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Abstract - In this paper we are going to describe the steps 

that conform a novel approach for representation of 

multidimensional datasets through the proposed Framework 

nD-EVM/Kohonen. In this sense two phases are going to be 

taken in account: 1) the application of 1-Dimensional Kohonen 

Self-Organizing Maps (1D-KSOMs) in order to achieve (n-1)D 

hypervoxelizations' segmentations, n ≥ 2, taking in account 

their geometrical and topological properties to characterize the 

information contained in the datasets. 2) The segmented 

multidimensional datasets are specified as Orthogonal 

Polytopes whose n-th Dimension is associated to a 1D-KSOM 

classification. Subsequently, the nD representation is concisely 

expressed via the Extreme Vertices Model in the n-Dimensional 

Space (nD-EVM). There is presented a comparative analysis 

based on the use of False Color Maps in order to understand 

they way our considered 1D-KSOMs distribute appropriately 

their weights vectors along the classification space, even better 

than classifications based exclusively on color intensity. 

Additionally, we present some arguments to sustain that a  

1D-KSOM is an adequate option in terms of temporal 

complexity and, on the other hand, that our representation is 

concise in terms of spatial complexity because of the nD-EVM 

properties.  

 

Index Terms - Representation and Manipulation of 

Hypervoxelizations, Polytopes Representation Schemes, 

Geometrical and Topological Interrogations, 1-Dimensional 

Kohonen Self-Organizing Maps, False Color Maps 

 

I. INTRODUCTION 

The representation of a polytope through a scheme of 

Hyperspatial Occupancy Enumeration is a list of identical 

hyperspatial cells occupied by the polytope. Specific types 

of cells, called hypervoxels [10] are Hyper-Boxes (HBs) of 

a fixed size that lie in a fixed grid in the (n-1)-Dimensional 

space, n ≥ 2. The collection of HBs can be codified as an  

(n-1)D array 
1 2 1, ,..., nx x xC

−
. The array represents the coloration 

of each hypervoxel. If 
1 2 1, ,..., 0

nx x xC
−

= , the black hypervoxel 

1 2 1, ,..., nx x xC
−

 represents an unoccupied region. If 
1 2 1, ,..., nx x xC k

−
= , 

where k > 0 is in a given color scale (black & white, 

grayscale, RGB, etc.), then the occupied hypervoxel 

1 2 1, ,..., nx x xC
−

 represents an used region from the (n-1)D space 

with intensity k. In fact, the set of occupied cells defines an 

orthogonal polytope p whose vertices coincide with some of 

the occupied cells’ vertices.  
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In the representation through an array, the spatial 

complexity of a (n-1)D hypervoxelization is at least 1

1

n

i in
−
=∏

 where ni is the length of the grid along Xi-axis. Furthermore, 

depending on the considered color scale hypervoxels would 

have additional storing requirement: if the color space is 

RGB then each one requires three bytes (four, if the alpha 

channel is considered) for codifying its corresponding 

intensity. Some capture devices represent natively datasets 

through hypervoxelizations. But sometimes their storing 

requirements make difficult their manipulation. Several 

efforts have been made in order to reduce the spatial 

complexity of datasets. In [11] is presented an algorithm for 

compression by means of quadtrees in order to encode slices 

of data. Such encodings are used for discovering similarities 

between consecutive slices. In [30], 3D medical datasets are 

compressed via a method sustained in the use of octrees. 

This pair of works share us evidence of the spatial 

conciseness provided by considering the use of Solid 

Representation Schemes.  

There is also a critical point to be boarded which leads 

in turn to the proper steps to be followed by us: the 

consideration of an additional approach in such way the 

points in a dataset could be characterized by taking in 

account not only their color intensity. Due to the presence of 

scanning noise and artifacts, a classification based only in 

intensities is sometimes not enough. Let an intelligent 

approach, such as an Artificial Neural Network (ANN), be 

responsible for automatically identifying the classes of 

points present in a multidimensional dataset by taking in 

account their geometry, topology, neighborhood, etc. By 

considering more appropriate classification of points, a 

much better conciseness it is expected to be obtained.  

This work is devoted to describe an alternative 

representation for datasets whose color scales are not binary 

(in [15] is presented a methodology designed specifically for 

datasets with black & white color scale). The main idea is to 

apply a 1-Dimensional Kohonen Self-Organizing Map  

(1D-KSOM) in order to segment datasets taking in account 

their geometry and topology. In this last sense,  

KSOMs-based segmentation has been a topic under attack 

by several researchers. In [32] is presented the Moving 

Average Self-Organizing Map (MA-SOM) which is applied 

for segmenting medical images obtained by means of X-Ray 

Computer Tomography, Breast Ultrasound Imaging, and 

Magnetic Resonance Imaging. In [2], Kohonen Networks 

are used together with a threshold technique in order to 

segment satellite images. The paper by Jiang et al [9] 

presents a survey of application of ANNs for medical 

support in processing images in tasks such as Image 

Segmentation, Edge Detection, and Computer Aided 

Diagnosis by means of application of the Multilayer 

Perceptrons, Hopfield Networks, and SOMs, among others. 

All these works give us evidence of how the KSOMs 
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approach has gained confidence among Image Processing 

researchers thanks to valuable properties such as robustness 

to noise, plasticity, parallelism, and computational 

efficiency. In the context of our proposed framework, we 

take an additional step: the specification of (n-1)D datasets, 

n ≥ 2, as nD polytopes where the n-th Dimension is 

associated precisely to a 1D-KSOM's provided 

classification. Then, the nD representation is concisely 

expressed and manipulated through a polytopes’ 

representation scheme: the Extreme Vertices Model in the  

n-Dimensional Space (nD-EVM). 

This work is structured as follows: The Section II will 

describe the fundamentals behind the nD-EVM. Section III 

shows the basics behind the 1D-KSOMs. In Section IV it is 

described the way a 1D-KSOM assists us in the automatic 

non-supervised segmentation of a dataset. In the Section V 

it is mentioned how the classification provided by our  

1D-KSOMs sustain the methodology for conversion of a  

(n-1)D hypervoxelization dataset to a nD-EVM. There will 

be presented examples of datasets finally expressed under 

the nD-EVM. By comparing the storing requirements 

between the original and the nD-EVM representations it is 

established the power of conciseness of our proposal. In 

Section VI we present a comparative analysis in order to 

sustain some claims related to our proposed 1D-KSOM 

based segmentation. Finally, Section VII presents  

conclusions and lines for future research. 
 

II. POLYTOPES MODELING BY MEANS OF THE EXTREME 

VERTICES MODEL IN THE n-DIMENSIONAL SPACE (nD-EVM) 

This section is a summary of results originally presented 

in [1] & [14]. For the sake of brevity, only the required 

concepts for the purpose of this work are presented and 

some propositions are only enunciated. Formal details and 

proofs can be found in the two abovementioned references.  
 

A. The n-Dimensional Orthogonal Pseudo-Polytopes  

Definition 2.1: A nD Singular HB in the nD Euclidean 

Space is the continuous function 

: [0,1] [0,1]

( )

n n n

n

I

x I x x

→

=a
 

Definition 2.2: For i = 1, 2, ...., n the (n-1)D singular  

HBs 
( ,0)

n

i
I  and 

( ,1)

n

i
I  are stated as: If 1[0,1]n

x
−∈  then 

• 
( ,0) 1 1 1( ) ( ,..., ,0, ,..., )n

i i i n
I x x x x x− −=    

• 
( ,1) 1 1 1( ) ( ,..., ,1, ,..., )n

i i i n
I x x x x x− −=    

Definition 2.3: In a nD singular general HB c the (i,α)-cell 

is defined as 
( , ) ( , )

n

i i
c c Iα α= o . 

Definition 2.4: Orientation of cell 
( , )

n

i
c I αo  is set by ( 1) iα +− . 

Definition 2.5: An (n-1)D oriented cell is given by the 

scalar-function product 
( , )( 1)i n

i
c I

α
α

+− ⋅ o . 

Definition 2.6: A formal linear combination of kD singular 

general HBs, 1 ≤ k ≤ n, for a closed set A is called a k-chain. 

Definition 2.7 [31]: Given a nD singular HB I
n the  

(n-1)-chain, called the boundary of In, is given by  

( , )

1 0,1

( ) ( 1)
n

n i n

i

i

I I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑  

Definition 2.8 [31]: Given a nD singular general HB c the 

(n-1)-chain, called boundary of c, is defined by  

( , )

1 0,1

( ) ( 1)
n

i n

i

i

c c I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑ o  

Definition 2.9 [31]: The boundary of n-chain 
ic∑ , where 

each ci is a nD singular general HB, is given by  

( ) ( )i ic c∂ = ∂∑ ∑  

Definition 2.10: A collection c1, c2, …, ck, 1 ≤ k ≤ 2n, of nD 

singular general HBs is a combination of nD HBs iff 

{

( )( )
1

([0,1] ) (0,...,0)

, , , 1 , ([0,1] ) ([0,1] )

k
n

n

n n

i j

c

i j i j i j k c c

α
α =

 
= ∧ 

 

 ∀ ≠ ≤ ≤ ≠ 

I  

The first part of the conjunction says the intersection 

between all the nD singular general HBs is the origin, while 

the second part states there are not overlapping nD HBs. 

Definition 2.11: An nD Orthogonal Pseudo-Polytope p, or 

just an nD-OPP p, is an n-chain composed by nD HBs 

arranged in such way that by selecting a vertex, in any of 

these HBs, we have that such vertex describes a 

combination of nD HBs composed up to 2n HBs. 
 

B. The nD-EVM: Foundations 

Definition 2.12 [14]: Let c be a combination of HBs in the 

nD Euclidean Space. An Odd Edge is an edge with an odd 

number of incident HBs of c.  

Definition 2.13 [14]: A Brink, or extended edge, is the 

maximal uninterrupted segment, built out of a sequence of 

collinear and contiguous odd edges of an nD-OPP. 

Definition 2.14 [14]: The Extreme Vertices of an nD-OPP 

p are the ending vertices of all the brinks in p. 

Definition 2.15 [14]: Let p be an nD-OPP. The Extreme 

Vertices Model of p, denoted by EVMn(p), is defined as the 

model as only stores to all the extreme vertices of p. 
 

C. Sections and Slices of nD-OPPs 

Definition 2.16: Let p be an nD-OPP. A kD couplet of p,  

1 < k < n, is the maximal set of kD cells of p that lies in a kD 

space, such that a kD cell e0 belongs to a kD extended 

hypervolume iff e0 belongs to an (n-1)D cell present in ∂(p). 

Definition 2.17: The Projection Operator for (n-1)D cells, 

points, and set of points is respectively defined as follows: 

• Let 
( , ) 1( ( )) ( ,.., )n

i n
c I x x xα =  be an (n-1)D cell embedded in 

the nD space. ( )( , )( ( ))n

j ic I xαπ  will denote the projection of 

the cell 
( , )( ( ))n

i
c I xα

 onto an (n-1)D space embedded in nD 

space whose supporting hyperplane is perpendicular to  

Xj-axis: ( )( , ) 1
ˆ( ( )) ( ,..., ,..., )n

j i j nc I x x x xαπ = . 

• Let 
1( ,..., )nv x x=  a point in the nD space. The projection 

of v in the (n-1)D space, denoted by ( )j vπ , is given by 

1
ˆ( ) ( ,..., ,..., )j j nv x x xπ = . 

• Let Q be a set of points in nD space whose projection, 

denoted by ( )j Qπ , is defined as the set in (n-1)D space 

such that { }1( ) : ( ),n

j jQ p p x x Qπ π−= ∈ ℜ = ∈ . 

Where ˆ
jx  is the coordinate corresponding to Xj-axis to be 

suppressed.  

Definition 2.18: Consider an nD-OPP p: 

• Let 
inp  be the number of distinct coordinates present in 

the vertices of p along Xi-axis, 1 ≤ i ≤ n. 

• Let ( )i

k pΦ  be the k-th (n-1)D couplet of p which is 

perpendicular to Xi-axis, 1 ≤ k ≤ npi. 
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Theorem 2.1 [14]: The projection of the set of  

(n-1)D-couplets, ( )( )i

i k pπ Φ , of an nD-OPP p, can be 

obtained by computing the regularized XOR (⊗) between 

the projections of its previous ( )1( )i

i kS pπ −
 and next 

( )( )i

i kS pπ  sections, i.e., 

( ) ( ) ( )1( ) ( ) * ( ) , [1, ]i i i

i k i k i k i
p S p S p k npπ π π−Φ = ⊗ ∀ ∈  

Theorem 2.2 [14]: The projection of any section, 

( )( )i

i kS pπ , of an nD-OPP p, can be obtained by computing 

the regularized XOR between the projection of its previous 

section, ( )1( )i

i kS pπ −
, and the projection of its previous 

couplet ( )( )i

i k pπ Φ . 

 

D. The Regularized XOR operation on the nD-EVM 

Theorem 2.3 [1]: Let p and q be two nD-OPPs having 

EVMn(p) and EVMn(q) as their respective EVMs in nD 

space, then ( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  

This result allows expressing a formula for computing 

nD-OPPs' sections from couplets and vice-versa, by means 

of their corresponding EVMs. These formulae are obtained 

by combining Theorem 2.3 with Theorem 2.1; and 

Theorem 2.3 with Theorem 2.2, respectively: 

Corollary 2.1 [1]: ( )1 ( ( ))i

n i kEVM pπ− Φ  

( ) ( )1 1 1( ( )) ( ( ))i i

n i k n i kEVM S p EVM S pπ π− − −= ⊗  

Corollary 2.2 [1]: ( )1 ( ( ))i

n i kEVM S pπ−
 

( ) ( )1 1 1( ( )) ( ( ))i i

n i k n i kEVM S p EVM pπ π− − −= ⊗ Φ  

Corollary 2.3 [1]: Let p and q be two disjoint or quasi 

disjoint nD-OPPs having EVMn(p) and EVMn(q) as their 

respective Extreme Vertices Models, then 

( ) ( ) ( )n n nEVM p q EVM p EVM q∪ = ⊗  
 

III. A SURVEY ON 1-DIMENSIONAL  

KOHONEN SELF-ORGANIZING MAPS (1D-KSOMS) 

A Kohonen Network with ψ inputs and O neurons may 

be used to classify points embedded in an ψ-Dimensional 

space into O categories ([5] & [23]). Input points have the 

form (x1, …, xi, …, xψ). Each neuron j, j = 1, 2, …, O, has 

associated an ψ-Dimensional Weights Vector which has a 

representation of its corresponding class 
j

κ . All these 

vectors have the form Wj = (wj,1, …, wj,ψ), j = 1, 2, …, O. 

A set of training points are presented to the network T 

times. According to [8], all values of Weight Vectors should 

be randomly initialized. In the t-th presentation,  

t = 1, 2, …, T, the neuron whose Weights Vector Wj,  

1 ≤ j ≤ O, is the most similar to the input point P is chosen 

as Winner Neuron. In the model proposed by Kohonen, such 

selection is based on the Squared Euclidean Distance. The 

selected neuron is that with the minimal distance between its 

Weights Vector and the input point P: 

( )
2

,

1

( ) 1j i j i

i

d P W t j O
ψ

=

= − ≤ ≤∑  

Once the l-th Winner Neuron, 1 ≤ l ≤ O, in the t-th 

presentation, has been identified each one of the network’s 

Weights Vectors is updated according to: 

, , ,

1,2,...,1
( 1) ( ) ( , ) ( )

1,2,...,1
j i j i i j i

i
W t W t j P W t

j Ot

ψ
ϕ

=
 + = + −  =+

l  

Where the term 1/(t + 1) is the learning coefficient and 

( , )jϕ l  is a neighborhood function that denotes the distance 

between the Winner Neuron l and the neuron j. For neurons 

close enough to the Winner Neuron, ( , )jϕ l  should be a 

value near to 1. On the other hand, ( , )jϕ l  is close to zero 

for those neurons characterized as distant to the Winner 

Neuron. When the T presentations have been achieved, the 

values of the Weights Vectors correspond to coordinates of 

the ‘gravity centers’ of the clusters of the O categories. 
 

IV. MULTIDIMENSIONAL HYPERVOXELIZATIONS' 

SEGMENTATION ACHIEVED BY 1D-KSOMS 

The automatic non-supervised segmentation based on 

the assistance of a 1D-KSOM shares to identify, during its 

training processes, the proper representations for a 

previously established number of classes. A dataset can be 

segmented in such way each type of region is appropriately 

identified. Many methods for description, object recognition 

or indexing are sustained on a preprocessing based on 

automatic segmentation [12], [34] & [35]. This Section 

describes our methodology, also presented in [22], which is 

inspired in some facts established originally in [16].  

It is clear each hypervoxel has an intensity which, it is 

understood, captures, or is associated, to a particular 

property (a type of tissue, material, etc.); however, it is 

important to consider the hypervoxels around it. The 

neighborhood surrounding a given hypervoxel complements 

the information about the properties to be identified [13] & 

[20]. Let v be a hypervoxel in an (n-1)D dataset, n ≥ 2. 

Given v it is possible to build a subdataset by taking those 

hypervoxels inside a hypercubical neighborhood of radius r 

and center at v. Hypervoxel v and its neighboring 

hypervoxels is called a (n-1)-Dimensional mask.    

The network’s training set is composed by all the (n-1)D 

masks of radius r that can be generated in a given (n-1)D 

dataset. The total number of masks of radius r extracted 

from a (n-1)D dataset with size n1 × n2 × ... × nn-1 is given by  

(n1 - 2r)⋅(n2 - 2r)⋅ ... ⋅(nn-1 - 2r) 

Precisely this formula give us the size of our training sets. 

 As commented in Section III a 1D-KSOM expects as 

input a vector, or point, embedded in the ψ-Dimensional 

Space. A (n-1)D mask is formerly seen as a (n-1)D array, 

but it is clear by stacking its columns on top of one another 

a vector is obtained. This straightforward procedure 

linearizes a (n-1)D mask making it a suitable input for the 

network. The resulting vectors, composed by  

ψ = (2r + 1)(n-1) 

components, preserve the properties associated to the 

original (n-1)D masks. Each component has the color 

intensity of the corresponding hypervoxel in its associated 

(n-1)D mask. By this way, we have specified the elements 

that conform our proposed approach for automatic 

segmentation of (n-1)D hypervoxelizations. We proceed 

now to describe some experiments and the obtained results. 

Our study cases are based in 3D datasets described in 

Table I. Such datasets were taken from The Volume Library 

[25], and the University of Iowa’s Department of Radiology 

[6]. Datasets’ visualizations shown in Table I were obtained 

via a volume rendering software available at [33]. 

The implemented 1D-KSOMs have the following 

topologies and training conditions: 

o 3D masks radius: r = 3 

o Inputs: ψ = 7 × 7 × 7 = 343 

o Neurons (classes): O = 80 

o Presentations: T = 10 
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According to previous Section we must define a 

neighborhood function. We will use following rule: 

1
( , )

0

j
j

j
ϕ

=
= 

≠

l
l

l
 

That is, once the Winner Neuron l has been identified, only 

its weights are updated. In Table II we can see the 

corresponding cardinalities of the training sets associated to 

each considered voxelization. 
 

TABLE I 

VOLUME DATASETS TO BE CONSIDERED FOR AUTOMATIC  

SEGMENTATION VIA 1D-KSOMS. 
 

 

Foot. Rotational C-arm x-ray scan of a human foot. 

Tissue and bone are present in the dataset. 

Voxelization size: (256 × 256 × 256) ≡ 16,777,216 
 

 

VL-Sheep. MRI scan of a heart's sheep. 

Voxelization size: (352 × 352 × 256) ≡ 31,719,424 
 

 

TABLE II 

TRAINING SETS' CARDINALITIES FOR VOXELIZATIONS  

DESCRIBED IN TABLE I. 

Dataset 
Voxelization Size  

(Number of voxels) 

Training Set's  

Cardinality 

Foot 16,777,216 15,625,000 

VL-Sheep 31,719,424 29,929,000 
 

The Table III shows the obtained distribution of the 

training 3D masks in each one of the available 80 classes. 

According to this Table, for networks trained with 3D 

masks associated to datasets Foot and VL-Sheep only 72 and 

58 classes are respectively used. A second observation 

arises: in the two proposed networks there is a class which 

has associated more than 65% of the elements in its 

corresponding training set. Seeing Table III it is possible to 

identify to such classes: 

• Dataset Foot:  class 32, 66.4553% 

• Dataset VL-Sheep:  class 54, 75.5389%. 

As we will see with more detail in Section V, we can 

mention in advance these abovementioned classes grouped 

3D masks corresponding to empty regions in the original 

datasets. Members in these classes are precisely part of the 

point of discussion relative to the fact hypervoxelizations' 

spatial complexities make sometimes difficult their 

manipulation and storage: under hypervoxelization 

representation we are also dealing with the processing and 

'cargo space' of empty regions. However, we will see in 

next Section by considering the EVM model, how these 

regions can be taken in account in the representation without 

impacting spatial conciseness. 
 

TABLE III 

CLASSIFICATION OF 3D MASKS ACCORDING TO 1D-KSOMS  

WITH 343 INPUTS, 80 OUTPUT NEURONS, AND 10 PRESENTATIONS. 

Class Foot VL-Sheep  Class Foot VL-Sheep 
1 3,112 34  41 14,770 0 

2 10,667 0  42 6,348 5 

3 312 0  43 26,460 38,782 

4 23,667 0  44 1,404 675 

5 58,416 389,056  45 87 4 

6 44,806 48,680  46 48,289 702,629 

7 138,048 548  47 14 0 

8 3,013,498 59,225  48 6,215 8 

9 1,749 0  49 17 89,659 

10 10,956 141,278  50 35,728 1 

11 808 0  51 12,825 0 

12 280 152,233  52 31,285 18,724 

13 872,443 430  53 63,299 1 

14 53 21  54 10 22,608,065 

15 8,376 29,684  55 277 8 

16 2,801 24  56 898 0 

17 2,122 3  57 3,037 0 

18 456 1  58 60,161 0 

19 129 1  59 8 13 

20 73,284 1  60 14 0 

21 8,177 0  61 2 47 

22 111,767 0  62 102 0 

23 56 530,516  63 1,306 0 

24 21,907 1  64 638 222,877 

25 5 133  65 659 0 

26 555 1189  66 1 56,789 

27 25 0  67 11 7 

28 17 1,322,902  68 77 20,987 

29 454 3  69 44 1,979 

30 6 1  70 225 14 

31 1,955 111,352  71 3,449 0 

32 10,383,656 0  72 23,700 1 

33 44 71,241  73 363 3 

34 1,143 1  74 166,745 1,035,368 

35 113,825 0  75 263 51 

36 2,847 33,647  76 1,397 127 

37 148,771 595  77 153 0 

38 356 235  78 13,226 239,181 

39 37,209 0  79 145 2 

40 2,533 30  80 57 1,999,928 
 

We conclude this Section by giving some words about 

time complexity associated to 1D-KSOMs' training process. 

As seen in Section III the training algorithm is by definition 

iterative and the number of executed steps depends on the 

following parameters: the number T of presentations, the 

number O of classes, the number ψ of input neurons, the 

chosen neighborhood function, and finally, the training set's 

size s = (n1 - 2r)⋅(n2 - 2r)⋅ ... ⋅(nn-1 - 2r). We suppose the 

Winner Neuron is identified by a linear search and because 

of our used neighborhood function only the Winner Neuron 

has its weights updated. Then, the total number of steps 

executed for training a 1D-KSOM in order to process one of 

our multidimensional datasets is given by: 

Time(s, T, O, ψ) = T⋅s⋅O⋅ψ 

Factor ψ tightly bounds the time required for computing the 

Euclidean Distance between input and weights vectors and 

also the time for updating the Winner Neuron's weights. The 

number ψ of inputs for the 1D-KSOM depends on the radius 

r and the dimensionality of the source hypervoxelization. 

Hence, function Time(s, T, O, ψ) is rewritten as: 

Time(s, T, O, r, n) = T⋅s⋅O⋅(2r + 1)(n-1)
 

Values shared by our time function correspond to the 

number of executed steps in order to train a 1D-KSOM. The 

topic related to 1D-KSOMs' time complexity is well known 

and it has been widely boarded in the literature. We make 

the mention in order to point out the required time, from an 

asymptotically point of view and under our current 
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application context, is in fact impacted mainly by the 

training sets' sizes and the considered radius r. Considering 

sufficiently large values for (n-1)D datasets' lengths  

n1, n2, ... , nn-1 and by taking in account in the practice values 

for 1D-KSOMs parameters T and O are lower, and constant, 

then we have the required time for training a 1D-KSOM in 

order to classify a set of (n-1)D masks is given by: 

Time(r, n1, n2, ..., nn-1) 

= (n1 - 2r)⋅(n2 - 2r)⋅ ... ⋅(nn-1 - 2r)⋅(2r + 1)(n-1) 

In other words, the operations performed during a  

1D-KSOM's training are in fact simple and efficient and it is 

the hypervoxelization's size which establish the final 

required time. Hence, these observations give us arguments 

to sustain the claim a 1D-KSOMs is an adequate choice, in 

terms of time complexity, for building, in an automatic 

scheme, a segmentation for our working datasets. 

 

V. THE FRAMEWORK BASED ON 1D-KSOMS  

AND THE nD-EVM 

The 1D-KSOMs, defined in the above Section, for 

processing multidimensional datasets have provided us with 

segmentations by establishing a number of classes and a size 

for the (n-1)D masks that describe the used training sets. As 

commented previously, each one of these (n-1)D masks 

describes in fact a subdataset by considering a hypervoxel of 

interest and its hypercubical neighborhood of radius r. Then, 

the masks are sent as input to a 1D-KSOM and through the 

corresponding training process there are determined their 

associated classes. Once the training has finished given a  

(n-1)D mask as input it is obtained as output the number of 

its corresponding class. Our hypervoxelizations were 

originally expressed with K color intensities, however, we 

have now through a 1D-KSOM these K intensities have 

been mapped onto a set of O elements: the number of 

classes established for training the 1D-KSOM. Therefore, 

the color intensity value for a hypervoxel can now be 

replaced by its corresponding number of associated class 

given as output by the network. The hypervoxelization's 

original size is not affected except on its boundaries because 

masks of radius r cannot be completed. For instance, to 

consider a hypervoxelization again as the appropriate 

representation for storing the segmentation achieved by 

means of a 1D-KSOM does not provides a reduction in 

terms of spatial complexity.   

Now we introduce our process, also mentioned in [22] 

for expressing (n-1)D hypervoxelizations using the  

nD-EVM, the representation scheme described in Section 

II. The conversion of a (n-1)D hypervoxelization to a nD 

polytope, and therefore to a nD-EVM, is in fact a straight 

procedure. Some aspects of the methodology to be described 

in the next two paragraphs were originally presented, for the 

4D case, in [18]. 

A nD hyperprism is a polytope generated by the parallel 

motion of an (n-1)D polytope; it is bounded by the (n-1)D 

polytope in its initial and final positions and by several  

(n-1)D hyperprisms [4] & [29]. Then, each hypervoxel in a 

(n-1)D dataset is extruded towards the n-th Dimension, that 

is, it is converted in a nD hyperprism whose bases are 

precisely the original hypervoxel and its height is given by 

its corresponding class number which was generated as 

output by the corresponding 1D-KSOM. The vertices’ 

coordinates X1, X2, ..., Xn-1 in the hyperprism’s bases 

correspond to the original hypervoxel's coordinates. The 

inferior base’s points have their Xn coordinate equal to zero, 

while in the remaining vertices the Xn coordinate is equal to 

the 1D-KSOM class number value. Let us call xf to the set 

composed by the nD hyperprisms (the extruded 

hypervoxels) of the extruded (n-1)D dataset. 

Let pri be a nD hyperprism in xf and npr the number of 

hyperprisms in that set: npr is in fact equal to the number of 

hypervoxels in the original dataset. Since all hyperprisms in 

xf are quasi disjoint nD-OPPs, the extreme vertices, of the 

whole nD extruded dataset, can be easily obtained by 

computing the regularized union of all the hyperprisms in xf. 

Hence, Corollary 2.3 is applied in the following way: 

1

( ) ( )
npr

n n i

i

EVM F EVM pr xf
=

= ∈⊗  

Where F is the nD-OPP that represents the union of all the 

hyperprisms in xf. Therefore, it is obtained a representation 

for a (n-1)D Dataset through a nD-OPP and the EVM. 

Our proposed Framework nD-EVM/Kohonen takes 

place when a dataset's segmentation achieved by a  

1D-KSOM is represented by using the nD-EVM, 

considering the conversion methodology abovementioned 

taking in account the class numbers generated as output by 

the corresponding 1D-KSOM. From a 'nD point of view', the 

Xn-axis refers to the number of class which is associated a 

hypervoxel respect to the segmented dataset. 

Summarizing, the following is the workflow, also 

presented in [22], for our Framework nD-EVM/Kohonen: 

Input:  A (n-1)D hypervoxelization under K color 

intensities, n ≥ 2, K ≥ 3. 

Step 1:  Given value r for radius of (n-1)D masks it is built 

a training set. 

Step 2:  Given values T and O for number of presentations 

and number of classes, respectively, it is trained a  

1D-KSOM using as training set all the masks generated 

in the previous step. 

Step 3:  The training set is used again as input for the  

1D-KSOM with adjusted weights. Each (n-1)D mask is 

sent as input to the 1D-KSOM and it is obtained the 

corresponding output: the number of its associated class. 

Coordinates, respect to the original hypervoxelization, of  

central hypervoxel in the input mask, are used together 

with class number for building a nD hyperprism.  

Step 4:  All generated hyperprisms are integrated in such 

way it is obtained the corresponding whole nD-OPP 

which in turn is expressed in the nD-EVM. 

Output: The final nD-EVM. 

The importance behind a dataset is the information can 

be obtained from it. If the datasets are represented through 

the nD-EVM, via the Framework nD-EVM/Kohonen, then 

the extraction of its couplets perpendicular to Xn-axis 

corresponds to the classification of the elements in the 

original model according to their output provided by the 

corresponding 1D-KSOM. Given a 1D-KSOM trained for 

characterization in O classes, then it is possible to obtain at 

most, from its corresponding nD-OPP, O+1 (n-1)D couplets 

perpendicular to Xn-axis. The 'extra' couplet is the result of 

the union of all the inferior bases of the nD hyperprisms in 

xf: the n-th coordinate in the points of such bases is zero. 

The Tables IV and V show some 3D couplets, 

perpendicular to X4-axis, obtained from our 3D datasets, 

Foot and VL-Sheep, respectively, after the application of 

Framework nD-EVM/Kohonen. The 3D-EVM views from 

these Tables were achieved by means of visualization 

software developed in [26], [27] & [28]. The projection of 

3D couplets under our 4D-EVM representation collect those 
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possible to reduce even more

complexity by recurring to a 

based on Trie Trees such as discussed i

were originally introduced in the classic pape

coordinates of an Extreme Vertex can be seen as a sequence

. Consider for example the set of Extreme 

ertices in a 4D unit hypercube 

)  = {(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), 

(0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), 

(1,0,1,0), (1,0,1,1), (1,1,0,0), 

sequences have length 

introduce these 16 points in a Trie T

one of its nodes stores their corresponding 

structure has height given by 

The node 0 in the first level points to a subtree that 

represents to all the values of extreme vertices whose first 

coordinate is 0. In a similar way, node 1 in the same level 

points to the subtree that represents to all the valu

extreme vertices whose first coordinate is 1. The first of 

these two referred subtrees contains the vertices embedded 

in the first couplet perpendicular to 

the second subtree contains the vertices embedded in the 

second couplet perpendicular to 

At this point makes sense Trie Trees are a native way for 

D-EVMs. Searching, adding

sequence can be performed in

OUPLETS, PERPENDICULAR TO 

3D Couplet 8
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ABLE VI 

OXELS/NUMBER-OF-E

N TABLE I AFTER PROCESSING 

RAMEWORK nD-EVM/KOHONEN

Card(EVM4(p)) 

(Number  

of Extreme  

Vertices) 

2,460,266 

4,870,178 

However, because of our specific application it i

possible to reduce even more the XOR's

complexity by recurring to a nD-EVM implementation 

as discussed in 

were originally introduced in the classic pape

Extreme Vertex can be seen as a sequence

onsider for example the set of Extreme 

ertices in a 4D unit hypercube h. We have:

)  = {(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), 

(0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), 

(1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1)}

have length n = 4. Now we pr

in a Trie Tree in such way each 

one of its nodes stores their corresponding 

height given by n = 4 levels. See 

The node 0 in the first level points to a subtree that 

represents to all the values of extreme vertices whose first 

coordinate is 0. In a similar way, node 1 in the same level 

points to the subtree that represents to all the valu

extreme vertices whose first coordinate is 1. The first of 

these two referred subtrees contains the vertices embedded 

in the first couplet perpendicular to X1-axis, i.e. 

contains the vertices embedded in the 

second couplet perpendicular to X1-axis, i.e., 

At this point makes sense Trie Trees are a native way for 

EVMs. Searching, adding

sequence can be performed in constant time provided the 

PERPENDICULAR TO X4-AXIS, EXTRACTED FROM THE 

 
3D Couplet 8 

 
Couplet 37 

EXTREME-VERTICES 

AFTER PROCESSING  

OHONEN. 

1 2 3

4( ( ))

x Size x Size x Size

Card EVM p

⋅ ⋅

6.8192 

6.5129 

However, because of our specific application it i

the XOR's temporal 

EVM implementation 

n [14] (Trie Trees 

were originally introduced in the classic paper by [7]).

Extreme Vertex can be seen as a sequence

onsider for example the set of Extreme 

e have: 

)  = {(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), 

(0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), 

(1,1,0,1), (1,1,1,0), (1,1,1,1)}

= 4. Now we proceed to 

ree in such way each 

one of its nodes stores their corresponding Xi-coordinate. 

= 4 levels. See Figure 

The node 0 in the first level points to a subtree that 

represents to all the values of extreme vertices whose first 

coordinate is 0. In a similar way, node 1 in the same level 

points to the subtree that represents to all the values of 

extreme vertices whose first coordinate is 1. The first of 

these two referred subtrees contains the vertices embedded 

axis, i.e. 1

1( )hΦ ; while 

contains the vertices embedded in the 

axis, i.e., 1

2 ( )hΦ . 

At this point makes sense Trie Trees are a native way for 

EVMs. Searching, adding, and deleting a 

constant time provided the 

 

TABLE V 

EXTRACTED FROM THE 
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ERTICES  

1 2 3

( ( ))

x Size x Size x Size

Card EVM p

 

However, because of our specific application it is 

temporal 

EVM implementation 

(Trie Trees 

). The 

Extreme Vertex can be seen as a sequence 

onsider for example the set of Extreme 

(0,1,0,1), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), 

(1,1,0,1), (1,1,1,0), (1,1,1,1)} 

oceed to 

ree in such way each 

coordinate. 

Figure 1. 

The node 0 in the first level points to a subtree that 

represents to all the values of extreme vertices whose first 

coordinate is 0. In a similar way, node 1 in the same level 

es of 

extreme vertices whose first coordinate is 1. The first of 

these two referred subtrees contains the vertices embedded 

; while 

contains the vertices embedded in the 

At this point makes sense Trie Trees are a native way for 

and deleting a 

constant time provided the 

length of the sequences is

us support for a

properly our stored Extreme Vertices, is constant

number 

adding

constant time. Other advantages were made clear in the 

above paragraphs: a Trie Tree provide us an immediate 

access to couplets. 

copy of an extracted

a pointer to the root of the subtrie would be 

EVM

account this tree structure. 

about 

Returning to the question related to temporal complexity 

for building the final 

proposed Framework, we can see now that by taking in 

account the Trie Tree implementation all we have to do is to 

process each hyperprism 

are Extreme Vertices and also the vertices in the partial 

nD-EVM 

Trie associated to 

EVM

performing an XOR. If 

added to the structure. We see the whole process reduces to 

checking vertices against 

implemented in a Trie Tree. Due to, as previously 

mentioned, these o

time given by 

dominated, once again, by the number of hyperprisms to 

process, that is, the size of the original hypervoxelization.
 

The 1D

processes of training and classification the Euclidean metric 

over the 

EXTRACTED FROM THE 4D-EVM ASSOCIATED TO DATASE
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length of the sequences is

us support for an

properly our stored Extreme Vertices, is constant

number n of dimensions. Then, by instance, 

adding, and deleting a

constant time. Other advantages were made clear in the 

above paragraphs: a Trie Tree provide us an immediate 

access to couplets. 

copy of an extracted

a pointer to the root of the subtrie would be 

EVM-based algorithms

account this tree structure. 

about nD-EVM implemented via Trie 

Returning to the question related to temporal complexity 

for building the final 

proposed Framework, we can see now that by taking in 

account the Trie Tree implementation all we have to do is to 

process each hyperprism 

are Extreme Vertices and also the vertices in the partial 

EVM F. Therefore, each vertex 

Trie associated to 

EVMn(F) then it is removed from 

performing an XOR. If 

added to the structure. We see the whole process reduces to 

checking vertices against 

implemented in a Trie Tree. Due to, as previously 

mentioned, these o

time given by n

dominated, once again, by the number of hyperprisms to 

process, that is, the size of the original hypervoxelization.

VI. THE FRAMEWORK 

COLOR-INTENSITY 

A

The 1D-KSOMs we implemented use as part of their 

processes of training and classification the Euclidean metric 

over the ψ-Dimensional Space. Because each one of the 

ASSOCIATED TO DATASE

3D Couplet 24 

3D Couplet 45 

length of the sequences is always

n advantage: the length of our sequences, 

properly our stored Extreme Vertices, is constant

of dimensions. Then, by instance, 

and deleting an Extreme V

constant time. Other advantages were made clear in the 

above paragraphs: a Trie Tree provide us an immediate 

access to couplets. According to the operation to perform, a 

copy of an extracted subtrie could be not necessary and only 

a pointer to the root of the subtrie would be 

algorithms can be implemented taking in 

account this tree structure. Refer to 

implemented via Trie 

Returning to the question related to temporal complexity 

for building the final nD-EVM representation in our 

proposed Framework, we can see now that by taking in 

account the Trie Tree implementation all we have to do is to 

process each hyperprism pri in

are Extreme Vertices and also the vertices in the partial 

. Therefore, each vertex 

Trie associated to EVMn(F). If 

then it is removed from 

performing an XOR. If v is not present in 

added to the structure. We see the whole process reduces to 

checking vertices against EVM

implemented in a Trie Tree. Due to, as previously 

mentioned, these operations are performed in the constant 

n, then the time complexity is finally 

dominated, once again, by the number of hyperprisms to 

process, that is, the size of the original hypervoxelization.

RAMEWORK nD-EVM/K

NTENSITY BASED 

A COMPARATIVE 

KSOMs we implemented use as part of their 

processes of training and classification the Euclidean metric 

Dimensional Space. Because each one of the 

ASSOCIATED TO DATASET VL-SHEEP
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always constant [3

advantage: the length of our sequences, 

properly our stored Extreme Vertices, is constant

of dimensions. Then, by instance, 

n Extreme Vertex is performed in 

constant time. Other advantages were made clear in the 

above paragraphs: a Trie Tree provide us an immediate 

ccording to the operation to perform, a 

subtrie could be not necessary and only 

a pointer to the root of the subtrie would be 

can be implemented taking in 

efer to [14] f

implemented via Trie Trees. 

Returning to the question related to temporal complexity 

EVM representation in our 

proposed Framework, we can see now that by taking in 

account the Trie Tree implementation all we have to do is to 

in the set xf. All vertices of 

are Extreme Vertices and also the vertices in the partial 

. Therefore, each vertex v is searched in the Trie 

. If v is already present in 

then it is removed from EVMn(F) 

is not present in EVM

added to the structure. We see the whole process reduces to 

EVMn(F) which is assumed 

implemented in a Trie Tree. Due to, as previously 

perations are performed in the constant 

, then the time complexity is finally 

dominated, once again, by the number of hyperprisms to 

process, that is, the size of the original hypervoxelization.

EVM/KOHONEN 

ASED SEGMENTATION

OMPARATIVE ANALYSIS 

KSOMs we implemented use as part of their 

processes of training and classification the Euclidean metric 

Dimensional Space. Because each one of the 

HEEP. 
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3]. This fact give 

advantage: the length of our sequences, 

properly our stored Extreme Vertices, is constant, that is, the 

of dimensions. Then, by instance, searching, 

ertex is performed in 

constant time. Other advantages were made clear in the 

above paragraphs: a Trie Tree provide us an immediate 

ccording to the operation to perform, a 

subtrie could be not necessary and only 

a pointer to the root of the subtrie would be enough. Hence

can be implemented taking in 

[14] for more details 

 

Returning to the question related to temporal complexity 

EVM representation in our 

proposed Framework, we can see now that by taking in 

account the Trie Tree implementation all we have to do is to 

. All vertices of pr

are Extreme Vertices and also the vertices in the partial 

is searched in the Trie 

is already present in 

 because we are 

EVMn(F) then it is 

added to the structure. We see the whole process reduces to 

which is assumed 

implemented in a Trie Tree. Due to, as previously 

perations are performed in the constant 

, then the time complexity is finally 

dominated, once again, by the number of hyperprisms to 

process, that is, the size of the original hypervoxelization. 

OHONEN VERSUS  

EGMENTATION:  

 

KSOMs we implemented use as part of their 

processes of training and classification the Euclidean metric 

Dimensional Space. Because each one of the 

]. This fact give 

advantage: the length of our sequences, 

the 

searching, 

ertex is performed in 

constant time. Other advantages were made clear in the 

above paragraphs: a Trie Tree provide us an immediate 

ccording to the operation to perform, a 

subtrie could be not necessary and only 

Hence, 

can be implemented taking in 

or more details 

Returning to the question related to temporal complexity 

EVM representation in our 

proposed Framework, we can see now that by taking in 

account the Trie Tree implementation all we have to do is to 

. All vertices of pri 

are Extreme Vertices and also the vertices in the partial  

is searched in the Trie 

is already present in 

because we are 

then it is 

added to the structure. We see the whole process reduces to 

which is assumed 

implemented in a Trie Tree. Due to, as previously 

perations are performed in the constant 

, then the time complexity is finally 

dominated, once again, by the number of hyperprisms to 
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processes of training and classification the Euclidean metric 

Dimensional Space. Because each one of the 

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_03

(Advance online publication: 24 April 2015)

 
______________________________________________________________________________________ 



representatives of the classes in the networks are themselves 

vectors then we can determine the Euclidean distance 

between any pair of representatives. We proceed to define a 

False Color Map (FCM) that represents the distribution of 

the Weights Vectors in the subspace [0, 1]ψ. Upper and 

lower bounds for Euclidean distance between any two 

Weights Vectors are 
maxd ψ=  and dmin = 0, respectively. 

Every Euclidean distance d between two Weights Vectors is 

related with a grayscale intensity through ( )max 255d d ⋅ . 

Hence, if d = 0 then it has associated the black color while if 

d = dmax then it has associated the white color. 
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Fig. 1. The Trie Tree associated to the EVM of a 4D unit hypercube. 

 

For purposes of comparative analysis, now we face the 

situation related to the fact that a segmentation exclusively 

based on intensities only considers the color intensity of the 

hypervoxel of interest and nothing more. This is the critical 

aspect that differentiates Color-Intensity Based 

Segmentation (CIBS) from our proposal because the 

fundament behind the use of (n-1)D masks is to take in 

account geometrical and topological properties such that a 

1D-KSOM use them in order to achieve and to enhance the 

classification. On the other hand, because of simplicity in 

implementing CIBS the notion of a representative, a 

Weights Vector, for a class is absent: the hypervoxels 

included in a CIBS class share the same intensity. In order 

to also apply our proposed FCMs to classification achieved 

by CIBS we build a vector representative for elements in a 

same class. Consider a hypervoxel v with color intensity 

c+1, then, it is located in class 
1cκ +
. Now, we will consider 

the neighborhood of radius r for the given hypervoxel v 

respect to the original hypervoxelization. Then, we are 

defining a (n-1)D mask whose center is v. Given value for r, 

the corresponding (n-1)D mask also have (2r + 1)(n-1) 

elements. The mask is also linearized in such way we obtain 

the vector representation 
1, , 1 2, , 1 , , 1

T

i c i c i cg g gψ+ + +
  L

. 

Index i only refers to an arbitrary position assigned to the 

mask belonging class 
1cκ +
. One of the elements in the vector 

is precisely color intensity c+1 of central hypervoxel v while 

the rest are the color intensities of the hypervoxels inside its 

neighborhood. Given the above elements we build a vector 

representative of class 
1cκ +
, but under CIBS, as follows: 

( )
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That is, given the members of class 
1cκ +
, under CIBS, its 

representative has as components the average color intensity 

for each one of the (2r + 1)(n-1) positions in each one of the 

(n-1)D masks defined for the class' members. We have now 

representatives in order to apply them over our FCMs.  

One of the aims behind the use of 1D-KSOMs for 

classification of points is the proper distribution of the 

Weights Vectors along the subspace defined by the 

hypercube [0, 1]ψ. We expect the Minimal Bounding Box 

for Weights Vectors (MBBWV) extends as much as 

possible over such hypercube. However, we are dealing, in 

our experiments, with ψ = 343 dimensions so the proposed 

FCMs provide us a way for analyzing, in a 2D context, how 

good are distributed the Weights Vectors along hypercube  

[0, 1]ψ. If it is false our asseveration related to the fact 

geometry and topology described by a neighborhood 

enhances classification, in particular with our 1D-KSOMs,  

then intensities for FCMs associated to CIBS would tend 

towards whiter colors than those intensities in FCMs related 

to 1D-KSOMs classifications. In other words, CIBS's 

Weights Vectors distributions should be as good, or even 

better, than those Weights Vectors distribution reported by 

the use of our proposed 1D-KSOMs.  

The Table VII shows FCMs for Weights Vectors 

distributions associated to 1D-KSOMs described in Section 

IV. In these cases the maps show distribution for 80 

Weights Vectors. The Table also shows FCMs for Weights 

Vectors, as specified in the above paragraphs, associated to 

CIBS. In this situation we deal with 256 Weights Vectors 

because, as abovementioned, CIBS takes in account all the 

available intensities in the grayscale. The main diagonal for 

the hypercube [0, 1]343, the one defined for the classification 

space in our experiments, has a length 
max 343 18.52d = ≈ .  

Let us comment in first place observations regarding 

dataset VL-Sheep. The maximum distance between any two 

Weights Vectors under 1D-KSOM segmentation is 13.2839 

while under CIBS we have a maximum distance with value 

7.9367. On the other hand, minimal distances reported for 

1D-KSOM segmentation and CIBS are 1.1346 and 0.0039, 

respectively. These values lead us to infer CIBS' MBBWV 

can be easily embedded in 1D-KSOM segmentation's 

MBBWV. Moreover, because dmax ≈ 18.52, we determine 

that Weights Vectors for 1D-KSOM segmentation are more 
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extended over hypercube [0, 1]343 than Weights Vectors for 

CIBS. The average distance under 1D-KSOM segmentation 

is 7.7369 while it is 2.8018 under CIBS. This implies 

Weights Vectors for CIBS are nested in such way we cannot 

expect a clear differentiation of the regions occupied by the 

256 classes. A simple inspection over the corresponding 

FCMs visually corroborates our claims by observing how 

intensities for FCM associated to 1D-KSOM tend towards 

whiter colors than those intensities in FCM related to CIBS. 

In the case related to dataset Foot we found maximum 

distances with values 11.0783 and 3.3166 for 1D-KSOM 

segmentation and CIBS, respectively. Minimal distance for 

1D-KSOM segmentation has value 0.1139 while for CIBS is 

0.0039. Finally, 1D-KSOM segmentation's average distance 

is 8.1409 while it is 1.0644 under CIBS. A set of similar 

conclusions, just as the ones in the above paragraph, can be 

obtained from this case leading to effectively conclude 

Weights Vectors for 1D-KSOM segmentation are much 

better distributed in [0, 1]343 than Weights Vectors for CIBS. 

Our analysis based on the use of FCMs has provided us 

elements for concluding, in terms of the presented 

experiments, the validity of our asseveration related to the 

fact geometry and topology described by a neighborhood 

enhances classification of elements in a dataset.   

VII. CONCLUSIONS 

In this work we have listed the elements that conform to 

our Framework nD-EVM/Kohonen for representing in a 

very concise way higher dimensional hypervoxelizations. 

The application of 1D-KSOMs shares us an intelligent 

classification of the elements in a dataset in such way it is 

obtained a segmentation which in turn is expressed with one 

additional dimension under the nD-EVM. This additional 

dimension together with the concepts accompanying the 

EVM provide a representation in such way elements 

belonging to the same class are stored in the same 

geometrical entity: a couplet. Because of the way the EVM 

represents an orthogonal polytope it is obtained an 

advantage respect to spatial complexity. Our pair of 

experiments serves as evidence of this aspect by showing 

ratios Number-of-Voxels/Number-of-Extreme-Vertices 6.51 

and 6.81. Moreover, we have low time complexity required 

for training 1D-KSOMs and the generation of the final  

nD-EVM representation, because these processes are 

achieved by means of very efficient methods and structures, 

such as Trie Trees in the EVM case. Thus, the dominating 

time is imposed precisely by the sizes of the original 

hypervoxelizations. 

 
TABLE VII 

FALSE COLOR MAPS ASSOCIATED TO SEGMENTATIONS FOR DATASETS VL-SHEEP AND FOOT (SEE TEXT FOR DETAILS).  
FCM - 1D-KSOM for Dataset VL-Sheep (80 classes) 

 

FCM - 1D-KSOM for Dataset Foot (80 classes) 

 
FCM - CIBS for Dataset VL-Sheep (256 classes) 

 

FCM - CIBS for Dataset Foot (256 classes) 

 
In all maps: 

 

 Maximum Distance 
max 18.52d ψ= ≈  

 
 

Minimum Distance d = 0 
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The Framework nD-EVM/Kohonen is also the object 

of study and analysis in [22]. In that work there are 

presented five study cases where voxelizations were 

manipulated by 1D-KSOMs with 40 output neurons and 

whose training sets were specified in terms of mask radius  

r = 2. In [22] we report ratios Number-of-Voxels/Number-

of-Extreme-Vertices were located in the range from 5.64 to 

32.43, showing once again the power of conciseness our 

proposal has. Moreover, in [22] there are presented some 

error functions whose objective is to measure the quality of 

the representatives obtained once the corresponding  

1D-KSOMs have been trained. The results are encouraging 

in the sense the 1D-KSOMs' Weights Vectors are better 

positioned than those representatives built in terms of CIBS. 

For more details refer to [22].     

It is possible to compute other geometrical and 

topological interrogations over an EVM. By this way it can 

be obtained more information and properties about the 

represented datasets. There are well specified procedures 

under the nD-EVM which allow performing Regularized 

Boolean Operations, Polytopes Splitting, Discrete 

Compactness Computation, Morphological Operations, 

Connected Components Labeling, Boundary Extraction, 

among others. In [1], [14], [17], [18], [19] & [24] there are 

described with enough detail algorithms based in the  

nD-EVM which are useful and efficient for performing 

these interrogations and/or manipulations. 

Our immediate line of future research considers certain 

elements presented originally in [21]. The idea is to apply 

Framework nD-EVM/Kohonen in the representation and 

manipulation of Computer Tomography scans. We also aim 

to incorporate other metrics, besides the Euclidean Distance, 

for identifying the Winner Neuron in 1D-KSOMs' training 

in order to observe how it is impacted Framework  

nD-EVM/Kohonen's conciseness and classification.  
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