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Abstract— QSAR modeling has been heavily used in recent 
decades for modeling drug activity. The blood-brain barrier 
(BBB) presents a real challenge to the pharmaceutical industry. 
The BBB is a very effective screener of diverse kinds of 
bacterial infections. Unfortunately, this functionality prevents 
from many drugs to penetrate it. In order to improve drug 
development process an assessment model is required. Effective 
assessment model can drastically reduce the development time, 
by cutting off drugs with low success rates. It also saves 
considerable amount of money since clinical trials focus mainly 
on drugs with higher likelihood of permeation.  

This work addresses the challenge by means of artificial neural 
net (ANN) based assessment tool. Neural network based 
approach is well known in the pharmacokinetic domain. In 
comparison with multi-linear regression, ANNs are more 
flexible, robust, and better at prediction. Another addressed 
issue is that drug data often contains correlated or skewed 
information. This can then lead to the construction of poor 
regression models.  

Embedding ‘wisdom of experts’ approach, the presented 
assessment tool is combined of a neural net ensemble, a group of 
trained neural nets that correspond to an input value set with a 
prediction of the barrier permeation. The returned output is the 
median of the ensemble’s members output. The input set is 
composed of drug physicochemical properties such: 
Lipophilicity, Molecular Size (depends on Molecular 
Mass/Weight), Plasma Protein Binding, PSA – Polar Surface 
Area of a molecule, and Vd – Volume of Distribution, and 
Plasma Half Life (t ½).  

Challenged with the relatively small learning data-set, leave 
one out (LOO) which is a special case of k-fold cross validation 
is conducted. Although the training effort for building ANNs is 
much higher, in small data-sets ANNs yield much better model 
fitting and prediction results than the logistic regression. 

 
Index Terms— BBB, Pharmacokinetics, Neural net, Brain to 

plasma ratio. 

 

I. INTRODUCTION 

he blood-brain barrier (BBB) is very effective screener 
of diverse kinds of bacterial infections. This screening 

feature of the BBB presents a real challenge to the 
pharmaceutical industry.  Unfortunately, this functionality 
also prevents many drugs from penetrating it. In order to 
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improve drug development process an assessment model is 
required. Effective assessment model can drastically reduce 
development times, by cutting off drugs with low success 
rates [1]. It also saves considerable amounts of money since 
clinical trials focus mainly on drugs which are more likely to 
succeed on their task.   

A. Pharmacology perspective 

The Blood Brain Barrier (BBB) consists of a monolayer of 
brain micro vascular endothelial cells (BMVEC), which are 
joined together by tight junctions and form a cellular 
membrane [2][3]. BMVECs surrounded by a basement 
membrane, together with other components: pericytes, 
astrocytes and microglia, compose a neurovascular unit [3].  

 The BBB has a carrier function which is responsible for 
the transport of nutrients into the brain and removal of 
metabolites from it. While small lipid-soluble molecules (e.g. 
ethanol) diffuse passively through the BBB, other essential 
polar nutrients (glucose, amino acids) require some specific 
transporters. The BBB has also a barrier function that 
restricts the transport of potentially toxic substances through 
the BBB. This is achieved by a para-cellular barrier (tight 
endothelial junctions); trans-cellular barrier (endocytosis and 
trans-cytosis); enzymatic barrier (proteins with enzymatic 
activities) and efflux transporters. The specific barrier 
function of the BBB is important for preventing Central 
Nervous System (CNS) from harmful xenobiotics, but at the 
same time, prevents or limits the penetration of many drugs 
to the CNS [4]. 

The ability of these drugs to penetrate the BBB or be 
transported across the BBB is mainly dependent on their 
physiochemical properties and their affinity to a specific 
transport system [5]. 

 

B. Common Descriptors 

Drug distribution into the CNS depends on the 
physicochemical properties of the compound, including: 
lipophilicity (logP), molecular weight (MW), and PK 
parameters such as: protein binding, volume of distribution 
(Vd), half-life etc. [6].  

• Lipophilicity - Compound lipophilicity plays an 
important role in the absorption, distribution, metabolism, 
and excretion (ADME) of therapeutic drugs. Lipophilicity 
represents the affinity between a molecule and its lipophilic 
environment. It is commonly measured by its distribution 
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behavior in a biphasic system, either liquid-liquid (e.g., 
partition coefficient in 1-octanol/water) or solid liquid 
(retention on reversed-phase high-performance liquid 
chromatography (RPHPLC) or thin-layer chromatography 
(TLC) system). Lipophilicity refers to the ability of a 
chemical compound to dissolve in fats, oils, lipids, and non-
polar solvents such as hexane or toluene. Lipophilicity is 
often expressed as Log P, logarithm of partition coefficient P 
between lipophilic organic phase (1-octanol) and polar 
aqueous phase. While high degree of lipid solubility favors 
crossing the BBB by transmembrane diffusion, it also favors 
uptake by the peripheral tissues, thus it can lower the amount 
of the drug presented to the BBB [7]. In many situations 
lipophilicity is a good predictor of BBB penetration [8]. 

 
 
• Molecular weight - The diffusion coefficient in liquids 

is inversely proportional to the hydrodynamic radius of the 
compound, and the hydrodynamic radius is approximately 
proportional to the square root of the molecular mass; i.e., 
the entry of a compound into the CSF depends on the square 
root of the molecular mass. Although the penetration of large 
hydrophilic compounds into the CSF is low, there is no 
absolute cutoff. Molecules as large as 1gM are present in 
normal CSF at approximately1/1,000 of their serum 
concentration. The optimal molecular mass for passage into 
the brain lies in the region of 300 to 400 Da [9][10][11] [12]. 
The best approximation of molecular size influence on BBB 
penetration is that it is inversely related to the square route of 
a molecular weight [13]. 

A limited number of drugs with high lipophilicity and low 
molecular size can penetrate to the brain mainly by passive 
diffusion.  

 
• Polar Surface Area (PSA) - PSA is defined as the sum 

of polar atoms surface (oxygen, nitrogen and attached 
hydrogen) in a molecule. PSA is a commonly used metric for 
the optimization of a drug's ability to permeate cells. 
Molecules with a polar surface area of greater than 140 
angstroms perform poorly with regard to cell membranes 
permeation.  This parameter has been shown to correlate very 
well with BBB penetration [14][15]. BBB permeation 
decreases 100-fold as the surface area of the drug is 
increased by 2-fold (from 52 angstroms to 105 angstroms) 
[9]. 

 
 
 
• Protein binding - The extent of drug distribution into 

tissues, including the CNS, depends on the degree of plasma 
protein binding (albumin, α1-acid glycoprotein, and 
lipoproteins). Drugs which are highly bound confined to the 

vascular system and as result have a relatively low Volume 

of distribution.  Drugs with lower binding degree are more 
available for distribution to other organs and tissues, 
including the CNS. Only unbound drug is available for 
passive diffusion through the BBB and for pharmacologic 
effect. The penetration rate into the brain is slow for highly 
protein-bound drugs [16]. 

 
• Volume of distribution (Vd) - is a proportionality factor 

that relates to the amount of a drug to its measured 
concentration. The apparent volume of distribution is a 
theoretical volume of fluid into which the total drug 
administered would have to be diluted to produce the 
concentration in plasma. Some drugs distribute mostly into 
fat, others remain in extracellular fluid, while the rest are 
bound extensively to specific tissues. For a drug that is 
highly tissue-bound, very little drug remains in the 
circulation, thus plasma concentration is low and volume of 
distribution is high [17]. 
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Where: 
Vp– Plasma volume 
VT– Apparent tissue volume 
fu– Fraction unbound in plasma 
fut– Fraction unbound in tissue 
 
 
• Plasma Half Life (T½) - The biological half-life or 

elimination half-life of a substance is defined by the time it 
takes for a substance to lose half of its pharmacologic, 
physiologic, or radiologic activity. In a medical context,  it is 
usually considered as the time it takes for the blood plasma 
concentration of a substance to be reduced by one half 
("plasma half-life"). The relationship between the biological 
and plasma half-lives of a substance can be complex 
depending on the substance in question, due to factors 
including accumulation in tissues, active metabolites, and 
receptor interactions. 

 
• Brain/Plasma ratio (Permeation measure) - The most 

common method to study brain penetration in vivo is the 
determination of the brain/plasma ratio in rodents. For that, 
the test compound is dosed and both plasma and brain are 
sampled. The logBB describes the ratio between brain and 
blood (or plasma) concentrations and provides a measure of 
the extent of drug permeation through the BBB 

 

tot.blood

tot.brain

AUC

AUC
 LogBB                                             (2)   

 
Another in vivo measurement of CNS permeation is the 

log of the permeability-surface area coefficient (log PS) 
which is considered to be the most appropriate in vivo 
measurement [18][19]. However, this is a resource-intensive 
measure that requires microsurgical expertise. This method’s 
advantage is by eliminating drug’s serum binding. 
Nevertheless, by using log BB together with plasma protein 
binding, one can produce same or even better results. 

 
During drug development, in vitro, ex vivo and in vivo 

models have been developed in order to examine the 
mechanisms by which different drugs penetrate the BBB. 
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Tissue distribution studies are commonly conducted by a 
traditional method using radiolabeled compounds. Brain 
tissue is homogenized and precipitated, and the total brain 
concentration of the radioactive compound is determined 
using liquid scintillation counting and related to its 
concentration in plasma. 

An alternative method is quantitative microdialysis, a 
widely used technique that permits quantifications of drug 
transport to the brain. Drug concentrations measured by 
microdialysis are influenced by properties of the probe and 
perfusion solution, by the post-surgery interval in relation to 
surgical trauma, and tissue integrity properties [20]. 

All the mentioned methods for drugs permeation to the 
BBB are labor intensive, demand expensive compounds and 
equipment and use many animals. Rapid screening methods 
can speed up discovery and minimize the number of drug 
candidates for further detailed studies.  

Such computational models which exist since the 1980’s  
are based on drug’s lipophilicity, hydrogen-bond potential, 
pKa/charge and molecular size [21][22][23][24][25]. 
However, in these models, other factors that can determine 
drug’s concentration at the brain capillary surface, are not 
included. Factors such plasma protein binding or volume of 
distribution (Vd), which are present in the presented model 

The rest of the paper is organized as follows: Section II 
introduces known structured and non-structured based 
modeling methods in pharmacokinetics, and present the 
neural-net based model. In Sections III,IV,V  we present data 
pre-processing, training, and testing results, respectively. 
Finally, in Section VI, we introduce the architecture for 
implementation, and show results. 

 
 

II. MODELING TECHNIQUES 

Diverse modeling techniques such multi-linear regression, 
clustering, Neural nets, Bayesian neural nets [26], and 
decision-trees [27] where introduced with regard to 
pharmacokinetics modeling.  

A fashionable classification of BBB permeation as appear 
in some published papers is to classify the BBB permeation 
measure into two classes: “good” (CNSp+), and “bad” 
(CNSp-) [28]. While the measure is indeed qualitative, a 
finer resolution classification may provide better comparable 
order between candidate drugs performance.  

A neural network (ANN) is a mathematical model which is 
based on the biological brain structure. Interconnected 
processing units that form a network.  

A. ANN for Pharmakokinetic Modeling 

 Neural network based approach is well known in the 
pharmacokinetic domain [28]. In comparison with multi-
linear regression, ANNs are more flexible, robust, and better 
at prediction [29]. Furthermore, multi-linear regression is 
more sensitive to the relationship between the number of 
patterns and number of variables, thus it needs to be 
monitored in order to avoid chance effects [30]. Another 
disadvantage is that drug data often contains correlated or 
skewed information. This can then lead to the construction of 
poor regression models [29]. 

A distinguishing feature of neural networks is that 
knowledge is distributed throughout the network itself rather 
than being explicitly written into the program. The network 
then learns through exposure to diverse input set with known 
output.  

 

 

Fig. 1. Better uniformity in distribution with Log VD 

 

III.  DATA PRE-PROCESSING 

Relevant data of 47 drugs was collected from the 
literature. Only drugs for which all required metrics were 
available, were collected.   

A. Consideration 

Neural network training can be executed in a more 
efficient manner if certain preprocessing steps on the network 
inputs and targets are performed. Prior the network design 
process, the data is collected and prepared. It is generally 
difficult to incorporate prior knowledge into a neural 
network; therefore the network can only be as accurate as the 
data that is used for training it. After the data has been 
collected, there are two crucial steps to be performed before 
training starts: the data is uniformly distributed and then 
normalized. 

B. Data Distribution 

Some properties of the collected drugs have poor 
distribution. ANN prediction results tend to be more 
promising when the data is properly distributed. In order to 
improve the data distribution log operator was applied on Vd, 
Half Life and Brain to Plasma Ratio properties. Vd values are 
presented in Fig. 1. It can be concluded from Fig. 1 that input 
data has better distribution using a log operation with regard 
to Vd. 

C. Normalization 

Normalized data has a common base, which means that 
every member is evaluated for each metric with respect to 
other members metric in the group on a scale range of [-1,1]. 
ANN’s perform much better on normalized data sets. The 
normalization step was applied on the input and the target 
vectors of the data set (BBB permeability).  

D. Measures and precision concern 

As mentioned in Section II the permeability measure 
should be qualitative rather than quantitative. This is due to 
the fuzzy nature of measurement and lack of persistence. For 
example, plasma to brain ratio of Clozapine (Clozaril) 
appears as 24 [31], or 4.1 [32], which is a large gap. 
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Therefore it was decided that the drugs will be divided into 
four permeability groups in the range 1-4 where 1 is the least 
permeable drug, and 4 is the most.  A deviation value of 1 is 
acceptable, and considered a success. That means that a drug 
that was detected as group 3 and is actually a member of 
group 4, will be considered a positive detection.  

IV. TRAINING 

The chosen ANN topology was a feed-forward back 
propagation network. In such topology, each input measure is 
connected to an input neuron; there may be one or more 
hidden layer neurons, and an output neuron that provides the 
output measure (permeability).  

A. Hidden layer size 

One should take into consideration when comparing 
networks with relatively similar accuracy, that the smaller the 
network, the more general it is in terms of model. When the 
network size increases, it may just encapsulate the specific 
data set instead of the general model. In order to determine 
the proper hidden layer size, an initial training 

 
 

 

 

Fig. 2. Validation/training error vs. hidden layer size 

 
phase was conducted on networks with variable hidden layer 
size. As reflected in Fig. 2, it infers that a hidden layer of 2 to 
3 neurons provides best results. Bigger layers maybe provide 
better results with respect to the training error, but this result 
is actually misleading since it is a symptom of over-fitting. 
As shown in Fig. 2, beyond 3 neurons in the hidden layer, the 
validation error actually increases and those networks reduce 
generalization.    

 

B. Early stopping 

In machine learning, early stopping is a known method for 
improving generalization. The data is divided into training-
set and validation-set. 

The training set is used for computing the gradient and 
updating the network weights and biases. The validation set 
is used for monitoring. The error on the validation set is 
monitored during the training process. The validation error 
normally decreases during the initial phase of training, as 
does the training set error. However, when the network 
begins to over-fit the data, the error on the validation set 
typically begins to rise. When the validation error increases 
for a specified number of iterations, or beyond a predefined 
threshold –Alpha, the training is stopped. Early stopping is 
effectively limiting the used weights in the network and thus 
imposes regularization. This procedure is illustrated in Fig. 3 

 
 

 
Fig. 3. Early stopping training 

 
 

C. Cross validation 

In small data sets leave-one-out (LOO) cross-validation is 
normally applied. This is a special case of k-fold cross 
validation [28][33]. With a very small sample size (18 
bankrupt and 18 non-bankrupt firms), Fletcher and Goss 
employ an 18-fold cross-validation method for model 
selection. Although the training effort for building ANNs is 
much higher, ANNs yield much better model fitting and 
prediction results than the logistic regression [34]. 

D. Net tournament  

During the cross validation, and for each fold, a 
tournament between 100 networks was conducted. Only the 
winner network with best results during this fold (minimal 
error) was retained, as illustrated in Fig. 4.  The algorithm 
described above is illustrated in Algorithm 1. 
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Algorithm 1 

 

E. ANN ensemble 

Since a network training tournament is performed for each 
fold, the outcome is a group of winning ANN’s, one for each 
sample. Most often one would pick the best performing 
network.  Nevertheless, here we suggest a different approach, 
i.e. a neural net ensemble. A neural net ensemble is a group 
of ANN’s that provides a single output to a given input. This 
output can be the average of the ensemble members output, a 
quorum based result, median, etc. In this work we have used 
the median of ensemble members output as the ensemble’s 
output. 

Fig. 4. Design structure of the learning phase and ensemble generation 

V. TESTING 

• The preprocessed data was repetitively (several hundred 
test cycles), and randomly divided into a Training (80%) and 
Testing (20%) groups 

• The training set was utilized to generate the ANN 
ensemble. 

• Drug data from the test group was presented to the 
ensemble, and its output was compared to the known one- in 
terms of permeation group membership. 

• Results were grouped with accordance to the delta 
between the predicted and actual permeability group (see 
Section III.D)  

 
 The test phase is illustrated in Fig. 5.            

 
Fig. 5. Test phase 

 

VI. ARCHITECTURE 

The first analysis to determine the hidden layer size was 
conducted both on Matlab and the Encog framework.  

Next phases as described in Section V, were implemented 
in C# using the Encog .NET package. Data was saved on a 
server database. The application was designed as a 
client/server 3-Tier architecture application: 

Presentation tier - This is the topmost level of the 
application. The presentation tier displays a user interface, 
which enables a convenient (a user friendly) access to the 
model. It communicates with other tiers by outputting results 
to the application tier.  

Application tier (business logic) - The logic controls the 
application‘s functionality by performing detailed 
processing. 

Data tier – A delegator to the database server. Here 
information is stored and retrieved. This tier keeps the data in 
neutral and independent form with regards to the application 
servers or business logic. Giving data its own tier also 
improves scalability and performance. 

A class diagram of the stated architecture is illustrated in 
Fig. 6  

  
Fig. 7 shows the experiments view, in which stored 

medicines are evaluated with respect to the pre-loaded 
ensemble. The right hand side column represents the 
predicted permeation quality. 

 

 
 

 
 

Part 1 – Preprocessing 
 Distribute data. 
 Normalize data. 
 Predefine the quantity of neurons in hidden layer. 

Parameter named (nq). 
 
Part 2 – Build the ensemble 
1. Randomly divide the data into training (80%) and 

testing (20%) sets (ts). Testing set consists of 
drugs that contain no extreme values (1or -1). 

2. For every fold (drug)  f training_set, use f as the 
validation_set and training_set\f as learning_set 
(LOOCV): 

vg is a validation group, which |vg|=1. 

tg is a training group. tg = training_set\ vg. 
2.1. For j = 1 to 100 

2.1.1. Create NN (nj) with nq neurons in hidden 
layer. 

2.1.2. Train nj using tg according to "Early-Stop 
Strategy". 

2.1.3. Validate nj using vg. 

2.1.4. Save nj with its error in array nj_array. 

2.2. Select the best NN in nj_array array – NNx with 
minimal training error. 

2.3. Insert  NNx to ensemble (nne) 
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Fig. 6. Modeler application Class-Diagram 
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Fig. 7. Researcher experiment UI interface  

 
An illustrative screenshot of the training phase is presented 

in Fig. 8. where the validation status of the current fold is 
shown along the ensemble overall score. 

 
Fig. 9 provides a graphical presentation of the results. The 

presented results are the average of several hundred runs. In 
addition, diverse early stopping settings were investigated in 
terms of maximal number of epochs [15K-100K], and alpha 
[5%-20%] values. Most combinations provided a similar and 
satisfactory result of 89% success rate. Maximal accuracy 
was reached with 15K epochs limit and an Alpha of 5%. 

 
 

VII. CONCLUSION 

In this paper, we propose a new ensemble neural net based 
mechanism as an evaluator for drug-BBB permeation. 
Design time evaluator for drug development – in particular, 
by providing finer permeation classification, with relatively 
high success rates. Due to the small given data set, a leave 
one out cross validation technique was performed.  

Our goal is to develop an approach that allows an 
interactive drug design that is less labor intensive, or demand 
expensive with respect to compounds/equipment, thus uses 
less animals in pre-clinical stages. This can be achieved by 
using such a mechanism for scoring candidates, while 
excluding inferior candidates, and performing the more 
expensive pre-clinical stages on the provided best candidates. 

 
Our specific contribution in this work is threefold. We 

have incorporated plasma protein binding as an input 
parameter of the model; We have extended the fissionable 
binary classification CNSp+, CNSp- to a wider four values 
set; We also propose a new modeling mechanism using  

 

 
 
neural-net ensemble that provides finer permeation 

resolution while coping with relatively smaller data sets 
which is extremely challenging. The benefits of this approach 
have been discussed in this work. 

 
A promising avenue for a future research involves larger 

dataset incorporation. We also intend to extend our model 
with metrics such as: Hydrogen-bonding (Hydrogen bond 
acceptor/donor), and drug’s affinity to efflux transporters 
such as P-glycoprotein (P-gp). Since there is a correlation 
between the neural net input layer size and the recommended 
dataset size, such an extension would also require an 
essential extension of the dataset size.    
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