


Abstract—In this paper, a detailed study on compact

Advanced Encryption Standard (AES) S-box implementation
has been proposed. Firstly, We firstly map the Multiplicative
Inverse (MI) in S-box from finite filed GF(28) to composite field
GF(((24)2) by Composite Field Arithmetic (CFA) technology,
and derive out the expressions for all sub-operations over
GF(24) in MI. Then a novel multi-term-pattern common
subexpression elimination algorithm is proposed to reduce
redundant resources in these sub-operations over GF(24) and
isomorphic mapping matrices. Both polynomial basis and
normal basis for CFA are discussed in this paper. The
optimization results show that the S-boxes based on normal
basis has smaller area and shorter critical path than the one
based on polynomial basis. Compared with previous works, the
normal basis based S-boxes proposed in this paper can achieve
the shortest critical path and the minimal area-delay-product.

Index Terms—Advanced Encryption Standard (AES), S-box,
Composite Field Arithmetic (CFA), Common Subexpression
Elimination (CSE), polynomial basis, normal basis

I. INTRODUCTION

NFORMATION security issues have become increasingly
prominent as information technology developed [1]. Data
encrypted by ciphers is widely used to ensure security

[2-3]. Advanced Encryption Standard (AES) is established
by the National Institute of Standards and Technology
(NIST) to replace the original Data Encryption Standard
(DES) in 2001 [4]. It is one of the most important symmetric
block ciphers. The block length of the AES algorithm is 128
bits with the key lengths of 128, 192 or 256 bits. Full
computation of the AES encryption requires 10, 12 or 14
rounds, and each round contains four transformations:
SubBytes, ShiftRows, MixColumns and AddRoundKey. The
SubBytes transformation, commonly known as S-box, is a
nonlinear substitution that guarantees a better security of the
AES encryption. It takes the most resources and consumes
the most power in the implementation. Hence, the hardware
implementation efficiency of the AES encryption in terms of
area, speed, security and power consumption mainly depends
on the implementation of S-box [5].

In general, the AES encryption is applied in resource-
limited systems, such as wireless sensor networks [6]-[7] and

This work was supported by the National Natural Science Foundation of

China (61376025), Industry-academic Joint Technological Innovations Fund
Project of Jiangsu Province (BY2013003-11) he Funding of Jiangsu
Innovation Program for Graduate Education (No. KYLX_0273), and the
Fundamental Research Funds for the Central Universities.

Xiaoqiang ZHANG, Ning WU, Gaizhen YAN, and Liling DONG are
with the College of Electronic and Information Engineering, Nanjing
University of Aeronautics and Astronautics (NUAA), Nanjing 210016,
China (e-mail: zxq198111@qq.com; wunee@nuaa.edu.cn;
xucs_yan@126.com; 820365078@qq.com).

radio frequency identifiers [8], in which the compact AES
hardware implementation is highly desirable. Among these
implementations, S-boxes implemented with composite field
arithmetic (CFA) have the smallest size [9]-[10]. Over years,
several CFA-based S-boxes have been proposed [11]-[19],
and they usually base on polynomial basis and normal basis
[11]. Summarizing from the previous works [12], Canright
presented the smallest S-box based on normal basis [13].
However, the critical path was long in Canright’s work. On
the other hand, Zhang et al. proposed an AES S-box based on
polynomial basis with the shortest critical path to date [14].
However, their work requires a large area.

In this paper, to reduce the area consumption and shorten
the critical path required for AES S-box, CFA technology is
employed to map the Multiplicative Inverse (MI) in AES
S-box from finite filed GF(28) to composite field GF(((24)2).
Expressions of all sub-operations over GF(24) in MI are
derived out based on polynomial basis and normal basis,
respectively. Furthermore, a new Multi-Term-Pattern
Common Subexpression Elimination (MTP-CSE) algorithm
is proposed to reduce redundant resources in these
sub-operations and isomorphic mapping matrices.

The rest of this paper is organized as follows. Based on
polynomial basis and normal basis, two architectures for
hardware implementation of S-box are derived in Section II.
In section III, the expressions for all sub-operations over
GF(24) in MI are derived out. A new MTP-CSE algorithm is
proposed to reduce redundant resources in the sub-operations
over GF(24) and isomorphic mapping matrices. In Section V,
two architectures of S-box are evaluated and compared with
previous works. Conclusions are given in Section VI.

II. COMPOSITE FIELD IMPLEMENTATION OF S-BOX

The AES S-box is defined as the MI module over the finite
field GF(28) followed by an affine transformation [15]. The
S-box is calculated by using

1()F M X V  , (1)

where X is 8-bit input vector, M is an 8×8 constant binary
matrix, and V is an 8-bit constant vector. M and V are defined
as

1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 0 0 1

0 0 1 1 1 1 1 0 1

0 0 0 1 1 1 1 1 0
; .

1 0 0 0 1 1 1 1 0

1 1 0 0 0 1 1 1 0

1 1 1 0 0 0 1 1 1

1 1 1 1 0 0 0 1 1

M V

   
   
   
   
   
        
   
   
   
   
      

Hardware Implementation of Compact AES
S-box

Xiaoqiang ZHANG, Ning WU, Gaizhen YAN, and Liling DONG

I

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

The process of affine transformation is defined as follows:
X–1 is multiplied by M first, and then added with a constant
vector V.

This study focuses mainly on approaches to simplify the
MI over GF(28). The architecture of the S-box using the CFA
technique is shown in Fig. 1.

Affine
Trasformation

MI over GF(28)

X X -1

a(4)h
4

a(4)l

×υI

a-1

b(4)h

b(4)l
4

4

4

a(4)h
4

a(4)l

×υII

a-1

b(4)l

b(4)h
4

4

4

(b)

(c)

(a)

a2

a2

δ×
MI over

GF((22)2)2)
δ-1×

Fig. 1 Architecture of S-box using the CFA technique: (a) architecture of

S-box; (b) architecture of MI based on polynomial basis; (c) architecture of
MI based on normal basis.

As shown in Fig. 1, the computation of S-box includes two
parts, namely the MI over GF(28) and the affine
transformation. The MI over GF(28) can be decomposed into
composite field GF(((22)2)2) to reduce the hardware
complexity by CFA technology [14]. The decomposing is
based either on polynomial basis or on normal basis, for easy
presentation in the following, the polynomial basis based
S-box is denoted as Case I, and the normal basis based S-box,
as Case II. An isomorphic mapping matrix is required to map
the input vector from finite field GF(28) to the composite
field GF(((22)2)2), and its inverse matrix is required to revert
the computing results to GF(28). The S-box based on the
CFA technique can be expressed as follows

1 1(())F M X V    , (2)

where δ is the isomorphic mapping matrix and δ-1 is inverse
matrix of δ, both them are 8×8 binary matrix. Usually, matrix
δ-1 and matrix M are merged into a single matrix Mδ-1 to
reduce hardware resource.

The irreducible polynomial for composite field GF((24)2),
GF((22)2) and GF(22) are denoted as follows [13]:

4 2 2
1

2 2 2
2

2 2
3

((2)) : ()

((2)) : ()

(2) : () 1

GF f x x x

GF f x x Tx Ν

GF f x x x

    


  
   

, (3)

where coefficients {τ, υ}�GF(24), coefficients {T,
N}�GF(22), and the values of coefficients {τ, υ} must be
satisfied that f1(x) is irreducible over composite field
GF((24)2), and the values of coefficients {T, N} must be
satisfied that f2(x) is irreducible over composite field
GF((22)2). Coefficients {τ, T} are usually opted unity to

simplify the architecture of MI [13].
According CFA technology, the MI over GF((24)2) in Case

I [14] and Case II [13] can be expressed as in (4) and (5),
respectively,

  
  

1
1 2

(8)I (4) I (4) (4) (4)

(4) (4) (4)

()

,

h l h l

h h l

A X a a a a

a X a a




   

  
 (4)

  
 

121
(8)II (4) (4) II (4) (4)

16
(4) (4)

()

,

h l h l

l h

A Y a a a a

a Y a Y




   

 
 (5)

where A(8)I(X)=a(4)hX+a(4)l, A(8)II(Y)=a(4)hY

16+a(4)lY, and where
A(8)�GF(28), {a(4)h, a(4)l}�GF(24), and polynomial basis (X,
1) and normal basis (Y16, Y) for GF((24)2) are chosen in (4)
and (5), respectively. The corresponding architecture of MI
in Case I and Case II are shown in Fig. 1(b) and Fig. 1(c),
respectively.

In the GF(2p) field, the additions are defined as bitwise
exclusive OR operations, then the additions in Fig. 1(b) and
Fig. 1(c) can be easily implemented by XOR gates. The
architectures of other operation modules are depended on the
value of irreducible polynomial coefficients in (3). We
choose {υI=(1100)2, ΝI=(10)2} in Case I [14], and
{υII=(0001)2, ΝII=(10)2} in Case II [13] to illustrate our
methods in this paper.

III. SUB-OPERATIONS OVER GF(28) IN MI

In this section, the expressions of sub-operations over
GF(28) in MI are derived out based on CFA technology. The
sub-operations include multiplication, MI, square, and
Constant Coefficient Multiplication (CCM).

A. Multiplication over GF(24)

Multiplication over GF(24) can be decomposed into
composite field GF((22)2) to implement, and the expressions
in Case I [14] and in Case II [13] are represented in (6) and
(7), respectively.

   
 

(4)I (4)I

(2) (2) (2) (2) (2) (2)

(2) (2) II (2) (2)

() ()

,

h h h l h l

h h l l

A X B X

a b a a b b X

a b N a b

   

 

 (6)

   
   

(4)II (4)II

4
(2) (2) (2) (2) (2) (2) II

(2) (2) (2) (2) (2) (2) II

() ()

,

h h h l h l

l l h l h l

A Y B Y

a b a a b b N Y

a b a a b b N Y

    

   

 (7)

where
(4)I (2) (2)

(4)I (2) (2)

()

()

h l

h l

A X a X a

B X b X b

 
  

,
4

(4)II (2) (2)

4
(4)II (2) (2)

()

()

h l

h l

A Y a Y a Y

B Y b Y b Y

  


 
,

and where {A(4), B(4)} � GF(24), {a(2)h, a(2)l, b(2)h, b(2)l} �
GF(22), and polynomial basis (X, 1) and normal basis (Y4, Y)
for GF((22)2) is chosen in (6) and (7), respectively.

The multiplication over GF(22) can be further decomposed
into GF((2)2), and the expressions in Case I [14] and in Case
II [13] are represented in (8) and (9), respectively.

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

     
(2)I (2)I() ()

,h h h l h l h h l l

A X B X

a b a a b b X a b a b     
 (8)

   
   

(2)II (2)II

2

() ()

,

h h h l h l

l l h l h l

A Y B Y

a b a a b b Y

a b a a b b Y

    

   

 (9)

where
(2)I

(2)I

()

()

h l

h l

A X a X a

B X b X b

 
  

,
2

(2)II

2
(2)II

()

()

h l

h l

A Y a Y a Y

B Y b Y b Y

  


 
, and

where {A(2), B(2)}�GF(22), {ah, al, bh, bl}�GF(2), and
polynomial basis (X, 1) and normal basis (Y2, Y) for GF((2)2)
is chosen in (8) and (9), respectively.

Over the GF(2) field, a multiplication is defined as a AND
operation. Substituting (8) in (6), and substituting (9) in (7),
we can obtain that the expressions of multiplication over
GF(24) in Case I and in Case II are given by (10) and (11),
repectively, where {a3, a2, a1, a0} are four bits of A(4)�GF(24),
so as B(4) and C(4).

B. MI over GF(24)

MI over GF((22)2) in Case I [14] and in Case II [13] are
represented in (12) and (13), respectively,

  
  

1
1 2

(4)I (2) I (2) (2) (2)

(2) (2) (2)

()

,

h l h l

h h l

A X a N a a a

a X a a


   

  
 (12)

  
 

121
(4)II (2) (2) II (2) (2)

4
(2) (2)

()

.

h l h l

l h

A Y a a N a a

a Y a Y


   

 
 (13)

MI over GF(22) can be further decomposed into GF((2)2),

the expressions in Case I [14] and in Case II [13] are
represented in (14) and (15), respectively,

     
 

11 2
(2)I ()

,

h l h l h h l

h h l

A X a a a a a X a a

a X a a

     

  
 (14)

    
 

1
1 2 2 2

(2)II

2

()

,

h l h l l h

l h

A Y a a a a a Y a Y

a Y a Y


    

 
 (15)

where over GF(2), a=a–1=a2, a�GF(2). According to (8) and

(14), we can obtain that the expression of MI over GF(24) in
Case I is given by

1
(4)I (4)I

3 3 2 1 3 0 3 2

2 3 2 1 3 2 0 3 0 2 1 2

1 3 2 1 3 1 0 2 0 3 2 1

0 3 2 1 3 2 0 3 1 0 2 1 0 3 1

3 0 2 1 2 1 0

,

D A

d a a a a a a a

d a a a a a a a a a a a

d a a a a a a a a a a a

d a a a a a a a a a a a a a a

a a a a a a a



   
           
     
    

 (16)

and according (9) and (15), the expression of MI over GF(24)
is given by

3 2 1 0 3 1 2 1 1 0

2 3 1 0 3 1 2 1 2 0 01
(4)II (4)II

1 3 2 0 3 1 3 0 3 2

0 3 2 1 3 1 3 0 2 0 2

d a a a a a a a a a

d a a a a a a a a a a
D A

d a a a a a a a a a

d a a a a a a a a a a



    
            
     

, (17)

C. Square over GF(24) and CCM over GF(24)

From the (8) and (9), we can obtain that square over GF(24)
in Case I and in Case II can be expressed as follows:

3 3

2 3 22
(4)I (4)I

1 2 1

0 3 1 0

e a

e a a
E A

e a a

e a a a


      
   

, (18)

3 3 2 1

2 2 1 02
(4)II (4)II

1 3 1 0

0 3 2 0

e a a a

e a a a
E A

e a a a

e a a a

  
        
   

. (19)

And CCM over GF(24) in Case I and in Case II can be
expressed as follows:

        
     
     

  

3 0 0 1 0 1 0 2 0 2 0 3 2 1 0 3 2 1 0

2 1 1 0 0 3 1 3 1 2 0 2 0

(4)I (4)I (4)I

1 3 3 0 0 3 2 3 2 1 0 1 0

0 2 2 1 1 0 0 3 2 3 2

c a b a a b b a a b b a a a a b b b b

c a b a b a a b b a a b b
C A B

c a b a b a a b b a a b b

c a b a b a b a a b b

             


         
       

      

. (10)

        
        
        
       

3 3 3 3 2 3 2 2 0 2 0 3 2 1 0 3 2 1 0

2 2 2 3 2 3 2 2 0 2 0 3 1 3 1

(4)II (4)II (4)II

1 1 1 1 0 1 0 2 0 2 0 3 2 1 0 3 2 1 0

0 0 0 1 0 1 0 2 0 2 0 3 1

c a b a a b b a a b b a a a a b b b b

c a b a a b b a a b b a a b b
C A B

c a b a a b b a a b b a a a a b b b b

c a b a a b b a a b b a a b

             

         
 

             

          3 1b






 

. (11)

TABLE I
THE OPTIMIZATION RESULTS OF ×υ AND a2 OPERATION

Approach a2 and ×υ Resources Consumption Critical Path

Case I
Separate 8 XOR 4 XOR
Merged 4 XOR 2 XOR

Case II
Separate 13 XOR 4 XOR
Merged 3 XOR 1 XOR

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

3 2 0

2 3 2 1 0
(4)I (4)I I

1 3

0 2

=

f a a

f a a a a
F A v

f a

f a

 
      
 

, (20)

3 3 1

2 2 0
(4)II (4)II II

1 3 0

0 2 1 0

f a a

f a a
F A v

f a a

f a a a

 
      
   

. (21)

Square over GF(24) and CCM over GF(24) can be merged

into one single module a2×υ to save resources consumption
and shorten critical path. According (18) and (20), the
A(4)I

2×υI can be expressed as follows:

3 2 1 0

2 3 02
(4)I (4)I I

1 3

0 3 2

g a a a

g a a
G A v

g a

g a a

  
     
  

. (22)

According (19) and (21), the A(4)II

2×υII can be expressed as
follows:

3 2 0

2 3 12
(4)II (4)II II

1 1 0

0 0

g a a

g a a
G A v

g a a

g a

 
      
 

. (23)

Table I summarizes the resources consumption and critical

path required for implementation of quare over GF(24), CCM
over GF(24), and the merged module a2×υ. As shown in
Table I, compared to separate implementations, the the
merged module a2×υ saves up to 50% and 76.92% for the
resources consumption in Case I and Case II, respectively,
and shortens by 50% and 75% for the critical path in Case I
and Case II, respectively.

IV. OPTIMIZATION BASED ON MTP-CSE ALGORITHM

Common Subexpression Elimination (CSE) is an effective
method to reduce the redundancy circuits in many
applications. The idea of a CSE algorithm is to identify
patterns (common subexpressions) that are present in
expressions more than once and replace them with a single
variable. It has been proven that how to select a pattern to
eliminate is an NP-complete problem [20]. An MTP-CSE
algorithm was proposed in [21]. Based on this algorithm,
another more efficient MTP-CSE algorithm is proposed to
reduce the gate count in S-box in this paper. The details of the
proposed algorithm are described below.

A. MTP-CSE Algorithm

In the MTP-CSE algorithm, the patterns with most
variables and highest occurring frequency are extracted to
eliminate at each iteration. In most case, the number of the
candidate patterns, which meet the selection criterion, is
often more than one. Unlike the algorithm proposed in [21],

which randomly selected a candidate pattern to eliminate, a
greedy algorithm is used in our algorithm to check all
possible patterns and find out the best set of patterns with the
minimal area. The details of the new MTP-CSE algorithm are
summarized in Algorithm 1, where the initial value of N is
the number of input variables.

Algorithm 1: MTP-CSE algorithm
Input: the equations of arithmetic module;
Output: the gate count needed by optimized module; the

eliminated patterns;
1. Compute the occurrence frequency of N-term patterns in

the equations.
2. Establish a list for the N-term patterns with the highest

frequency.
3. Select a pattern from the highest frequency list to be

eliminated.
4. Replace all of the selected patterns in the equations with a

new variable.
5. Append the selected pattern as a new equation to be further

optimized.
6. Repeat Steps 2-5 for the next iteration until no recurring

N-term patterns exist.
7. Let N=N-1, repeat Step 2-6 until N<2.
8. Compute the gate count needed by optimized module.
9. Select a different set of patterns from the highest frequency

list to eliminate by repeating Steps 2-8, until all sets of
patterns have been checked.

10. Find out the minimal gate count, and output the
corresponding eliminated patterns.

An example in the following will illustrate the application

of Algorithm 1. Considering a linear transform as follows:

3 2 13 3

2 12 2

1 1 1 0

0 0 3 2 1 0

1 1 1 0

0 1 1 0

0 0 1 1

1 1 1 1

x x xy x

x xy x

y x x x

y x x x x x

      
             
      
     

              

, (24)

The optimization process for (24) by the MTP-CSE
algorithm can be expressed as in (25). As shown in (25), the
new MTP-CSE algorithm takes two iterations to eliminate
the patterns. Patterns “x3+x2+x1” and “x2+x1” are identified at
first iteration and second iteration, respectively, and they are
replaced by new variables “z0” and “z1”, respectively.

3 0
3 3 2 1

2 2 1
2 2 1 0 3 2 1

1 1 0
1 1 0

0 0 0
0 3 2 1 0

0 3 2 1

y z
y x x x

y x x
y x x z x x x

y x x
y x x

y z x
y x x x x

z x x x


                           

3 0

2 1

1 1 01 2 1

0 0 0

0 3 1

1 2 1

.

y z

y z

y x xz x x

y z x

z x z

z x x


 
      
  


 

 (25)

A straightforward implementation of the linear

transformation requires 7 XOR gates. However, there are
only 4 XOR gates required after optimization by the CSE
algorithm. The reduction of XOR gates can be up to 42.85%.

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

B. The Optimization of Multiplication over GF(24)

According to (10), the straightforward implementation of
the multiplication over GF(24) needs 32 XOR gates and 16
AND gates in Case I, and according to (11), it needs 44 XOR
gates and 16 AND gates in Case II. The new MTP-CSE
method can be employed to reduce both XOR gates and AND
gates in the multiplication modules. The optimization process
for (10) and (11) by the new MTP-CSE algorithm is divided
into two steps: the additive common terms are firstly
eliminated, then the multiplicative common terms are
eliminated. After optimized by MTP-CSE algorithm, the
multiplication over GF(24) can be expressed as (26) and (27)
in Case I and Case II, respectively.

The gate count used in optimized multiplication over
GF(24) is listed in Table II. In Case I, the optimized
multiplication needs 20 XOR gates and 9 AND gates,
compared with the straightforward implementations, it is up
to 37.5% and 43.75%, respectively, reduced by MTP-CSE
algorithm. In Case II, the optimized multiplication also needs
20 XOR gates and 9 AND gates, compared with the
straightforward implementations, it is up to 54.54% and
43.75%, respectively, reduced by MTP-CSE algorithm. As
shown in Table II, both in Case I and Case II, the critical path
in optimized multiplication is same as the straightforward
implemented ones.

In Case I, as shown in Fig. 1(b), there are three
multiplications in the architecture of MI. According to (26),
four XOR gates can be shared between two multiplications if
they have a same input. Two of multiplications in Fig. 1(b)
have a same input, and then they can share four XOR gates
between them. The same goes for Case II, according to (27),
four XOR gates can be shared between two multiplications
too, if they have a same input. As shown in Fig. 1(c), there are
also three multiplications in the architecture of MI in Case II,
and there is a same input between any two multiplications, so
total 12 XOR gates can be shared among the multiplications.

C. The Optimization of MI Module over GF(24)

Similar as the multiplication over GF(24), the MI over
GF(24) can also be optimized by MTP-CSE algorithm.
According to (16), the straightforward implementation of MI
needs 21 XOR gates and 25 AND gates in Case I, and
according to (17), it needs 16 XOR gates and 18 AND gates
in Case II. The optimized MI in Case I and in Case II can be
expressed as (28) and (29), respectively,

   
  

 

3 3 1 2 2 3 0 31 2 1

1 2 3 2 0 2 1 10 0(4)I (4)I

1 1 0 1 3 2 03

0 0 1 0 0 3 1

n m m

n m

m

d a a a a a a a

d a a a a a mD A
d n a a a m n

d n a a m m n



    

     
     


    

, (28)

    

 

3 3 1 2 1 2 0 11 00

1 0

1
(4)II (4)II 2 1 0 0 0 0

1 3 0 1 3 0 3 21

0 1 2 2 1 0

e ed

d

d a a a a a a a

a a

D A d e a a d e

d a a e a e a a

d e a a d e



   

 
     
     
    

. (29)

The gate count used in optimized MI is listed in Table II

too. In Case I, the optimized MI needs 13 XOR gates and 8
AND gates, compared with the straightforward
implementations, it is up to 38.10% and 68%, respectively,
reduced by MTP-CSE algorithm. In Case II, the optimized
MI needs 12 XOR gates and 8 AND gates, compared with the
straightforward implementations, it is up to 25% and 55.56%,
respectively, reduced by MTP-CSE algorithm. The critical
path in optimized MI is same as the straightforward
implemented ones both in Case I and Case II.

           
    

   

3 0 0 2 0 2 0 1 0 1 0 5 3 6 43 47 20

2 1 1 3 1 3 1 08
(4)I (4)I (4)I

1 3 3 3 2 3 2 7 25 6 1

0 2 2 8 1

m mm mm

m

m m m

c a b a a b b a a b b m m m m

c a b a a b b m
C A B

c a b a a b b m m

c a b m m

               
       

        
  

. (26)

         

   
   

3 3 3 3 2 3 2 2 0 2 0 5 7 6 85 6 32 0

2 2 2 3 1 3 1 3 21
(4)II (4)II (4)II

1 1 1 1 0 1 0 07 8 4

0 0 0 1 4

m m mm m

m

m m m

c a b a a b b a a b b m m m m

c a b a a b b m m
C A B

c a b a a b b m

c a b m m

                 
           
       

  

. (27)

TABLE II
TOTAL GATE COUNT AND CRITICAL PATH OF ×υ, a2, AND a2×υ OVER GF(24)

Multiplication over GF(24)
Multiplicative Inversion

over GF(24)
Matrix δ Matrix Mδ-1

Resources
Consumption

Critical
Path

Resources
Consumption

Critical
Path

Resources
Consumption

Critical
Path

Resources
Consumption

Critical
Path

XOR AND XOR AND XOR AND XOR AND XOR XOR XOR XOR

Case I
Original 32 16 4 1 21 25 4 2 18 3 25 3

Optimized 20 9 4 1 13 8 4 2 12 3 15 3

Case II
Original 44 16 4 1 16 18 3 2 24 3 17 3

Optimized 20 9 4 1 12 8 3 2 14 3 11 3

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

D. The Optimization of Isomorphic Mapping Matrices

For a fixed set of coefficients in irreducible polynomials in
(3), there exist multiple isomorphic mapping between GF(28)
and GF(((22)2)2) [14]. In Case I, for {υI=(1100)2, ΝI=(10)2},
then there is a pair of isomorphic mapping matrices as
follows [14]:

1
I I

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1

0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1

0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1
;

0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0

0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 1

0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1

0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0

  

   
   
   
   
   
        
   
   
   
   
      

.

In Case II, for {υII=(0001)2, ΝII=(10)2}, then there is a pair

of isomorphic mapping matrices as follows [13]:

1
II II

1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1

0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1

1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0
;

1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0

0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0

0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0

  

   
   
   
   
   
        
   
   
   
   
      

.

As mention above, the affine matrix M and the isomorphic

mapping matrix δ-1 are usually merged into a single matrix
Mδ-1 to reduce hardware resource. The merged matrices MδI

-1
and MδII

-1 are shown as follows:

-1 -1
I II

1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1

0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0
= ; =

1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0

1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1

1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 0

1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0

M M 

   
   
   
   
   
       
   
   
   
   
        

.

By using the new MTP-CSE algorithm, the optimization

process of δI is given by

7

6

5

4
I

3

2

1

0

1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 1

0 1 1 1 0 0 1 0

0 0 1 0 1 1 0 1

0 0 0 0 1 1 1 0

0 0 1 1 0 0 0 0

0 1 1 1 1 0 1 1

0 0 0 0 0 1 0 1

x

x

x

x
X

x

x

x

x



  
  
  
  
  
     
  
  
  
  
     

7

6 4 3 0

6 5 4 1

5 3 2 0

3 2 1

5 4

6 5 4 3 1 0

2 0

x

x x x x

x x x x

x x x x

x x x

x x

x x x x x x

x x

 
    
   
 

       
 

      
   

 
  

7

6 4 3 0 1

6 1 5 4 2 0

5 2 1

3 2 1

2

1 0

2 0

.

z

z z

x

x x x x

x x x x

x x z

x x x

z

z z

x x

 
    
    
    
  
 
 
 
 

  

 (30)

Other matrices are same as δI. The optimized results are

also listed Table II. The area reductions for δI and MδI
-1 are

up to 33.33% and 40%, respectively. And the area reduction
for δII and MδII

-1 are up to 41.67% and 35.29%, respectively.
The critical paths in optimized matrices are same as the
straightforward implemented ones both in Case I and Case II.

V. IMPLEMENT RESULTS AND ANALYSIS

After series of architectural and algorithmic optimizations,
we have obtained the gate count and critical path for each
sub-operation of MI over GF(28). Combining with Fig. 1, we
can obtain the total gate count and critical path for S-box. In
Case I, the S-box needs 108 XOR gates and 35 AND gates
with critical path of 20 XOR gates and 4 AND gates. In Case
II, the S-box needs 96 XOR gates and 36 AND with critical
path of 18 XOR gates and 4 AND gates. The results show
that, between two architectures of S-box proposed in this
paper, the S-box in Case II have smaller gate count and
shorter critical path than the one in Case I.

Comparisons of the circuit complexities between our
works and selected previous works are summarized in Table
III. We use the key circuit parameters in SMIC 0.18µm
CMOS technology to evaluate the works in Table III. In the
SMIC 0.18µm CMOS technology, the area consumption for
a XOR gate is 26.6112µm2, and it is 13.3056µm2 for an AND
gate, while the standard delay for both XOR gate and AND
gate is 1ns. Using these parameters, the area, delay, and
Area-Delay-Product (ADP) are compared in Table III.

Polynomial basis was also employed in [5], [14], and [17].
Compared with these works, the S-box based on polynomial
basis in this paper has the smallest area. Although the critical
path in our polynomial basis based S-box is a litter longer
than the S-box proposed in [14], the ADP in our work is
smallest among these works due to much smaller area.

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

Our normal basis based S-box is compared with the ones in
[11] Case II, [12] Case III, [13], and [16] Case III, which are
also based on normal basis. Among these works, our normal
basis based S-box has the shortest critical path. Although the
area in our works is a litter bigger than the S-box proposed in
[11] Case II and [13], the ADP in our work is smallest among
these works due to much shorter critical path. Beyond that,
our normal basis based S-box has the shortest critical path
and minimal ADP among all the works in the Table III.

VI. CONCLUSION

In this paper, the methods for compact AES S-box
implementation have been discussed. Firstly, we derive out
the expressions for sub-operations over GF(24) in MI over
GF(28) by CFA technology. Then a novel MTP-CSE
algorithm is proposed to reduce redundant resources in these
sub-operations. Two case of S-box have been discussed
based on a polynomial basis and a normal basis, respectively.
As results, the S-box that based on the polynomial basis
needs 108 XOR gates and 35 AND gates with critical path of
20 XOR gates and 4 AND gates, it has the minimal area and
minimal ADP compared with previous works that based on
the polynomial basis. The S-box based on the normal basis
needs 96 XOR gates and 36 AND gates with critical path of
18 XOR gates and 4 AND gates, it has the shortest critical
path and minimal ADP compared with previous works based
on the normal basis. Furthermore, our normal basis based
S-box can achieve the shortest critical path and the minimal
ADP among the works that selected for comparison in this
paper.

The optimization methods proposed in this paper can also
be applied other circuits that involved finite field arithmetic.
Our future works will focus on deriving the expression for
MI over GF(28) and proposing a more efficient CSE
algorithm for it.

REFERENCES
[1] T. Sivakumar, and R. Venkatesan, “A Novel Approach for Image

Encryption using Dynamic SCAN Pattern,” IAENG International
Journal of Computer Science, Vol. 41, No. 2, pp. 91-101, 2014.

[2] R. E. Boriga, A. C. Dascalescu, and A. V. Diaconu, “A New Fast Image
Encryption Scheme Based on 2D Chaotic Maps,” IAENG International
Journal of Computer Science, Vol. 41, No. 4, pp. 249-258, 2014.

[3] M. A. B. Younes and A. Jantan, “Image encryption using block-based
transformation algorithm”, IAENG International Journal of Computer
Science, Vol. 35, No. 1, pp. 15-23, 2008.

[4] National Institute of Standards and Technology (NIST), “Advanced
Encryption Standard (AES)”, FIPS Publication 197, Nov. 2001.

[5] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact Rijndael
hardware architecture with S-box optimization”, In Advances in
Cryptology-ASIACRYPT 2001, LNCS 2248, 2001, pp. 239–245.

[6] O. Song, and J. Kim, “Compact Design of the Advanced Encryption
Standard Algorithm for IEEE 802.15.4 Devices,” Journal of Electrical
Engineering & Technology, Vol. 6, No. 3, pp. 418–422, 2011.

[7] J. A. R. Pacheco de Carvalho, H. Veiga, C. F. Ribeiro Pacheco, and A. D.

Reis, “Extended Research on Performance of IEEE 802.11 a, b, g
Laboratory WPA2 Point-to-Multipoint Links,” Engineering Letters, Vol.
23, No. 1, pp. 8-13, 2015.

[8] L. Fu, X. Shen, L. Zhu, J. Wang, “A Low-Cost UHF RFID Tag Chip
with AES Cryptography Engine,” Security and Communication
Networks, Vol. 7, No. 2, pp. 365–375, February 2014.

[9] S. Morioka, A. Satoh, “A 10-Gbps Full-AES Crypto Design with a
Twisted BDD S-Box Architecture,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 12, No. 7. pp. 686-691, July
2004.

[10] Y. Chen, X. Zou, Z. Liu, Y. Han, and Z. Zheng, “Energy-efficient and
security-optimized AES hardware design for ubiquitous computing,”
Journal of Systems Engineering and Electronics, Vol. 19, No. 4, pp.
652–658, 2008.

[11] X. Zhang, N. Wu, C. Zeng, “Compact S-box Hardware Implementation
with an Efficient MVP-CSE Algorithm,” Lecture Notes in Engineering
and Computer Science: Proceedings of The International
MultiConference of Engineers and Computer Scientists 2015, IMECS
2015, 18-20 March, 2015, Hong Kong, pp. 649–654.

[12] M. M. Wong, M. L. D. Wong, A. K. Nandi, I. Hijazin, “Construction of
Optimum Composite Field Architecture for Compact High-Throughput
AES S-Boxes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems. vol. 20, no. 6, 2012, pp. 1151–1155.

[13] D. Canright, “A very compact Rijndael S-box,” Technical report
NPS-MA-04-001, Naval Postgraduate School, 2005

[14] X. Zhang and K. K. Parhi, “On the optimum constructions of composite
field for the AES algorithm,” IEEE Transaction on Circuits and
systems–II: Express Briefs, vol. 53, no. 10, pp. 1153–1157, Oct. 2006.

[15] S.-F. Hsiao, M.-C. Chen, and C.-S. Tu, “Memory-Free Low-Cost
Designs of Advanced Encryption Standard Using Common
Subexpression Elimination for Subfunctions in Transformations,” IEEE
Transactions on Circuits and Systems—I: Regular papers, vol. 53, no. 3,
March 2006.

[16] M. M. Wong, M. L. D. Wong, A.K. Nandi, I. Hijazin, “Composite field
GF(((22)2)2) Advanced Encryption Standard (AES) S-box with
algebraic normal form representation in the subfield inversion,”
Circuits, Devices & Systems, IET. Vol. 5, Nov. 2011, pp. 471-476.

[17] N. Mentens, L. Batinan, B. Preneeland, and I. Verbauwhede, “A
systematic evaluation of compact hardware implementations for the
Rijndael S-box,” In Topics in Cryptology-CT-RSA 2005, vol. 3376,
2005, pp. 323-333.

[18] A. Rudra, P. K. Dubey, C. S. Jutla, Vijay Kumar, Josyula R. Rao, and P.
Rohatgi, “Efficient Rijndael encryption implementation with composite
field arithmetic,” In Cryptographic Hardware and Embedded
System-CHES2001, LNCS 2162, 2001, pp.171-184.

[19] M. Mozaffari-Kermani, R. Reyhani-Masoleh, “A low-cost S-box for the
advanced encryption standard using normal basis,” IEEE Int. Conf.
Electro/Information Technology 2009, pp. 52-55.

[20] N. Chen, and Z. Y. Yan, “Cyclotomic FFTs With Reduced Additive
Complexities Based on a Novel Common Subexpression Elimination
Algorithm,” IEEE Trans. Signal Processing, Vol. 57, no. 3, pp.
1010-1020, Mar. 2009.

[21] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova,
“A new algorithm for elimination of common subexpressions”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 18, No. 1, 1999, pp.58-68.

TABLE III
TOTAL RESOURCES CONSUMPTION, CRITICAL PATH, AND AREA-DELAY-PRODUCT FOR S-BOX IN OUR WORKS AND THE PRIOR WORKS

Works [5] [14] [17] Case I [13]
[16]

Case III
[12]

Case III
[11]

Case II
Case II

Basis Used Polynomial Polynomial Polynomial Polynomial Normal Normal Normal Normal Normal

Resources
Consumption

XOR (gates) 126 120 123 108 91 117 96 93 96
AND (gates) 36 35 36 35 36 35 36 35 35
Area (µm2) 3832.01 3659.04 3752.18 3339.71 2900.62 3579.21 3033.68 2940.54 3033.68

Critical Path
XOR (gates) 25 19 23 20 22 20 20 20 18
AND (gates) 4 4 4 4 4 4 4 3 4
Dealy (ns) 29 23 27 24 26 24 24 23 22

Area-Delay-Product (103µm2•ns) 111.12 84.16 101.31 80.15 75.41 82.32 72.81 67.63 66.74

IAENG International Journal of Computer Science, 42:2, IJCS_42_2_07

(Advance online publication: 24 April 2015)

__

