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Abstract—The purpose of self-tuning algorithm for fuzzy
inference system is to construct automatically fuzzy inference
rules from learning data based on the steepest descend method.
Obvious drawbacks of the method are its large computational
complexity and getting stuck in a shallow local minimum.
Further, it is difficult to apply for the conventional method
to the problem with a large number of variables. In order
to overcome them, the SIRMs (Single-Input Rule Modules)
and DIRMs (Double-Input Rule Modules) models have been
proposed. In some numerical simulations, it is shown that there
exists the difference of the ability between DIRMs and SIRMs
models. In this paper, we will apply DIRMs and SIRMs models
to the control problem of obstacle avoidance. As a result, it is
shown that DIRMs model is more effective than SIRMs model
in this problem. Further, we propose a learning method to
reduce the number of modules of DIRMs model and show the
effectiveness in numerical simulations.

Index Terms—Fuzzy inference model, Single-input rule mod-
ule, Small number of input rule module, Double input rule
module, obstacle avoidance.

I. INTRODUCTION

MANY studies on self-tuning fuzzy systems have been
made [1], [2]. The aim of these studies is to construct

automatically fuzzy inference rules from input and output
data based on the steepest descend method. Obvious draw-
backs of the method are its large computational complexity
and getting stuck in a shallow local minimum. Further, there
is a problem that the number of fuzzy rules increases with
increasing of input variables [3]–[5]. In order to overcome
them, some novel methods have been developed which 1)
create fuzzy rules one by one starting from any number of
rules [6], 2) delete fuzzy rules one by one starting from a
sufficiently large number of rules [7] , 3) use GA and PSO
to determine the structure of the fuzzy model [4], [15], 4)
use a self-organization or a vector quantization technique to
determine the initial assignment of fuzzy rules [8], and 5)
use generalized objective functions [9]. However, there are
little studies on effective learning methods of fuzzy inference
systems dealing with a large number of input variables; in
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most of the conventional methods, fuzzy inference systems
deal with a small number of input variables. Therefore, some
methods have been proposed as shown in the references [3]–
[5]. The SIRMs (Single-Input Rule Modules) model aims
to obtain a better solution by using fuzzy inference system
composed of SIRMs [10], [11]. Further, with SIRMs model
there is the advantage to be able to apply easily to the
problems with a large number of variables. However, it
is known that the SIRMs model does not always achieve
good performance in non-linear problems. Therefore, we
have proposed the SNIRMs (Small Number of Input Rule
Modules) model as a generalized SIRMs model, in which
each module is composed of small number of input variables
[12]–[14]. DIRMs (Double-Input Rule Modules) model is an
example of such models and each module of DIRMs model
is composed of two input variables. It is well known that EX-
OR problem with two input variables can be approximated
by DIRMs model but not by SIRMs model [13]. Further,
there exists the difference of the ability between DIRMs
and SIRMs models [13], [14]. Then, does there exist such
example in control problems? In this paper, we consider
the obstacle avoidance problem as an example of such
problems. The problem is how the agent (or robot) avoids the
obstacle and arrives at the specified point. We will show that
DIRMs and its reduced models are also superior in control
problem to the conventional SIRMs model. In section 2, the
conventional fuzzy inference model and its learning method
are introduced. In section 3, SIRMs, DIRMS and SNIRMs
models are explained and the variable increase method for
DIRMs model is proposed. In section 4, in order to compare
the capability between SIRMs and DIRMs models, imple-
menting EX-OR problem with two variables and numerical
simulation of two category problems are discussed. Further,
numerical simulations of obstacle avoidance for SIRMS and
DIRMs models and the proposed method are performed, and
the generalization capability of them are clarified by test
simulations of obstacle avoidance.

II. FUZZY INFERENCE MODEL AND ITS LEARNING

A. Fuzzy Inference Model

The conventional fuzzy reasoning model using the delta
rule is described [1], [3], [4]. Let Zj = {1, · · · , j} for the
positive integer j. Let x = (x1, · · · , xm) and y be input and
output data, respectively, where xi for i ∈ Zm and y are real
number. Then the rule of simplified fuzzy inference model
is expressed as

Rj : if x1 is M1j and · · · xm is Mmj then y is wj , (1)
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Fig. 1. Membership functions

where j ∈ Zn is a rule number, i ∈ Zm is a variable number,
Mij is a membership function of the antecedent part, and wj

is the weight of the consequent part.
A membership value of the antecedent part µj for input

x is expressed as follows:

µj =
m∏
i=1

Mij(xi) (2)

where Mij is the membership function of the antecedent
part. Let cij and bij denote the center and the width values
of Mij , respectively. If the triangular membership function
is used, then Mij is expressed as

Mij(xi) =

{
1− 2·

∣∣xi−cij

∣∣
bij

(cij −
bij
2 ≤ xj ≤ cij +

bij
2 )

0 (otherwise).
(3)

Further, if Gaussian membership function is used, then
Mij is expressed as follow:

Mij = exp

(
−1

2

(
xj − cij

bij

)2
)

(4)

See Fig.1(a) and (b) for Eqs.(3) and (4), respectively.
The output y∗ of fuzzy inference is calculated by the

following equation.

y∗ =

∑n
j=1 µj · wj∑n

j=1 µj
(5)

The objective function E is defined to evaluate the infer-
ence error between the desirable output yr and the inference
output y∗.

E =
1

2
(y∗ − yr)2 (6)

In order to minimize the objective function E, the param-
eters α ∈ {cij , bij , wj} are updated based on the descent
method [3].

α(t+ 1) = α(t)−Kα
∂E

∂α
(7)

where t is iteration times and Kα is a constant. When
the Gaussian membership function is used, the following
equations are obtained:

∂E

∂wj
=

µj∑n
j=1 µj

· (y∗ − yr) (8)

∂E

∂cij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · xj − cij
b2ij

(9)

∂E

∂bij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · (xj − cij)
2

b3ij
(10)

When the triangular membership function is used, the
following equations are obtained:

∂E

∂cij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · 2sgn(xi − cij)

bij ·Mij(xi)
,

(11)

∂E

∂bij
=

µj∑n
j=1 µj

·(y∗−yr) ·(wj−y∗) ·
1−Mij(xi)

Mij(xi) · bij
(12)

where

sgn(z) =

 −1 ; z < 0
0 ; z = 0
1 ; z > 0.

(13)

B. The conventional leaning method

In this section, we describe the detailed learning algo-
rithm described in the previous section. A target data set
D = {(xp

1, · · · , xp
m, yrp)|p ∈ ZP } is given in advance. The

objective of learning is minimizing the following error.

E =
1

P

P∑
p=1

(y∗p − yrp)
2. (14)

The conventional learning algorithm is shown below [3].
Learning Algorithm A
Step 1: The initial number of rules, cij , bij and wj are
set randomly. The threshold Θ1 for inference error is given.
Let Tmax be the maximum number of learning times. The
learning coefficients Kc,Kb and Kw are set.
Step 2: Let t = 1.
Step 3: Let p = 1.
Step 4: An input and output data (xp

1, · · · , xp
m, yrp) is given.

Step 5: Membership value of each rule is calculated by
Eqs.(2) and (3) or (4).
Step 6: Inference output y∗p is calculated by Eq.(5).
Step 7: Real number wj is updated by Eq. (8).
Step 8: Parameters cij and bij are updated by Eqs.(9) and
(10) or Eqs.(11) and (12).
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Step 9: If p = P then go to the next step. If p < P then
p← p+ 1 and go to Step 4.
Step 10: Inference error E(t) is calculated by Eq.(14). If
E(t) ≤ θ1 then learning is terminated.
Step 11: If t ̸= Tmax then t ← t + 1 and go to Step 3.
Otherwise learning is terminated.

III. THE SNIRMS AND DIRMS MODELS

The SNIRMs, SIRMs and DIRMs models are introduced
[13], [14]. Let Um

k be the set of all ordered k-tuples of Zm,
that is

Um
k = {l1 · · · lk|li < lj if i < j}. (15)

Then, each rule of SNIRMs model for Um
k is defined as

follows:

SNIRM−l1 · · · lk :

{Rl1···lk
i : if xl1 is M l1

i and · · · and xlk is M lk
i

then yl1···lk is wl1···lk
i }ni=1 (16)

Example 1. For U3
1 = {1, 2, 3}, the obtained system is as

follows:

SNIRM − 1 : {R1
i : if x1 is M1

i then y1 is w1
i }ni=1

SNIRM − 2 : {R2
i : if x2 is M2

i then y2 is w2
i }ni=1

SNIRM − 3 : {R3
i : if x3 is M3

i then y3 is w3
i }ni=1

Example 2. For U3
2 = {12, 13, 23}, the obtained system is

as follows:

SNIRM− 12 :
{R12

i : if x1 is M1
i and x2 is M2

i then y12 is w12
i }ni=1

SNIRM− 13 :
{R13

i : if x1 is M1
i and x3 is M3

i then y13 is w13
i }ni=1

SNIRM− 23 :
{R23

i : if x2 is M2
i and x3 is M3

i then y23 is w23
i }ni=1

Let x = (x1, · · · , xm). The fitness of the i-th rule and the
output of SNIRM−l1 · · · lk are as follows:

µl1···lk
i = M l1

i (xl1)M
l2
i (xl2) · · ·M

lk
i (xlk), (17)

y0l1···lk =

∑n
i=1 µ

l1···lk
i wl1···lk

i∑n
i=1 µ

l1···lk
i

. (18)

In this model, in addition to the conventional parameters c,
b and w, the importance degree h is introduced. Let hL be
the importance degree of each module L.

y∗ =
∑

L∈Um
k

hL · y0L (19)

x
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Fig. 2. The relation between the conventional fuzzy , SIRMs and DIRMs
models

From the Eqs.(2) to (6), ∂E
∂α ’s are calculated as follows:

∂E

∂hL
= (y∗ − yr)y0L, (20)

∂E

∂wL
i

= hL ·
µL
i∑n

i=1 µ
L
i

(y∗ − yr), (21)

∂E

∂cLi
= hL · (y∗ − yr)

wL
i − y0L∑n
i=1 µ

L
i

2sgn(xi − cLi )

bLi ·ML
i (xi)

(22)

∂E

∂bLi
= hL · (y∗ − yr)

wL
i − y0L∑n
i=1 µ

L
i

1−ML
i (xi)

bLi ·ML
i (xi)

(23)

∂E

∂cLi
= hL·(y∗ − yr)

wL
i − y0L∑n
i=1 µ

L
i

xi − cLi
(bLi )

2
(24)

∂E

∂bLi
= hL·(y∗ − yr)

wL
i − y0L∑n
i=1 µ

L
i

(xi − cLi )
2

(bLi )
3

(25)

, where Eqs.(20), (21), (22) and (23), and Eqs.(20), (21), (24)
and (25) are the results for the triangular and the Gaussian
membership functions, respectively.

The cases of k = 1 and k = 2 are called SIRMs
and DIRMs models, respectively. Fig.2 shows the relation
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between the simplified fuzzy inference , SIRMs and DIRMs
models. Examples 1 and 2 are modules for SIRMs and
DIRMs models for m=3, respectively. It is known that the
SIRMs model does not always achieve good performance
in non-linear systems [12], [13]. On the other hand, when
the number of input variables is large, Algorithm A requires
a large time complexity and tends to easily get stuck into a
shallow local minimum. The DIRMs model can achieve good
performance in non-linear systems compared to the SIRMs
model and is simpler than the conventional fuzzy model.

A learning algorithm for SNIRMs(including SIRMs and
DIRMs) model is given as follows:
Learning Algorithm B
Step 1: The initial parameters, cLi , bLi , wL

i , Θ1, Tmax, Kc,
Kb and Kw are set.
Step 2: Let t = 1.
Step 3: Let p = 1.
Step 4: An input and output data (xp

1, · · · , xp
m, yrp) is given.

Step 5: Membership value of each rule is calculated by
Eq.(17).
Step 6: Inference output yp is calculated by Eq.(19).
Step 7: Importance degree hL is updated by Eq.(20).
Step 8: Real number wL

i is updated by Eq.(21).
Step 9: Parameters cLi and bLi are updated by Eqs.(22) and
(23) or Eqs.(24) and (25).
Step 10: If p = P then go to the next step. If p < P then
p← p+ 1 and go to Step 4.
Step 11: Inference error E(t) is calculated by Eq.(14). If
E(t) < Θ1 then learning is terminated.
Step 12: If t ̸= Tmax, t← t+1 and go to Step 3. Otherwise
learning is terminated.

Note that the numbers of rules for the conventional model
by Algorithm A, DIRMs and SIRMs models are O(Hm),
O(m2H2) and O(mH), respectively, where H is the number
of partitions for fuzzy inference rules. In order to reduce the
number of rule for DIRMs model, we propose the variable
increase method for DIRMs model with O(mH2) rules. The
model is composed of SIRMs model and O(mH2) rules of
DIRMs model. The algorithm is as follows:
Learning Algorithm C (The variable increase method for
DIRMs model)
Step 1: Algorithm B for k=1 is performed. SIRMs model is
constructed.
Step 2: Select a variable x0 with highest importance degree
in step1 and add all new modules composed of two input
variables including the variable x0 to the system obtained in
step1.
Step 3: In order to adjust the parameters of the system,
algorithm B is performed.

IV. NUMERICAL SIMULATIONS

In the section IV.A, we give a proposition to show the the-
oretical difference of capability between SIRMs and DIRMs
models. In the section IV.B, numerical simulations to general
features for SIRMs and DIRMs models using two-category
problems are presented. Further, numerical simulations for
obstacle avoidance as one of control problems are performed
in the section IV.C.

A. The EX-OR problem with two variables

The EX-OR problem with two variables is defined as
follows:

y = x1⊕x2 (26)

, where x1, x2 and y∈{0, 1} and ⊕ means the Exclusive OR
operation [3]. Then the following result holds.
[Proposition] The EX-OR problem with two variables cannot
be implemented by any SIRMs model.
(proof) Assume that there exists SIRMs model implementing
the EX-OR problem with two variables. Then, the output y∗

of SIRMs model is defined as follows:

y∗ =
2∑

j=1

hj

∑n
i=1 wijMij(xj)∑n

i=1 Mij(xj)
(27)

From the relation between input and output of EX-OR
operation, the following relation holds.

h1

∑n
i=1 wi1Mi1(0)∑n

i=1 Mi1(0)
+ h2

∑n
i=1 wi2Mi2(0)∑n

i=1 Mi2(0)
= 0 (28)

h1

∑n
i=1 wi1Mi1(0)∑n

i=1 Mi1(0)
+ h2

∑n
i=1 wi2Mi2(1)∑n

i=1 Mi2(1)
= 1 (29)

h1

∑n
i=1 wi1Mi1(1)∑n

i=1 Mi1(1)
+ h2

∑n
i=1 wi2Mi2(0)∑n

i=1 Mi2(0)
= 1 (30)

h1

∑n
i=1 wi1Mi1(1)∑n

i=1 Mi1(1)
+ h2

∑n
i=1 wi2Mi2(1)∑n

i=1 Mi2(1)
= 0 (31)

Let us define f1, f2, f3 and f4 as follows:

f1 =

∑n
i=1 wi1Mi1(0)∑n

i=1 Mi1(0)
, f2 =

∑n
i=1 wi2Mi2(0)∑n

i=1 Mi2(0)

f3 =

∑n
i=1 wi1Mi1(1)∑n

i=1 Mi1(1)
, f4 =

∑n
i=1 wi2Mi2(1)∑n

i=1 Mi2(1)

From Eqs.(28) and (31), the following holds:

h1(f1 + f3) + h2(f2 + f4) = 0 (32)

From Eqs.(29) and (30), the following holds:

h1(f1 + f3) + h2(f2 + f4) = 2 (33)

This is contradiction. Therefore, there does not exist such
SIRMs model. 2

Remark that the proposition is the theoretical result. In
[13], we have already conjectured that the same result holds
in numerical simulation. On the other hand, there exists
DIRMs model implementing the EX-OR problem with two
variables.

B. Two-category Classification Problems

In the next, we perform two-category classification prob-
lems as in Fig. 3 to investigate the basic feature of SIRMs
and DIRMs models. In the classification problems, points on
[0, 1]×[0, 1]×[0, 1] are classified into two classes: class 0 and
class 1. The class boundaries are given as spheres centered at
(0.5, 0.5, 0.5). For Sphere, the inside of sphere is associated
with class 1 and the outside with class 0. For Double-Sphere,
the area between Spheres 1 and 2 is associated with class 1
and the other area with class 0. For triple-Sphere, the inside
of Sphere1 and the area between Sphere2 and Sphere3 is
associated with class 1 and the other area with class 0.
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Fig. 3. Two-category Classification Problems

The desired output yrp is set as follows: if xp belongs to
class 0, then yrp = 0.0. Otherwise yrp = 1.0. The simulation
condition is shown in Table I and the numbers of partitions
is 3. Gaussian function is used as the membership function.
The results on the rate of misclassification are shown in Table
II. In TableII, A, B, and C mean Learning Algorithms A, B,
and C, respectively, and the numbers in parenthesis mean
the numbers of parameters. Further, the upper and lower
values in each box mean the error rates for learning and
test, respectively.

TABLE I
INITIAL CONDITION FOR SIMULATION OF TWO-CATEGORY

CLASSIFICATION PROBLEMS.

A B (k = 1) B (k = 2) C
Tmax 10000 100 3000 3000
Kw 0.05 0.01 0.01 0.01
Kh - 0.05 0.05 0.05
Kc 0.00001 0.001 0.0001 0.0001
Kb 0.00001 0.001 0.0001 0.0001

Initial cij equal intervals
Initial bij 1

2(H−1)
×(the domain of input)

Initial wij random on [0, 1]
Initial hi random on [0, 1]

TABLE II
SIMULATION RESULT FOR TWO-CATEGORY CLASSIFICATION PROBLEM.

H=3 Sphere Double-Sphere Triple-Sphere
A 1.699 1.562 2.753

(189) 2.210 4.320 5.412
B(k=1) 11.230 16.835 16.328

(30) 11.237 16.789 16.371
B(k=2) 1.484 2.128 3.476
(138) 2.179 5.095 6.307

C 1.660 4.550 5.019
(122) 3.317 8.582 8.789

C. Obstacle avoidance

1) Obstacle avoidance: From (operation) data to avoid
obstacle given by an examine, fuzzy inference rules for each
model are constructed. As shown in Fig.4, the distance d
and the angle θ between mobile object and obstacle are
selected as 2 input variables. The mobile object moves with
the vector A=(Ax, Ay) at each step, where the element
Ax of A is constant and the element Ay of A is only
determined as an output from fuzzy inference. Learning data
to avoid obstacle given by an examine are shown as 100
points in Fig.5. From the data, fuzzy inference rules to
perform the trace of Fig.5 are constructed for each model,
where the simulation condition is shown in Table III. The
number of partitions for each model is 5. Let us perform
the test simulation after learning. Fig. 6 shows the results
for the moves of mobile object from the starting places
at (0.1, 0), (0.2, 0), · · · , (0.8, 0), (0.9, 0). In both SIRMs and
DIRMS models, obstacle avoidance is successful as shown
in Fig.6. Further, test simulations with the place of obstacle
different from the place in learning are performed with the
same fuzzy inference rule for each model. As shown in Fig.7,
the results are successful for both models.

Furthermore, let us perform simulations to avoid the
obstacle moving with the vector (0.012, 0.02) at each step,
from the initial place (0.9, 0) and arrives at the place (0.3,
1.0) at step T = 50 as shown in Fig.8. As shown Fig.9, the
test simulation is successful for both models.

TABLE III
INITIAL CONDITION FOR SIMULATION OF OBSTACLE AVOIDANCE.

A B (k = 1) B (k = 2) C
Tmax 10000 100 1000 1000
Kw 0.01 0.01 0.01 0.01
Kh - 0.05 0.05 0.05
Kc 0.001 0.001 0.001 0.001
Kb 0.001 0.001 0.001 0.001
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2) Obstacle avoidance and arriving at the designated
place: As shown in Fig.10, the distance d1 and the angle θ1
between mobile object and obstacle and the distance d2 and
the angle θ2 between mobile object and the designated place
are selected as input variables. The problem is to construct
fuzzy inference system that mobile object avoids obstacle
and arrives at the designated place. From (operation) data,
Fuzzy inference rules for each model are constructed from
learning of data (200 points shown in Fig. 11). The number
of partitions for each model is 5. As the same method as
the above, the mobile object moves with the vector A at
each step, where Ay of A is output variable. The simulation
condition is shown in Table III.

Four tests after learning are performed as follows:
(1)Test 1 is simulation for obstacle avoidance and ar-
riving at the designated place when the mobile object
stars from various places (See Fig.12). Fig.12 shows the
results of moves of mobile object for starting places
at (0.1, 0), (0.2, 0), · · · , (0.8, 0), (0.9, 0) after learning. As
shown in Fig.12, the test simulations are unsuccessful and
successful for SIRMs and DIRMs models, respectively.
(2)Test 2 is simulation for the case where the mobile object
arrives at different designated place. Simulations arriving at
the place (1, 0.35) different from the designated place (1, 0.5)
in learning are performed for DIRMs model (See Fig.13).
The results are successful as shown in Fig.13.
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Fig. 6. Simulation result for obstacle avoidance starting from various places
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Fig. 7. Simulation for obstacle avoidance placed at different place after
learning.
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Fig. 8. The obstacle moves with the vector (0.012, 0.02) at each step from
starting point (0.9, 0) to arriving point (0.3, 1.0).
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Fig. 9. Simulation for moving-obstacle avoidance.

(3)Test 3 is simulation for the case where the mobile object
avoids obstacle placed at different place and arrives at the
different designated place. Simulations with obstacle placed
at the place (0.4, 0.4) and arriving at the designated place
(1, 0.6) are performed for DIRMs model (See Fig.14). The
results are successful as shown in Fig.14.
(4)Test 4 is simulation for the case where obstacle moves
with the fixed speed. Simulations with obstacle moving as
Fig. 8 and arriving at the place (1, 0.5) are performed. The
results for the steps T=27, 28 and 50 are shown in Fig.15. It
means that simulations for obstacle avoidance are successful.

Lastly, we performed the same simulations for the variable
increase method for DIRMs model. As a result, all test sim-
ulations are also successful in the variable increase method

y

0
x

d

vector A

obstacle

Ax

Ay

mobile object

goal

d2

2

1

1

Fig. 10. Simulation on obstacle avoidance and arriving at the goal.
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Fig. 11. Learning data to avoid obstacle and arrive at the designated place
(1, 0.35).

for DIRMs model. Therefore, the number 6 of modules for
DIRMs model can be reduced to the model composed of 3
modules.

V. CONCLUSION

In this paper, a theoretical result and some numerical
simulations including obstacle avoidance are presented in
order to compare DIRMs model with SIRMs model. It is
shown that there exists the difference of capability in the the-
oretical means with EX-OR problem with two variables and
in numerical simulation with two-category problems. Further,
two types of obstacle avoidance problems are performed: The
first problem is simply to avoid obstacle and the second one is
to avoid obstacle and to arrive at the designated place. In the
first problem, both SIRMs and DIRMs models are successful
in all test simulations. In the second problem, there exists the
difference of capability between DIRMs and SIRMs models
in simulations. Further, DIRMs model with the variable
increase method is also successful in all simulations. In the
future works, the application to the other control problems
and a proposal of the new generalized SIRMs model are
considered.
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