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Abstract—In this paper, a detailed study on compact 

Advanced Encryption Standard (AES) S-box implementation 
has been proposed. Firstly, We firstly map the Multiplicative 
Inverse (MI) in S-box from finite filed GF(28) to composite field 
GF(((24)2) by Composite Field Arithmetic (CFA) technology, 
and derive out the expressions for all sub-operations over 
GF(24) in MI. Then a novel multi-term-pattern common 
subexpression elimination algorithm is proposed to reduce 
redundant resources in these sub-operations over GF(24) and 
isomorphic mapping matrices. Both polynomial basis and 
normal basis for CFA are discussed in this paper. The 
optimization results show that the S-boxes based on normal 
basis has smaller area and shorter critical path than the one 
based on polynomial basis. Compared with previous works, the 
normal basis based S-boxes proposed in this paper can achieve 
the shortest critical path and the minimal area-delay-product. 
 

Index Terms—Advanced Encryption Standard (AES), S-box, 
Composite Field Arithmetic (CFA), Common Subexpression 
Elimination (CSE), polynomial basis, normal basis 

I. INTRODUCTION 

NFORMATION security issues have become increasingly 
prominent as information technology developed [1]. Data 
encrypted by ciphers is widely used to ensure security 

[2-3]. Advanced Encryption Standard (AES) is established 
by the National Institute of Standards and Technology 
(NIST) to replace the original Data Encryption Standard 
(DES) in 2001 [4]. It is one of the most important symmetric 
block ciphers. The block length of the AES algorithm is 128 
bits with the key lengths of 128, 192 or 256 bits. Full 
computation of the AES encryption requires 10, 12 or 14 
rounds, and each round contains four transformations: 
SubBytes, ShiftRows, MixColumns and AddRoundKey. The 
SubBytes transformation, commonly known as S-box, is a 
nonlinear substitution that guarantees a better security of the 
AES encryption. It takes the most resources and consumes 
the most power in the implementation. Hence, the hardware 
implementation efficiency of the AES encryption in terms of 
area, speed, security and power consumption mainly depends 
on the implementation of S-box [5]. 

In general, the AES encryption is applied in resource- 
limited systems, such as wireless sensor networks [6]-[7] and 
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radio frequency identifiers [8], in which the compact AES 
hardware implementation is highly desirable. Among these 
implementations, S-boxes implemented with composite field 
arithmetic (CFA) have the smallest size [9]-[10]. Over years, 
several CFA-based S-boxes have been proposed [11]-[19], 
and they usually base on polynomial basis and normal basis 
[11]. Summarizing from the previous works [12], Canright 
presented the smallest S-box based on normal basis [13]. 
However, the critical path was long in Canright’s work. On 
the other hand, Zhang et al. proposed an AES S-box based on 
polynomial basis with the shortest critical path to date [14]. 
However, their work requires a large area.  

In this paper, to reduce the area consumption and shorten 
the critical path required for AES S-box, CFA technology is 
employed to map the Multiplicative Inverse (MI) in AES 
S-box from finite filed GF(28) to composite field GF(((24)2). 
Expressions of all sub-operations over GF(24) in MI are 
derived out based on polynomial basis and normal basis, 
respectively. Furthermore, a new Multi-Term-Pattern 
Common Subexpression Elimination (MTP-CSE) algorithm 
is proposed to reduce redundant resources in these 
sub-operations and isomorphic mapping matrices. 

The rest of this paper is organized as follows. Based on 
polynomial basis and normal basis, two architectures for 
hardware implementation of S-box are derived in Section II. 
In section III, the expressions for all sub-operations over 
GF(24) in MI are derived out. A new MTP-CSE algorithm is 
proposed to reduce redundant resources in the sub-operations 
over GF(24) and isomorphic mapping matrices. In Section V, 
two architectures of S-box are evaluated and compared with 
previous works. Conclusions are given in Section VI. 

II. COMPOSITE FIELD IMPLEMENTATION OF S-BOX  

The AES S-box is defined as the MI module over the finite 
field GF(28) followed by an affine transformation [15]. The 
S-box is calculated by using 

1( )F M X V  , (1) 

 
where X is 8-bit input vector, M is an 8×8 constant binary 
matrix, and V is an 8-bit constant vector. M and V are defined 
as 
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The process of affine transformation is defined as follows: 
X–1 is multiplied by M first, and then added with a constant 
vector V. 

This study focuses mainly on approaches to simplify the 
MI over GF(28). The architecture of the S-box using the CFA 
technique is shown in Fig. 1.  
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Fig. 1  Architecture of S-box using the CFA technique: (a) architecture of 

S-box; (b) architecture of MI based on polynomial basis; (c) architecture of 
MI based on normal basis. 

 

As shown in Fig. 1, the computation of S-box includes two 
parts, namely the MI over GF(28) and the affine 
transformation. The MI over GF(28) can be decomposed into 
composite field GF(((22)2)2) to reduce the hardware 
complexity by CFA technology [14]. The decomposing is 
based either on polynomial basis or on normal basis, for easy 
presentation in the following, the polynomial basis based 
S-box is denoted as Case I, and the normal basis based S-box, 
as Case II. An isomorphic mapping matrix is required to map 
the input vector from finite field GF(28) to the composite 
field GF(((22)2)2), and its inverse matrix is required to revert 
the computing results to GF(28). The S-box based on the 
CFA technique can be expressed as follows 

 
1 1( ( ) )F M X V    , (2) 

 
where δ is the isomorphic mapping matrix and δ-1 is inverse 
matrix of δ, both them are 8×8 binary matrix. Usually, matrix 
δ-1 and matrix M are merged into a single matrix Mδ-1 to 
reduce hardware resource.  

The irreducible polynomial for composite field GF((24)2), 
GF((22)2) and GF(22) are denoted as follows [13]: 
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where coefficients {τ, υ}�GF(24), coefficients {T, 
N}�GF(22), and the values of coefficients {τ, υ} must be 
satisfied that f1(x) is irreducible over composite field 
GF((24)2), and the values of coefficients {T, N} must be 
satisfied that f2(x) is irreducible over composite field 
GF((22)2). Coefficients {τ, T} are usually opted unity to 

simplify the architecture of MI [13].  
According CFA technology, the MI over GF((24)2) in Case 

I [14] and Case II [13] can be expressed as in (4) and (5), 
respectively, 
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where A(8)I(X)=a(4)hX+a(4)l, A(8)II(Y)=a(4)hY

16+a(4)lY, and where 
A(8)�GF(28), {a(4)h, a(4)l}�GF(24), and polynomial basis (X, 
1) and normal basis (Y16, Y) for GF((24)2) are chosen in (4) 
and (5), respectively. The corresponding architecture of MI 
in Case I and Case II are shown in Fig. 1(b) and Fig. 1(c), 
respectively. 

In the GF(2p) field, the additions are defined as bitwise 
exclusive OR operations, then the additions in Fig. 1(b) and 
Fig. 1(c) can be easily implemented by XOR gates. The 
architectures of other operation modules are depended on the 
value of irreducible polynomial coefficients in (3). We 
choose {υI=(1100)2, ΝI=(10)2} in Case I [14], and 
{υII=(0001)2, ΝII=(10)2} in Case II [13] to illustrate our 
methods in this paper. 

III.  SUB-OPERATIONS OVER GF(28) IN MI 

In this section, the expressions of sub-operations over 
GF(28) in MI are derived out based on CFA technology. The 
sub-operations include multiplication, MI, square, and 
Constant Coefficient Multiplication (CCM).  

A. Multiplication over GF(24) 

Multiplication over GF(24) can be decomposed into 
composite field GF((22)2) to implement, and the expressions 
in Case I [14] and in Case II [13] are represented in (6) and 
(7), respectively. 
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and where {A(4), B(4)} � GF(24), {a(2)h, a(2)l, b(2)h, b(2)l} � 
GF(22), and polynomial basis (X, 1) and normal basis (Y4, Y) 
for GF((22)2) is chosen in (6) and (7), respectively.  

The multiplication over GF(22) can be further decomposed 
into GF((2)2), and the expressions in Case I [14] and in Case 
II [13] are represented in (8) and (9), respectively. 
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where {A(2), B(2)}�GF(22), {ah, al, bh, bl}�GF(2), and 
polynomial basis (X, 1) and normal basis (Y2, Y) for GF((2)2) 
is chosen in (8) and (9), respectively.  

Over the GF(2) field, a multiplication is defined as a AND 
operation. Substituting (8) in (6), and substituting (9) in (7), 
we can obtain that the expressions of multiplication over 
GF(24) in Case I and in Case II are given by (10) and (11), 
repectively, where {a3, a2, a1, a0} are four bits of A(4)�GF(24), 
so as B(4) and C(4). 

B. MI over GF(24) 

MI over GF((22)2) in Case I [14] and in Case II [13] are 
represented in (12) and (13), respectively, 

 

  
  

1
1 2

(4)I (2) I (2) (2) (2)

(2) (2) (2)

( )

,

h l h l

h h l

A X a N a a a

a X a a


   

  
 (12) 

 

  
 

121
(4)II (2) (2) II (2) (2)

4
(2) (2)

( )

.

h l h l

l h

A Y a a N a a

a Y a Y


   

 
 (13) 

 
MI over GF(22) can be further decomposed into GF((2)2), 

the expressions in Case I [14] and in Case II [13] are 
represented in (14) and (15), respectively, 
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where over GF(2), a=a–1=a2, a�GF(2). According to (8) and 

(14), we can obtain that the expression of MI over GF(24) in 
Case I is given by 
 

1
(4)I (4)I

3 3 2 1 3 0 3 2

2 3 2 1 3 2 0 3 0 2 1 2

1 3 2 1 3 1 0 2 0 3 2 1

0 3 2 1 3 2 0 3 1 0 2 1 0 3 1

3 0 2 1 2 1 0

,

D A

d a a a a a a a

d a a a a a a a a a a a

d a a a a a a a a a a a

d a a a a a a a a a a a a a a

a a a a a a a



   
           
     
    

 (16) 

 
and according (9) and (15), the expression of MI over GF(24) 
is given by 
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C. Square over GF(24) and CCM over GF(24) 

From the (8) and (9), we can obtain that square over GF(24) 
in Case I and in Case II can be expressed as follows: 
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And CCM over GF(24) in Case I and in Case II can be 
expressed as follows: 
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TABLE I  
THE OPTIMIZATION RESULTS OF ×υ AND a2 OPERATION 

Approach a2 and ×υ Resources Consumption Critical Path 

Case I 
Separate 8 XOR 4 XOR 
Merged 4 XOR 2 XOR 

Case II 
Separate 13 XOR 4 XOR 
Merged 3 XOR 1 XOR 
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Square over GF(24) and CCM over GF(24) can be merged 

into one single module a2×υ to save resources consumption 
and shorten critical path. According (18) and (20), the 
A(4)I

2×υI can be expressed as follows: 
 

3 2 1 0

2 3 02
(4)I (4)I I

1 3

0 3 2

g a a a

g a a
G A v

g a

g a a

  
     
  

. (22) 

 
According (19) and (21), the A(4)II
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g a a

g a

 
      
 

. (23) 

 
Table I summarizes the resources consumption and critical 

path required for implementation of quare over GF(24), CCM 
over GF(24), and the merged module a2×υ. As shown in 
Table I, compared to separate implementations, the the 
merged module a2×υ saves up to 50% and 76.92% for the 
resources consumption in Case I and Case II, respectively, 
and shortens by 50% and 75% for the critical path in Case I 
and Case II, respectively. 

IV. OPTIMIZATION BASED ON MTP-CSE ALGORITHM  

Common Subexpression Elimination (CSE) is an effective 
method to reduce the redundancy circuits in many 
applications. The idea of a CSE algorithm is to identify 
patterns (common subexpressions) that are present in 
expressions more than once and replace them with a single 
variable. It has been proven that how to select a pattern to 
eliminate is an NP-complete problem [20]. An MTP-CSE 
algorithm was proposed in [21]. Based on this algorithm, 
another more efficient MTP-CSE algorithm is proposed to 
reduce the gate count in S-box in this paper. The details of the 
proposed algorithm are described below. 

A. MTP-CSE Algorithm 

In the MTP-CSE algorithm, the patterns with most 
variables and highest occurring frequency are extracted to 
eliminate at each iteration. In most case, the number of the 
candidate patterns, which meet the selection criterion, is 
often more than one. Unlike the algorithm proposed in [21], 

which randomly selected a candidate pattern to eliminate, a 
greedy algorithm is used in our algorithm to check all 
possible patterns and find out the best set of patterns with the 
minimal area. The details of the new MTP-CSE algorithm are 
summarized in Algorithm 1, where the initial value of N is 
the number of input variables.  
 

Algorithm 1: MTP-CSE algorithm 
Input:  the equations of arithmetic module; 
Output: the gate count needed by optimized module; the 

eliminated patterns; 
1. Compute the occurrence frequency of N-term patterns in 

the equations. 
2. Establish a list for the N-term patterns with the highest 

frequency. 
3. Select a pattern from the highest frequency list to be 

eliminated. 
4. Replace all of the selected patterns in the equations with a 

new variable.  
5. Append the selected pattern as a new equation to be further 

optimized. 
6. Repeat Steps 2-5 for the next iteration until no recurring 

N-term patterns exist. 
7. Let N=N-1, repeat Step 2-6 until N<2. 
8. Compute the gate count needed by optimized module. 
9. Select a different set of patterns from the highest frequency 

list to eliminate by repeating Steps 2-8, until all sets of 
patterns have been checked. 

10. Find out the minimal gate count, and output the 
corresponding eliminated patterns. 

 
An example in the following will illustrate the application 

of Algorithm 1. Considering a linear transform as follows: 
 

3 2 13 3

2 12 2

1 1 1 0

0 0 3 2 1 0

1 1 1 0

0 1 1 0

0 0 1 1

1 1 1 1

x x xy x

x xy x

y x x x

y x x x x x

      
             
      
     

              

, (24) 

The optimization process for (24) by the MTP-CSE 
algorithm can be expressed as in (25). As shown in (25), the 
new MTP-CSE algorithm takes two iterations to eliminate 
the patterns. Patterns “x3+x2+x1” and “x2+x1” are identified at 
first iteration and second iteration, respectively, and they are 
replaced by new variables “z0” and “z1”, respectively.  
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 (25) 

 
A straightforward implementation of the linear 

transformation requires 7 XOR gates. However, there are 
only 4 XOR gates required after optimization by the CSE 
algorithm. The reduction of XOR gates can be up to 42.85%. 
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B. The Optimization of Multiplication over GF(24) 

According to (10), the straightforward implementation of 
the multiplication over GF(24) needs 32 XOR gates and 16 
AND gates in Case I, and according to (11), it needs 44 XOR 
gates and 16 AND gates in Case II. The new MTP-CSE 
method can be employed to reduce both XOR gates and AND 
gates in the multiplication modules. The optimization process 
for (10) and (11) by the new MTP-CSE algorithm is divided 
into two steps: the additive common terms are firstly 
eliminated, then the multiplicative common terms are 
eliminated. After optimized by MTP-CSE algorithm, the 
multiplication over GF(24) can be expressed as (26) and (27) 
in Case I and Case II, respectively. 

The gate count used in optimized multiplication over 
GF(24) is listed in Table II. In Case I, the optimized 
multiplication needs 20 XOR gates and 9 AND gates, 
compared with the straightforward implementations, it is up 
to 37.5% and 43.75%, respectively, reduced by MTP-CSE 
algorithm. In Case II, the optimized multiplication also needs 
20 XOR gates and 9 AND gates, compared with the 
straightforward implementations, it is up to 54.54% and 
43.75%, respectively, reduced by MTP-CSE algorithm. As 
shown in Table II, both in Case I and Case II, the critical path 
in optimized multiplication is same as the straightforward 
implemented ones. 

In Case I, as shown in Fig. 1(b), there are three 
multiplications in the architecture of MI. According to (26), 
four XOR gates can be shared between two multiplications if 
they have a same input. Two of multiplications in Fig. 1(b) 
have a same input, and then they can share four XOR gates 
between them. The same goes for Case II, according to (27), 
four XOR gates can be shared between two multiplications 
too, if they have a same input. As shown in Fig. 1(c), there are 
also three multiplications in the architecture of MI in Case II, 
and there is a same input between any two multiplications, so 
total 12 XOR gates can be shared among the multiplications. 

C. The Optimization of MI Module over GF(24) 

Similar as the multiplication over GF(24), the MI over 
GF(24) can also be optimized by MTP-CSE algorithm. 
According to (16), the straightforward implementation of MI 
needs 21 XOR gates and 25 AND gates in Case I, and 
according to (17), it needs 16 XOR gates and 18 AND gates 
in Case II. The optimized MI in Case I and in Case II can be 
expressed as (28) and (29), respectively, 
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. (29) 

 
The gate count used in optimized MI is listed in Table II 

too. In Case I, the optimized MI needs 13 XOR gates and 8 
AND gates, compared with the straightforward 
implementations, it is up to 38.10% and 68%, respectively, 
reduced by MTP-CSE algorithm. In Case II, the optimized 
MI needs 12 XOR gates and 8 AND gates, compared with the 
straightforward implementations, it is up to 25% and 55.56%, 
respectively, reduced by MTP-CSE algorithm. The critical 
path in optimized MI is same as the straightforward 
implemented ones both in Case I and Case II. 
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. (27) 

TABLE II  
TOTAL GATE COUNT AND CRITICAL PATH OF ×υ, a2, AND a2×υ OVER GF(24) 

  

Multiplication over GF(24) 
Multiplicative Inversion 

over GF(24) 
Matrix δ Matrix Mδ-1 

Resources 
Consumption 

Critical 
Path 

Resources 
Consumption 

Critical 
Path 

Resources 
Consumption 

Critical 
Path 

Resources 
Consumption 

Critical 
Path 

XOR AND   XOR AND   XOR AND   XOR AND XOR XOR XOR XOR 

Case I 
Original 32 16   4 1   21 25   4 2 18 3 25 3 

Optimized 20 9   4 1   13 8   4 2 12 3 15 3 

Case II 
Original 44 16   4 1   16 18   3 2 24 3 17 3 

Optimized 20 9   4 1   12 8   3 2 14 3 11 3 
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D. The Optimization of Isomorphic Mapping Matrices 

For a fixed set of coefficients in irreducible polynomials in 
(3), there exist multiple isomorphic mapping between GF(28) 
and GF(((22)2)2) [14]. In Case I, for {υI=(1100)2, ΝI=(10)2}, 
then there is a pair of isomorphic mapping matrices as 
follows [14]:  

1
I I

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1

0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1

0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
;

0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0

0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 1

0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1

0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0

  

   
   
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   
        
   
   
   
   
      

. 

 
In Case II, for {υII=(0001)2, ΝII=(10)2}, then there is a pair 

of isomorphic mapping matrices as follows [13]: 
 

1
II II

1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1

0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1

1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0
;

1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0

0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0

0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0

  

   
   
   
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   
        
   
   
   
   
      

. 

 
As mention above, the affine matrix M and the isomorphic 

mapping matrix δ-1 are usually merged into a single matrix 
Mδ-1 to reduce hardware resource. The merged matrices MδI

-1 
and MδII

-1 are shown as follows: 
 

-1 -1
I II

1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1

0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0
= ; =
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. 

 
By using the new MTP-CSE algorithm, the optimization 

process of δI is given by 
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 (30) 

 
Other matrices are same as δI. The optimized results are 

also listed Table II. The area reductions for δI and MδI
-1 are 

up to 33.33% and 40%, respectively. And the area reduction 
for δII and MδII

-1 are up to 41.67% and 35.29%, respectively. 
The critical paths in optimized matrices are same as the 
straightforward implemented ones both in Case I and Case II. 

V. IMPLEMENT RESULTS AND ANALYSIS 

After series of architectural and algorithmic optimizations, 
we have obtained the gate count and critical path for each 
sub-operation of MI over GF(28). Combining with Fig. 1, we 
can obtain the total gate count and critical path for S-box. In 
Case I, the S-box needs 108 XOR gates and 35 AND gates 
with critical path of 20 XOR gates and 4 AND gates. In Case 
II, the S-box needs 96 XOR gates and 36 AND with critical 
path of 18 XOR gates and 4 AND gates. The results show 
that, between two architectures of S-box proposed in this 
paper, the S-box in Case II have smaller gate count and 
shorter critical path than the one in Case I. 

Comparisons of the circuit complexities between our 
works and selected previous works are summarized in Table  
III. We use the key circuit parameters in SMIC 0.18µm 
CMOS technology to evaluate the works in Table III. In the 
SMIC 0.18µm CMOS technology, the area consumption for 
a XOR gate is 26.6112µm2, and it is 13.3056µm2 for an AND 
gate, while the standard delay for both XOR gate and AND 
gate is 1ns. Using these parameters, the area, delay, and 
Area-Delay-Product (ADP) are compared in Table III. 

Polynomial basis was also employed in [5], [14], and [17]. 
Compared with these works, the S-box based on polynomial 
basis in this paper has the smallest area. Although the critical 
path in our polynomial basis based S-box is a litter longer 
than the S-box proposed in [14], the ADP in our work is 
smallest among these works due to much smaller area.  
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Our normal basis based S-box is compared with the ones in 
[11] Case II, [12] Case III, [13], and [16] Case III, which are 
also based on normal basis. Among these works, our normal 
basis based S-box has the shortest critical path. Although the 
area in our works is a litter bigger than the S-box proposed in 
[11] Case II and [13], the ADP in our work is smallest among 
these works due to much shorter critical path. Beyond that, 
our normal basis based S-box has the shortest critical path 
and minimal ADP among all the works in the Table III. 

VI. CONCLUSION 

In this paper, the methods for compact AES S-box 
implementation have been discussed. Firstly, we derive out 
the expressions for sub-operations over GF(24) in MI over 
GF(28) by CFA technology. Then a novel MTP-CSE 
algorithm is proposed to reduce redundant resources in these 
sub-operations. Two case of S-box have been discussed 
based on a polynomial basis and a normal basis, respectively. 
As results, the S-box that based on the polynomial basis 
needs 108 XOR gates and 35 AND gates with critical path of 
20 XOR gates and 4 AND gates, it has the minimal area and 
minimal ADP compared with previous works that based on 
the polynomial basis. The S-box based on the normal basis 
needs 96 XOR gates and 36 AND gates with critical path of 
18 XOR gates and 4 AND gates, it has the shortest critical 
path and minimal ADP compared with previous works based 
on the normal basis. Furthermore, our normal basis based 
S-box can achieve the shortest critical path and the minimal 
ADP among the works that selected for comparison in this 
paper.  

The optimization methods proposed in this paper can also 
be applied other circuits that involved finite field arithmetic. 
Our future works will focus on deriving the expression for 
MI over GF(28) and proposing a more efficient CSE 
algorithm for it. 
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TABLE III 
TOTAL RESOURCES CONSUMPTION, CRITICAL PATH, AND AREA-DELAY-PRODUCT FOR S-BOX IN OUR WORKS AND THE PRIOR WORKS 

Works [5] [14] [17] Case I [13] 
[16] 

Case III 
[12] 

Case III 
[11] 

Case II 
Case II 

Basis Used Polynomial Polynomial Polynomial Polynomial Normal Normal Normal Normal Normal 

Resources 
Consumption 

XOR (gates) 126 120 123 108 91 117 96 93 96 
AND (gates) 36 35 36 35 36 35 36 35 35 
Area (µm2) 3832.01 3659.04 3752.18 3339.71 2900.62 3579.21 3033.68 2940.54 3033.68 

Critical Path 
XOR (gates) 25 19 23 20 22 20 20 20 18 
AND (gates) 4 4 4 4 4 4 4 3 4 
Dealy (ns) 29 23 27 24 26 24 24 23 22 

Area-Delay-Product (103µm2•ns) 111.12 84.16 101.31 80.15 75.41 82.32 72.81 67.63 66.74 
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