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Abstract—The rationale behind the utilization of workflow
patterns is to capture solutions for recurring workflow issues
in the domain of business process management. Most of
the identified workflow patterns in the literature are static
in which their structures are known at design time. This
paper takes on the challenge of defining dynamic workflow
patterns that their structures rely on runtime factors unknown
till the latest possible time. A collection of eight basic and
nine derived dynamic workflow patterns is examined from a
formal perspective. Theπ-calculus is adopted as the underlying
mathematical foundation for the dynamic workflow patterns.
Each derived dynamic workflow pattern is complemented by
a real-life example. Our study is of importance in laying the
groundwork for reasoning about dynamic workflow patterns.

Index Terms—workflow patterns, π-calculus, control-flow
patterns.

I. I NTRODUCTION

In today’s competitive world, managing business processes
in a systematic manner is crucial to the success of an
organization. The primary emphasis of business process
management (BPM) [1] is on studying the design, analysis,
execution, theoretical basis and best practices of business
processes. In the BPM field, numerous strategies for con-
structing business processes are documented as workflow
patterns. Seminal papers on workflow patterns encompass [2]
and [3].

While most of the previous works on workflow patterns
treat only business processes that structures are known at
design time, we intend to introduce the notion of dynamic
workflow patterns such that their structures can be deter-
mined dynamically at runtime. The dynamicity of workflows
arises whenever the configuration of a workflow depends
directly on the previous activated activities, decision of an
activity or external environment at execution time. Unlike
ordinary workflow languages and workflow modelling nota-
tions such as BPMN [4] that express a bounded number of
alternative structures statically, dynamic workflow patterns
provide a more intuitive way to represent the alternatives as
a dynamically reconfigurable structure.

Apart from the expressiveness issue, this paper is moti-
vated by the need for addressing both the correctness problem
and semantic challenge of the dynamic workflow patterns. To
facilitate the reasoning about business processes comprising
dynamic workflow patterns as well as the formalization of the
dynamic workflow patterns, a process-algebraic framework
based on theπ-calculus [5], [6] is proposed in our prior
work [7]. This study advances our previous attempt by
augmenting it with new dynamic workflow patterns, concrete
examples and correctness proofs.

The rest of the paper is organized as follows. Section 2 re-
views previous contributions in the area. Section 3 provides a
brief account of theπ-calculus. An overview of non-dynamic
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workflow patterns is given in Section 4. Section 5 offers
a detailed discussion of both basic and derived dynamic
workflow patterns as well as theirπ-calculus encodings.
The soundness of theπ-calculus representations is examined
in Section 6. Concluding comments and future work are
outlined in Section 7.

II. RELATED WORK

Dynamic processes [8] (dynamic workflows [9]) are work-
flow types and workflow instances that change dynamically
as a result of the modifications of their environments. Our
work differs from [8] and [9] since our main objective is to
identify patterns for dynamic workflow instances.

In [3] and [2], van der Aalst et al. and Russell et
al. present collections of control-flow patterns. Unlike [3]
and [2] that mainly focus on static workflow patterns, our
study concentrates on dynamic workflow patterns. In contrast
to the approach of [2] that the execution semantics of each
workflow pattern is expressed as Coloured Petri-nets, we
define each of them in terms of theπ-calculus.

In [10], Decker et al. describe an extension to BPEL
named BPEL4Chor for modelling service choreographies.
The correspondingπ-calculus formalization is studied in
[11]. As opposed to [10] and [11], our work pertains to
orchestrations in lieu of choreographies. Systematic ex-
aminations of declarative approaches, which are based on
constraints, are provided in [12] and [13]. These studies are
markedly different from ours as the nature of our proposed
patterns is imperative rather than declarative. Barros et
al. [14] generalize the relationships between events, process
instances and conversations to a collection of correlation
patterns. A crucial difference is that our propounded pat-
terns merely center around process instances in which their
structures are determined at runtime.

Yang and Zhang [15] advocate the modelling, verification
and equivalence checking of workflows by a rigorous ap-
proach based on theπ-calculus. Puhlmann and Weske [16]
use theπ-calculus for encoding the workflow patterns pro-
posed in [3]. Xue et al. [17] examine workflow patterns par-
allel split, multi-choice, arbitrary cycles, multiple instances
without priori runtime knowledge and milestone that have
multiple BPMN (Business Process Modelling Notation) [18]
representations using theπ-calculus. Yang and Zhang [19]
adopt theπ-calculus as the semantic domain of UML 1.4
activity diagrams. Our previous work [20] formalizes UML
2.0 activity diagrams in the form of theπ-calculus. The ex-
pressiveness of UML 2.0 activity diagrams for implementing
workflow patterns is assessed in [21] and [22]. Nevertheless,
there is very limited study on (i) dynamic workflow patterns;
and (ii) the specification of dynamic workflow patterns using
theπ-calculus in the literature.

Other closely related works include [23], [24], [25]
and [26] that deal with workflow data patterns, workflow re-
source patterns, service interaction patterns and time patterns,
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respectively. A discussion on the appropriateness of adopting
the π-calculus as a mathematical foundation for BPM is
given in [27]. In [28], an exploration on the suitability of
the π-calculus and Petri-nets for Web Service Composition
Language is provided. The application of business process
patterns to recover business process models is studied in [29].

This paper builds upon and considerably enhances our
earlier work [7] in a number of ways. Firstly, four new basic
dynamic workflow patternsdynamic multi-choice,dynamic
synchronizing merge, dynamic multi-mergeand dynamich-
out-of-i join and five new derived dynamic workflow patterns
dynamic multi-choice and synchronizing merge, dynamic fork
and multi-merge, dynamic multi-choice and multi-merge,
dynamic fork and h-out-of-i joinand dynamic structured
loop are introduced. Secondly, examples are provided for
exemplifying how the derived dynamic workflow patterns
are used in real-life setting. Finally, a formal treatment of
the correctness of theπ-calculus encodings is given.

III. T HE π-CALCULUS

This section briefly introduces the essence of theπ-
calculus and is adapted from our previous works in [30]
and [20].

Theπ-calculus is a mobile process calculus which extends
Calculus of Communicating Systems (CCS) [31] through
the support of name passing. Contrary to CCS in which
the interconnection structures of processes are static, the
structure of a system in theπ-calculus may change dynami-
cally. Sangiorgi [32] develops the idea further by proposing
a higher-orderπ-calculus in which processes may be passed
over channels.

We letΣπ
P be the set of processes ranged over byPi, Qi for

i = 1, . . . , n, Σπ
N be the set of channels (names) ranged over

byxi, yi for i = 1, . . . , n, Σπ
PI be the set of process identifiers

and Σπ
PDEF be the set of process definitions. A tuple of

channelsx1, x2, . . . , xn is abbreviated to~x. Likewise, we
write ~y as an abbreviation fory1, y2, . . . , yn. The syntax
of π-calculus process expressions and their corresponding
semantics are enumerated as follows:
x(~y).P : is an input prefix which receives channels a-

long channelx and continues as processP with
y1, y2, . . . , yn replaced by the received channels. The
input prefixx().P is abbreviated asx.P .

x〈~y〉.P : is an output prefix which sends channelsy1, y2,
. . . , yn along channelx and continues as processP .
The output prefixx〈〉.P is abbreviated asx.P .

P |Q : represents concurrent processesP andQ execute in
parallel.

∏n

i=1 Pi abbreviatesP1|P2| . . . |Pn.
P +Q : represents a non-deterministic choice in which

either processP or Q proceeds.
∑n

i=1 Pi abbreviates
P1 + P2 + . . .+ Pn.

(ν~x)P : is a restriction which creates new channelsx1, x2,
. . . , xn used for communication in processP .

0 : is the null process which cannot perform any actions.
[x = y]P : is a matching construct which proceeds as pro-

cessP if channelsx and y are identical; otherwise,
behaves like the null process.

τ.P : is an unobservable prefix which performs an internal
actionτ and continues as processP .

A(x1, x2, . . . , xn)
def
= P : denotes a process identifierA

which takesn parameters and behaves like processP .
ProcessP may contain occurrences ofA.

!P : is a replication which behaves as an arbitrary number
of concurrent processesP execute in parallel.

The input prefixx(~y).P and restriction(ν~x)P bind ~y and
~x in P , respectively. Unlike the input prefix, the channels~y
in the output prefixx〈~y〉.P are free.

In the π-calculus, the operational semantics is defined by
reduction. The reduction rule

x〈y〉.P |x(z).Q −→ P |Q{y/z}

specifies that an output prefixx〈y〉.P and an input prefix
x(z).Q which execute in parallel reduce to concurrent pro-
cessesP andQ where all free occurrences ofz in Q are
replaced byy. For further discussion on the other reduction
rules, the reader is referred to [33].

IV. WORKFLOW PATTERNS

Broadly speaking, a design pattern is a general solution
to a recurring design problem for a particular domain. A set
of 23 design patterns documented by Gamma et al. in [34]
are dedicated to the field of object-oriented technology.
In the BPM community, the workflow patterns proposed
by van der Aalst, ter Hofstede, Kiepuszewski and Barros
in [3] are a collection of 20 control-flow patterns that are
categorized into six groups: basic control flow patterns,
advanced branching and synchronization patterns, structural
patterns, multiple instance patterns, state-based patterns and
cancellation patterns. Russell, ter Hofstede, van der Aalst
and Mulyar [2] extend previous work by incorporating 23
new control-flow patterns into the original set of patterns.
The use of an enhanced version of the IBM WebSphere
Business Modeller to support the application of control-
flow patterns for constructing unstructured workflows is
exemplified in [35]. This section offers an introduction to
the control-flow patterns that are relevant to this paper. The
reader is referred to [3] and [2] for a more detailed treatment.

A fork pattern splits a single flow into multiple concurrent
flows which allow activities to execute in parallel. A join
pattern synchronizes multiple concurrent flows spawned by
a fork pattern as a single flow. An exclusive choice pattern,
unlike a fork pattern, determines that only one of the out-
going edges is enabled according to the guard conditions of
the outgoing edges. We extend this pattern by allowing the
decision to be based on a non-deterministic choice in addition
to the guard-condition-based selection mechanism. A simple
merge pattern converges multiple incoming edges emanating
from an exclusive choice. The outgoing edge of the exclusive
choice is enabled for each non-simultaneous activation of
the incoming edge. A multi-choice pattern enables one or
more outgoing edges in accordance to the guard conditions
of the outgoing edges. This pattern, like an exclusive choice
pattern, is extended to include the non-deterministic selection
mechanism. A synchronizing merge pattern, which is called
inclusive merge gateway [4] or OR-join in process definition
languages, synchronizes all active incoming edges enabled
by a multi-choice pattern as a single outgoing edge. A multi-
merge pattern converges multiple incoming edges spawned
by either a fork or multi-choice pattern. The outgoing edge
of the multi-merge is enabled for each activation of the
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incoming edge that may occur simultaneously. Ah-out-of-
i join pattern enables the outgoing edge when the firsth
incoming edges are activated. All subsequenti−h activated
incoming edges are ignored and theh-out-of-i join construct
resets. A discriminator is a special case of theh-out-of-i
join pattern in which the value ofh is 1. A structured loop
pattern is a structure that allows the repeated execution of a
sequence of activities provided that a pre-guard-condition or
post-guard-condition is satisfied. A deferred choice pattern,
unlike an exclusive choice pattern, defers the decision by
relying on the environment to activate the first activity of one
of the outgoing edges. The other outgoing edges, which are
not chosen, are withdrawn. An interleaved parallel routing
pattern determines how a set of activities is executed in
sequence at runtime. The graphical representations of these
patterns, which are expressed as BPMN [18] and UML
activity diagrams [36], can be found in [18] and [22], [21],
respectively.

V. DYNAMIC WORKFLOW PATTERNS

The basic dynamic workflow patterns are workflow con-
structs where their structures are decided at runtime, whereas
the derived dynamic workflow patterns specify how the basic
patterns can be combined together. We start by describing the
basic dynamic workflow patterns and the rest of the section
is then devoted to the derived dynamic workflow patterns.

A. Basic Dynamic Workflow Patterns

In this subsection, we further develop the ideas of [3]
and [2] by introducing a number of dynamic workflow
patterns. The rationale behind dynamic workflow patterns is
the structures of some workflows are only known at runtime
rather than design time. A typical example is the number
of outgoing edges of a fork construct is required to be
determined dynamically by a number of factors including
workloads, available resources, etc. before the execution of
the construct commences. In what follows, we present eight
basic dynamic workflow patterns in which more complex
patterns are built upon. The semantics of these basic dynamic
workflow patterns is defined when they are utilized for
specific combinations in Section V-B.

Pattern 1 (Dynamic Fork). Suppose2 ≤ i ≤ n. A dynamic
fork is a fork in which the number of outgoing edgesi is
determined dynamically at runtime just before the dynamic
fork construct is reached.

Unlike a fork construct, where the degree of parallelism is
decided at design time, a dynamic fork construct provides the
flexibility to adjust the degree of parallelism based on a wide
variety of conditions. Since the numbern is an arbitrary nat-
ural number greater than two, no pre-defined upper bound is
imposed on the number of concurrent instances. As specified
in the one-to-many send pattern [25], the number of parties
that received messages is unknown at design time. Despite
this is similar to the dynamic fork pattern, a fundamental
difference between the two is the former pattern relates to
choreographies instead of orchestrations.

Pattern 2 (Dynamic Join). Suppose2 ≤ i ≤ n. A dynamic
join is a join in which the decision of the number of incoming

edgesi resulting from a preceding dynamic fork construct is
made at the latest possible time.

The number of incoming edges to be merged by a dynamic
join construct is determined dynamically according to the
number of outgoing edges of the corresponding dynamic fork
construct.

Pattern 3 (Dynamic Exclusive Choice). Suppose2 ≤ i ≤ n.
A dynamic exclusive choice is an exclusive choice in which
the number of alternativesi is determined at runtime before
the execution of the dynamic exclusive choice construct
starts.

Pattern 4 (Dynamic Simple Merge). Suppose2 ≤ i ≤ n. A
dynamic simple merge is a simple merge in which the number
of incoming edgesi resulting from a preceding dynamic
exclusive choice construct is known at some point prior to
the firing of the dynamic simple merge construct.

A dynamic exclusive choice construct is intended to handle
the situation that the number of available choices is based on
previously executed activities. As an example, the number of
alternatives is affected by the amount of available resources
as a result of the resources consumed by the executed activ-
ities. The number of incoming edges of a dynamic simple
merge construct, like a dynamic join construct related to a
dynamic fork construct, depends on an associated dynamic
exclusive choice construct.

Pattern 5 (Dynamic Multi-choice). Suppose2 ≤ i ≤ n.
A dynamic multi-choice is a multi-choice in which the
determination of the number of alternativesi is deferred to
the last possible moment.

Pattern 6 (Dynamic Synchronizing Merge). Suppose2 ≤
i ≤ n. A dynamic synchronizing merge is a synchronizing
merge in which the number of incoming edgesi emanating
from a preceding dynamic multi-choice is not known until
runtime.

The major difference between dynamic multi-choice and
dynamic exclusive choice as well as dynamic synchronizing
merge and dynamic simple merge is the former ones allow
the enablement of more than one edges.

Pattern 7 (Dynamic Multi-merge). Suppose2 ≤ i ≤ n. A
dynamic multi-merge is a multi-merge in which the number
of incoming edgesi following either from a dynamic fork
or multi-choice construct specified earlier in the model is
determined at runtime.

The subsequent activity of a dynamic multi-merge con-
struct is activated at most certain number of times depend-
ing on the number of incoming edges that is dynamically
determined.

Pattern 8 (Dynamich-out-of-i Join). Suppose2 ≤ i ≤ n.
A dynamic h-out-of-i join is a h-out-of-i join in which the
decision of the number of incoming edgesi preceded by a
dynamic fork construct is made before the dynamic h-out-of-i
join is enabled.

A dynamic h-out-of-i join construct eliminates the re-
striction on the constant number of incoming edges. The
number of blocked incoming edges caused by the firing of
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the construct increases as the number of incoming edges
increases given that the value ofh remains unchanged.

Definition 1 (Process Diagram). A process diagram is a 12-
tuplePD = (SA, SDF, SDJ, SDEC, SDSM, SDMC, SDSynM,
SDMM, SDHIJ, SE, SGC, ΦGC) where

– SA is a set of activities;
– SDF is a set of dynamic fork constructs defined in

Pattern 1;
– SDJ is a set of dynamic join constructs defined in

Pattern 2;
– SDEC is a set of dynamic exclusive choice constructs

defined in Pattern 3;
– SDSM is a set of dynamic simple merge constructs

defined in Pattern 4;
– SDMC is a set of dynamic multi-choice constructs

defined in Pattern 5;
– SDSynM is a set of dynamic synchronizing merge con-

structs defined in Pattern 6;
– SDMM is a set of dynamic multi-merge constructs

defined in Pattern 7;
– SDHIJ is a set of dynamic h-out-of-i join constructs

defined in Pattern 8;
– SE ⊆ (SA×SA)∪(SA×SCN)∪ (SCN×SA)∪(SCN×
SCN) is a set of directed edges such thatSCN = SDF∪
SDJ∪SDEC∪SDSM∪SDMC∪SDSynM∪SDMM∪SDHIJ;

– SGC is a set of guard-conditions; and
– ΦGC : SE → SGC specifies for an edge its guard-

condition.

For technical convenience, we define a process diagram
in terms of the basic dynamic workflow patterns (Patterns
1–8). These patterns are basic constructs which are not
decomposable. A directed edge connects (i) two activities;
(ii) an activity and a basic dynamic workflow pattern; or
(iii) two basic dynamic workflow patterns.

B. Derived Dynamic Workflow Patterns in theπ-Calculus

This subsection offers a discussion of nine derived dy-
namic workflow patterns based on Definition 1. The proposed
patterns build upon the integration of the basic dynamic
workflow patterns as well as the structural relationships of
activities and edges. We begin by examining the suitability of
theπ-calculus for expressing the dynamic workflow patterns.
This is followed by giving the definitions of a number of
functions that are used for specifying the derived dynamic
workflow patterns. Then we present the derived patterns and
their respectiveπ-calculus representations.

In spite of the popularity of Petri nets in the BPM com-
munity, Decker et al. [37] point out that Petri nets are unable
to encode all the workflow patterns defined in [3]. On the
contrary, Puhlmann and Weske [16] successfully transform
all these workflow patterns into theπ-calculus. Additionally,
the formalizations of service invocations, correlations and
service interaction patterns using theπ-calculus are explored
in [38] and [37]. Given these success stories on the adoption
of the π-calculus for modelling various sorts of patterns,
the utilization of theπ-calculus for formalizing the dynamic
workflow patterns is justified.

Definition 2. SupposeB = {true, false} is a set of
Boolean values,SSGC ⊆ SGC and bval ∈ B. The

function extractGC : 2SGC × B → 2SGC defined by
extractGC (SSGC, bval) = {x|x ∈ SSGC∧ the value ofx
equals bval} returns the guard conditions with Boolean value
bval.

The functionextractGC retains all the guard-conditions
that values are equal to the Boolean valuebval as specified
in the parameter.

Definition 3. SupposeΓ = {A,DF, DJ,DEC,DSM,DMC,
DSynM, DMM, DHIJ, E, GC}. The functionsψi : Si →
Σπ

{PI,N} transform an instance of a graphical elementσ ∈
Si of a process diagram into a process identifier or channel
of theπ-calculus wherei ∈ Γ andΣπ

{PI,N} is defined as:

Σπ
{PI,N} =







Σπ
PI if i ∈ Γ \ {E,GC}

Σπ
N if i ∈ {E,GC}.

An activity and a basic dynamic workflow pattern are
modelled as a process identifier, whereas an edge and a
guard-condition are represented as a channel.

1) Dynamic Fork and Dynamic Join Pattern:The intuition
behind the dynamic fork and dynamic join pattern is a dy-
namic join pattern is a building block that always associates
with a dynamic fork pattern. The dynamic fork and dynamic
join pattern, which combines the dynamic fork and dynamic
join constructs (Patterns 1 and 2), provides the ability for
a process diagram to model the concurrent execution of
activities.

Pattern 9 (Dynamic Fork and Dynamic Join). SupposeP0,
P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈ SA, DF 1 ∈ SDF,
DJ 1 ∈ SDJ, (P0, P1), (P1, DF 1), (DF 1, Qk), (Rk, DJ 1),
(DJ 1, P2) ∈ SE and 2 ≤ i ≤ n for k = 1, . . . , i. The
number of concurrent activitiesi is known at runtime when
the activityP1 is performed. The dynamic forkDF 1 splits
the incoming flow from the activityP1 into i outgoing flows
to the concurrent activitiesQ1, . . . , Qi in which all flows
finally connect to the dynamic joinDJ 1. The dynamic join
DJ 1 synchronizes all incoming flows from the activitiesR1,
. . . , Ri as a single outgoing flow to the activityP2.

The incoming edge of the activityP1 is represented as
(P0, P1). Likewise, the incoming edge of the dynamic fork
DF 1 and the outgoing edge of the dynamic joinDJ 1 are
represented by(P1,DF1) and (DJ 1, P2), respectively. The
actual connections between concurrent activitiesQ1, . . . , Qi

and concurrent activitiesR1, . . . , Ri are not specified since
they vary from one scenario to another. A concrete example,
which illustrates how the dynamic fork and dynamic join are
linked up by means of a collection of concurrent activities,
is given in Example 1.

Definition 4. Suppose a dynamic fork and dynamic join
pattern, ψE((P0, P1)) = p1, ψE((P1, DF1)) = df1,
ψE((DF 1, Qk)) = qk, ψE((Rk, DJ 1)) = dj1,k, ψE((DJ 1,
P2)) = p2, eval is a channel for evaluating the number
of concurrent activities,val2, . . . , valn are channels for
representing the possible number of concurrent activities,
ψA(P1) = P1(p1, p2, eval, val2, . . . , valn, df1, q1, . . . ,
qn, dj1,1, . . . , dj1,n), ψDF(DF 1) = DF 1(df1, q1, . . . , qi)
andψDJ(DJ 1) = DJ 1(dj1,1, . . . , dj1,i, p2). The encodings
of the activityP1, dynamic forkDF 1 and dynamic joinDJ 1
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are expressed as:

P1(p1, p2, eval, val2, . . . , valn, df1, q1, . . . , qn,

dj1,1, . . . , dj1,n)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DF 1(df1, q1, . . . , qi)|

DJ 1(dj1,1, . . . , dj1,i, p2)|

df1.0)

DF 1(df1, q1, . . . , qi)
def
=

df1.
i∏

j=1

qj .0

DJ 1(dj1,1, . . . , dj1,i, p2)
def
=

(νreceived)

(

i∏

j=1

dj1,j .received .0| received . · · · .received︸ ︷︷ ︸

i times

.p2.0).

The functionsψE, ψA, ψDF andψDJ are defined in Defini-
tion 3. According to Definition 3, the activityP1 is modelled
as a process identifierP1(p1, p2, eval, val2, . . . , valn, df1,
q1, . . . , qn, dj1,1, . . . , dj1,n). The receipt of control flow by
the processP1 is modelled as the receipt of a signal along the
channelp1. The execution of the processP1 is represented
by the internal actionτ . The determination of the number of
outgoing flows of the dynamic forkDF 1 and the number of
incoming flows of the dynamic joinDJ 1 is denoted in the
π-calculus by sending a channelrs along the channeleval,
receiving a decision along the channelrs and determining the
degree of parallelism using matching constructs. The numeric
valuesi are expressed as the channelsvali for i = 2 to n.
The passing of control flow to the dynamic forkDF 1 is
encoded asdf.0.

The processDF 1 splits a single incoming control flow
modelled asdf1 into multiple outgoing control flows repre-
sented asqj for j = 1 to i. The processDF 1 evolves to the
null process only after sending out all the control flows.

The processDJ 1 synchronizes multiple incoming control
flows denoted bydj1,j for j = 1 to i as a single outgoing
control flow represented byp2. The channelreceived pre-
vents the passing of control flow to the subsequent activity
before receiving all incoming control flows.

Example 1. After determining the number of clerks required
for handling insurance claims according to the number of
claims received and performance pledges, a corresponding
number ofevaluate claimactivities is triggered simultane-
ously. The completion of allevaluate claimactivities enables
the activityendorse assessment.

Let P0, NoOfClerks , EvalClaim1, . . . , EvalClaimn,
EndorseAssess ∈ SA, DF 1 ∈ SDF, DJ 1 ∈ SDJ, (P0,
NoOfClerks), (NoOfClerks , DF 1), (DF 1, EvalClaimk),
(EvalClaimk, DJ 1), (DJ 1, EndorseAssess) ∈ SE and 2
≤ i ≤ n for k = 1, . . . , i. We defineψE((P0, NoOfClerks))
= noofclerks , ψE((NoOfClerks , DF 1) = df1, ψE((DF 1,
EvalClaimk)) = evalclaimk, ψE((EvalClaimk, DJ 1))
= dj1,k, ψE((DJ 1, EndorseAssess)) = endorseassess ,
evalclerks as a channel for determining the number of
evaluate claim activities,val2, . . . , valn as channels

for representing the possible number of evaluate claim
activities, ψA(NoOfClerks) = NoOfClerks(noofclerks ,
endorseassess , evalclerks , val2, . . . , valn, df1, evalclaim1,
. . . , evalclaimn, dj1,1, . . . , dj1,n), ψDF(DF 1) = DF1(df1,
evalclaim1, . . . , evalclaim i), ψDJ(DJ 1) = DJ 1(dj1,1,,
. . . , dj1,i, endorseassess) and ψA(EvalClaimk) =
EvalClaimk(evalclaimk, dj1,k). The activityNoOfClerks ,
dynamic fork DF 1, dynamic join DJ 1 and activities
EvalClaimk are modelled in theπ-calculus as shown
below:

NoOfClerks(noofclerks , endorseassess , evalclerks ,

val2, . . . , valn, df1, evalclaim1, . . . , evalclaimn,

dj1,1, . . . , dj1,n)
def
=

(νrs)noofclerks .τ.evalclerks〈rs〉.rs(x).
n∑

i=2

[x = vali](DF 1(df1, evalclaim1, . . . , evalclaim i)|

DJ 1(dj1,1, . . . , dj1,i, endorseassess)|
i∏

k=1

EvalClaimk(evalclaimk, dj1,k)|

df1.0)

DF 1(df1, evalclaim1, . . . , evalclaim i)
def
=

df1.

i∏

j=1

evalclaim j .0

DJ 1(dj1,1, . . . , dj1,i, endorseassess)
def
=

(νreceived)

(

i∏

j=1

dj1,j .received .0| received . · · · .received︸ ︷︷ ︸

i times

.

endorseassess .0)

EvalClaimk(evalclaimk, dj1,k)
def
=

evalclaimk.τ.dj1,k.0.

2) Dynamic Exclusive Choice and Dynamic Simple Merge
Pattern: The dynamic exclusive choice and dynamic simple
merge pattern relates a dynamic exclusive choice construct
(Pattern 3) with a dynamic simple merge construct (Pat-
tern 4). Only one control flow is passed from the dynamic
exclusive choice construct to the dynamic simple merge
construct.

Pattern 10 (Dynamic Exclusive Choice and Dynamic Simple
Merge). SupposeP0, P1, P2, Q1, . . . , Qn, R1, . . . , Rn

∈ SA, DEC 1 ∈ SDEC, DSM 1 ∈ SDSM, gc1, . . . , gcn ∈
SGC, (P0, P1), (P1, DEC 1), (DEC 1, Qk), (Rk, DSM 1),
(DSM 1, P2) ∈ SE, 2 ≤ i ≤ n and extractGC ({gc1,
. . . , gci}, true) = 1 for k = 1, . . . , i. The activityP1

determines at runtime the number of alternative activities
i that is available for selection. The outgoing flows of the
alternative activities finally terminate at the dynamic simple
mergeDSM 1. One of the alternative activitiesQ1, . . . , Qi

is then selected either non-deterministically by the dynamic
exclusive choiceDEC 1 or deterministically by the dynamic
exclusive choiceDEC 1 based on dynamically-generated
guard-conditionsgc1, . . . , gci. The dynamic simple merge
DSM 1 activates the activityP2 when the execution of one
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of the alternative activitiesR1, . . . , Ri is completed.

Definition 5. Suppose a dynamic exclusive choice and dy-
namic simple merge pattern,ψE((P0, P1)) = p1, ψE((P1,
DEC 1)) = dec1, ψE((DEC 1, Qk)) = qk, ψE((Rk, DSM 1))
= dsm1,k, ψE((DSM 1, P2)) = p2, eval is a chan-
nel for determining the number of alternative activities,
val2, . . . , valn are channels for modelling the possible
number of alternative activities,ψA(P1) = P1(p1, p2,
eval, val2, . . . , valn, dec1, q1, . . . , qn, dsm1,1, . . . ,
dsm1,n), ψDEC(DEC 1) = DEC 1(dec1, q1, . . . , qi) and
ψDSM(DSM 1) = DSM 1(dsm1,1, . . . , dsm1,i, p2). The
activity P1, dynamic exclusive choiceDEC 1 that is non-
deterministic and dynamic simple mergeDSM 1 are specified
in theπ-calculus as:

P1(p1, p2, eval, val2, . . . , valn, dec1, q1, . . . , qn,

dsm1,1, . . . , dsm1,n)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DEC 1(dec1, q1, . . . , qi)|

DSM 1(dsm1,1, . . . , dsm1,i, p2)|dec1.0)

DEC 1(dec1, q1, . . . , qi)
def
= dec1.

i∑

j=1

qj .0

DSM 1(dsm1,1, . . . , dsm1,i, p2)
def
=

i∑

j=1

dsm1,j .p2.0.

The processDEC 1 models the dynamic exclusive choice
by using a non-deterministic choice in which only one of
the output prefixesqj .0 for j = 1 to i proceeds. The
dynamic simple merge is represented as the processDSM 1.
The behaviour of merging multiple incoming edges that are
not enabled at the same time is encoded in theπ-calculus
as a non-deterministic choice in which only one of the
expressionsdsm1,j .p2.0 for j = 1 to i executes.

Example 2. In accordance to the complexity of a presenta-
tion topic, a decision on the number of students for a group
is made. One of the students is randomly selected and an
associatedassign as team leaderactivity is initiated. The
activity schedule a team meetingis enabled when one of
the assign as team leaderactivities is completed.

Since theπ-calculus encodings of Example 2 can be
obtained directly by applying Definition 5 as illustrated in
Example 1, the respectiveπ-calculus representations are
omitted here.

Definition 6. Suppose a dynamic exclusive choice and dy-
namic simple merge pattern,ψE((P0, P1)) = p1, ψE((P1,
DEC 1)) = dec1, ψE((DEC 1, Qk)) = qk, ψE((Rk, DSM 1))
= dsm1,k, ψE((DSM 1, P2)) = p2, eval is a channel for
determining the number of alternative activities,val2, . . . ,
valn are channels for modelling the possible number of
alternative activities,ΦGC((DEC 1, Qk)) = gck, ψA(P1)
= P1(p1, p2, eval, val2, . . . , valn, dec1, q1, . . . , qn,
dsm1,1, . . . , dsm1,n, gc1, . . . , gcn, true), ψDEC(DEC 1) =
DEC 1(dec1, q1, . . . , qi, gc1, . . . , gci, true), ψDSM(DSM 1)
= DSM 1(dsm1,1, . . . , dsm1,i, p2) andψGC (gck) = gck.

The activity P1, dynamic exclusive choiceDEC 1 that is
deterministic and dynamic simple mergeDSM 1 are repre-
sented as:

P1(p1, p2, eval, val2, . . . , valn, dec1, q1, . . . , qn,

dsm1,1, . . . , dsm1,n, gc1, . . . , gcn, true)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DEC 1(dec1, q1, . . . , qi, gc1, . . . , gci,

true)|DSM 1(dsm1,1, . . . , dsm1,i, p2)|dec1.0)

DEC 1(dec1, q1, . . . , qi, gc1, . . . , gci, true)
def
=

dec1.(νx1, . . . , xi, bval1, . . . , bvali)

((

i∏

j=1

gcj〈xj〉.xj(yj).bvalj〈yj〉.0)|

bval1(z1). · · · .bvali(zi).
i∑

j=1

[zj = true]qj .0)

DSM 1(dsm1,1, . . . , dsm1,i, p2)
def
=

i∑

j=1

dsm1,j .p2.0.

Unlike Definition 5 that the selection of alternative ac-
tivities is non-deterministic, the choice in Definition 6 is
deterministic. The evaluations of the guard-conditions are
modelled as the output prefixesgcj〈xj〉 for j = 1 to i. The
sequence of input actionsbval1(z1). · · · .bvali(zi) collects
all the returned values of the evaluations. The determination
of the guard-condition that holds is by means of the matching
constructs[zj = true] for j = 1 to i.

Example 3. The number of alternative flights is determined
by the destination for vacation in which one of the itineraries
is chosen according to conditions based on price and num-
ber of changes required. A corresponding activityconfirm
itinerary is activated and activityinput credit card details
follows immediately when any one of theconfirm itinerary
activities is finished.

3) Dynamic Multi-choice and Dynamic Synchronizing
Merge Pattern: The dynamic multi-choice and dynamic
synchronizing merge pattern allows both the number of
alternative activities and the number of activated outgoing
edges to be determined at runtime. It builds on Patterns 5
and 6.

Pattern 11 (Dynamic Multi-choice and Dynamic Synchro-
nizing Merge). SupposeP0, P1, P2, Q1, . . . , Qn, R1, . . . ,
Rn ∈ SA, DMC 1 ∈ SDMC, DSynM 1 ∈ SDSynM, gc1,
. . . , gcn ∈ SGC, (P0, P1), (P1, DMC 1), (DMC 1, Qk),
(Rk, DSynM 1), (DSynM 1, P2) ∈ SE, 2 ≤ i ≤ n and
extractGC ({gc1, . . . , gci}, true) ≥ 1 for k = 1, . . . , i.

The activityP1 evaluates the number of alternative activities
i that is available for selection at runtime. The outgoing
flows of the alternative activities finally terminate at the
dynamic synchronizing mergeDSynM 1. One or more of the
alternative activitiesQ1, . . . , Qi are then selected either
non-deterministically by the dynamic multi-choiceDMC 1 or
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deterministically by the dynamic multi-choiceDMC 1 based
on dynamically-generated guard-conditionsgc1, . . . , gci.
The dynamic synchronizing mergeDSynM 1 synchronizes
the incoming flows from the activitiesR1, . . . , Ri that are
activated as a single outgoing flow to the activityP2.

One of the prominent challenges in the BPM community
is to devise a behavioural semantics with a linear-time
complexity for synchronizing merge. Dumas et al. [39] and
Völzer [40] propound, respectively, algorithms for deter-
mining the activation of a synchronizing merge in linear
time. Unlike these prior efforts, we advocate the use of two
channelsactivate andnactivate for signifying whether an
incoming edge of a synchronizing merge is activated or not
in Definition 7.

Definition 7. Suppose a dynamic multi-choice and dynamic
synchronizing merge pattern,ψE((P0, P1)) = p1, ψE((P1,
DMC 1)) = dmc1, ψE((DMC 1, Qk)) = qk, ψE((Rk,
DSynM 1)) = dsynm1,k, ψE((DSynM 1, P2)) = p2, eval
is a channel for determining the number of alternative
activities, val2, . . . , valn are channels for modelling the
possible number of alternative activities,notReachLimi−1

is a channel for testing whether the limit is reached in which
a maximum number ofi−1 outgoing edges may not be acti-
vated,counti is a channel for counting the number of outgo-
ing edges in which there is already a decision on whether the
outgoing edge is activated or not,activatei is a channel for
signifying that theith outgoing edge is activated,nactivatei
is a channel for representing that theith outgoing edge is
not activated,killNRLim i−1 is a channel for terminating the
processNotReachLim i−1, ψA(P1) = P1(p1, p2, eval, val2,
. . . , valn, dmc1, q1, . . . , qn, notReachLimi−1, counti,
killNRLim i−1, dsynm1,1, . . . , dsynm1,n, activate1, . . . ,
activaten, nactivate1, . . . , nactivaten), ψDMC(DMC 1)
= DMC 1(dmc1, q1, . . . , qi, notReachLimi−1, counti,
activate1, . . . , activatei, nactivate1, . . . , nactivatei) and
ψDSynM(DSynM 1) = DSynM 1(dsynm1,1, . . . , dsynm1,i,
p2, activate1, . . . , activatei, nactivate1, . . . , nactivatei).
The representations of the activityP1, dynamic multi-choice
DMC 1 that is non-deterministic and dynamic synchronizing
mergeDSynM 1 are given by:

P1(p1, p2, eval, val2, . . . , valn, dmc1, q1, . . . , qn,

notReachLimi−1, counti, killNRLim i−1,

dsynm1,1, . . . , dsynm1,n, activate1, . . . , activaten,

nactivate1, . . . , nactivaten)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DMC 1(dmc1, q1, . . . , qi,

notReachLimi−1, counti, activate1, . . . , activatei,

nactivate1, . . . , nactivatei)|

NotReachLimi−1(notReachLimi−1,

killNRLim i−1)|

Counti(counti, killNRLim i−1)|

DSynM 1(dsynm1,1, . . . , dsynm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)|

dmc1.0)

DMC 1(dmc1, q1, . . . , qi, notReachLimi−1, counti,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)
def
=

dmc1.

i∏

j=1

(activatej.qj .counti.0+

notReachLimi−1.nactivatej.counti.0)

NotReachLim i−1(notReachLimi−1, killNRLim i−1)
def
=

notReachLimi−1.(notReachLimi−1.
︸

(· · · .(notReachLimi−1.
︷︷ ︸

i-1 times

killNRLim i−1.0+

killNRLim i−1.0) · · · ) + killNRLim i−1.0)+
︸

killNRLim i−1.0
︷︷ ︸

i-1 times

Counti(counti, killNRLim i−1)
def
=

counti. · · · .counti
︸ ︷︷ ︸

i times

.killNRLim i−1.0

DSynM 1(dsynm1,1, . . . , dsynm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)
def
=

(νreceived)

(

i∏

j=1

(activatej.dsynm1,j .received .0+

nactivatej.received .0)|

received . · · · .received
︸ ︷︷ ︸

i times

.p2.0).

The dynamic multi-choice and dynamic synchronizing
merge pattern requires that one or more activities are selected
from i alternative activities. This implies there is a limit that
at mosti− 1 outgoing edges are not activated. The process
NotReachLim i−1 provides a way for testing whether the
limit i − 1 is reached. The processCounti is a counter for
keeping track of the number of outgoing edges that there is a
decision on whether the outgoing edge is activated or not. A
signal is sent along the channelkillNRLim i−1 after making
all the decisions. The processNotReachLim i−1 then evolves
to the null process on receipt of a signal along the channel
killNRLim i−1.

The processDMC 1 inputs a signal along the channel
dmc1 and evolves toi concurrent processes. Each concurrent
process then either

(i) sends out an activated signal along the channelac-
tivatej , passes the control flow to the subsequent
activity and updates the counter; or

(ii) tests whether the limit is reached, sends out a non-
activated signal along the channelnactivatej, and
updates the counter.

If the activity edge is activated, the processDSynM 1 sends
out a signal along the channelreceived upon receiving the
control flow. If the activity edge is non-activated, there is
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no need to wait for the receipt of the control flow and the
processDSynM 1 simply sends out a signal along the channel
received . The control flow is then passed to the activityP2

on receiving theith signal along the channelreceived .

Example 4. The set of documents which is required for
supporting an insurance claim is depended on the type
of claims. Two activitiessubmit the receiptand submit
the photograph of a damaged goodare activated out of
all possible submissions before the activityassess claim
commences.

Definition 8. Suppose a dynamic multi-choice and dynamic
synchronizing merge pattern,ψE((P0, P1)) = p1, ψE((P1,
DMC 1)) = dmc1, ψE((DMC 1, Qk)) = qk, ψE((Rk,
DSynM 1)) = dsynm1,k, ψE((DSynM 1, P2)) = p2, eval
is a channel for determining the number of alternative activ-
ities, val2, . . . , valn are channels for modelling the possible
number of alternative activities,activatei is a channel for
signifying that theith outgoing edge is activated,nactivatei
is a channel for representing that theith outgoing edge is
not activated,ΦGC((DMC 1, Qk)) = gck, ψA(P1) = P1(p1,
p2, eval, val2, . . . , valn, dmc1, q1, . . . , qn, dsynm1,1,
. . . , dsynm1,n, activate1, . . . , activaten, nactivate1, . . . ,
nactivaten, gc1, . . . , gcn, true, false), ψDMC(DMC 1)
= DMC 1(dmc1, q1, . . . , qi, activate1, . . . , activatei,
nactivate1, . . . , nactivatei, gc1, . . . , gci, true, false),
ψDSynM(DSynM 1) = DSynM 1(dsynm1,1, . . . , dsynm1,i,
p2, activate1, . . . , activatei, nactivate1, . . . , nactivatei)
andψGC(gck) = gck. The activityP1, dynamic multi-choice
DMC 1 that is deterministic and dynamic synchronizing
mergeDSynM 1 are encoded in theπ-calculus as:

P1(p1, p2, eval, val2, . . . , valn, dmc1, q1, . . . , qn,

dsynm1,1, . . . , dsynm1,n, activate1, . . . , activaten,

nactivate1, . . . , nactivaten, gc1, . . . , gcn,

true, false)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DMC 1(dmc1, q1, . . . , qi,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei,

gc1, . . . , gci, true, false)|

DSynM 1(dsynm1,1, . . . , dsynm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)|

dmc1.0)

DMC 1(dmc1, q1, . . . , qi, activate1, . . . , activatei,

nactivate1, . . . , nactivatei, gc1, . . . , gci,

true, false)
def
=

dmc1.(νx1, . . . , xi)

(

i∏

j=1

gcj〈xj〉.xj(yj).

([yj = true]activatej.qj .0+

[yj = false ]nactivatej.0))

DSynM 1(dsynm1,1, . . . , dsynm1,i, p2, activate1,

. . . , activatei, nactivate1, . . . , nactivatei)
def
=

(νreceived)

(

i∏

j=1

(activatej.dsynm1,j.received .0+

nactivatej.received .0)|

received . · · · .received
︸ ︷︷ ︸

i times

.p2.0).

The selection of alternative outgoing edges in Definition 7
is non-deterministic, whereas the one in Definition 8 is
deterministic. The output prefixesgcj〈xj〉 for j = 1 to i
model the evaluations of the guard-conditions. The matching
constructs[yj = true] and [yj = false] for j = 1 to i
determine which guard-conditions hold.

Example 5. A variant of Example 4 by adding guard-
conditionsavailability of receipt, availability of damaged
good, etc.

4) Dynamic Fork and Dynamic Multi-merge Pattern:The
dynamic fork and dynamic multi-merge pattern associates a
dynamic fork construct (Pattern 1) with a dynamic multi-
merge construct (Pattern 7). Each outgoing control flow of
the dynamic fork construct activates the subsequent activity
of the dynamic merge construct separately.

Pattern 12 (Dynamic Fork and Dynamic Multi-merge).
SupposeP0, P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈ SA, DF 1

∈ SDF, DMM 1 ∈ SDMM, (P0, P1), (P1, DF 1), (DF 1,
Qk), (Rk, DMM 1), (DMM 1, P2) ∈ SE and 2 ≤ i ≤ n
for k = 1, . . . , i. The number of concurrent activitiesi is
determined at runtime when the activityP1 is performed. The
dynamic forkDF 1 splits the incoming flow from the activity
P1 into i outgoing flows to the concurrent activitiesQ1, . . . ,
Qi in which all flows finally connect to the dynamic multi-
mergeDMM 1. The dynamic multi-mergeDMM 1 activates
the activityP2 for each of the completion of the activityRk.

Definition 9. Suppose a dynamic fork and dynamic multi-
merge pattern,ψE((P0, P1)) = p1, ψE((P1, DF 1)) = df1,
ψE((DF 1, Qk)) = qk, ψE((Rk, DMM 1)) = dmm1,k,
ψE((DMM 1, P2)) = p2, eval is a channel for determin-
ing the number of concurrent activities,val2, . . . , valn are
channels for modelling the possible number of concurrent
activities, ψA(P1) = P1(p1, p2, eval, val2, . . . , valn, df1,
q1, . . . , qn, dmm1,1, . . . , dmm1,n), ψDF(DF 1) = DF1(df1,
q1, . . . , qi) and ψDMM(DMM 1) = DMM 1(dmm1,1, . . . ,
dmm1,i, p2). The π-calculus specifications of the activity
P1, dynamic forkDF 1 and dynamic multi-mergeDMM 1

are given by:

P1(p1, p2, eval, val2, . . . , valn, df1, q1, . . . , qn,

dmm1,1, . . . , dmm1,n)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DF 1(df1, q1, . . . , qi)|

DMM 1(dmm1,1, . . . , dmm1,i, p2)|
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df1.0)

DF 1(df1, q1, . . . , qi)
def
=

df1.

i∏

j=1

qj .0

DMM 1(dmm1,1, . . . , dmm1,i, p2)
def
=

i∏

j=1

dmm1,j .p2.0.

The dynamic fork construct is specified by the process
DF 1. The outgoing control flows are represented as a parallel
composition which consists of the output actionsqj for j = 1
to i.

The behaviour of the dynamic merge construct is defined
by the processDMM 1. Upon receipt of a signal along the
channeldmm1,j , a signal is sent along the channelp2.

Example 6. The number of activitypack goodsto be
executed concurrently is derived according to the number of
orders received. The activityship goodsis enabled whenever
a pack goodsactivity is completed.

5) Dynamic Multi-choice and Dynamic Multi-merge Pat-
tern: The dynamic multi-choice and dynamic multi-merge
pattern combines a dynamic multi-choice construct (Pat-
tern 5) with a dynamic multi-merge construct (Pattern 7).
Some outgoing activity edges of the dynamic multi-choice
construct are enabled and they trigger the subsequent activity
of the dynamic multi-merge construct separately.

Pattern 13 (Dynamic Multi-choice and Dynamic Multi-
-merge). SupposeP0, P1, P2, Q1, . . . , Qn, R1, . . . ,
Rn ∈ SA, DMC 1 ∈ SDMC, gc1, . . . , gcn ∈ SGC,
DMM 1 ∈ SDMM, (P0, P1), (P1, DMC 1), (DMC 1, Qk),
(Rk, DMM 1), (DMM 1, P2) ∈ SE, 2 ≤ i ≤ n and
extractGC ({gc1, . . . , gci}, true) ≥ 1 for k = 1,
. . . , i. The activityP1 evaluates the number of alternative
activities i that is available for selection at runtime. The
outgoing flows of the alternative activities finally terminate
at the dynamic multi-mergeDMM 1. One or more of the
alternative activitiesQ1, . . . , Qi are then selected either
non-deterministically by the dynamic multi-choiceDMC 1 or
deterministically by the dynamic multi-choiceDMC 1 based
on dynamically-generated guard-conditionsgc1, . . . , gci.
The dynamic multi-mergeDMM 1 activates the activityP2

for each of the completion of the activityRk.

Definition 10. Suppose a dynamic multi-choice and dynamic
multi-merge pattern,ψE((P0, P1)) = p1, ψE((P1, DMC 1))
= dmc1, ψE((DMC 1, Qk)) = qk, ψE((Rk, DMM 1)) =
dmm1,k, ψE((DMM 1, P2)) = p2, eval is a channel for
determining the number of alternative activities,val2, . . . ,
valn are channels for modelling the possible number of
alternative activities,notReachLimi−1 is a channel for
testing whether the limit is reached in which a maximum
number ofi−1 outgoing edges may not be activated,counti
is a channel for counting the number of outgoing edges in
which there is already a decision on whether the outgoing
edge is activated or not,activatei is a channel for signifying
that the ith outgoing edge is activated,nactivatei is a
channel for representing that theith outgoing edge is not
activated,killNRLim i−1 is a channel for terminating the

processNotReachLim i−1, ψA(P1) = P1(p1, p2, eval, val2,
. . . , valn, dmc1, q1, . . . , qn, notReachLimi−1, counti,
killNRLim i−1, dmm1,1, . . . , dmm1,n, activate1, . . . ,
activaten, nactivate1, . . . , nactivaten), ψDMC(DMC 1)
= DMC 1(dmc1, q1, . . . , qi, notReachLimi−1, counti,
activate1, . . . , activatei, nactivate1, . . . , nactivatei)
andψDMM(DMM 1) = DMM 1(dmm1,1, . . . , dmm1,i, p2,
activate1, . . . , activatei, nactivate1, . . . , nactivatei).
The activityP1, dynamic multi-choiceDMC 1 that is non-
deterministic and dynamic multi-mergeDMM 1 are defined
in theπ-calculus by:

P1(p1, p2, eval, val2, . . . , valn, dmc1, q1, . . . , qn,

notReachLimi−1, counti, killNRLim i−1,

dsynm1,1, . . . , dsynm1,n,

activate1, . . . , activaten,

nactivate1, . . . , nactivaten)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DMC 1(dmc1, q1, . . . , qi,

notReachLimi−1, counti,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)|

NotReachLim i−1(notReachLimi−1,

killNRLim i−1)|

Counti(counti, killNRLim i−1)|

DMM 1(dmm1,1, . . . , dmm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)|

dmc1.0)

DMC 1(dmc1, q1, . . . , qi, notReachLimi−1, counti,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)
def
=

dmc1.

i∏

j=1

(activatej.qj .counti.0+

notReachLimi−1.nactivatej.counti.0)

NotReachLim i−1(notReachLimi−1, killNRLim i−1)
def
=

notReachLimi−1.(notReachLimi−1.
︸

(· · · .(notReachLimi−1.
︷︷ ︸

i-1 times

killNRLim i−1.0+

killNRLim i−1.0) · · · )+
︸

killNRLim i−1.0) + killNRLim i−1.0
︷︷ ︸

i-1 times

Counti(counti, killNRLim i−1)
def
=

counti. · · · .counti
︸ ︷︷ ︸

i times

.killNRLim i−1.0

DMM 1(dmm1,1, . . . , dmm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)
def
=
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i∏

j=1

(activatej.dmm1,j .p2.0+ nactivatej.0).

The representation of the dynamic multi-choice and dy-
namic multi-merge pattern based on non-deterministic choice
is similar to that of the dynamic multi-choice and dynamic
synchronizing merge pattern defined in Definition 7. The
only difference is that the output actionp2 is performed
after the input actionsdmm1,j for j = 1 to i in lieu of
the sequence of input actionsreceived . · · · .received

︸ ︷︷ ︸

i times

.

Example 7. The number of products available for inspection
is based on the production line. Some of them are randomly
selected for examination simultaneously and the activity
mark product as defectis executed whenever a defected
product is found.

Definition 11. Suppose a dynamic multi-choice and dy-
namic multi-merge pattern,ψE((P0, P1)) = p1, ψE((P1,
DMC 1)) = dmc1, ψE((DMC 1, Qk)) = qk, ψE((Rk,
DMM 1)) = dmm1,k, ψE((DMM 1, P2)) = p2, eval
is a channel for determining the number of alternative
activities, val2, . . . , valn are channels for modelling the
possible number of alternative activities,activatei is a
channel for signifying that theith outgoing edge is ac-
tivated, nactivatei is a channel for representing that the
ith outgoing edge is not activated,ΦGC((DMC 1, Qk))=gk,
ψA(P1) = P1(p1, p2, eval, val2, . . . , valn, dmc1, q1,
. . . , qn, dmm1,1, . . . , dmm1,n, activate1, . . . , activaten,
nactivate1, . . . , nactivaten, gc1, . . . , gcn, true, false),
ψDMC(DMC 1) = DMC 1(dmc1, q1, . . . , qi, activate1, . . . ,
activatei, nactivate1, . . . , nactivatei, gc1, . . . , gci, true,
false), ψDMM(DMM 1) = DMM 1(dmm1,1, . . . , dmm1,i,
p2, activate1, . . . , activatei, nactivate1, . . . , nactivatei)
and ψGC(gck) = gck. The activity P1, dynamic multi-
choiceDMC 1 that is deterministic and dynamic multi-merge
DMM 1 are specified in theπ-calculus as:

P1(p1, p2, eval, val2, . . . , valn, dmc1, q1, . . . , qn,

dmm1,1, . . . , dmm1,n, activate1, . . . , activaten,

nactivate1, . . . , nactivaten, gc1, . . . , gcn,

true, false)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DMC 1(dmc1, q1, . . . , qi,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei, gc1, . . . , gci, true, false)|

DMM 1(dmm1,1, . . . , dmm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)|

dmc1.0)

DMC 1(dmc1, q1, . . . , qi, activate1, . . . , activatei,

nactivate1, . . . , nactivatei, gc1, . . . , gci,

true, false)
def
=

dmc1.(νx1, . . . , xi)

(
i∏

j=1

gcj〈xj〉.xj(yj).

([yj = true]activatej.qj .0+

[yj = false]nactivatej.0))

DMM 1(dmm1,1, . . . , dmm1,i, p2,

activate1, . . . , activatei,

nactivate1, . . . , nactivatei)
def
=

i∏

j=1

(activatej .dmm1,j .p2.0+ nactivatej.0).

Likewise, the encodings of the dynamic multi-choice and
dynamic multi-merge pattern based on deterministic choice
and the dynamic multi-choice and dynamic synchronizing
merge pattern defined in Definition 8 are similar. The dis-
crepancy lies in the output actionp2 is executed after the
input actionsdmm1,j for j = 1 to i rather than the sequence
of input actionsreceived . · · · .received

︸ ︷︷ ︸

i times

.

Example 8. A variation of Example 7 by selecting all those
products with serial numbers which the last digit is 2.

6) Dynamic Fork and Dynamich-out-of-i Join Pattern:
The dynamic fork and dynamich-out-of-i join pattern inte-
grates a dynamic fork construct (Pattern 1) with a dynamic
h-out-of-i join construct (Pattern 8). The dynamic 1-out-of-i
join construct, which is regarded as a dynamic discriminator,
enables the subsequent activity when merely one trigger is
received.

Pattern 14 (Dynamic Fork and Dynamich-out-of-i Join).
SupposeP0, P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈ SA, DF 1

∈ SDF, DHIJ 1 ∈ SDHIJ, (P0, P1), (P1, DF 1), (DF 1, Qk),
(Rk, DHIJ 1), (DHIJ 1, P2) ∈ SE, 1 ≤ h ≤ n−1, 2 ≤ i ≤ n
and h < i for k = 1, . . . , i. The activityP1 determines the
number of concurrent activitiesi at runtime. The dynamic
fork DF 1 then splits the incoming flow from the activity
P1 into i outgoing flows to the concurrent activitiesQ1,
. . . , Qi in which all flows finally connect to the dynamic
h-out-of-i join DHIJ 1. The dynamic h-out-of-i joinDHIJ 1

activates the activityP2 whenh triggers are received from
the activitiesR1, . . . , Ri. All other i − h triggers received
subsequently are ignored andDHIJ 1 resets itself.

Definition 12. Suppose a dynamic join and dynamic h-out-
of-i join pattern,ψE((P0, P1)) = p1, ψE((P1, DF1)) = df1,
ψE((DF 1, Qk)) = qk, ψE((Rk, DHIJ 1)) = dhij1,k,
ψE((DHIJ 1, P2)) = p2, eval is a channel for determining
the number of alternative activities andval2, . . . , valn are
channels for modelling the possible number of alternative
activities, ψA(P1) = P1(p1, p2, eval, val2, . . . , valn, df1,
q1, . . . , qn, dhij1,1, . . . , dhij1,n, ψDF(DF 1) = DF1(df1,
q1, . . . , qi) and ψDHIJ(DHIJ 1) = DHIJ 1(dhij1,1, . . . ,
dhij1,i, p2). The activityP1, dynamic forkDF 1 and dynamic
h-out-of-i joinDHIJ 1 are specified as:

P1(p1, p2, eval, val2, . . . , valn, df1, q1, . . . , qn,

dhij1,1, . . . , dhij1,n)
def
=
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(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](DF 1(df1, q1, . . . , qi)|

DHIJ 1(dhij1,1, . . . , dhij1,i, p2)|

df1.0)

DF 1(df1, q1, . . . , qi)
def
=

df1.

i∏

j=1

qj .0

DHIJ 1(dhij1,1, . . . , dhij1,i, p2)
def
=

(νreceived)

(

i∏

j=1

dhij1,j .received .0|

received . · · · .received
︸ ︷︷ ︸

h times

.p2. received . · · · .received︸ ︷︷ ︸

i−h times

.

DHIJ 1(dhij1,1, . . . , dhij1,i, p2)).

The processDHIJ 1 is theπ-calculus representation of the
dynamich-out-of-i join. A signal is sent along the channelp2
after executingh times the input actionreceived . The process
DHIJ 1 then continues as itself after a further execution of
i− h times of the input actionreceived .

The use of recursive definition rather than replication for
modelling a dynamich-out-of-i join construct is due to the
fact that a reset is just like an invocation of itself which is
recursive in nature.

Example 9. The location of a retail shop and the availability
of a particular product determine the number of other retail
shops to be contacted whenever it runs out of stock for the
product. A number ofcontact other retail shopactivities is
initiated in parallel. Once one of the activitiesreceive reply
is executed, theconfirm shipmentactivity is activated and
all other received replies are ignored.

A workflow is a structured workflow [41] if (i) each fork
construct is associated with a join construct; and (ii) each
multi-choice is associated with a synchronizing merge. The
dynamic fork and dynamic join pattern (Pattern 9) as well as
the dynamic multi-choice and dynamic synchronizing merge
pattern (Pattern 11) support the modelling of structured work-
flows. On the contrary, the dynamic fork and dynamic multi-
merge pattern (Pattern 12), the dynamic multi-choice and
dynamic multi-merge pattern (Pattern 13) as well as the dy-
namic fork and dynamich-out-of-i join pattern (Pattern 14)
allow for the modelling of unstructured workflows. Detailed
discussions on the transformation of structured models into
unstructured models are provided in [41] and [42].

In the following, we change the focus from dynamic
workflow patterns that are built on the basic workflow
patterns to those dynamic workflow patterns based on the
structural relationships of activities and edges.

7) Dynamic Structured Loop Pattern:The principle be-
hind the dynamic structured loop pattern is the number of
activities between the entry and exit points is not necessary
known at design time and can sometimes be only determined
at runtime in accordance to various factors before the com-
mencement of each iteration.

Pattern 15 (Dynamic Structured Loop). SupposeP0, P1,

P2, P3, Q1, . . . , Qn ∈ SA, gc1, gc2 ∈ SGC, (P0, P1),
(P1, Q1), (Qk, Qk+1), (Qi, P2), (P2, P1), (P2, P3) ∈ SE,
ΦGC((P2, P1)) = gc1, ΦGC((P2, P3)) = gc2 and1 ≤ i ≤ n
for k = 1, . . . , i − 1. The activityP1 is executed for deter-
mining the number of activitiesi to perform in sequence at
runtime. After the completion of the activitiesQ1, . . . , Qi, the
thread of control is passed to the activityP2 for evaluating
the guard-conditionsgc1 and gc2. The activitiesP1 and
P3 are enabled, respectively, whengc1 and gc2 hold. The
enablement of activityP1 allows the repeated execution of
the same or different number of activitiesi as the previous
iteration of the dynamic structured loop.

Definition 13. Suppose a dynamic structured loop pattern,
ψE((P0, P1)) = p1, ψE((P1, Q1)) = q1, ψE((Qk, Qk+1))
= qk+1, ψE((Qi, P2)) = p2, ψE((P2, P1)) = p1, ψE((P2,
P3)) = p3, eval is a channel for determining the number
of activities to perform in sequence,val1, . . . , valn are
channels for modelling the possible number of activities to
perform in sequence,ψA(P1) = P1(p1, p2, eval, val1, . . . ,
valn, q1, . . . , qn), ψA(Qm) = Qm(qm,1, qm,2) andψA( P2)
= P2(p1, p2, p3, gc1, gc2). The activitiesP1, P2 andQm

for m = 1, . . . , i are specified by the followingπ-calculus
specifications:

P1(p1, p2, eval, val1, . . . , valn, q1, . . . , qn)
def
=

!(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=1

[x = vali](Q1(q1, q2)| . . . |Qi−1(qi−1, qi)|

Qi(qi, p2)|q1.0)

Qm(qm,1, qm,2)
def
=

!qm,1.τ.qm,2.0

P2(p1, p2, p3, gc1, gc2)
def
=

!p2.τ.(νx1, x2, bval1, bval2)

((

2∏

j=1

gcj〈xj〉.xj(yj).bvalj〈yj〉.0)|

bval1(z1).bval2(z2).

([z1 = true]p1.0+

[z2 = true]p3.0)).

Unlike a dynamich-out-of-i join, a dynamic structured
loop is iterative in lieu of recursive. ProcessesP1, Qm

and P2 for k = 1 to i, which model the activities of a
dynamic structured loop pattern, are expressed in theπ-
calculus through the use of replication.

Example 10. Depending on the marital status of an em-
ployee, continue theinput personal particularsactivity or
both theinput personal particularsand input spouse infor-
mation activities in sequential order until all new employees
are processed.

8) Dynamic Deferred Choice Pattern:The dynamic de-
ferred choice provides an offer consisting of a number
of alternative activities decided at runtime to the external
environment for selection.

Pattern 16 (Dynamic Deferred Choice). SupposeP0, P1

Q1, . . . , Qn, R1, . . . , Rn ∈ SA, (P0, P1), (P1, Qk),
(Qk, Rk) ∈ SE and 2 ≤ i ≤ n for k = 1, . . . , i. The
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number of alternative activitiesi is not known at design
time and is determined at the moment when the activityP1 is
executed. The choice of the alternative activitiesQ1, . . . , Qi,
which is connected to the activitiesR1, . . . , Ri, is deferred
until the execution of one of the alternative activities begins.
Unlike the dynamic exclusive choice, the decision is made by
the environment instead of the activityP1. The alternative
activities which are not selected are then withdrawn.

Definition 14. Suppose a dynamic deferred choice,ψE((P0,
P1)) = p1, ψE((P1, Qk)) = qk, ψE((Qk, Rk)) = rk,
eval is a channel for determining the number of alternative
activities, val2, . . . , valn are channels for modelling the
possible number of alternative activities,qenv1 , . . . , qenvn

are channels ofQ1, . . . , Qn for interacting with the envi-
ronment,withdraw is a channel for withdrawal of non-
selected alternative activities,ψA(P1) = P1(p1, eval, val2,
. . . , valn, q1, . . . , qn, q

env
1 , . . . , qenvn , withdraw) and

ψA(Qj) = Qj(qj , q
env
j , rj , withdraw). The activitiesP1

andQj for j = 1, . . . , i are denoted as:

P1(p1, eval, val2, . . . , valn, q1, . . . , qn, q
env
1 , . . . , qenvn ,

withdraw)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali]

i∏

j=1

(Qj(qj , q
env
j , rj , withdraw)|qj .0)

Qj(qj , q
env
j , rj , withdraw)

def
=

qj .(q
env
j . withdraw. · · · .withdraw

︸ ︷︷ ︸

i−1 times

.τ.rj .0+

withdraw.0).

The input actionsqenvj for j = 1 to i model the selection
performed by the environment. The execution ofi− 1 times
of the output actionwithdraw terminates all the alternative
activities.

Example 11. The number of specialists eligible for selection
is based on the type of illness. The assignment of a specialist
is deferred until one is available and all otherwait for a
specialistactivities are withdrawn.

9) Dynamic Interleaved Parallel Routing Pattern:The
dynamic interleaved parallel routing pattern allows both
the number of activities and their execution order to be
determined dynamically.

Pattern 17 (Dynamic Interleaved Parallel Routing). Suppose
P0, P1, P2, Q1, . . . , Qn ∈ SA, (P0, P1), (Qk, P2) ∈ SE

and 2 ≤ i ≤ n for k = 1, . . . , i. The number of unordered
activities i to be executed is determined at run time by
the activity P1. The activitiesQ1, . . . , Qi are executed
sequentially without a particular order in which the activity
P2 is enabled after the completion of them.

Definition 15. Suppose a dynamic interleaved parallel rout-
ing pattern,ψE((P0, P1)) = p1, ψE((Qk, P2)) = p2, eval
is a channel for determining the number of unordered activ-
ities, val2, . . . , valn are channels for modelling the possible
number of unordered activities,ψA(P1) = P1(p1, p2, eval,
val2, . . . , valn) and ψA(Qk) = Qk(execute, completed).

The activitiesP1 andQk are specified below:

P1(p1, p2, eval, val2, . . . , valn)
def
=

(νrs)p1.τ.eval〈rs〉.rs(x).
n∑

i=2

[x = vali](νexecute, completed)

(execute.completed. · · · .execute.completed
︸ ︷︷ ︸

i times

.p2.0|

i∏

k=1

Qk(execute, completed))

Qk(execute, completed)
def
=

execute.τ.completed.0.

The sequence of output and input actionsexecute.com-
︸

pleted. · · · .execute.completed
︷︷ ︸

i times

randomly starts the execu-

tion of one of the activities and waits for the execution to
complete before initiating another activity.

Example 12. The total number of courses required to be
taken for a semester is based on the amount of credits
obtained previously. The enrollment of these courses can be
performed sequentially in an arbitrary order.

With a rigorous definition of the dynamic workflow pat-
terns in terms of theπ-calculus, software tools can then be
utilized to visualize and simulate these patterns. Illustrative
examples on the simulation ofπ-calculus specifications using
PiVizTool are found in [43].

VI. CORRECTNESS OF THEENCODINGS

We now turn to the question of the validity of the en-
codings. To prove the encodings are correct, we need to
introduce a concept of behavioural correspondence in which
a pattern and the correspondingπ-calculus representation
exhibit the same behaviour. The strategy behind the proofs
is to verify that each derived dynamic workflow pattern in
Section V-B behaviourally corresponds to the transitions of
its respectiveπ-calculus specification. Before presenting the
proofs, a description of the operational semantics of theπ-
calculus which is used primarily for constructing the proofs
is given.

We start by lettingΣπ
IAct = {x(~y)|x, ~y ∈ Σπ

N} and
Σπ

OAct = {x〈~y〉|x, ~y ∈ Σπ
N} be the sets of input actions

and output actions. We further assume thatΣπ
Act = Σπ

IAct ∪
Σπ

OAct ∪ {τ} be the set of actions ranged over byαi for
i = 1, . . . , n, Σπ

MC be the set of matching constructs ranged
over by Ni for i = 1, . . . , n and M be a finite match
sequenceN1N2 . . . Nn wheren ≥ 1.

The operational semantics of theπ-calculus is defined on
the basis of either a reduction system as shown in Section 3
or a labelled transition system. The part of the operational
semantics related to the proofs is formally captured by means
of transitions as follows:
P

α
−→ P ′ : the execution of actionα and processP

becomesP ′.
P

M,α
 P ′ : if the match sequenceM is true, actionα is

executed, if any, and processP becomesP ′.
A complete treatment of the labelled transition semantics

is beyond the scope of this section. We refer the reader to [33]
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for more details. In what follows, we write
α

−→ and
M,α
 as

a shorthand for the transitionsP
α

−→ P ′ and P
M,α
 P ′

whenever only the action and match sequence are referred
in our discussion.

Proposition 1. Let P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈
SA, DF 1 ∈ SDF, DJ 1 ∈ SDJ, (P1, DF 1), (DF 1, Qk),
(Rk, DJ 1), (DJ 1, P2) ∈ SE, ψE((P1, DF 1)) = df1,
ψE((DF 1, Qk)) = qk, ψE((Rk, DJ 1)) = dj1,k, ψE((DJ 1,
P2)) = p2, eval is a channel for evaluating the number
of concurrent activities and2 ≤ i ≤ n for k = 1, . . . , i.
There is a behavioural correspondence between the dynamic
fork and dynamic join pattern consisting of the activityP1,
dynamic forkDF1 and dynamic joinDJ 1 and theπ-calculus
specification.
Proof sketch.The execution ofP1 and evaluation of degree
of parallelism are related to a sequence of transitions

τ
−→

eval〈rs〉
−→

rs(x)
−→ where rs is a channel created byP1. The

sending and receiving of control flows along(P1,DF 1) cor-

respond to transitions
df1
−→ and

df1
−→. The multiple outgoing

control flows ofDF 1 are related to transitions
qj
−→ for j = 1

to i. The receipt of control flows byDJ 1 and passing of
control flow toP2 behaviourally correspond to a sequence

of transitions
dj1,j
−→

τ
−→ . . .

τ
−→

︸ ︷︷ ︸

i times

p2

−→ for j = 1 to i. Thus, the

behavioural correspondence holds. �

Proposition 2. Let P1, P2, Q1, . . . , Qn, R1, . . . , Rn

∈ SA, DEC 1 ∈ SDEC, DSM 1 ∈ SDSM, (P1, DEC 1),
(DEC 1, Qk), (Rk, DSM 1), (DSM 1, P2) ∈ SE, ψE((P1,
DEC 1)) = dec1, ψE((DEC 1, Qk)) = qk, ψE((Rk, DSM 1))
= dsm1,k, ψE((DSM 1, P2)) = p2, eval is a channel for
determining the number of alternative activities and2 ≤ i
≤ n for k = 1, . . . , i. There is a behavioural correspondence
between the dynamic exclusive choice and dynamic simple
merge pattern comprising the activityP1, dynamic exclusive
choiceDEC 1 and dynamic simple mergeDSM 1 and theπ-
calculus representation.
Proof sketch. We consider 2 cases.
Case 1. We assume that the directed edges(DEC 1, Qk) for
k = 1, . . . , i are not associated with guard-conditions. The
behaviour ofP1 corresponds to a sequence of transitions
τ

−→
eval〈rs〉
−→

rs(x)
−→ wherers is a new channel used for com-

munication. The activation ofDEC 1 is related to transitions
dec1−→ and

dec1−→. The enablement of one of the outgoing edges

behaviourally corresponds to one of the transitions
qj
−→ for

j = 1, . . . , i. The incoming and outgoing control flows of

DSM 1 correspond to a sequence of transitions
dsm1,j

−→
p2

−→
for j = 1, . . . , i. Thus, the behavioural correspondence
holds.
Case 2. We assume thatgc1, . . . , gcn ∈ SGC, extract-
GC({gc1, . . . , gci}, true) = 1 andΦGC((DEC 1, Qk)) =
gck. The proof is the same as Case 1 with the exception
that the evaluation of the guard-conditionsgc1, . . . , gci and
the multiple outgoing control flows ofDEC 1 correspond

to sequences of transitions
gcj〈xj〉
−→

xj(yj)
−→

τ
−→ . . .

τ
−→

︸ ︷︷ ︸

i times

and

[zj=true],qj
 for j = 1, . . . , i. �

Proposition 3. Let P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈
SA, DMC 1 ∈ SDMC, DSynM 1 ∈ SDSynM, (P1, DMC 1),
(DMC1 , Qk), (Rk, DSynM 1), (DSynM 1, P2) ∈ SE,
ψE((P1, DMC 1)) = dmc1, ψE((DMC 1, Qk)) = qk,
ψE((Rk, DSynM 1)) = dsynm1,k, ψE((DSynM 1, P2))
= p2, eval is a channel for determining the number of
alternative activities and2 ≤ i ≤ n for k = 1, . . . , i.
There is a behavioural correspondence between the dynamic
multi-choice and dynamic synchronizing merge pattern which
consists of the activityP1, dynamic multi-choiceDMC 1 and
dynamic synchronizing mergeDSynM 1 and the model in the
π-calculus.
Proof sketch. Two cases are considered.
Case 1. We assume that the directed edges(DMC 1, Qk) for
k = 1, . . . , i are not associated with guard-conditions. The
proof is similar to Case 1 of Proposition 2.
Case 2. We assume thatgc1, . . . , gcn ∈ SGC, extract-
GC({gc1, . . . , gci}, true) ≥ 1 and ΦGC((DMC 1, Qk))
= gck. The proof is analogous to Case 2 of Proposition 2.�

Proposition 4. Let P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈
SA, DF 1 ∈ SDF, DMM 1 ∈ SDMM, (P1,DF 1), (DF 1, Qk),
(Rk,DMM 1), (DMM 1, P2) ∈ SE, ψE((P1,DF1)) = df1,
ψE((DF 1, Qk)) = qk, ψE((Rk,DMM 1)) = dmm1,k,
ψE((DMM 1, P2)) = p2, eval is a channel for determining
the number of concurrent activities and2 ≤ i ≤ n for
k = 1, . . . , i. There is a behavioural correspondence between
the dynamic fork and dynamic multi-merge pattern which
comprises the activityP1, dynamic forkDF 1 and dynamic
multi-mergeDMM 1 and theπ-calculus implementation.
Proof sketch. Analogous to that of Proposition 1. �

Proposition 5. LetP1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈ SA,
DMC 1 ∈ SDMC, DMM 1 ∈ SDMM, (P1,DMC 1), (DMC 1,
Qk), (Rk, DMM 1), (DMM 1, P2) ∈ SE, ψE((P1, DMC 1))
= dmc1, ψE((DMC 1, Qk)) = qk, ψE((Rk, DMM 1)) =
dmm1,k, ψE((DMM 1, P2)) = p2, eval is a channel for de-
termining the number of alternative activities and2 ≤ i ≤ n
for k = 1, . . . , i. There is a behavioural correspondence
between the dynamic multi-choice and dynamic multi-merge
pattern consisting of the activityP1, dynamic multi-choice
DMC 1 and dynamic multi-mergeDMM 1 and theπ-calculus
representation.
Proof sketch. The proof is similar to the proof of Proposi-
tion 2. �

Proposition 6. Let P1, P2, Q1, . . . , Qn, R1, . . . , Rn ∈
SA, DF 1 ∈ SDF, DHIJ 1 ∈ SDHIJ, (P1,DF 1), (DF 1, Qk),
(Rk, DHIJ 1), (DHIJ 1, P2) ∈ SE, ψE((P1, DF 1)) =
df1, ψE((DF 1, Qk)) = qk, ψE((Rk, DHIJ 1)) = dhij1,k,
ψE((DHIJ 1, P2)) = p2, eval is a channel for determining
the number of alternative activities,1 ≤ h ≤ n − 1,
2 ≤ i ≤ n andh < i for k = 1, . . . , i. There is a behavioural
correspondence between the dynamic fork and dynamic h-
out-of-i join pattern which is composed of the activityP1,
dynamic forkDF 1 and dynamic h-out-of-i joinDHIJ 1 and
theπ-calculus specification.
Proof sketch. Analogous to Proposition 1. �

Proposition 7. LetP1, P2, P3, Q1, . . . , Qn ∈ SA, gc1, gc2
∈ SGC, (P1, Q1), (Qk, Qk+1), (Qi, P2), (P2, P1), (P2,
P3) ∈ SE, ψE((P1, Q1)) = q1, ψE((Qk, Qk+1)) = qk+1,
ψE((Qi, P2)) = p2, ψE((P2, P1)) = p1, ψE((P2, P3)) =
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p3, eval is a channel for determining the number of activities
to perform in sequence and1 ≤ i ≤ n for k = 1, . . . , i− 1.
There is a behavioural correspondence between the dynamic
structured loop pattern and the theπ-calculus representation.
Proof sketch. By the same argument as Proposition 1.�

Proposition 8. Let P1, Q1, . . . , Qn, R1, . . . , Rn ∈ SA,
(P1, Qk), (Qk, Rk) ∈ SE, ψE((P1, Qk)) = qk, ψE((Qk,
Rk)) = rk, eval is a channel for determining the number
of alternative activities,qenv1 , . . . , qenvn are channels ofQ1,
. . . , Qn for interacting with the environment,withdraw is a
channel for withdrawal of non-selected alternative activities
and 2 ≤ i ≤ n for k = 1, . . . , i. There is a behavioural
correspondence between the dynamic deferred choice pattern
and theπ-calculus implementation.
Proof sketch. Analogous to Proposition 1. �

Proposition 9. Let P1, P2, Q1, . . . , Qn ∈ SA, (Qk, P2) ∈
SE, ψE((Qk, P2)) = p2, eval is a channel for determining
the number of unordered activities and2 ≤ i ≤ n for
k = 1, . . . , i. There is a behavioural correspondence between
the dynamic interleaved parallel routing and theπ-calculus
specification.
Proof sketch. By the same argument as Proposition 1.�

VII. C ONCLUSIONS

Our work is characterized by the capability to capture the
notion of dynamics in the context of workflow management.
It is regarded as an extension to the works of van der Aalst
et al. and Russell et al. This paper, along with other previous
studies, offers collections of workflow patterns to be used in
business process management.

A number of basic dynamic workflow patterns has been
presented in our work. With this basic dynamic workflow
patterns in place, we have further introduced a set of derived
dynamic workflow patterns and defined their corresponding
π-calculus representations. The main contributions of this
work are:

(i) this is a first attempt to study workflow patterns whose
structures can be dynamically reconfigured; and

(ii) the proposed patterns are encoded in theπ-calculus
in lieu of ordinary workflow languages for facilitating
formal analysis using various software tools [44], [45],
[46], [47].

The result of this study is not only of theoretical interest,
but also has considerable practical benefits. It serves as
a solid basis for the soundness verification of workflows
constructed using dynamic workflow patterns. An additional
interesting avenue of investigation is to explore how the
dynamic workflow patterns can be expressed in terms of
other formalisms.
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