENG, and Mannava Munirathnam Naidu, Member, IAENG

Abstract—Decision trees have been found to be very effective
for classification in the emerging field of data mining. This
paper proposes a new method: CC-SLIQ (Cascading Clustering
and Supervised Learning In Quest) to improve the performance
of the SLIQ decision tree algorithm. The drawback of the SLIQ
algorithm is that in order to decide which attribute is to be
split at each node, a large number of Gini indices have to be
computed for all attributes and for each successor pair for all
records that have not been classified. SLIQ employs a presorting
technique in the tree growth phase that strongly affects its
ability to find the best split at a decision tree node. However,
the proposed model eliminates the need to sort the data at
every node of the decision tree; as an alternative the training
data uses a k-means clustering data segmentation only once for
every numeric attribute at the beginning of the tree growth
phase. The CC-SLIQ algorithm inexpensively evaluates split
points that are twice the cluster size k and results in a compact
and accurate tree, scalable for large datasets as well as classified
datasets with a large number of attributes, classes, and records.
The classification accuracy of this technique has been compared
to the existing SLIQ and Elegant decision tree methods on a
large number of datasets from the UCI machine learning and
Weather Underground repository. The experiments show that
the proposed algorithm reduces the computation of split points
by 95.62%, decision rules generated by 56.5% and also leads
to better mean classification accuracy of 79.29%, thus making
it a practical tool for data mining.

Index Terms—Classification; k-means Clustering; Decision
Tree; Gain ratio; SLIQ algorithm.

I. INTRODUCTION

DECISION trees have been found to be the best algo-
rithms for data classification, providing good accuracy

for many problems in practical time. In a decision tree,
each branch node represents the choice between a number
of alternatives and each leaf node represents a classification
decision [1, 2]. Decision trees are applied in decision analysis
problems to help identify the most suitable strategy for
reaching a concrete goal [3]. Decision trees provide clas-
sification rules and can be understood easily. However, the
accuracy of decision trees has always been a problem. The
ID3 decision tree algorithm was first proposed by Quinlan
[4] and there have since been several enhancements to the
original algorithm, including the C4.5 algorithm [5, 6]. Sev-
eral approaches have been developed to improve the quality
of decision tree results from different perspectives such as
the C4.45 and C4.55 decision tree algorithms suggested by
Mahmood et al. [7] provide promising and interesting results.

One of the main drawbacks of ID3 is the attribute selec-
tion measure used. The splitting attribute selection measure

Manuscript received November 25, 2013; revised August 18, 2014.
Narasimha Prasad L V is with the Department of Computer Science and

Engineering, S V University College of Engineering, Hyderabad, India (e-
mail: lvnprasad@yahoo.com).

Mannava Munirathnam Naidu is with the Department of Computer Sci-
ence and Engineering, Gudlavalleru Engineering College, Gudlavalleru,
India (e-mail: mmnaidu@yahoo.com).

information gain in ID3 tends to favor attributes with a large
number of distinct values. This drawback was overcome to
some extent by the introduction of a new measure called gain
ratio. Gain ratio takes into account the information about the
classification gained by splitting on the basis of a particular
attribute. The Gini index is an alternative proposal to gain
ratio and is used in the SLIQ (Supervised Learning in Quest)
algorithm by Manish et al. [8]. Several enhancements to ID3
have been proposed to overcome these drawbacks. These
drawbacks are also dealt with in SLIQ.

Other algorithms that use the Gini index as a split measure
are the SPRINT [9], CLOUDS [10], CMP-S [11], and
Elegant decision tree [12]. The SPRINT algorithm aims to
parallelize SLIQ. In CLOUDS, the range of each numeric
attribute is divided into q intervals using a quantization
technique. A major improvement of CMP-S over CLOUDS
is that it scans the dataset only once. Various approaches have
been suggested by Chandra et al. [13, 14], Huacheng Zhang
et al. [15] for improving the efficiency of the SLIQ decision
tree algorithm. In the Elegant decision tree algorithm, the
Gini index is computed not only on every successor pair
of attribute values but also over different attribute value
ranges to determine the exact split point that improves the
performance of SLIQ. Another approach has been to improve
the performance of SLIQ is by computing the Gini index only
at those points where the class information changes.

The drawback of the SLIQ algorithm is that a large number
of Gini indices must be computed at each node of the
decision tree. In order to decide which attribute is to be
split at each node, the Gini indices must be computed for
all attributes and for each successive pair of values for all
patterns that have not yet been classified. SLIQ proposes
to scan each attribute and each value corresponding to an
attribute in order to ascertain the best split. However, in the
case of large databases with numerous records, this process
of scanning each attribute and each corresponding pair of
successive values leads to a huge number of computations.
Big datasets that consist of large groups of very similar
instances with a few small groups of unusual cases can be a
problem for this kind of classifier, as the classifiers tend to
overlook corner cases. One approach to solving this problem
is to classify the data into groups that share some features
between them so that all groups get a similar number of
instances, possibly decreasing the error rate.

This paper presents a novel method to improve the ef-
ficiency of classifier training by cascading the k-means
clustering [24] and SLIQ decision tree learning methods. In
particular, the method:

1) eliminates the presorting of data for each numeric
attribute at the beginning of the tree growth phase,

2) eliminates the computation of a large number of Gini
splitting indices for an attribute at a node,

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

3) results in smaller decision trees with fewer rules,
4) uses gain ratio instead of the Gini index, taking into

account the information about the classification gained
by splitting on the basis of a particular attribute.

The CC-SLIQ decision tree algorithm constructs the bi-
nary decision tree by cascading two machine learning algo-
rithms: k-means clustering and SLIQ decision tree learning.
The aim of clustering algorithms is to classify the data
into groups that share some features between them. In
the first stage, k-means clustering is performed on training
instances to obtain ‘k’ disjoint clusters. We choose k-means
clustering because it is a data-driven method with relatively
few assumptions on the distributions of the underlying data.
In addition, its greedy search strategy guarantees at least a
local minimum of the criterion function, thereby accelerating
the convergence of clusters on large datasets. Each k-means
cluster represents a region of instances that are similar in
terms of Euclidean distances between the instances and their
cluster centroids. In the second stage, the k-means method
is cascaded with SLIQ decision tree learning by building an
SLIQ decision tree using the instances in each of the k-means
clusters.

We performed experiments on twelve benchmark datasets
extracted from the UCI machine learning data repository
[16] and nineteen real-world large datasets in the prediction
of precipitation for various sub-continental regions from
Weather Underground (http://www.wunderground.com). The
performance of the CC-SLIQ algorithm was empirically
compared with the SLIQ and Elegant decision tree classi-
fication algorithms as well as with other popular machine
learning classifiers: naive Bayes and back propagation.

This paper is organized as follows. Section II describes the
related work done to date. We briefly describe SLIQ decision
tree in Section III. Section IV introduces the proposed
CC-SLIQ decision tree algorithm. Section V provides the
experimental results. A conclusion is drawn in Section VI.

II. RELATED WORK

Various methodologies have been developed for construct-
ing decision trees such as ID3 [4], C4.5 [5, 6], CART [17],
CTC [18], and FDT [19]. Nevertheless, all these methodolo-
gies needs to hold the total training set in memory when
constructing a decision tree. As a result, they cannot be
applied to huge training sets.

Other methodologies have been developed for constructing
decision trees from huge training sets, for instance, SLIQ
[8], SPRINT [9], CLOUDS [10], Rain Forest [20] and
BOAT [21]. However, all of these use lists for keeping a
dataset in main memory; for each attribute in the dataset,
these algorithms assign a list. The problem is that some
of these lists require more space than the one required to
store the entire training set. Other algorithms, like BOAT
[21], ICE [22], and VFDT [23], are incremental algorithms.
Both BOAT and ICE use a subset of training instances for
constructing a decision tree; but for huge datasets, to search
this subset of instances may be too expensive. In VFDT,
the user needs to define values for three parameters before
constructing a decision tree, which could be very difficult in
practice.

The CC-SLIQ algorithm proposed here solves some of
the limitations highlighted above. Our algorithm processes

the entire training set without storing it in memory and the
parameters can be easily defined by the user. In addition,
our algorithm is faster than the most recent methodologies
discussed in the literature for constructing decision trees from
huge datasets.

III. SLIQ DECISION TREE ALGORITHM

The SLIQ (Supervised Learning in Quest) was developed
by the Quest team at the IBM Almaden Research Center
to handle both numeric and categorical datasets. A tree is
generated by splitting any one of the attributes at every level.
The basic intent is to build the tree that is more accurate for
prediction.

SLIQ employs pre-sorting of the training dataset T. For
set T, a sorted attribute list is prepared along with its
corresponding class label and the split points are evaluated
using equation (1) whenever there is a change in the class
label

split point = mid point(changed class labels) (1)

and use equation (2) to compute the value of G info(T) for
the class label.

G info(T) = 1−
N∑
i=1

P 2
i (2)

The notations used are given in Table I. A SLIQ decision tree
classifier recursively divides the training set into partitions
so that most or all of the records are of a similar class.
The algorithm starts with the entire dataset at the root node.
The dataset is partitioned by splitting the criteria into subsets
according to the Gini index. The attribute containing the
split point that maximizes the reduction in impurity or,
equivalently, has the minimum Gini index, is used to split
the node. The value of a split point depends upon how
well it separates the classes. The splitting is carried out for
the dataset by choosing the attribute that will best separate
the remaining samples of the nodes apportioned into the
individual classes.

SLIQ eliminates the need to sort the data at every node
of decision tree, despite the training datasets are sorted only
once for every numeric attribute at the beginning of the tree
growth phase. CART [17] and C4.5 [5] classifiers grow trees

TABLE I: Notations used in generalized format.

Symbol Notation
T Training dataset
C Number of class labels
N Number of instances
n Number of split points
pi The probability that a tuple in T belongs

to class ci
pj The probability that a tuple in T belongs

to class cj

x(j)
i Data point

cj Cluster centre∥∥∥x(j)i − cj
∥∥∥2

Distance measure between x
(j)
i and cj

sp Split point value

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

depth-first and repeatedly sort the data at every node of the
tree to arrive at the best splits for numeric attributes.

The G info (vq) value for each and every attribute is
calculated according to the equation (3).

G info (vq) =
n∑

j=1

Pj

[
1−

N∑
i=1

P 2
i

]
(3)

The Gini index (vq) value is obtained using the equation
(4) by subtracting G info (vq) from G info (T).

Gini index (vq) = G info (T)− G info (vq) (4)

The maximum Gini index (vq) value in equation (5) is
considered the best split point and becomes the root node.

Best split point = maximum (Gini index (vq)) (5)

This procedure is repeated until every node ends with a
unique class label.

IV. CC-SLIQ DECISION TREE ALGORITHM

SLIQ is a decision tree classifier that can handle both
numeric and categorical attributes. SLIQ uses a pre-sorting
technique in the tree growth phase for numeric attributes,
where sorting time is a dominant factor when finding the
best split at a decision tree node. In the SLIQ algorithm,
the Gini index is evaluated at every successive midpoint of
the attribute values. However, the efficiency of the SLIQ
algorithm was improved by evaluating the Gini index only
at the mid points of the attributes where there is a change
in class label information [14]. However, by doing so, the
performance measures of the decision tree built does not
change. Therefore, CC-SLIQ employs a scheme that does
away with the need to sort the data at every node of the
decision tree. Instead, the training data need to be partitioned
using k-means clustering only once for each numeric attribute
at the beginning of the tree growth phase. In addition, the
split point value is computed at the cluster boundaries at both
the beginning and end of the cluster segments. Consequently,
splits of all the leaves of the current tree are simultaneously
adopted in one pass over the data. The experimental imple-
mentation methodology of CC-SLIQ algorithm consists of
four stages: 1) a k-means algorithm to group N data points
into k disjoint clusters, where k is determined by an auto
detection cluster classifier algorithm explained later in this
section; 2) identification of the split points; 3) evaluation
of the gain ratios for all the attributes; and 4) decision tree
construction.

Function CC-SLIQ decision tree growth and split points

1) Read dataset (T) to select the root node of the CC-
SLIQ decision tree.

2) Generate an attribute list for each attribute of T.
3) Compute entropy (T) for each class label using the

equation (6).

entropy (T) = −
N∑
i=1

pi log2 pi (6)

4) Partition the training dataset along with the class label
for each attribute ‘vq’ using k-means clustering and

mark the start and end value positions of each cluster
segment as ‘sp’ where p ≤ 2k, k is cluster size.

5) Create two subsets for each split point ‘sp’ such that
left subset has values less than ‘sp’ and right subset
has values greater than or equal to ‘sp’.

6) Compute Info(vq) for each and every attribute ‘vq’
using the equation (7).

info (vq) =
n∑

j=1

Pj

[
−

N∑
i=1

Pi log2 Pi

]
(7)

Where Pj is the probability that a tuple in T belongs
to class label cj and Pi is the probability that a tuple
in T belongs to class label ci.

7) Calculate Gain (vq) for each and every attribute using
the equation (8)

Gain (vq) = entropy(T)− Info(vq) (8)

8) Compute Split info (vq) for each and every attribute
using the equation (9)

Split info (vq) = −
n∑

i=1

|Ti|
|T |

log2

(
|Ti|
|T |

)
(9)

9) The GainRatio (vq) in the equation (10) is the pro-
portion of information generated by the split:

GainRatio (vq) =
Gain(vq)

Split info(vq)
(10)

10) The maximum GainRatio (vq) is considered to be the
best split point and becomes the root node.

Best split poin t = maximum (GainRatio (vq))

11) Repeat Steps 5 through 10, until there are no further
partitions for the attributes.

k-means clustering algorithm is one among the simplest
unsupervised learning methodologies that solves the well-
known clustering problem [24]-[29]. k-means clustering
causes problems when the k parameter in k-means is set to
a value that is considerably less than the inherent number of
natural groupings within the training data. The k-means pro-
cedure, when initialized with a low k value, underestimates
the natural groups within the training data and, therefore,
will not capture the overlapping groups within a cluster,
forcing instances from different groups to be a part of the
same cluster. The process follows an easy way to classify a
given dataset choosing k cluster centers to coincide with k
randomly chosen patterns or k randomly defined points inside
the hypervolume containing the dataset. The major thought
is to identify k centroids, for each cluster. This methodology
aims to minimize an objective function, in this case the
squared error function is given in equation (11).

J =
k∑

j=1

n∑
i=1

∥∥∥xi(j) − cj∥∥∥2 (11)

where
∥∥xi(j) − cj∥∥2 is a chosen distance measure be-

tween a data point x(j)i and the cluster center cj , and J is
an indicator of the distance of ‘n’ data points from their
respective cluster centers. The methodology is composed of
the following steps:

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

Function k-means clustering

1) Place k points into the object space. These points
represent the initial group centroids.

2) Assign each object to the group that has the closest
centroid.

3) When all objects have been assigned, recalculate the
positions of the k centroids.

4) Repeat Steps 2 and 3 until the centroids no longer
move. This creates a separation of objects into groups
from which the metric to be minimized can be calcu-
lated.

A fundamental problem in k-means clustering is to deter-
mine the number of clusters, which is usually taken as prior
or fixed. The selection of a good value for k can affect the
overall accuracy of the algorithm, and clustering solutions
may vary as different numbers of clusters are specified.
A clustering technique would most possibly recover the
underlying cluster structure, given a good estimate of the
true number of clusters.

This paper uses a heuristic based optimum decision cluster
algorithm that is designed to achieve this goal [30, 31].
Choosing a value for k by visual inspection can be auto-
mated by using the percentage of variance of clusters that
determines the optimum number of clusters. This method
finds the optimum number of clusters automatically, based
on the relationship between consecutive differences among
the data points [32]. The algorithm to compute the optimum
number of clusters is as follows.

Function optimum decision cluster size

1) Read n records of an attribute and store in ith row of
jagged array (initially i = 0).

2) Compute the consecutive difference of ith row and
store in (i+ 1)th row.

3) Repeat step 2 until i < n.
4) The highest row index which contains the maximum

value from 1 to 9 (heuristic approach) determines the
cluster size (k).

The training data is a set T =
{
x1, x2, ..., xs

}
of

already classified data patterns. Each data pattern xs =
(x1

s, x2
s, x3

s, ..., xk
s) represents the qth attribute value of

xs where q is the total number of attributes. The training data
is augmented with a vector ψ = (C1, C2, ..., CN), where Ci

represents the class to which each data pattern belongs, and
C is the total number of classes. Imagine selecting one data
pattern from a set T of training data patterns randomly and
announcing it belongs to the class Ci. This message has the
probability pi= |Ci|/|T|, where |Ci| is the number of data
patterns that belong to class Ci. The information contained in
this announcement is −log2(pi). In general, if we are given
a probability distribution P = (p1,p2,...,pn), using equation
(6) we calculate entropy (T) conveyed by this distribution.

When applied to the set T of training data pattern, the
average amount of information needed is Info(vq) to identify
the class of a data pattern of set T. Consider a similar
measurement after set T has been partitioned in accordance
with the n subsets on the qth attribute, vq . The expected
information requirement is obtained by evaluating equation
(7), is the weighted sum over the subsets. The quantity,
Gain(vq) is then computed for each attribute list using

equation (8). This epitomizes the difference between the
information needed to identify an element of set T and the
same information after the value of attribute vq has been
obtained, i.e., the gain in information due to attribute vq .
By analogy with equation (8), the split information can be
obtained by using equation (9).

The gain ratio vq defined in equation (10) is the proportion
of information generated by the split that is useful for
classification. The maximum gain ratio vq is considered to
be the best split point and becomes the root node.

At each node, the CC-SLIQ decision tree algorithm
chooses the attribute of the data that most efficiently splits
its set of data patterns into subsets rich in one class or the
other. Its criterion is the gain ratio that results from choosing
an attribute for splitting the data. Because the attribute ‘V’
has a continuous range, we can examine the values for this
attribute in the training set. Then for each value V j

q , where
j = 1, 2, ..., n. We partition the records into the number of
clusters k. For each of these k partitions we compute the gain
ratio V j

q and select a partition that maximizes it. The gain
ratio is used to rank attributes and construct decision trees
where every node is split conforming to the attribute with
the greatest gain ratio among the attributes not yet chosen
in the path from the root. Since all attributes are continuous,
we obtain a binary decision tree.

The decision tree complexity is measured by the number
of its terminal nodes. The computational complexity of the
CC-SLIQ algorithm mainly lies in the exhaustive search for
the best split value required at each node [33]-[39]. This
computational complexity grows exponentially with respect
to the size of dataset, and this is why the proposed k-
means clustering technique helps. The main strength of
the CC-SLIQ decision tree with the gain ratio attribute
selection measure classifier is that it provides understanding
and insight into the data. More insight can be obtained by
using the information gain and Gini index attribute selection
measures. Here, we briefly review them.

A. Information gain

Information gain is an impurity-based criterion that uses
the entropy measure (originally from information theory)
as the impurity measure. Taking the class label attribute
and calculating the entropy, as shown in equation (6), the
information gain of an attribute is calculated from equation
(7). The gain of an attribute is calculated in order to choose
the root node from equation (8). The attribute that has the
maximum gain value is chosen for the root node.

B. Gini index

Gini index is an impurity-based criterion that measures
the divergences between the probability distributions of the
target attribute’s values. The value of G info (T) is cal-
culated for the class label using equation (2). The value
for Gini index (vq) is calculated for each and every attribute
using equation (3). The value is obtained by finding the dif-
ference between G info (T) and G info (vq) using equation
(4). The maximum Gini index (vq) value is considered the
best split point and is used for the root node.

In this paper, the CC-SLIQ algorithm constructs decision
trees from a set of training data using the concepts of

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

information gain, Gini index, and gain ratio and comparing
the results. The effectiveness of a CC-SLIQ classifier is in
the formation of fewer uniform clusters, helping to reduce
the number of split points at each node of the tree and, at
the same time, increasing the classifier accuracy. The ideal
goal is to produce compact, accurate and scalable trees in a
short time.

C. Illustration

The steps in the proposed algorithm are explained in detail
using a subset of the precipitation dataset shown in Table
II. The dataset contains five attributes, namely humidity
(A1), temperature (A2), atmospheric pressure (A3), wind
speed (A4), dew point (A5), and a class label. The data
are labeled into two classes: Class 1 (Z1) denotes rain and
Class 2 (Z2) denotes no-rain. The function optimum decision
cluster size determines the cluster size for the attributes. Each
attribute value is clustered, along with the corresponding
class label information. The cluster sizes obtained for each
of the attributes A1, A2, A3, A4, A5 are 2, 2, 5, 2, and 2
respectively.

The split point value is computed at the cluster boundaries
both at the beginning and end of the cluster segments. The
results in Tables III-VII show the number of clusters formed
and the split values evaluated. The decision tree generated
using the CC-SLIQ algorithm is shown in Fig. 1.

The gain ratio evaluated for each of the split point values
for all attributes are illustrated in Table VIII. The best

TABLE II: Sample dataset for illustration of CC-SLIQ.

S. No. A1 A2 A3 A4 A5 Class
1 88 26 1004 13 21 Z2
2 92 27 1005 13 21 Z1
3 86 27 1007 11 21 Z1
4 82 27 1006 11 21 Z1
5 76 27 1007 14 19 Z2
6 79 27 1008 11 20 Z2
7 75 27 1008 13 20 Z2
8 84 27 1007 13 20 Z2
9 88 26 1006 11 21 Z1

10 86 25 1005 16 19 Z1
11 78 28 1006 13 21 Z2
12 79 27 1008 13 19 Z2
13 80 28 1008 8 20 Z2
14 84 29 1009 6 21 Z2
15 76 27 1009 6 22 Z1

Fig. 1: CC-SLIQ decision tree.

TABLE III: Dataset segmented based on values of A1
attribute.

S. No. A1 Class Cluster number Split point values
1 88 Z2 C1 → 88
2 92 Z1 C1
3 86 Z1 C1
4 82 Z1 C0 → 82
5 76 Z2 C0
6 79 Z2 C0
7 75 Z2 C0
8 84 Z2 C0
9 88 Z1 C1

10 86 Z1 C1 → 86
11 78 Z2 C0
12 79 Z2 C0
13 80 Z2 C0
14 84 Z2 C0
15 76 Z1 C0 → 76

TABLE IV: Dataset segmented based on values of A2
attribute.

S. No. A2 Class Cluster number Split point values
1 26 Z2 C0 → 26
2 27 Z1 C1 → 27
3 27 Z1 C1
4 27 Z1 C1
5 27 Z2 C1
6 27 Z2 C1
7 27 Z2 C1
8 27 Z2 C1
9 26 Z1 C0

10 25 Z1 C0 → 25
11 28 Z2 C1
12 27 Z2 C1
13 28 Z2 C1
14 29 Z2 C1
15 27 Z1 C1 → 27

TABLE V: Dataset segmented based on values of A3 at-
tribute.

S. No. A2 Class Cluster number Split point values
1 1004 Z2 C0 → 1004
2 1005 Z1 C1 → 1005
3 1007 Z1 C2 → 1007
4 1006 Z1 C3 → 1006
5 1007 Z2 C2
6 1008 Z2 C4 → 1008
7 1008 Z2 C4
8 1007 Z2 C2 → 1007
9 1006 Z1 C3

10 1005 Z1 C1 → 1005
11 1006 Z2 C3 → 1006
12 1008 Z2 C4
13 1008 Z2 C4
14 1009 Z2 C4
15 1009 Z1 C4 → 1009

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

TABLE VI: Dataset segmented based on values of A4
attribute.

S. No. A2 Class Cluster number Split point values
1 13 Z2 C0 → 13
2 13 Z1 C0
3 11 Z1 C1 → 11
4 11 Z1 C1
5 14 Z2 C0
6 11 Z2 C1
7 13 Z2 C0
8 13 Z2 C0
9 11 Z1 C1

10 16 Z1 C0
11 13 Z2 C0
12 13 Z2 C0 → 13
13 8 Z2 C1
14 6 Z2 C1 → 6
15 6 Z1 C1

TABLE VII: Dataset segmented based on values of A5
attribute.

S. No. A2 Class Cluster number Split point values
1 21 Z2 C0 → 21
2 21 Z1 C0
3 21 Z1 C0
4 21 Z1 C0
5 19 Z2 C1 → 19
6 20 Z2 C0
7 20 Z2 C0
8 20 Z2 C0
9 21 Z1 C0

10 19 Z1 C0
11 21 Z2 C0
12 19 Z2 C1 → 19
13 20 Z2 C0
14 21 Z2 C0
15 22 Z1 C0 → 22

splitting attribute is the maximum among the gain ratios
computed. Here, for attribute A1, a split point value of 86.0,
has the maximum gain ratio and hence is chosen to be the
root node. A similar process is repeated to compute the gain
ratio values for various split points.

V. EXPERIMENTAL RESULTS

We design two experiments to evaluate the performance
of the CC-SLIQ decision tree algorithm. The first one is on
twelve UCI machine learning repository benchmark datasets
and second experiment is on nineteen datasets extracted
from weather underground (http://www.wunderground.com)
to predict the useful patterns for the hydro-metro prediction
of precipitation. Prediction of precipitation is necessary as
it has to be considered during the financial planning of a
country. The meteorological departments of every nation are
very keen in recording the datasets of precipitation which are
huge in content. Hence, decision tree learning is one of the
competitive tools which would extract the relation between
the datasets and their attributes. It should be noted that all
the test results shown in this section were simulated on an
Intel Pentium i5 PC.

TA
B

L
E

V
II

I:
G

ai
n

ra
tio

va
lu

es
fo

r
fin

di
ng

sp
lit

po
in

ts
.

It
er

at
io

n
A

1
A

2
A

3
A

4
A

5
Sp

lit
va

lu
e

G
ai

n
ra

tio
Sp

lit
va

lu
e

G
ai

n
ra

tio
Sp

lit
va

lu
e

G
ai

n
ra

tio
Sp

lit
va

lu
e

G
ai

n
ra

tio
Sp

lit
va

lu
e

G
ai

n
ra

tio
St

ep
1

86
.0

0.
27

1
26

.0
0.

14
9

10
07

.0
0.

14
9

13
.0

0.
07

8
22

.0
0.

26
4

St
ep

2
76

.0
0.

07
2

25
.0

-1
.0

10
07

.0
0.

12
0

13
.0

0.
23

6
22

.0
0.

57
3

St
ep

3
82

.0
0.

21
4

25
.0

-1
.0

10
07

.0
0.

36
7

13
.0

0.
14

3
21

.0
0.

21
4

St
ep

4
82

.0
1.

0
25

.0
-1

.0
10

07
.0

-1
.0

13
.0

1.
0

22
.0

-1
.0

St
ep

5
88

.0
0.

17
6

27
.0

0.
17

6
10

05
.0

1.
0

13
.0

0.
17

6
21

.0
0.

10
09

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

A. Experimental results on UCI datasets

The performance of the CC-SLIQ decision tree algorithm
was compared with that of the SLIQ and Elegant deci-
sion trees using twelve UCI machine learning repository
benchmark datasets. The datasets represent a wide range of
domains and data characteristics. The datasets, in ascending
order of size, are shown in Table IX.

The effectiveness of selecting the best split attribute is
defined by the reduction of impurity from the parent to
the child nodes before splitting. The larger the reduction
of impurity, the better the selected split attributes. Hence,
inorder to study the effectiveness of the CC-SLIQ, infor-
mation gain, Gini index and gain ratio attribute selection
measures were implemented and the results are tabulated in
Table X. The CC-SLIQ with gain ratio measure has better
mean classification accuracy over the information gain and
Gini index measures.

The mean classification accuracy of the proposed CC-
SLIQ is around 77.11% obtained via 10 runs of 10-fold strati-
fied cross validation; while the mean classification accuracies
using the SLIQ and Elegant decision trees are 74.72% and
73.36%, respectively, as shown in Table XI. The performance
of CC-SLIQ outperforms both SLIQ and Elegant decision
trees for most of the datasets except for Ionosphere and
Breast cancer, where the accuracies are marginally less.

We also compared the performance of CC-SLIQ with other
popular machine learning classifiers: naive Bayes and back
propagation. The naive Bayes is a well-known parametric
classification algorithm with very low time complexity and

TABLE IX: Datasets used for the system evaluation.

Dataset Instances Attributes Classes
Zoo [Richard S. Forsyth, 1990] 101 16 7
Iris [R.A. Fisher, 1988] 150 4 3
Heart[David W. Aha, 1988] 267 22 2
Haberman [Tjen-Sien Lim, 1999] 290 3 2
Liver [Richard S. Forsyth, 1990] 346 6 2
Ionosphere [Vince Sigillito, 1989] 422 34 2
Diabetes [Michael Kahn, 1994] 517 8 2
Breast cancer [Ming Tan, 1988] 699 9 2
Vehicle [Dr.Pete Mowforth, 1987] 846 18 4
Yeast [Kenta Nakai, 1996] 1484 8 9
Abalone [Sam Waugh, 1995] 4117 8 3
Letter [David J. Slate, 1991] 20000 16 26

TABLE X: Comparison of CC-SLIQ gain ratio classifier
accuracies with entropy and Gini index measures.

Dataset Instances CC-SLIQ accuracy % using
Entropy Gini Index Gain ratio

Zoo 101 88.01 88.01 90.01
Iris 150 75.01 75.01 75.01
Heart 267 66.00 67.50 72.51
Haberman 290 77.77 77.77 77.77
Liver 346 67.81 67.81 68.96
Ionosphere 422 72.51 87.69 92.31
Diabetes 517 60.01 68.01 80.00
Breast cancer 699 90.62 90.62 93.75
Vehicle 846 66.09 67.24 71.26
Yeast 1484 48.78 47.43 49.86
Abalone 4117 55.61 54.08 54.59
Letter 20000 78.17 79.02 99.35
Mean 70.53 72.51 77.11

TABLE XI: Classification accuracy of CC-SLIQ with other
decision trees on UCI datasets.

Dataset Accuracy (%)
SLIQ Elegant CC-SLIQ

Zoo 88.01 88.01 90.01
Iris 91.66 91.66 75.01
Heart 70.51 62.51 72.51
Haberman 75.92 70.37 77.77
Liver 66.66 60.91 68.96
Ionosphere 98.46 92.31 92.31
Diabetes 72.01 79.42 80.00
Breast cancer 96.80 96.87 93.75
Vehicle 54.59 57.49 71.26
Yeast 48.78 47.43 49.86
Abalone 55.61 50.51 54.59
Letter 77.67 83.75 99.35
Mean 74.72 73.36 77.11

considerably good accuracy as well. However, it is based on
an unrealistic assumption that: all attributes are independent
given in the class. The back propagation model of neural
networks has long training periods, normally learns with
non-local information, often fails to converge, and at best
converges to local error minima. Both methodologies fail to
provide inference rules and draw conclusions with uncertain
evidence. The experimental results shown in Table XII, prove
that the CC-SLIQ method is competitive in terms of classi-
fication accuracy with naive Bayes and back propagation for
most of the datasets.

The number of split points computed and rules evaluated
during the construction of decision trees are depicted in
Tables XIII and XIV respectively. Table XIII shows that CC-
SLIQ greatly reduces the number of split points generated
thus reducing the number of computations at every node
taking low running time. In addition, there is a significant
reduction of 83.29% over SLIQ decision tree and 70.91%
over Elegant decision trees in computing the number of split
points. A graph plotted between the number of instances and
the split points generated by SLIQ and CC-SLIQ decision
trees, is shown in Fig. 2(a).

Consequently, Table XIV shows that the CC-SLIQ algo-
rithm generates fewer rules, a reduction of 17.27% compared

TABLE XII: Classification accuracy of CC-SLIQ with other
classifiers on UCI datasets.

Dataset Accuracy (%)
naive Bayes Back propagation CC-SLIQ

Zoo 81.82 83.12 90.01
Iris 88.88 94.44 75.01
Heart 54.31 55.84 72.51
Haberman 71.34 73.92 77.77
Liver 56.31 55.86 68.96
Ionosphere 78.44 84.48 92.31
Diabetes 61.36 68.18 80.00
Breast cancer 86.66 85.45 93.75
Vehicle 43.91 76.52 71.26
Yeast 61.02 58.77 49.86
Abalone 50.87 56.74 54.59
Letter 62.24 80.14 99.35
Mean 66.43 72.78 77.11

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

TABLE XIII: Comparison of split points generated in CC-
SLIQ with other decision trees on UCI datasets.

Dataset Split points computed % reduction in
split points over

SLIQ Elegant CC-SLIQ SLIQ Elegant
Zoo 73 48 25 65.75 47.92
Iris 57 54 20 64.91 62.96
Heart 64 61 31 51.56 49.18
Haberman 81 32 14 82.72 56.25
Liver 333 124 30 90.99 75.81
Ionosphere 1682 1682 107 93.64 93.64
Diabetes 208 102 31 85.10 69.61
Breast cancer 67 27 18 73.13 33.33
Vehicle 2512 344 68 97.29 80.23
Yeast 1336 623 32 97.60 94.86
Abalone 1710 1698 32 98.13 98.12
Letter 4021 483 53 98.68 89.03
Mean 4021 439.83 38.41 83.29 70.91

TABLE XIV: Comparison of rules generated in CC-SLIQ
with other decision trees on UCI datasets.

Dataset SLIQ Elegant CC-SLIQ
% of reduction in

rules over
SLIQ Elegant

Zoo 11 11 11 0 0
Iris 11 9 8 27.27 11.11
Heart 74 76 73 1.35 3.94
Haberman 75 76 28 62.66 63.15
Liver 99 112 97 2.02 13.39
Ionosphere 28 29 24 14.28 17.24
Diabetes 122 105 101 17.21 3.80
Breast cancer 44 46 44 0 4.34
Vehicle 267 246 205 23.22 16.66
Yeast 489 446 426 12.88 4.48
Abalone 1336 1275 893 33.15 29.96
Letter 3041 2884 2636 13.31 8.59
Mean 466.41 442.91 378.8 17.27 14.72

to SLIQ and 14.72% compared to Elegant decision trees.
This performance improvement is shown in Fig. 2(b). Hence,
CC-SLIQ decision tree classifier have the ability to manage
complex problems by offering an understandable representa-
tion, i.e., they are easier to interpret as they produce logical
classification rules. This demonstrates how clustering tech-
niques not only help to reduce the computational complexity
of the SLIQ algorithm but also handle noisy environments
and corner cases.

B. Experimental results on precipitation datasets

We conducted the second experiment on nineteen pre-
cipitation datasets with two class labels to predict how
the present state of environmental variables humidity, tem-
perature, pressure, wind speed and dew point affects the
precipitation for rain/no-rain detection. Table XV shows the
number of instances and average accuracies of CC-SLIQ
over SLIQ and Elegant decision trees obtained via 10-fold
stratified cross validation.

CC-SLIQ performs better than SLIQ and Elegant decision
trees and the mean classification accuracy of CC-SLIQ is
80.67%, higher than SLIQ’s 73.43% and Elegant’s 73.45%.
In addition, Table XVI shows that CC-SLIQ greatly reduces
the number of split points, by 94.22% over SLIQ and 90.86%
over Elegant decision trees. The values obtained are given in

TABLE XV: Classification accuracy of CC-SLIQ with other
decision trees on precipitation datasets.

Dataset Instances Accuracy (%)
SLIQ Elegant CC-SLIQ

Zimbambwe 1319 79.71 80.23 83.16
Cairo 1535 95.33 94.68 97.13
Taiwan 1666 69.8 68.96 73.87
Botswana 1678 83.61 81.46 86.68
St.Petersberg 2148 72.9 73.23 72.98
Perth 2182 79.37 78.51 82.65
Adelaide 2183 72.19 71.87 77.66
Tokyo 2189 71.31 71.91 75.69
Jakartha 2529 74.06 77.12 91.66
Phillipines 4000 64.34 66.78 72.29
Lahore 4886 79.1 80.67 85.58
Washington 5507 26.33 22.78 68.59
Delhi 6015 82.65 81.42 87.22
Victoria 6044 69.68 70.41 74.2
Manama 6072 88 87.16 91.36
Brazil 6367 71.9 73.34 76.36
Bangkok 6659 71.29 70.33 77.52
Dallas 19659 67.9 66.86 73.82
San Francisco 24368 75.8 77.89 84.48
Mean 73.43 73.45 80.67

Fig. 3(a). It is not a surprise that CC-SLIQ performs better
than naive Bayes, with a average accuracy of 80.67% vs. the
76.99% for naive Bayes and 80.68% for back propagation,
shown in Table XVII.

CC-SLIQ, in-terms of rules generated on precipitation
datasets is shown in Table XVIII. There is a reduction
of 58.77% and 58.91% over SLIQ and Elegant decision
tress respectively. This reduction is depicted in Fig. 3(b).
The size of the decision tree constructed using CC-SLIQ
is significantly smaller and still enjoys higher classification
accuracy, handling both noisy environments and corner cases.

The size of a decision tree constructed using CC-SLIQ is
significantly smaller than one constructed using SLIQ and
Elegant decision tree methods. The comparison results show

TABLE XVI: Comparison of split points generated in CC-
SLIQ with other decision trees on precipitation datasets.

Dataset Split points computed % reduction in
split points over

SLIQ Elegant CC-SLIQ SLIQ Elegant
Zimbambwe 343 191 20 94.17 89.53
Cairo 348 168 18 94.83 89.29
Taiwan 475 405 26 94.53 93.58
Botswana 422 255 18 95.73 92.94
St.Petersberg 406 250 20 95.07 92.00
Perth 326 200 26 92.02 87.00
Adelaide 353 236 18 94.90 92.37
Tokyo 750 260 18 97.60 93.08
Jakartha 208 147 20 90.38 86.39
Phillipines 265 214 14 94.72 93.46
Lahore 332 188 20 93.98 89.36
Washington 485 360 18 96.29 95.00
Delhi 340 206 18 94.71 91.26
Victoria 328 241 26 92.07 89.21
Manama 277 132 18 93.50 86.36
Brazil 381 269 20 94.75 92.57
Bangkok 217 141 16 92.63 88.65
Dallas 374 272 20 94.65 92.65
San Francisco 321 241 20 93.77 91.70
Mean 365.84 230.31 19.68 94.22 90.86

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

Zoo Iri
s

Hear
t

Hab
erm

an
Live

r

Ion
osp

he
re

Diab
ete

s

Brea
st c

an
cer

Veh
icl

e
Yeas

t

Aba
lon

e
Lett

er
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
o.

 o
f s

pl
it

po
in

ts

Datasets

 SLIQ
 CC-SLIQ

(a) Number of split points computed.

Zoo Iri
s

Hear
t

Hab
erm

an
Live

r

Ion
osp

he
re

Diab
ete

s

Brea
st c

an
cer

Veh
icl

e
Yeas

t

Aba
lon

e
Lett

er

0

500

1000

1500

2000

2500

3000

3500

N
o.

 o
f r

ul
es

 g
en

er
at

ed

Datasets

 SLIQ
 CC-SLIQ

(b) Number of rules generated.

Fig. 2: Evaluation of CC-SLIQ on UCI datasets.

Zim
ba

mbw
e
Cair

o

Taiw
an

Bots
wan

a

St.P
ete

rsb
ergPert

h

Ade
lai

de
Tok

yo

Jak
art

ha

Phil
lip

ine
s

Lah
ore

W
ash

ing
tonDelh

i

Vict
ori

a

Man
am

a
Braz

il

Ban
gk

ok
Dall

as

San
 Fran

cis
co

-200

0

200

400

600

800

N
o.

 o
f s

pl
it

po
in

ts

 SLIQ
 CC-SLIQ

(a) Number of split points computed.

Zim
ba

mbw
e
Cair

o

Taiw
an

Bots
wan

a

St.P
ete

rsb
ergPert

h

Ade
lai

de
Tok

yo

Jak
art

ha

Phil
lip

ine
s

Lah
ore

W
ash

ing
tonDelh

i

Vict
ori

a

Man
am

a
Braz

il

Ban
gk

ok
Dall

as

San
 Fran

cis
co

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
o.

 o
f r

ul
es

 g
en

er
at

ed
 SLIQ
 CC-SLIQ

(b) Number of rules generated.

Fig. 3: Evaluation of CC-SLIQ on precipitation datasets.

that the CC-SLIQ not only performs better than SLIQ and
Elegant decision trees in terms of mean classification accu-
racy but also takes less training time due to the improvement
achieved in the competition of split points. Thus, CC-SLIQ
is a very successful classification method.

VI. CONCLUSION

In this paper, we proposed the CC-SLIQ decision tree
algorithm, a performance enhancement to the SLIQ decision
tree presented by Manish et al. [8]. CC-SLIQ is found
to be efficient in three important measures; (1) number of
computations at each node, (2) decision rules generated, and
(3) overall classification accuracy. In addition, the proposed
CC-SLIQ approach results in decision trees that have smaller
sizes and fewer rules than trees built with standard methods.
This method is very useful in noisy environments and corner
cases, a major weakness of SLIQ decision trees.

We have presented experimental results on UCI machine
learning and precipitation repository datasets. The perfor-

mance of the CC-SLIQ algorithm is compared with crisp
SLIQ and other well known classification methods. The
comparison results shows that CC-SLIQ has advantages in
classifying large, high dimensional data with multiple classes
and continuous attributes.

Consequently, it can serve as an efficient classifier for time
applications. Currently, k-means clustering is used to parti-
tion training instances by selecting one attribute at a time. In
future work, we plan to investigate allowing a partition that
involves all the attributes at one time, significantly improves
the decision tree classification performance. New multilayer
clustering methods could be used for clustering complicated
datasets as they are not only efficient to calculate the num-
ber of clusters, but could also improve the flexibility and
effectiveness of the existing one layer clustering methods.

REFERENCES

[1] Quinlan, J.R., “Simplifying Decision Trees,” International Journal of
Man Machine Studies, 1986, pp. 221−248.

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

TABLE XVII: Classification accuracy of CC-SLIQ with
other classifiers on precipitation datasets

Dataset Accuracy (%)
naive Bayes Back propagation CC-SLIQ

Zimbambwe 79.20 86.30 83.16
Cairo 94.02 97.01 97.13
Taiwan 66.45 75.13 73.87
Botswana 74.43 86.89 86.68
St.Petersberg 80.29 80.08 72.98
Perth 76.96 84.69 82.65
Adelaide 78.76 82.31 77.66
Tokyo 64.83 74.77 75.69
Jakartha 78.62 80.79 91.66
Phillipines 75.29 73.66 72.29
Lahore 83.97 79.73 85.58
Washington 58.95 73.84 68.59
Delhi 83.56 84.01 87.22
Victoria 70.36 69.90 74.20
Manama 89.86 89.10 91.36
Brazil 78.06 79.36 76.36
Bangkok 73.15 81.92 77.52
Dallas 73.75 73.79 73.82
San Francisco 82.45 79.66 84.48
Mean 76.99 80.68 80.67

TABLE XVIII: Comparison of rules generated in CC-SLIQ
with other decision trees on precipitation datasets

Dataset Rules generated % of reduction in
rules over

SLIQ Elegant CC-SLIQ SLIQ Elegant
Zimbambwe 784 797 281 64.15 65.81
Cairo 288 299 210 27.08 29.76
Taiwan 1260 1211 622 50.63 48.63
Botswana 768 748 323 57.94 56.81
St.Petersberg 1013 995 573 43.43 42.41
Perth 865 878 366 57.68 58.31
Adelaide 1234 1206 510 58.67 57.71
Tokyo 1106 1212 323 70.79 73.34
Jakartha 546 565 294 46.15 47.96
Phillipines 1204 1200 318 73.58 73.5
Lahore 723 719 237 67.21 67.03
Washington 4018 3818 423 89.47 88.92
Delhi 825 810 317 61.57 60.86
Victoria 1225 1204 605 50.61 49.75
Manama 614 634 271 55.86 57.25
Brazil 1264 1256 652 48.41 48.08
Bangkok 1422 1418 460 67.65 67.55
Dallas 4364 4344 1953 55.24 55.04
San Francisco 4347 4343 1274 70.69 70.66
Mean 1466.84 1455.63 5526.94 58.77 58.91

[2] Safavian, S.R. and Landgrebe, D., “A Survey of Decision Tree
Classifier Methodology,” IEEE Transactions on Systems, Man and
Cybernetics, 1991, pp. 660−674.

[3] Quinlan, J.R., “Decision Trees and Decision Making,” IEEE Transac-
tions on Systems, Man and Cybernetics, 1990, pp. 339−346.

[4] Quinlan, J.R., “Introduction of Decision Trees,” Machine Learning,
1986, pp. 81−106.

[5] Quinlan, J.R., “C4.5: Programs for Machine Learning,” The Morgan
Kaufmann Series in Machine Learning, San Mateo, CA, USA, 1993.

[6] Quinlan, J.R., “Improved use of Continuous Attributes in C 4.5,”
Journal of Artificial Intelligence Research, 1996, pp. 77−90.

[7] Mahmood, A., Rao, K.M. and Reddi, K., “A Novel Algorithm for
Scaling up the Accuracy of Decision Trees,” International Journal of
Computer Science and Engineering, 2010, pp. 126−131.

[8] Manish, M., Agrawal, R. and Rissanen, J., “SLIQ: A Fast Scalable
Classifier for Data Mining,” EDBT Proceedings of the International
Conference on Extending Database Technology: Advances in Database
Technology, Springer-Verlag, 1996, pp. 18−32.

[9] Shafer, J., Rakeeh, A. and Manish, M., “SPRINT: A Scalable Parallel
Classifier for Data Mining,” Proceedings of VLDB Conference, 1996,
pp. 544−555.

[10] Khaled, A., Sanjay, R. and Vineet, S., “CLOUDS: A Decision Tree
Classifier for Large Datasets,” Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining, 1998, pp. 1−34.

[11] Haixun, W. and Carlo, Z., “CMP: A Fast Decision Tree Classifier
Using Multivariate Predictions,” Proceedings of the International
Conference on Data Engineering, 2000, pp. 449−460.

[12] Chandra, B., Mazumdar, S., Vincent, A. and Parimi, N., “Elegant Deci-
sion Tree Algorithm for Classification in Data Mining,” Proceedings
of the Third International Conference on Web Information Systems
Engineering, 2002, pp. 160−169.

[13] Chandra, B. and Varghese, P.P., “Fuzzy SLIQ Decision Tree Algo-
rithm,” IEEE Transactions on Systems, Man and Cybernetics, 2008,
pp. 1294−1301.

[14] Chandra, B. and Varghese, P.P., “On improving efficiency of SLIQ
decision tree algorithm,” Proceedings of the IEEE International Joint
Conference on Neural Networks, 2007, pp. 66−71.

[15] Huacheng, Z. and Wu, Xie., “Improvement of SLIQ Algorithm and
its Application in Evaluation,” Proceedings of the IEEE Interna-
tional Conference on Genetic and Evolutionary Computing, 2009, pp.
77−80.

[16] Merz, C.J. and Murphy, P.M., “In UCI Repository of machine learning
databases,” http://www.ics.uci.edu/ mlearn/MLRepository.html, Irvine,
CA: University of San Francisco, Department of Information and
Computer Science, 1996.

[17] Breiman, L., Friedman, J., Olshen, R. and Stone, C., “Classification
and Regression Trees,” 1st ed., Wadsworth International Group, 1984.

[18] Perez, J.M., Muguerza, J., Arbelaitz, O. and Gurrutxaga, I., “Con-
solidated Tree Construction Algorithm: Structurally Steady Trees,”
Proceedings of the International Conference on Enterprise Information
Systems, 2004, pp. 14−21.

[19] Janikow, C.Z., “Fuzzy Decision Trees: Issues and Methods,” IEEE
Transactions on Systems, Man, and Cybernetics, 1998, pp. 1−14.

[20] Johannes, G., Raghu, R. and Venkatesh, G., “RainForest−A Frame-
work for Fast Decision Tree Construction of Large Datasets,” Data
Mining and Knowledge Discovery, Vol. 4, 2000, pp. 127−162.

[21] Johannes, G., Raghu, R., Venkatesh, G. and Wei, Y., “BOAT-Optimistic
decision tree Construction,” ACM SIGMOD International Conference
on Management of Data, 1999, pp. 169−180.

[22] Hakil, Y., Khaled, A. and Sanjay, R., “Tree Based Incremental Classi-
fication for Large Datasets,” CISE Department, University of Florida,
1999, pp. 1−23.

[23] Hang, Y., Simon, F., Guangmin, S. and Raymond, W., “A Very Fast
Decision Tree Algorithm for -Time Data Mining of Imperfect Data
Streams in a Distributed Wireless Sensor Network,” International
Journal of Distributed Sensor Networks, 2012, pp. 1−16.

[24] Hartigan, J. and Wong, M., “Algorithm AS136: A K-Means Cluster-
ing Algorithm,” Journal of the Royal Statistical Society, 1979, pp.
100−108.

[25] Milligan, G. and Cooper, M., “An Examination of Procedures for
Determining the Number of Clusters in a Dataset,” Psychometrika,
1985, pp. 159−179.

[26] Milligan, G.W., Soon, S.C. and Sokol, M., “The Effect of Cluster
Size, Dimensionality and the Number of Clusters on Recovery of
True Cluster Structure,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1983, pp. 40−47.

[27] Guralnik, V. and Karypis, G., “A Scalable Algorithm for Clustering
Sequential Data,” Proceedings of the IEEE International Conference
on Data Mining Series, 2001, pp. 179−186.

[28] Jarvis, R.A. and Patrick, E.A., “Clustering Using a Similarity Measure
Based on Shared Nearest Neighbors,” IEEE Transactions on Comput-
ers, 1973, pp. 1025−1034.

[29] Modha, D. and Spangler, W., “Feature Weighting in K-Means Clus-
tering,” Machine Learning, Springer, 2002, pp. 217−237

[30] Samir Tout, Junping Sun, and William Sverdlik, “A Hybrid Approach
to Cluster Detection”, IAENG International Journal of Computer
Science, 34:1, 2007, pp. 105−110.

[31] Li-Yeh Chuang, Yu-Da Lin, and Cheng-Hong Yang, “Data Clustering
Using Chaotic Particle Swarm Optimization”, IAENG International
Journal of Computer Science, 39:2, 2012, pp. 208−213.

[32] Vincent Granville, “Developing Analytic Talent: Becoming a Data
Scientist,” Indianapolis: John Wiley & Sons, Inc, 2014, pp. 141−143.

[33] Yan, Li., Edward, H., Korris, C. and Joshua, H., “Building a Decision
Cluster Classification Model by a Clustering Algorithm to Classify
Large High Dimensional Data with Multiple Classes,” Advances in
Artificial Intelligence, Springer, 2008, pp. 337−347.

[34] Patrice, B. and Marc, E., “Clustering by Means of Unsupervised
Decision Trees or Hierarchical and K-means like Algorithm,” RIAOO
Conference Proceedings, 2000, pp. 344−363.

[35] Heena, S. and Navdeep, K.K., “Data Mining with Improved and
Efficient Mechanism in Clustering Analysis and Decision Tree as a

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

Hybrid Approach,” International Journal of Innovative Technology and
Exploring Engineering, 2013, pp. 58−60.

[36] Liu, B., Xia, Y. and Yu, P.S., “Clustering Through Decision Tree Con-
struction,” Proceedings of the International Conference on Information
and Knowledge Management, 2000, pp. 20−29.

[37] Ali, S.A., Sulaiman, N., Mustapha, A. and Mustapha, N., “K-Means
Clustering to Improve the Accuracy of Decision Tree Response Clas-
sification,” Information Technology Journal, 2009, pp. 1256−1262.

[38] Indrajit Saha, and Anirban Mukhopadhyay, “Improved Crisp and
Fuzzy Clustering Techniques for Categorical Data”, IAENG Interna-
tional Journal of Computer Science, 35:4, 2008, pp. 438−450.

[39] Barak, A. and Gelbard, R., “Classification by Clustering Decision
Tree like Classifier Based on Adjusted Clusters,” Expert Systems with
Applications, 2011, pp. 8220−8228.

IAENG International Journal of Computer Science, 41:3, IJCS_41_3_02

(Advance online publication: 23 August 2014)

__

	Introduction
	Related Work
	SLIQ Decision Tree Algorithm
	CC-SLIQ Decision Tree Algorithm
	Information gain
	Gini index
	Illustration

	Experimental Results
	Experimental results on UCI datasets
	Experimental results on precipitation datasets

	Conclusion
	References

