TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

A Foundation for Dynamic Workflow Patterns

Vitus S.W. Lam

Abstract—The rationale behind the utilization of workflow workflow patterns is given in Section 4. Section 5 offers
patterns is to capture solutions for recurring workflow issues a detailed discussion of both basic and derived dynamic
in the domain of business process management. Most of\yorkflow patterns as well as their-calculus encodings.
the identified workflow patterns in the literature are static . . ?
in which their structures are known at design time. This The sogndness of thec_alculus representations is examined
paper takes on the challenge of defining dynamic workflow in Section 6. Concluding comments and future work are

patterns that their structures rely on runtime factors unknown outlined in Section 7.
till the latest possible time. A collection of eight basic and
nine derived dynamic workflow patterns is examined from a Il. RELATED WORK

formal perspective. Ther-calculus is adopted as the underlying . .
mathematical foundation for the dynamic workflow patterns. Dynamic processes [8] (dynamic workflows [9]) are work-

Each derived dynamic workflow pattern is complemented by flow types and workflow instances that change dynamically
a real-life example. Our study is of importance in laying the as a result of the modifications of their environments. Our
groundwork for reasoning about dynamic workflow patterns. \work differs from [8] and [9] since our main objective is to
Index Terms—workflow patterns, =-calculus, control-flow identify patterns for dynamic workflow instances.
patterns. In [3] and [2], van der Aalst et al. and Russell et
al. present collections of control-flow patterns. Unlike [3]
|. INTRODUCTION and [2] that mainly focus on static workflow patterns, our

In today’ i Id ing busi study concentrates on dynamic workflow patterns. In contrast
n today's competitive world, managing bUSINESS PTOCeSYeESy, o approach of [2] that the execution semantics of each

in a systematic manner is crucial to the success of frkflow pattern is expressed as Coloured Petri-nets, we

organization. The primary emphasis of business ProCesSine each of them in terms of thecalculus

management (BPM) [1] is on studying the design, anaIyS|s,|n [10], Decker et al. describe an extension to BPEL

execution, theoretical bagis and best practices_of busmﬁ%\%ed BPEL4Chor for modelling service choreographies.
processes. In the BPM field, numerous strategies for Copsg correspondingr-calculus formalization is studied in

structing business processes are documented as workf As opposed to [10] and [11], our work pertains to
patterns. Seminal papers on workflow patterns encompassfé\‘]hestrations in lieu of choreogr,aphies. Systematic ex-

and [3.]' . aminations of declarative approaches, which are based on

While most of the previous works on workflow pattem%onstraints, are provided in [12] and [13]. These studies are
. ; ; :) r}n%ttrkedly different from ours as the nature of our proposed
design time, we intend to introduce the notion of dynamig, e g jg imperative rather than declarative. Barros et

qukflow pattfarns such t_hat their structu-re-s can be det I [14] generalize the relationships between events, process
mined dynamically at runtime. The dynamicity of Workflowsr

. . : stances and conversations to a collection of correlation
arises whenever the configuration of a workilow deDené%tterns. A crucial difference is that our propounded pat-
directly on the previous activated activities, decision of

vt ; | i ¢ at tion 1 U I_Ift%rns merely center around process instances in which their
activity or external environment at execution time. Unlikg, 1o are determined at runtime.

ordinary workflow languages and workflow modelling nota- Yang and Zhang [15] advocate the modelling, verification

tions suph as BPMN [4] that express a bounded ”“mberéﬁd equivalence checking of workflows by a rigorous ap-
alternative structures statically, dynamic workflow patterns. - n based on the-calculus. Puhlmann and Weske [16]
provide a more intuiti_ve way to represent the alternativesrgée ther-calculus for encoding the workflow patterns pro-
a (iynam]:cally Leconflguraple strucFure. hi . posed in [3]. Xue et al. [17] examine workflow patterns par-
part from the expressiveness issue, this paper is Moy split, multi-choice, arbitrary cycles, multiple instances
vated by the_need for addressing both.the correctness prob\ﬁm]out priori runtime knowledge and milestone that have
anc_i_semantlc challe_nge of the dyn_am|c workflow patterns. multiple BPMN (Business Process Modelling Notation) [18]
facilitate the reasoning about business processes comprising. . cantations using thecalculus. Yang and Zhang [19]
dynamic workflow patterns as well as the formalization of th dopt ther-calculus as the semantic domain of UML 1.4
dynamic workflow patterns, a process-algebraic framewog tivity diagrams. Our previous work [20] formalizes UML

based on the_yr-calculus [5]. [6] is propose_d in our prior2_0 activity diagrams in the form of the-calculus. The ex-
work [7]', Th's .study advancgs our previous attempt b ressiveness of UML 2.0 activity diagrams for implementing
augmenting it with new dynamic workflow patterns, concre

| q ¢ orkflow patterns is assessed in [21] and [22]. Nevertheless,
examples and correctness proofs. there is very limited study on (i) dynamic workflow patterns;

. The rest_of the paper 1S organlzed as follows. Sectlon 2 &hd (ii) the specification of dynamic workflow patterns using
views previous contributions in the area. Section 3 provide§g, —_caiculus in the literature

brief account of ther-calculus. An overview of non-dynamic Other closely related works include [23], [24], [25]

V. Lam is with the Information Technology Services, The University oiand [26] that deal Wit_h vvprkflow_data patterns, WQI’kﬂOW re-
Hong Kong, Hong Kong (e-mail: vitus.lam@ieee.org). source patterns, service interaction patterns and time patterns,

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

respectively. A discussion on the appropriateness of adpptin ~ which takesn parameters and behaves like procéss

the m-calculus as a mathematical foundation for BPM is ProcessP may contain occurrences of.

given in [27]. In [28], an exploration on the suitability of!P : is a replication which behaves as an arbitrary number

the m-calculus and Petri-nets for Web Service Composition of concurrent processda? execute in parallel.

Language is provided. The application of business processThe input prefixz (7). P and restriction(vZ) P bind ¢ and

patterns to recover business process models is studied in [29]n P, respectively. Unlike the input prefix, the channgls
This paper builds upon and considerably enhances dnrthe output prefixz(y). P are free.

earlier work [7] in a number of ways. Firstly, four new basic In the r-calculus, the operational semantics is defined by

dynamic workflow patternslynamic multi-choicedynamic reduction. The reduction rule

synchronizing mergadynamic multi-mergend dynamich- _

0>L/J'[—0f*i join and five new derived dynamic workflow patterns T(y)-Pla(2)-Q — PlQ{y/z}

dynamic multi-choice and synchronizing memggnamic fork - specifies that an output prefi(y).P and an input prefix
and multi-merge dynamic multi-choice and multi-merge (). which execute in parallel reduce to concurrent pro-
dynamic fork and h-out-of-i joirand dynamic structured cessesP and Q where all free occurrences afin Q are

loop are introduced. Secondly, examples are provided fegplaced byy. For further discussion on the other reduction
exemplifying how the derived dynamic workflow patterngyles, the reader is referred to [33].

are used in real-life setting. Finally, a formal treatment of

the correctness of the-calculus encodings is given.
IV. WORKFLOW PATTERNS

l. THE m-CALCULUS Broadly lspeakir.]g, a design pattern i_s a general_ solution
to a recurring design problem for a particular domain. A set
This section briefly introduces the essence of the of 23 design patterns documented by Gamma et al. in [34]
calculus and is adapted from our previous works in [3Qre dedicated to the field of object-oriented technology.
and [20]. In the BPM community, the workflow patterns proposed
Ther-calculus is a mobile process calculus which extengy van der Aalst, ter Hofstede, Kiepuszewski and Barros
Calculus of Communicating Systems (CCS) [31] througip [3] are a collection of 20 control-flow patterns that are
the support of name passing. Contrary to CCS in whiGtegorized into six groups: basic control flow patterns,
the interconnection structures of processes are static, Htfanced branching and synchronization patterns, structural
structure of a system in the-calculus may change dynami-patterns, multiple instance patterns, state-based patterns and
cally. Sangiorgi [32] develops the idea further by proposingancellation patterns. Russell, ter Hofstede, van der Aalst
a higher-orderr-calculus in which processes may be passeghd Mulyar [2] extend previous work by incorporating 23
over channels. new control-flow patterns into the original set of patterns.
We letXF be the set of processes ranged overyQ; for The use of an enhanced version of the IBM WebSphere
i=1,...,n, X% be the set of channels (names) ranged ovBsiness Modeller to support the application of control-
by z;,y; fori =1,...,n, ¥F; be the set of process identifiersiow patterns for constructing unstructured workflows is
and Xfppr be the set of process definitions. A tuple okxemplified in [35]. This section offers an introduction to
channelszy, xa, ..., =, is abbreviated tor. Likewise, we the control-flow patterns that are relevant to this paper. The
write i as an abbreviation foys,y2,...,y,. The syntax reader is referred to [3] and [2] for a more detailed treatment.
of m-calculus process expressions and their corresponding fork pattern splits a single flow into multiple concurrent
semantics are enumerated as follows: flows which allow activities to execute in parallel. A join
z(y).P : is an input prefix which receives channels apattern synchronizes multiple concurrent flows spawned by
long channelz and continues as procesB with g fork pattern as a single flow. An exclusive choice pattern,
Y1,Y2,---,yn replaced by the received channels. Thegnlike a fork pattern, determines that only one of the out-
input prefixz().P is abbreviated as.P. going edges is enabled according to the guard conditions of
Z(y).P : is an output prefix which sends channgls y2, the outgoing edges. We extend this pattern by allowing the
.., Yn along channelr and continues as process decision to be based on a non-deterministic choice in addition

The output prefixz(). P is abbreviated as.P. ~ to the guard-condition-based selection mechanism. A simple
P|Q : represents concurrent procesgesind Q) execute in - merge pattern converges multiple incoming edges emanating
parallel.[]"_, P; abbreviatesP| |P|...|P,. from an exclusive choice. The outgoing edge of the exclusive

P+ @ : represents a non-deterministic choice in whicBhoice is enabled for each non-simultaneous activation of
H n H
either process” or () proceeds) ", P; abbreviates the incoming edge. A multi-choice pattern enables one or

P + P+ --+.P77,- . more outgoing edges in accordance to the guard conditions
(vZ)P :is a restriction which creates new channejszz, of the outgoing edges. This pattern, like an exclusive choice
.., z, used for communication in process pattern, is extended to include the non-deterministic selection

0 : is the null process which cannot perform any actions.mechanism. A synchronizing merge pattern, which is called
[z =y]P : is a matching construct which proceeds as prgnclusive merge gateway [4] or OR-join in process definition
cess P if channelsz and y are identical; otherwise, languages, synchronizes all active incoming edges enabled

behaves like the null process. by a multi-choice pattern as a single outgoing edge. A multi-
7.P :is an unobservable prefix which performs an intern@herge pattern converges mu|’[ip|e incoming edges spawned

action and continues as process by either a fork or multi-choice pattern. The outgoing edge
A(z1, 22, ..., 2n) 4 p . denotes a process identifiet of the multi-merge is enabled for each activation of the

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

incoming edge that may occur simultaneouslyhfdut-of- edgesi resulting from a preceding dynamic fork construct is
i join pattern enables the outgoing edge when the firstmade at the latest possible time.

incoming edges are activated. All subsequenth activated
incoming edges are ignored and th®ut-of< join construct
resets. A discriminator is a special case of theut-of-
join pattern in which the value of is 1. A structured loop
pattern is a structure that allows the repeated execution of
sequence of activities provided that a pre-guard-condition pattern 3 (Dynamic Exclusive Choice)Suppose < i < n.
post-guard-condition is satisfied. A deferred choice patter,dynamic exclusive choice is an exclusive choice in which
unlike an exclusive choice pattern, defers the decision ltye number of alternativesis determined at runtime before
relying on the environment to activate the first activity of onghe execution of the dynamic exclusive choice construct
of the outgoing edges. The other outgoing edges, which ajgrts.

not chosen, are withdrawn. An interleaved parallel routing o _
pattern determines how a set of activities is executed frattém 4 (Dynamic Simple Merge) Suppose < i < n. A

sequence at runtime. The graphical representations of thd¥gamic simple merge is a simple merge in which the number
patterns, which are expressed as BPMN [18] and umef incoming edges resulting from a preceding dynamic

activity diagrams [36], can be found in [18] and [22], [21],exclusive choice construct is known at some point prior to
respectively. the firing of the dynamic simple merge construct.

The number of incoming edges to be merged by a dynamic
join construct is determined dynamically according to the
number of outgoing edges of the corresponding dynamic fork
Qpstruct.

A dynamic exclusive choice construct is intended to handle

V. DYNAMIC WORKFLOW PATTERNS the situation that the number of available choices is based on

The basic dvnamic workflow patterns are workflow Corl[_)reviously executed activities. As an example, the number of
yne pattel : alternatives is affected by the amount of available resources
structs where their structures are decided at runtime, Wher%%sa result of the resources consumed by the executed activ-
the derived dynamic workflow patterns specify how the basi¢ . : y S
. ibing Hes- The number of incoming edges of a dynamic simple
patterns can be combined together. We start by describing merge construct, like a dynamic join construct related to a
basic dynamic workflow patterns and the rest of the section 9 ' Y J . .
dynamic fork construct, depends on an associated dynamic

is then devoted to the derived dynamic workflow patterns. . .
exclusive choice construct.

Pattern 5 (Dynamic Multi-choice) Suppose2 < i < n.

A dynamic multi-choice is a multi-choice in which the

In this subsection, we further develop the ideas of [3etermination of the number of alternativess deferred to
and [2] by introducing a number of dynamic workflowihe |ast possible moment.

patterns. The rationale behind dynamic workflow patterns is

the structures of some workflows are only known at runtinféattern 6 (Dynamic Synchronizing Merge)Suppose2 <
rather than design time. A typical example is the numbér< n. A dynamic synchronizing merge is a synchronizing
of outgoing edges of a fork construct is required to b@erge in which the number of incoming edgesmanating
determined dynamically by a number of factors includin§om @ preceding dynamic multi-choice is not known until
workloads, available resources, etc. before the executiongfitime.

the construct commences. In what follows, we present eightyp,o major difference between dynamic multi-choice and

basic dynamic workflow patterns in which more compleyynamic exclusive choice as well as dynamic synchronizing

patterns are built upon. The semantics of these basic dy”a%'Erge and dynamic simple merge is the former ones allow
workflow patterns is defined when they are utilized fof,o anablement of more than one edges.

specific combinations in Section V-B.

A. Basic Dynamic Workflow Patterns

. _ . Pattern 7 (Dynamic Multi-merge) Suppose < i < n. A
Patten 1 (Dynamic Fork) Suppose < i < n. A dynamic dynamic multi-merge is a multi-merge in which the number

fork is a fork in Wh'cm the number ,Of outgfomg hedgies of incoming edges following either from a dynamic fork
determined dypamlca y at runtime just before the dynambq multi-choice construct specified earlier in the model is
fork construct is reached. determined at runtime

Unlike a fork construct, where the degree of parallelism is

. T . . The subsequent activity of a dynamic multi-merge con-
decided at design time, a dynamic fork construct provides t a Y y g

o . . ffuct is activated at most certain number of times depend-
flexibility to adjust the degree of parallelism based on a wi ﬁg on the number of incoming edges that is dynamically
variety of conditions. Since the numbeiis an arbitrary nat- o i

ural number greater than two, no pre-defined upper bound is

imposed on the number of concurrent instances. As speciffeattern 8 (Dynamic h-out-of< Join). Suppose < i < n.

in the one-to-many send pattern [25], the number of parti@sdynamic h-out-of-i join is a h-out-of-i join in which the
that received messages is unknown at design time. Desplaeision of the number of incoming edgepreceded by a
this is similar to the dynamic fork pattern, a fundamentalynamic fork construct is made before the dynamic h-out-of-i
difference between the two is the former pattern relates jtin is enabled.

choreographies instead of orchestrations. : . _
grap A dynamic h-out-of4 join construct eliminates the re-

Pattern 2 (Dynamic Join) Suppose < i < n. A dynamic striction on the constant number of incoming edges. The
join is a join in which the decision of the number of incomingumber of blocked incoming edges caused by the firing of

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

the construct increases as the number of incoming eddasction extractGC : 25¢¢ x B — 29:c defined by

increases given that the value fremains unchanged. extractGC(SSac, bval) = {z|x € SSacA the value ofz

Definition 1 (Process Diagram)A process diagram is a 12- s;qctjlals bva} returns the guard conditions with Boolean value

tuple PD = (Sa, Spr, Spy, SpeEc, Spsm, Spmc, SpsynM, '

Spmm, Spuu, Sk, Sac, Pac) where The function extractGC' retains all the guard-conditions
— Sa is a set of activities; that values are equal to the Boolean vabuel as specified
— Spr is a set of dynamic fork constructs defined iim the parameter.

Pattern 1, -
— Spy is a set of dynamic join constructs defined ifpefinition 3. Supposé' = {A, DF, DJ, DEC, DSM, DMC,
Pattern 2 DSynM, DMM, DHIJ, E, GC}. The functions); : S; —

— Spec is a set of dynamic exclusive choice construct?{TPLN} transform an msjcance of a graPh'Ca,' _elemeﬂte
defined in Pattern 3- S; of a process diagram into a process identifier or channel

— Spsu is a set of dynamic simple merge constructgf the r-calculus wherei € T" and Zj{PLN} is defined as:

defined. in Pattern 4; . - _ w5, ifie D\ {E,GC}
— SpMmc is a set of dynamic multi-choice constructs 27{TPI N} =
defined in Pattern 5; _ N ’ ST if i € {E,GC).
— SpsynM iS @ set of dynamic synchronizing merge con-
structs defined in Pattern 6; An activity and a basic dynamic workflow pattern are
— Spvum is a set of dynamic multi-merge construct§nodelled as a process identifier, whereas an edge and a
defined in Pattern 7; guard-condition are represented as a channel.
— Spmry is a set of dynamic h-out-of-i join constructs 1) Dynamic Fork and Dynamic Join PatterfThe intuition
defined in Pattern 8; behind the dynamic fork and dynamic join pattern is a dy-

— Sg C (SAxSA)U(SAxScen)U (Sen xSa)U(Scx x hamic join pattern is a building block that always associates
Scn) is a set of directed edges such thtaty = SprU With a dynamic fork pattern. The dynamic fork and dynamic
SpiUSpEcUSDsMUSDMcUSDSynMUSpMMUSpay; Join pattern, which combines the dynamic fork and dynamic

— Sqc is a set of guard-conditions; and join constructs (Patterns 1 and 2), provides the ability for

— &g : Sg — Sqc specifies for an edge its guard-a process diagram to model the concurrent execution of
condition. activities.

For technical convenience, we define a process diagr&attern 9 (Dynamic Fork and Dynamic JoinSupposer,
in terms of the basic dynamic workflow patterns (Patternd,, P, Q1, ..., Qn, R1, ..., R, € Sa, DF1 € Spr,
1-8). These patterns are basic constructs which are daf; € Spy, (P, P1), (P, DF1), (DF1, Qk), (Ri, DJ1),
decomposable. A directed edge connects (i) two activitiegs).J1, P») € S and2 < i <n fork =1, ..., i The
(i) an activity and a basic dynamic workflow pattern; onumber of concurrent activitiesis known at runtime when
(iii) two basic dynamic workflow patterns. the activity P, is performed. The dynamic forRF'; splits
the incoming flow from the activiti?, into i outgoing flows
to the concurrent activities):, ..., @Q; in which all flows

finally connect to the dynamic joib.J,. The dynamic join

Th_'s subsection offers a dlSCUSSIO!’] _(,)f nine derived d¥) 1 synchronizes all incoming flows from the activitigs,
namic workflow patterns based on Definition 1. The propose R, as a single outgoing flow to the activif,
9 {3 .

patterns build upon the integration of the basic dynamic
workflow patterns as well as the structural relationships of The incoming edge of the activity’; is represented as
activities and edges. We begin by examining the suitability 6, P1). Likewise, the incoming edge of the dynamic fork
the r-calculus for expressing the dynamic workflow patterng?¥'; and the outgoing edge of the dynamic joi/; are
This is followed by giving the definitions of a number ofrepresented byP;, DF;) and (D.J,, P»), respectively. The
functions that are used for specifying the derived dynamietual connections between concurrent activiggs. . ., Q;
workflow patterns. Then we present the derived patterns amiold concurrent activitie® , ..., R; are not specified since
their respectiver-calculus representations. they vary from one scenario to another. A concrete example,
In spite of the popularity of Petri nets in the BPM comwhich illustrates how the dynamic fork and dynamic join are
munity, Decker et al. [37] point out that Petri nets are unablimked up by means of a collection of concurrent activities,
to encode all the workflow patterns defined in [3]. On this given in Example 1.
contrary, Puhlmann and Weske [16] successfully transfo
Il th workflow rnsin Iculus. Additionall
flhet f?)fr?]alic;ati(?nsp;ttger\jicetoir:\rjsg;cigl:]zsco?rglta(t)ioisy,arf) e, Y ((Fo, 1)) = pu ¥u((Pr, DFy)) = df,
’ e((DF1, Qr)) = qx, Ye((Rk, DJ1)) = dj1k, Ye((DJ1,

service interaction patterns using thecalculus are explored . ;
; . . P)) = po, eval is a channel for evaluating the number
in [38] and [37]. Given these success stories on the adoptio, o

concurrent activitiespals, ..., wval, are channels for

of the w-calculus for modelling various sorts of patterns0 . : o
fepresenting the possible number of concurrent activities,

the utilization of ther-calculus for formalizing the dynamic

B. Derived Dynamic Workflow Patterns in theCalculus

"Bifinition 4. Suppose a dynamic fork and dynamic join

T P1) = Pi(p1, p2, eval, valy, ..., val,, df1, ¢1, ...

workflow patterns is justified. wal 1 1L £2 ’ ! ’ ’
P : Ins dj1,1, -5 dj1n), Yor(DF1) = DF(df1, q1, ...,)

Definition 2. SupposeB = {true, false} is a set of andp;(DJ1) = DJ1(dj11, --., dj14, p2). The encodings

Boolean values,SSqcc € Sgc and bval € B. The of the activityP;, dynamic forkDF; and dynamic joinD.J,

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

are expressed as:

7valn7df17q17" -5 qn,

Py (p1, pa, eval,vals, . ..
. . def
djl,lv"'vdjl,n) <

(vrs)py.T.eval(rs).rs(z).

n

Z[$ = vali](DFl(dfl, qi, - - -

=2

DJ1(dj1,1, -
df1.0)
DFl(dfl,ql, e

oy dj1isp2)]

def

»Qi)
j=1
def

DJi(dj1 1, -, djrip2) =

(vreceived)

(H dj1 ;.recetved.0| received. - - - .received .pz.0).
Jj=1 1 times

The functionsyg, ¥a, Ypr andypy are defined in Defini-
tion 3. According to Definition 3, the activity’; is modelled
as a process identifieP; (p1, p2, eval, vals, ..., val,, dfi,

qi,---54n, dj1717"

m-calculus by sending a channel along the channelval,

receiving a decision along the channeland determining the
degree of parallelism using matching constructs. The numeric

values: are expressed as the channed$; for i = 2 to n.
The passing of control flow to the dynamic folF'; is
encoded aglf.0.

The processDF'; splits a single incoming control flow
modelled asif; into multiple outgoing control flows repre-

sented ag; for j =1 to 4. The procesdF; evolves to the
null process only after sending out all the control flows.

The procesdJ; synchronizes multiple incoming control
flows denoted byij; ; for j = 1 to ¢ as a single outgoing

control flow represented by;. The channelreceived pre-

vents the passing of control flow to the subsequent activiﬁ<

before receiving all incoming control flows.

.,dj1,n). The receipt of control flow by DF4(
the proces$”, is modelled as the receipt of a signal along the
channelp;. The execution of the procedy is represented
by the internal action. The determination of the number of
outgoing flows of the dynamic for®F; and the number of
incoming flows of the dynamic joirD.J; is denoted in the

for representing the possible number of evaluate claim
activities, 1 (NoOfClerks) = NoOfClerks(noofclerks,
endorseassess, evalclerks, vala, ..., val,, df1, evalclaim,

cey evalclaimn, djl,h ey djl,n)y ’(/)DF(DFl) = DFl(dfl,
evalclaimy, ..., evalclaim;), Yp;(DJ1) = DJi(dj11,,
.oy dj14, endorseassess) and a(EvalClaimy,)
EvalClaimy(evalclaimy, dj1 k). The activity NoOfClerks,
dynamic fork DFy, dynamic join DJ; and activities
EvalClaim; are modelled in thew-calculus as shown
below:

NoOfClerks(noofclerks, endorseassess, evalclerks,

vala, . .., val,, df1, evalclaimy, . . ., evalclaim,,,

. . def
d_]171, ey d]l,n) :e

(vrs)noofclerks.r.evalclerks(rs).rs(x).

Z[x = val;|(DF1(df1, evalclaimy, . . ., evalclaim;)]|
i=2
DJy(dj11,---,dj1,s, endorseassess)|

H EvalClaim (evalclaimy, dji)|
k=1
df1.0)

. . def
df1, evalclaimy, . . ., evalclaim;) =

2

dfi. H evalclaim ;.0

j=1
DJy(dj1,1,--

(vreceived)

., dj1,1, endorseassess)

i
(H dj1 j.received.0| received. - - - .received .
=1

i times
endorseassess.0)

EvalClaim,(evalclaimy, dj1 i) def

evalclaimy,.7.dj1 1.0.

2) Dynamic Exclusive Choice and Dynamic Simple Merge
Pattern: The dynamic exclusive choice and dynamic simple
merge pattern relates a dynamic exclusive choice construct
(Pattern 3) with a dynamic simple merge construct (Pat-
rn 4). Only one control flow is passed from the dynamic
clusive choice construct to the dynamic simple merge
construct.

Example 1. After determining the number of clerks required

for handling insurance claims according to the number

claims received and performance pledges, a correspondiNterge) SupposePy,, P, P, Q1, ..
number ofevaluate claimactivities is triggered simultane-

dPattern 10 (Dynamic Exclusive Choice and Dynamic Simple
i) Qn; R17 LR} Rn
€ Sa, DEC, € Spec, DSM1 € Spswm, gei, -, gen €

ously. The completion of adlvaluate claimactivities enables Scc, (Po, P1), (P1, DEC4), (DEC1, Qk), (Rx, DSM+),

the activityendorse assessment.

Let Py, NoOfClerks, EwvalClaimy, ..., EwvalClaim,,
EndorseAssess € Sa, DF1 € Spr, DJ1 € Spyj, (P,
NoOfClerks), (NoOfClerks, DF4), (DF1, FvalClaimy),
(EwalClaimy, DJ1), (DJ1, EndorseAssess) € Sg and 2
<i<nfork=1,...,1i Wedefineyg((Fy, NoOfClerks))
= noofclerks, Yr((NoOfClerks, DF1) = df1, ¥u((DF1,
EvalClaimy,)) evalclaimy, Yr((EvalClaimy, DJ1))
= dj1k, Ye((DJ1, EndorseAssess)) endorseassess,
evalclerks as a channel for determining the number
evaluate claim activities,vals, ..., wal, as channels

(DSM4, P;) € Sg, 2 < i < n and]| extractGC({gcy,

..y gci}, true) | = 1 for k = 1, ..., i. The activity P,
determines at runtime the number of alternative activities
i that is available for selection. The outgoing flows of the
alternative activities finally terminate at the dynamic simple
merge DSM ;. One of the alternative activitie®1, ..., Q;
is then selected either non-deterministically by the dynamic
exclusive choicdEC, or deterministically by the dynamic
exclusive choiceDEC; based on dynamically-generated

ofjuard-conditionsgc, ..., gc;. The dynamic simple merge
DSM, activates the activity?, when the execution of one

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

of the alternative activities?y, ..., R; is completed.

Definition 5. Suppose a dynamic exclusive choice and dy-

namic simple merge pattermjz((Py, P1)) = p1, Yr((Py,
DECl)) = decl, ’l/)E((DECh Qk)) = gk, wE((Rkv DSMl))

= dsmi, Ye((DSM1, P2)) = p2, eval is a chan-
nel for determining the number of alternative activities,
, val, are channels for modelling the possible

valy, ...
number of alternative activitiesya(Py) = Pi(p1, pe,
eval, valy, ..., val,, deci, g1, ..., Gn, dsmig, ...,
dsmlyn), 1/)DE(3(DE01) = DECl(decl, q1, .-
wDSM(DSMl) = DSMl(dsle, ..

in the r-calculus as:

,valy,, decy, q1, . - .

def
L dsmy) =

Pl(p17p276valvval25"' y qns

dsmqq,..

(vrs)py.T.eval(rs).rs(x).

> [z = val;}(DEC:(decy, qu, . ..
=2
DSMl(dsmlyl, ey d5m17i7p2)|d661.0)

def : —
DEC:(decy, qu, ..., qi) = deci. Y ;.0
j=1

DSMy(dsmy 1, ..., dsmi 4, p2) =

Z dsmy ;.p2.0.

j=1

The processDEC; models the dynamic exclusive choic
by using a non-deterministic choice in which only one of
1 to ¢ proceeds. The

the output prefixesz;.0 for j =
dynamic simple merge is represented as the probeésd .

) Qz) and
.y dsmu, pg). The
activity P;, dynamic exclusive choic®FC; that is non-
deterministic and dynamic simple merg@é'M , are specified

e

The activity P;, dynamic exclusive choic®EC; that is
deterministic and dynamic simple merg&M , are repre-
¥ented as:

Pl(plaPQaevalava127 s 7valn7d6617Q15 <5 Qn,

def
dsmii,...,dsmyp, gc1,. .., gcn, true) =

(vrs)py.T.eval(rs).rs(x).

Z[x = val;|(DEC1(dec1, q1, . ..
i=2
true)| DSM1(dsmy 1, .

yqi> 9C1, - - -5 9Ci,

..ydsmy 4, p2)|decy .0)

def
,gCi, true) =

DEC,(decy,qi,---,qi,9c1, - -
decr.(vxy, ...,z bvaly, . .. bval;)
([] ge5¢2)) -2 (y;)-bval; (y;).0)]

j=1

bvaly (z1). - -+ .bval;(z;).
Z[zj = true]g;.0)

j=1

DSMy(dsma 1, ..., dsmi;,p2) o

3
Z dsmy ;.p2.0.
=1

Unlike Definition 5 that the selection of alternative ac-
tivities is non-deterministic, the choice in Definition 6 is
deterministic. The evaluations of the guard-conditions are
modelled as the output prefixgs;(z;) for j =1 to i. The
sequence of input actionsal;(z1).- - .bval;(z;) collects
Il the returned values of the evaluations. The determination
of the guard-condition that holds is by means of the matching
constructyz; = true] for j =1 to i.

The behaviour of merging multiple incoming edges that aggample 3. The number of alternative flights is determined
not enabled at the same time is encoded inthealculus py the destination for vacation in which one of the itineraries
as a non-deterministic choice in which only one of thg/ chosen according to conditions based on price and num-

expressionslsm, ;.p2.0 for j =1 to ¢ executes.

ber of changes required. A corresponding activitynfirm

Example 2. In accordance to the complexity of a presemajzinerary_ is acti_vated and activitynput credit. carg_ details
tion topic, a decision on the number of students for a grodpllows immediately when any one of tbenfirm itinerary
is made. One of the students is randomly selected and &ivities is finished.

associatedassign as team leadeactivity is initiated. The
activity schedule a team meeting enabled when one of

the assign as team leadeactivities is completed.

3) Dynamic Multi-choice and Dynamic Synchronizing
Merge Pattern: The dynamic multi-choice and dynamic
synchronizing merge pattern allows both the number of

Since ther-calculus encodings of Example 2 can b@lternative activities and the number of activated outgoing
obtained directly by applying Definition 5 as illustrated iredges to be determined at runtime. It builds on Patterns 5
Example 1, the respective-calculus representations areand 6.

omitted here.

Definition 6. Suppose a dynamic exclusive choice and dwizing Merge) SupposeP, P, P, Q1, ..

namic simple merge pattertig((Fo, P1)) = p1, ve((P1,
DEC))) = decy, Ye((DEC1, Qr)) = qr, Yu((Ri, DSM1))

Pattern 11 (Dynamic Multi-choice and Dynamic Synchro-
i) Qn; Rla sy
R, € Sa, DMCy € Spmc, DSynM, € Spsynm, gci1,
., gen € Scc, (Po, P1), (P, DMChy), (DMC1, Qy),

= dsma i, Ye((DSM1, P»)) = p2, eval is a channel for (Ry, DSynM,), (DSynM,, P,) € Sg, 2 < i < n and

determining the number of alternative activitiesls, ...

)

| extractGC({gcy, ..., gci}, true) | > 1for k=1, ..., 1.

val,, are channels for modelling the possible number dfhe activityP; evaluates the number of alternative activities

alternative activities,®qc((DEC1, Qk)) = gck, Ya(Pr)
= Pi(p1, p2, eval, valy, ..., val,, deci, q1, ..., Gn,
dsmi i, ..., dsmip, gci, ..., gcn, true), Yprc(DEC,) =
DEC,(decy, g1, - - -5 @iy €1,y - - -, 9Ciy true), Ypsm(DSM1)
= DSM+(dsmy 1, ..., dsmy;, p2) and e (gck) = gc.

¢ that is available for selection at runtime. The outgoing
flows of the alternative activities finally terminate at the
dynamic synchronizing mergeSynM . One or more of the
alternative activitiesQ,, ..., Q; are then selected either
non-deterministically by the dynamic multi-choibd/C, or

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

deterministically by the dynamic multi-choié&\/C; based nactivatey, . . . , nactivate;)|
on dynamically-generated guard-conditions;, ..., gc;. dmc:.0)
The dynamic synchronizing mergeSynM, synchronizes)
the incoming flows from the activitie;, ..., R; that are DMC(dmey, g, ..., i, notReachLimi—x, count;,
activated as a single outgoing flow to the activity. activates, . .., activate;,
nactivates, . . . , nactivate;) et

One of the prominent challenges in the BPM community
is to devise a behavioural semantics with a linear-time
complexity for synchronizing merge. Dumas et al. [39] and
Volzer [40] propound, respectively, algorithms for deter-
mining the activation of a synchronizing merge in linear
time. Unlike these prior efforts, we advocate the use of two
channelsactivate andnactivate for signifying whether an
incoming edge of a synchronizing merge is activated or not
in Definition 7.

K2

dme;. H (activate;.q;.count;.0 +
j=1

not ReachLim;_1.nactivate;.count;.0)
def

NotReachLim;_1(notReachLim;_1, killNRLim;_1) =
notReachLim;_1.(not ReachLim;_1.

i-1 times

.(notReachLim;_.

kidINRLim;—1.0 +

Definition 7. Suppose a dynamic multi-choice and dynamic
synchronizing merge pattertig((FPo, P1)) = p1, Ye((P1,

DMCh)) = dmey, Ye((DMC1, Qk)) = qr, Yr((R:, , ,
DSynM,)) = dsynmq k, Ye((DSynM,, P)) = p2, eval KillNRLim;—1.0
is a channel for determining the number of alternative i-1 times
activities, vals, ..., val, are channels for modelling the def

.) . . Count;(count;, killNRLim;_1)
possible number of alternative activitiesgt ReachLim;_;

is a channel for testing whether the limit is reached in which count;. - - - .count; .killNRLim;—1.0
a maximum number af— 1 outgoing edges may not be acti- i times

vated,count; is a channel for counting the number of outgo- ~ DSynM (dsynma 1, ..., dsynm ;, p,
ing edges in which there is already a decision on whether the activater, . .., activate;,

o_utg_oing edge is f'ictivated_ or noigzti_vatei_is a chan.nel for nactivates, ... nactivate;) def
signifying that theth outgoing edge is activatedactivate; .

is a channel for representing that théh outgoing edge is (vreceived)

1
activate;.dsynmy_;.received.0 +
J \J
j=1

not activatedkilINRLim;_1 is a channel for terminating the
processNotReachLim;_1, Ya(P1) = P1(p1, p2, eval, vals,
..y valy, dmey, q1, ..., Gn, notReachLim;_1, count;,
EdINRLim; 1, dsynmq 1, ..., dsynmy n, activatey, ...,
activate,, nactivatey, ..., nactivate,), Ypuc(DMC1)
= DMC:(dmer, q1, ..., ¢, notReachLim;_y, count;,

nactivate;.received.0)]

received. - - - .received .p3.0).

i times

activatey, ..., activate;, nactivates, . .., nactivate;) and The d . lti-choi dd) hronizi
"/)DSynM(DSyan) _ DSyan(dsynml_,l, e dsynmlyi, e yt?amlc mu |-Cth0|tce an ynamlt(.: .ts.ync ronlzllngt g
p2, activatey, . .., activate;, nactivatey, . . ., nactivate;). merge pattern requires that one or more activities are selecte

from i alternative activities. This implies there is a limit that
t most: — 1 outgoing edges are not activated. The process
otReachLim;_, provides a way for testing whether the
limit 4 — 1 is reached. The proceg%unt; is a counter for
keeping track of the number of outgoing edges that there is a
decision on whether the outgoing edge is activated or not. A
signal is sent along the channglINRLim,;_, after making

The representations of the activifyj, dynamic multi-choice
DMC, that is non-deterministic and dynamic synchronizin
merge DSynM are given by:

Pi(p1, pe, eval,vals, . .., val,,dmer, q1, .. ., qn,

notReachLim;_1, count;, KilINRLim;_1,

dsynmai,..., dsynman, adzvfatel’ - activaten, all the decisions. The procea&tReachLim;_ then evolves
nactivates, . . ., nactivate,) = to the null process on receipt of a signal along the channel
(vrs)py.T.eval(rs).rs(z). KilINRLim;—1.

n The processDM(C'; inputs a signal along the channel
Z[CU = val;]|(DMC1(dmey, qu, - - -, iy dme; and evolves ta concurrent processes. Each concurrent
=2 _)) process then either
notReachLim;_1, count;, activatey, . .., activate;,

(i) sends out an activated signal along the channel

nactivater, . .., nactivate;)| tivate;, passes the control flow to the subsequent

NotReachLim;_1(notReachLim;_1,
KilINRLim;—1)]

Count;(count;, kilINRLim;_1)|
DSynM | (dsynmyq 1, ..

activates, . .

L) dsynml,i7 D2,

., activate;,

activity and updates the counter; or

(ii) tests whether the limit is reached, sends out a non-
activated signal along the channehctivate;, and
updates the counter.

If the activity edge is activated, the proceBsyni, sends
out a signal along the channedceived upon receiving the
control flow. If the activity edge is non-activated, there is

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

no need to wait for the receipt of the control flow and the DSynM,(dsynmy 1, ..
processDSynM , simply sends out a signal along the channel
received. The control flow is then passed to the activity

on receiving theth signal along the channetceived.

., dsynmy ;, p2, activatey,

. def
.., nactivate;) =

..., activate;, nactivatey, .
(vreceived)
i

activate;.dsynmyq_;.received.0 +
J J
j=1

Example 4. The set of documents which is required for
supporting an insurance claim is depended on the type
of claims. Two activitiessubmit the receiptand submit
the photograph of a damaged gooare activated out of
all possible submissions before the activagsess claim
commences.

nactivate;.received.0)]

received. - - - .received, .p3.0).

1 times

The selection of alternative outgoing edges in Definition 7
Definition 8. Suppose a dynamic multi-choice and dynamig non-deterministic, whereas the one in Definition 8 is
synchronizing merge patterniu((Fo, 1)) = p1, ¥u((F1, deterministic. The output prefixegs; (z;) for j = 1 to i
DMCh)) = dmer, vu((DMCy, Qr)) = v, YE((Bk, model the evaluations of the guard-conditions. The matching

DSynM,)) = dsynma x, Yu((DSynM,, Ps)) = p2, eval constructs[y;, = true] and [y; = false] for j = 1 to i
is a channel for determining the number of alternative actitetermine which guard-conditions hold.

ities, vals, ..., val, are channels for modelling the possible

number of alternative activitiesictivate; is a channel for Example 5. A variant of Example 4 by adding guard-
signifying that theith outgoing edge is activatedactivate; conditionsavailability of receipt availability of damaged
is a channel for representing that thé&h outgoing edge is good etc.

not activated®qc((DMC1, Qk)) = gck, ¥a(P1) = Pi(p1,
D2, eval, valy, ..., val,, dmci, q1, ..., qn, dsynmq i,
..., dsynmy p, activatey, ..., activate,, nactivatey, ...,
nactivate,, gci, ..., gcn, true, false), Ypuc(DMCH)

4) Dynamic Fork and Dynamic Multi-merge Patteriihe
dynamic fork and dynamic multi-merge pattern associates a
dynamic fork construct (Pattern 1) with a dynamic multi-

= DMC:(dmey, i, ..., qi, activatey, ..., activate;, Merge construct (Pattern 7). Each outgoing control flow of
nactivatey, ..., nactivate;, gei, ..., gci, true, false), the dynamic fork construct activates the subsequent activity
Ypsyan(DSynM) = DSynM (dsynmy 1, ..., dsynm, ., of the dynamic merge construct separately.

pa2, activatey, ..., activate;, nactivates, ..., nactivate;)

Pattern 12 (Dynamic Fork and Dynamic Multi-merge)
upposery, P, P, Q1, ..., Qn, R1, ..., R, € Sa, DF4
SDF, DMM, € SDMM7 (PQ7 Pl), (Pl, DFl), (DFl7

Qk), (Rg, DMM{), (DMM4, P;) € Sg and2 < i <mn

andvyac(ger) = gex. The activityP;, dynamic multi-choice
DMC, that is deterministic and dynamic synchronizin
merge DSynM, are encoded in ther-calculus as:

Py(p1,pe, eval,vals, . . ., val,,dmer, g1, - - -, qn, for k =1, ..., i. The number of concurrent activitigsis
dsynma 1, ..., dsynmy n, activatey, . . . activate,,, determ_ined at runtim(_a when.the agtivi?y is performed. T_hg
nactivates, .. . nactivate,, ge, ge dynamic forkDF'; splits the incoming flow from the activity

Tt L A Py into 7 outgoing flows to the concurrent activiti€s, .. .,
true, false) = Q; in which all flows finally connect to the dynamic multi-
(vrs)py.T.eval(rs).rs(x). merge DMM ;. The dynamic multi-merg®MM, activates

n the activity P, for each of the completion of the activity.
Z[Jc:vali](DMcl(dmcl,ql,...,qi, o _ _ _
i—2 Definition 9. Suppose a dynamic fork and dynamic multi-
activate, . .., activate;, merge patternyg((FPo, P1)) = p1, Yr((P1, DF1)) = df1,
nactivatey, . . . , nactivate;, VYe((DF1, Qk)) = a, Ye((Ryx, DMMy)) = dmm
Ye((DMM 1, P»)) = pa, eval is a channel for determin-
gew .- - gci, true, false)| ing the number of concurrent activitiesals, . . ., val,, are
DSynM (dsynma i, ..., dsynma ;, pa, channels for modelling the possible number of concurrent
activatey, . .., activate;, activities, ¥a (P1) = Pi(p1,p2, eval, vals,...,valy,, dfi,
nactivatey, . . ., nactivate;)| Q1s-- -5 Gn, dmma 1, ..., dmma), Yor(DF1) = DF1(dfy,
W 0) qi, -, Qz) and wDMM(DMMl) = -DMMl(dmle, ey
L dmmy ;, p2). The m-calculus specifications of the activity

DMC1(dmer, qu, .. ., @i, activaten, . . ., activate;, Py, dynamic fork DF; and dynamic multi-mergedMM

nactivatey, . . ., nactivate;, gci, . . ., gc;, are given by:

true, false) def

dmcl.(l/acl,...,l’i)
(H 9¢5 ()25 (y;5)-

(ly; = truelactivate;.q;.0 +
ly; = false]nactivate;.0))

svaly, df1, q1, . . .

def
Ldmmy) =

Py (p1, p2, eval, vals, . .. 2 Qn,

dmma q, ..

(vrs)py.T.eval(rs).rs(z).
Z[IE = vali](DFl(dfl, qi, - - -
i=2
DMMl(dmml,l, ..

., dmmy 4, p2)|

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

df;.0) processNotReachLim;_1, ¥a(P1) = Pi(p1, pe2, eval, vals,
DF(df1, a1,) def ces val,?, dmer, q1, -y Qn, notReachLim?-_l, count;,
i kdINRLim;—1, dmmyq, ..., dmmy,, activate, ...,
_ activate,, nactivatey, ..., nactivate,), Ypuc(DMC1)
dfl. H qJ.O N DMC i
=1 = 1(dmer, q, ..., qi, notReachLim;_1, count;,
def activatey, ..., activate;, nactivatey, ..., nactivate;)
DMMy(dmma,i,...,dmmy;,p2) = and Yoy (DMM) = DMMy(dmmy 1, ..., dmmy i, pa,
i activatey, ..., activate;, nactivatey, ..., nactivate;).
Hdmml-,j-p?-ﬂ- The activity P;, dynamic multi-choiceDM(C; that is non-
J=1 deterministic and dynamic multi-mergeM M, are defined
The dynamic fork construct is specified by the proceds the m-calculus by:
DF'y. The outgoing control flows are represented as a paraIIeIP (eval.val val. - dme
composition which consists of the output actigiigor j = 1 1\P1, P2, €0A%, VA2, - - -, Ui, GMCL, 1, - - -5 Gns
to i. notReachLim;_1, count;, killNRLim;_1,
The behaviour of the dynamic merge construct is defined dsynmaq 1,...,dsynmi p,
by the procesDMM ;. Upon receipt of a signal along the activatey, . . . , activaten,
channeldmm, ;, a signal is sent along the channsl) . def
nactivates, . . ., nactivate,) =
Example 6. The number of activitypack goodsto be (vrs)pr.7.eval(rs).rs(z).
executed concurrently is derived according to the number of n
orders received. The activighip goodss enabled whenever Z[J; = val;|(DMC1(dmer, qu, - - -, gi,
a pack goodsactivity is completed. i—2

5) Dynamic Multi-choice and Dynamic Multi-merge Pat- notReachlLim;—, count;,

tern: The dynamic multi-choice and dynamic multi-merge activatey, ..., activate;,
pattern combines a dynamic multi-choice construct (Pat- nactivatey, . . . ,nactivate;)|
tern 5) with a dynamic multi-merge construct (Pattern 7). NotReachLim;_1 (notReachLim;_1,

Some outgoing activity edges of the dynamic multi-choice BilINR Lim.
construct are enabled and they trigger the subsequent activity ' imi1)| A A
of the dynamic multi-merge construct separately. Count;(county, killNRLim;)|

Pattern 13 (Dynamic Multi-choice and Dynamic Multi- DMM; (dmmay, ..., dmany i, pa,

-merge) Supposepo, Pl,]327 Ql; ey Qn;]—%17 ey activatel, ceey activatei,

R, € Sn, DMC, € Spwmc, gc1, ..., gcn € Sac, nactivatey, . . . , nactivate;)|

DMM, € SDMI\/h (PQ, Pl), (Pl, DMCl), (DMCl, Qk)7 MO)

Ry, DMM,), (DMM,, P,) € Sg, 2 < i < n and .

|(extmctGC(%gcg, et true) | = 1 for ko= 1, DMCy(dmey, qu, - . ., g, notReachLim;_1, count;,
.., i. The activity P, evaluates the number of alternative activatey, . .., activate,

activities 7 that is available for selection at runtime. The nactivatey, . .., nactivate;) def

outgoing flows of the alternative activities finally terminate i

at the dynamic multi-mergdMM . One or more of the dmey. H(actwatej.q_j.counti.OJr
alternative activities@Qq, ..., Q; are then selected either =1

non-deterministically by the dynamic multi-choibd/C, or
deterministically by the dynamic multi-choié&\/C'; based . _ ‘ ‘ dof
on dynamically-generated guard-conditions;, ..., gc;. NotReachLim;_1(notReachLim;_y, killNRLim;_1) =
The dynamic multi-merg®MM, activates the activityP, notReachLim;_1.(notReachLim;_1.

for each of the completion of the activify.

notReachLim;_1.nactivate.count;.0)

(--- .(notReachLim;_.

Definition 10. Suppose a dynamic multi-choice and dynamic
multi-merge patternyg((Py, P1)) = p1, ve((P1, DMC1)) KillNR Lim;_1 .0 +
= dmey, Ye((DMC1, Qk)) = qk, Ye((Rk, DMM1)) = : :

dmmy j, Ye((DMM1, Py)) = p2, eval is a channel for FillNRLim;—1.0) - -)+

determining the number of alternative activitiesils, ..., KillNRLim;_1.0) + killNRLim;_,.0
val, are channels for modelling the possible number of
alternative activities,notReachLim;_1 is a channel for dof
testing whether the limit is reached in which a maximum Count;(count;, kilINRLim;_1) =
number ofi — 1 outgoing edges may not be activatedynt; count;. - -+ .count; .KilINRLim;_1.0
is a channel for counting the number of outgoing edges in

i-1 times

i-1 times

which there is already a decision on whether the outgoing DMMl(dTrlm”an& dmmy i, ps
. PE S AR N3)
edge is activated or notictivate; is a channel for signifying) ’) ’
activatey, . .., activate;,

that the ith outgoing edge is activatethactivate; is a

.) def
channel for representing that th#h outgoing edge is not nactivates, . . ., nactivate;) =
activated, killNRLim;_, is a channel for terminating the

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

i
H (activate;.dmma ;.p2.0 + nactivate;.0).
j=1

The representation of the dynamic multi-choice and dy-
namic multi-merge pattern based on non-deterministic choice
is similar to that of the dynamic multi-choice and dynamic
synchronizing merge pattern defined in Definition 7. The
only difference is that the output actigiy is performed

after the input actionsimm; ; for j = 1 to ¢ in lieu of
the sequence of input actiomsceived. - - - .received.

i times

([T 75 ()2 ().

j=1

(ly; = true]m.q_j-o +
[y; = false]nactivate;.0))

DMMl(dmml,l, e ,dmml,i,pg,
activatey, . .., activate;,
. . def
nactivatey, . . ., nactivate;) =

K2
H (activate;.dmm; ;.p2.0 + nactivate;.0).
j=1

Example 7. The number of products available for inspection Likewise, the encodings of the dynamic multi-choice and

is based on the production line. Some of them are randonﬂ%namic multi-merge pattern based on deterministic choice

selected for examination simultaneously and the actiw%d the dynamic multi-choice and dynamic synchronizing
mark product as defecis executed whenever a dGfeCte%erge pattern defined in Definition 8 are similar. The dis-

product is found.

Definition 11. Suppose a dynamic multi-choice and d

namic multi-merge patternyg((FPy, P1)) = p1, ve((P1,

DMCl)) = dmcla ’l/)E((DMCh Qk)) = (k, wE((Rkv
DMMy)) = dmmqg, Y((DMMq, P)) = p2, eval

crepancy lies in the output actigis is executed after the
input actionsimm; ; for j = 1 to 4 rather than the sequence

Yof input actionsreceived. - - - .received.

1 times

Example 8. A variation of Example 7 by selecting all those

is a channel for determining the number of alternativeroducts with serial numbers which the last digit is 2.

activities, wvals, . ..
possible number of alternative activitieactivate; is a

,val, are channels for modelling the

6) Dynamic Fork and Dynami&-out-of4 Join Pattern:

channel for signifying that theéth outgoing edge is ac- The dynamic fork and dynamik-out-of< join pattern inte-
tivated, nactivate; is a channel for representing that thegrates a dynamic fork construct (Pattern 1) with a dynamic

ith outgoing edge is not activate@®qc((DMC1, Qk))=gk,
Ya(P1) = Pi(p1,p2, eval, valy, ..., val,, dmey, ¢,
<oy Gn, dmma 1, ..., dmmy p, activate, ..., activate,,

nactivatey, ..., nactivate,, gci, ..., gcn, true, false),
Ypme(DMC1) = DMCq(dmer, qa, - - -, ¢, activates, . . .,
activate;, nactivatey, ..., nactivate;, gci,...,gc;, true,
false), wDMM(DMMl) = DMMl(dmml,l, ey dmmu,
D2, activatey, ..., activate;, nactivatey, ..., nactivate;)

and vYagc(ger) = geip. The activity Py, dynamic multi-

h-out-of< join construct (Pattern 8). The dynamic 1-outsof-
join construct, which is regarded as a dynamic discriminator,
enables the subsequent activity when merely one trigger is
received.

Pattern 14 (Dynamic Fork and Dynami-out-of<4 Join).
Sl.]ppOSdD()7 Pl, PQ, Ql, ceey Qn, Rl, ey Rn c SA, DF1
€ Spr, DHIJ1 € Spuwy, (Po, Pr), (P1, DF1), (DF1, Qy),
(Ri, DHLJ1), (DHIJ1, P,) € Sg, 1 <h<n—-1,2<i<n

choice DM that is deterministic and dynamic multi-mergeand h < i for k =1, ..., i. The activity, determines the

DMM are specified in ther-calculus as:

Py (p1,pe, eval,vals, . .., val,,dmecy, qi, - . ., qn,
dmmi 1, ..., dmm p, activatey, . . ., activaten,
nactivatey, . . . ,nactivatey,, gci, . . ., gcn,

true, false) def

(vrs)py.T.eval (rs).rs(x).

Z[x = val;|(DMC+(dmes, qu, - - -, qi,

i=2

activatey, . .., activate;,

nactivatey, . . . ,nactivate;, gci, . . ., gc;, true, false)|
DMM+(dmma 1, ...,dmmi i, pe,

activatey, . .., activate;,

nactivatey, . . ., nactivate;)|

dmec;.0)

DMCy(dmey, qi, - . -, ¢, activatey, . . ., activate;,
nactivatey, . . . ,nactivate;, gcy, . . ., gc;,
true, false) def
dmey.(ve, ..., ;)

number of concurrent activities at runtime. The dynamic
fork DF'; then splits the incoming flow from the activity
P, into i outgoing flows to the concurrent activiti€g,
.., Q; in which all flows finally connect to the dynamic
h-out-of-i join DHIJ,. The dynamic h-out-of-i joilDHIJ,
activates the activity?, whenh triggers are received from
the activitiesR, ..., R;. All otheri — h triggers received
subsequently are ignored andH1.J, resets itself.

Definition 12. Suppose a dynamic join and dynamic h-out-
of-i join pattern,y g ((Po, P1)) = p1, ¥u((P1, DF1)) = df1,
Ye((DF1, Qr)) = qx, Y((Rx, DHIJ1)) = dhiji g,
Yr((DHIJ1, Py)) = p2, eval is a channel for determining
the number of alternative activities andls, ..., val, are
channels for modelling the possible number of alternative
activities, v (P1) = Pi(p1,p2, eval, vals,. .. ,val,, df1,
q1s---54n, dh’ijl,l, ey dhijl,n, ’L/JDF(DFl) = DFl(dfl,
qi,--- 7qi) and ’l/JDHL](DHle) = DH]Jl(dh’L'le, ey
dhij1 i, p2). The activityP;, dynamic forkDF; and dynamic
h-out-of-i join DHIJ, are specified as:

7valnadflaq17" .

Cdhijyn)

Py (p1, p2, eval,vals, . ..
dhijiq, .-

7Qn’

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

(vrs)pr.T.eval(rs).rs(x). Py, P3, Q1, ..., Qn € Sa, gc1,9c2 € Sce, (P, P1),
n (P1,Q1), (Qr, Qry1), (Qi, P2), (P2, P1), (P>, P3) € Sk,
Y e = vali](DF1(df1, 15 -, 41)] Dac((Py, Pr)) = ge1, ®ac((Pa, P3)) = gea and1 <i<n
i=2 for k =1,...,i— 1. The activityP, is executed for deter-
DHIJ (dhij1 1, - . ., dhij1 i, p2)] mining the number of activitiesto perform in sequence at
df,.0) runtime. After the completion of the activiti€s, . . ., Q;, the
DFy(dfr, qv, - q:) def thread of contro_l .is passed to the activif$ fo_r.evaluating
o ! the guard-conditionsyc; and gc,. The activities P, and
df,. HTO P; are enabled, respectively, whej; and gc, hold. The
g J enablement of activity?, allows the repeated execution of
! def the same or different number of activitiess the previous
.. .. €
DHIJ(dhijy 1, ..., dhijy i, p2) = iteration of the dynamic structured loop.
(vreceived)

Definition 13. Suppose a dynamic structured loop pattern,
Ye((Po, P1)) = p1, Ye((P1, Q1)) = @1, Ye((Qk, Qk+1))

(H dhijij.received.O| = Gr+1, VE((Qis P2)) = p2, Yu((P2, P1)) = p1, Yu((P2,

=t o . . P3)) = ps, eval is a channel for determining the number
received. - received .p. received. - - received . of activities to perform in sequenceqly, ..., val, are

h times i=h times channels for modelling the possible number of activities to
DHIJi(dhijy ;- -, dhiju,i; p2))- perform in sequenceja (P1) = Pi(p1, pe, eval, valy, ...,

The procesDHIJ, is ther-calculus representation of the?@n: qis -+ dn), Ya(Qm) = Qum(@m.1, gm,2) aNAdYA(P2)
dynamich-out-of< join. A signal is sent along the channgl — Py(p1, p2; ps3, geu, 902)-_The activitiesPy, .P2 and Qn,
after executing: times the input actiomeceived. The process for m =1, ..., i are specified by the following-calculus
DHIJ, then continues as itself after a further execution giPecifications:

i — h times of the input actioneceived.
The use of recursive definition rather than replication for

def
Py (p1,p2,eval,valy, ... valn, q1, ..., qn) =

modelling a dynamid:-out-of< join construct is due to the (vrs)pr.T.eval(rs).rs(z).

fact that a reset is just like an invocation of itself which is =

recursive in nature. Z[z =wvali](Q1(q1,q2)| - - - |Qi-1(gi—1,)]
=1

Example 9. The location of a retail shop and the availability Qi(qi,p2)[q1.0)

of a particular product determine the number of other retail Qo) def

shops to be contacted whenever it runs out of stock for the " I 1 qmi

product. A number ofontact other retail shomactivities is '9m,1-TGm 2.0

initiated in parallel. Once one of the activitiesceive reply Ps(p1, p2, p3, gci, gea) =

is executed, theonfirm shipmentactivity is activated and

. .) Ipo.7.(vx1, o, bvaly, buval
all other received replies are ignored. po.T. (Va1 T2 ! 2)

2

A workflow is a structured workflow [41] if (i) each fork ((H 9¢;(x;).2;(y;)-bval; (y;).0)|
construct is associated with a join construct; and (ii) each j=1
multi-choice is associated with a synchronizing merge. The bvaly (21).bvalz(z2).
dynamic fork and dynamic join pattern (Pattern 9) as well as ([z1 = true]pr.0 +

the dynamic multi-choice and dynamic synchronizing merge
pattern (Pattern 11) support the modelling of structured work-
flows. On the contrary, the dynamic fork and dynamic multi- Unlike a dynamich-out-of< join, a dynamic structured
merge pattern (Pattern 12), the dynamic multi-choice af@bp is iterative in lieu of recursive. Processé}, @,
dynamic multi-merge pattern (Pattern 13) as well as the dgad P, for £ = 1 to 4, which model the activities of a
namic fork and dynami&-out-of- join pattern (Pattern 14) dynamic structured loop pattern, are expressed inthe
allow for the modelling of unstructured workflows. Detailedcalculus through the use of replication.

discussions on the transformation of structured models i
unstructured models are provided in [41] and [42].

[z2 = true]ps.0)).

r‘Fi(;(ample 10. Depending on the marital status of an em-

In the following, we change the focus from dynami%loyee’ continue théput personal particularsactivity or
k ; . oth theinput personal particularsand input spouse infor-
workflow patterns that are built on the basic workflow put p P put S

. ation activities in sequential order until all new employees
patterns to those dynamic workflow patterns based on tw q ploy

structural relationships of activities and edges. dfe processed.

7) Dynamic Structured Loop Patterrithe principle be- 8) Dynamic Deferred Choice Patternthe dynamic de-
hind the dynamic structured loop pattern is the number &drred choice provides an offer consisting of a number
activities between the entry and exit points is not necessanrly alternative activities decided at runtime to the external
known at design time and can sometimes be only determineavironment for selection.
at runtime in accordance to various factors before the co

mencement of each iteration. Pattern 16 (Dynamic Deferred Choice)SupposeP,, P;

le R Qn; R17 B Rn S SA7 (P07P1)7 (Plan)v
Pattern 15 (Dynamic Structured Loop)Supposely, P, (Qk,Rr) € Sg and2 < ¢ < n for k = 1,...,i. The

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

number of alternative activities is not known at design The activitiesP; and Q; are specified below:

time and is determined at the moment when the actRitis def

executed. The choice of the alternative activitigs. . ., Q;, Pi(p1, p2, evalvil?’ S valy) =

which is connected to the activitid?,, ..., R;, is deferred (vrs)pr.T.eval(rs).rs(x).

until the execution of one of the alternative activities begins. n

Unlike the dynamic exclusive choice, the decision is made by Z[x = val](vexecute, completed)

the environment instead of the activif§{. The alternative i=2

activities which are not selected are then withdrawn. (ezecute.completed. - - - .execute.completed .pz.0|
i times

Definition 14. Suppose a dynamic deferred choige,((P, i

P)) = pi, Ye((Pr, Qi) = ai ¥e((Qr, Bi) = 1, [Q«(execute, completed))

eval is a channel for determining the number of alternative k=1

activi_ties, vals, . ..,val, are _channe_ls_ _for modelling the Qu (execute, completed) def

possible number of alternative activitiegy™, ..., ¢o™ -

are channels ofQ1,...,Q, for interacting with the envi- execute.T.completed.0.

ronment, withdraw is a channel for withdrawal of non- The sequence of output and input actionscute.com-
selected alternative activitiesja (P1) = Pi(p1, eval, vala,

. pleted. - - - .execute.completed randomly starts the execu-
ey Valn, @1y eey Gny @7, oo, @Y, withdraw) and —

_ . N) i times o))
¥al@g) = Qjlaz, 47, 1y, w”hdmw)-_ The activitiesP1 tjon of one of the activities and waits for the execution to
andQ; for j =1,...,: are denoted as: complete before initiating another activity.

Pi(p1,eval,vals, ..., valn, qu, - Gn, g5 5o G Example 12. The total number of courses required to be
withdraw) def taken for a semester is based on the amount of credits

— obtained previously. The enrollment of these courses can be
(vrs)pr.T.eval(rs).rs(z). S)
_ performed sequentially in an arbitrary order.

n K3
Z[:z: = val;] H(Qj(qj, g™, rj, withdraw)|q;.0) With a rigorous definition of the dynamic workflow pat-
i=2 j=1 terns in terms of ther-calculus, software tools can then be
utilized to visualize and simulate these patterns. lllustrative

oy — ' . examples on the simulation efcalculus specifications using
qj.(qj ~withdraw. - - - .withdraw .7.75.0 + PiVizTool are found in [43].

i—1 times
withdraw.0). V1. CORRECTNESS OF THEENCODINGS
)) _ _) We now turn to the question of the validity of the en-
The input actions;;™ for j = 1 to i model the selection codings. To prove the encodings are correct, we need to
performed by the environment. The execution ef1 times introduce a concept of behavioural correspondence in which
of the Output actionvithdraw terminates all the alterna“vea pattern and the Correspondimgcalcu|us representation
activities. exhibit the same behaviour. The strategy behind the proofs

o . . is to verify that each derived dynamic workflow pattern in
Example 11. The number of specialists eligible for SeIeCt'o%ection V-B behaviourally corresponds to the transitions of

1S k()ja?ed odn thelltype O.f |IIneS:|s.t;I|'he a33|g"nm(:]nt O,f i Spec'ailﬂ§trespectiver-calcuIus specification. Before presenting the
IS e.ellrre l_m_t'. one 1s ?‘;}'2' able and all othevait for a proofs, a description of the operational semantics ofithe
specialistactivities are withdrawn. calculus which is used primarily for constructing the proofs

. . is given.
9) Dynamic Interleaved Parallel Routing Patternthe We start by letingSr,., = {z(f)z.§ € &} and

dynamic interleaved parallel routin attern allows bo = . .
y P gp b = {ZT(P|z,¥ € XL} be the sets of input actions

the number of activities and their execution order to bg9:ct . -
determined dynamically. and output actions. We further assume thgt,, = X7, ., U

Y0act U {7} be the set of actions ranged over by for

Pattern 17 (Dynamic Interleaved Parallel Routingguppose ¢ = 1;-- ;7. Xfjc be the set of maiching constructs ranged

Py, Pi, Py, Q1, ..., Qu € Sa, (Py, P1), (Qu,) € Sp OVEr by N; for i = 1,...,n and M be a finite match

and2 < i <nfork=1, ..., i The number of unordered S€qUenceViN, ... N, wheren > 1. _ _

activities i to be executed is determined at run time by 1h€ Operational semantics of thecalculus is defined on

the activity P,. The activitiesQ,, ..., Q; are executed %/he basis of either a reduction system as shown in SecFlon 3

sequentially without a particular order in which the activity®” @ labelled transition system. The part of the operational

P, is enabled after the completion of them. semantics related to the proofs is formally captured by means
of transitions as follows:

Definition 15. Suppose a dynamic interleaved parallel rout- P — P’ : the execution of actiox and processP

ing pattern, g ((Py, P1)) = p1, Ye((Qk,) = p2, eval M. becomes?’.

is a channel for determining the number of unordered activ- P ~> P’ : if the match sequenc#/ is true, action is

ities, vals, . . ., val, are channels for modelling the possible executed, if any, and proce$sbecomesP”’.

number of unordered activitiesjs (P1) = Pi(p1, p2, eval, A complete treatment of the labelled transition semantics

vala, ..., val,) and ¥a(Qr) = Qr(execute, completed). is beyond the scope of this section. We refer the reader to [33]

Qi ™ 7y, withdraw) <

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

for more details. In what follows, we write™s and %»O‘ as Proposition 3. Let P, P>, Q1, ..., Qn, R1, ..., R, €
a shorthand for the transition® -+ P’ and P <" P’ Sa, DMC1 € Spuc, DSynM, € Spsynm, (P1, DMCh),

whenever only the action and match sequence are referé/Cy, Qr), (Rr, DSynM,), (DSynM,, P») € Sg,

in our discussion. Ye((P, DMCy)) = dmer, Ye((DMC1, Qk)) = q,
YE((Re, DSynMy)) = dsynmik, ve((DSynM,, P))
Proposition 1. Let Py, Py, Q1, ..., Qun, Ri, ..., Rn € = D2 eval is a channel for determining the number of

Sa, DFy € Spr, DJi € Spy, (P, DF), (DF1, Q). alterna_tive activit_ies and < ¢ < nfork =1,...,i. .
(Rw, DJ1), (DJ1, P») € Sg, ¢x((Pi, DFy)) = dfi, Ther_e is a behavioural c_orrespondgn_ce between the dyna_mlc
Ve((DF1, Q1)) = qu, Ye((Rk, DJ1)) = dj1g, be((DJ1, multl_-ch0|ce and d_yr_1am|c synch_ronlzm_g merge pattern which
P)) = ps, eval is a channel for evaluating the numberconS'St_S of the act_|v_|tyal, dynamic mult|-ch0|ceDM01_and

of concurrent activities an® < i < n for k = 1,...,i. dynamic synchronizing merdeSynM , and the model in the
There is a behavioural correspondence between the dynarfigalculus. _

fork and dynamic join pattern consisting of the activiy, ~Proof sketch.Two cases are considered.

dynamic forkDF; and dynamic joinD.J; and ther-calculus Case 1. We assume that the directed edde®/C', Q) for

specification. k =1,...,i are not associated with guard-conditions. The
Proof sketch. The execution oP; and evaluation of degree Proof is similar to Case 1 of Proposition 2.

of parallelism are related to a sequence of transitiodss Cas€ 2. We assume thati, ..., gc, € Sac, | extract-
e”ﬂ” rs(@ GC({gci, ..., gci}, true) | > 1 and P ((DMC1, Qr))

—Q where rs is a channel created byP;. The

sending and receivingﬁf control flows alotg,, DF';) cor-

respond to transitions”% and % The multiple outgoing

= gci. The proof is analogous to Case 2 of Propositionl 2.

Proposition 4. Let Py, P>, Q1, ..., Qn, R1, ..., R, €
: Sa, DF1 € Spr, DMM, € Spwn, (Py, DF1), (DF1, Q).
control flows ofDF; are related to transitions-2s for j = 1 (}?k D]\/llMl)D?DMMl 1P2) é)MSI\g (wEl((P1 %}(ﬂl)) 1:%;3
to i. The receipt of control flows byJ; and passing of 'l/)E(,(DFl Q,;)) _— VE((Re ,DMMl))’ — dmmy g,

control flow to P, behaviourally correspond to a sequenc%E((DMMhPQ)) — po, eval is a channel fo:determining

of transitions—=% 5 ... T P2 for j =1 to . Thus, the the number of concurrent activities arti < i < n for
N———

i times k=1,...,i. There is a behavioural correspondence between
behavioural correspondence holds. U the dynamic fork and dynamic multi-merge pattern which
comprises the activity?;, dynamic fork DF'; and dynamic
Proposition 2. Let Py, Py, Q1, ..., Qn, Ri, ..., R, multi-mergeDMM and ther-calculus implementation.

€ Sa, DEC, € Sprc, DSM, € Spswm, (P1, DEC:), Proof sketch. Analogous to that of Proposition 1. O
DE DSM DSM ., P P, .
(DECY, Q), (Rk, DSM1), (DSMy, P) € Su, vu((P, Proposition 5. Let Py, P, Q1, ..., Qu, R1, ..., R, € Sa,

DEC})) = decy, ¥p((DEC, = qx, Yu((Ry, DSM

= dsézz ks 1/1131((11/7)?](\;1,&)1) gcgz, e%ald}ii(fa éhannellz‘g)r DMC\ € Spuc, DMM, € Spaw, (Pr, DMCy), (DMCh,

determining the number of alternative activities ahd< i ?kzl’ (B, DM]g]l&’O(DMMl’?) € Sk, %((%}\/[?/[MQQ

<nfork=1,...,4 Thereis a behavioural correspondence. *""“1’ wE((DMMl’ gk))__ k> wf.((k’h Ilf)) o

between the dynamic exclusive choice and dynamic sim !‘F}g;’iﬁgﬁﬁgnumbé; o??’a)lt;rﬁ ;ii\izaa;iv?ti(ésagﬁn; .OL e

mer rn comprising th ivi namic exclusiv . ! L=
erge pattem comprising the activifyt, dynamic exclusive for k = 1,...,i. There is a behavioural correspondence

choice DEC'; and dynamic simple mergBSM, and ther-) . .) .
1 y P 985, ™ between the dynamic multi-choice and dynamic multi-merge

calculus representation. 2 - . . .
pattern consisting of the activity?,, dynamic multi-choice

Proof sketch. We consider 2 cases. . .
Case 1. We assume that the directed edd@BC, Qy,) for gg{gslei?stig{]namlc multi-merg®M2; and ther-calculus

k=1, ..., are not associated with guard-conditions. Th ¢ sketch. Th f is similar to th f of P .
behaviour of P, corresponds to a sequence of transitiontl(;OO SKelch. The proot s similar to the proot of Fropost-

T evL(rs) rs(z)

— wherers is a new channel used for com- -
munication. The activation dPEC is related to transitions Proposition 6. Let P1, Py, Qu, ..., Qn, Ri, ..., Ry €
4 and %}, The enablement of one of the outgoing edgt%gﬁk’ Dg;[EiDF(’DDIg?l iD‘S;DIéI‘]:gépl;/iﬁg’ (%1;1’)?’“&
qi) 1) 1, 2 3 1, 1 =
behaviourally corresponds to one of the transitiods for dfy, ve((DF1, Qi) = ar, ¥u((Ry, DHLJ,)) = dhijik,

n 2. O

j =1, ..., 4 The incoming and outgoing cogtrol flows Owa((DHIJl, P5)) = pa, eval is a channel for determining
DSM, correspond to a sequence of transitions—’ 2 the number of alternative activities, < h < n -1,

for j = 1, ..., i. Thus, the behavioural correspondence <: <nandh <:fork=1,...,:. Thereis a behavioural
holds. correspondence between the dynamic fork and dynamic h-
Case 2. We assume thaty, ..., gc, € Scc, | extract- out-of-i join pattern which is composed of the activify,

GC({gc, ..., gci}, true) | = 1 and @gc((DEC, Q) = dynamic forkDF; and dynamic h-out-of-i joilDHIJ; and

gci. The proof is the same as Case 1 with the exceptitime r-calculus specification.

that the evaluation of the guard-conditiogs, . .., gc; and Proof sketch. Analogous to Proposition 1. O

the mumple OUIQOIng Cor;?T?Lle;:)VJ\,IJS(yOSDE‘Fl Con;_espond PrOpOSition 7. Let Pl, Pg, P3, Ql, ey Qn S SA, gci, gca

to sequences of transitions™—" "= = and . Sces (P, Q1), (Qns Qusr), (Qi,), (P, Py), (Ps,

@ _ _ ¢ times Ps) € Sg, ve((P1, Q1)) = q1, Ye((Qk, Qr+1)) = qr+1,
forj=1,...,1 O Ye((Qi;, P2)) = p2, Ye((P2, P1)) = p1, Ye((P, P3)) =

[zj=true]
o rd

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

p3, eval is a channel for determining the number of activities[4] OMG, “Business Process Model and Notation (BPMN), version 2.0,”

to perform in sequence and<i<nfork=1,...,i —1.

There is a behavioural correspondence between the dynarng

structured loop pattern and the thecalculus representation.
Proof sketch. By the same argument as Proposition 111

Proposition 8. Let P, Q1, ..., Qu, Ry, ..., R, € Sa,
(P17Qk)a (Qk;Rk) S SE7 wE((P17 Qk)) = gk, wE((Q/W

Ry)) = ri, eval is a channel for determining the number

of alternative activitiesgi™, ..., ¢-*¥ are channels of);,
., @ for interacting with the environmentyithdraw is a

channel for withdrawal of non-selected alternative activitiegg)

and2 < i < nfork =1,...,i. There is a behavioural

correspondence between the dynamic deferred choice pattﬁgf

and ther-calculus implementation.
Proof sketch. Analogous to Proposition 1. O

Proposition 9. Let Py, P2, Q1, ..., Qn € Sa, (Qk, P2) €
Su, Ye((Qk, P2)) = p2, eval is a channel for determining
the number of unordered activities artd < ¢ < n for

k=1,...,i. There is a behavioural correspondence between

the dynamic interleaved parallel routing and thecalculus
specification.
Proof sketch. By the same argument as Proposition 1]

VII. CONCLUSIONS

Our work is characterized by the capability to capture the
notion of dynamics in the context of workflow managemen[ﬂ
It is regarded as an extension to the works of van der Aalst
et al. and Russell et al. This paper, along with other previo[ig]
studies, offers collections of workflow patterns to be used in

business process management.

A number of basic dynamic workflow patterns has bedis]
presented in our work. With this basic dynamic workflo\\j/éa]

patterns in place, we have further introduced a set of deri

dynamic workflow patterns and defined their corresponding
m-calculus representations. The main contributions of th[iés,O

work are:

(i) this is a first attempt to study workflow patterns whose

structures can be dynamically reconfigured; and
(ii) the proposed patterns are encoded in thealculus

in lieu of ordinary workflow languages for facilitating[22]
formal analysis using various software tools [44], [45],

[46], [47].

other formalisms.

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Languagéa7]

Architectures Springer-Verlag, 2007.

[2] N. Russell, A. ter Hofstede, W. van der Aalst, and N. Mulyar, “Work{28]
flow control-flow patterns: A revised view,” BPM Center, Tech. Rep.
BPM-06-22, 2006, http://www.workflowpatterns.com/documentation/

documents/BPM-06-22.pdf; accessed December 16, 2007.

[3] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,

“Workflow patterns,” Distributed and Parallel Databasesvol. 14,
no. 3, pp. 5-51, 2003.

Jan. 2011, http://www.omg.org/spec/BPMN/2.0; accessed May 23,
2011.

R. Milner, “The polyadicr-calculus: A tutorial,” inLogic and Algebra

of Specification, Proceedings of International NATO Summer School
vol. 94. Springer-Verlag, 1993, pp. 203-246.

——, Communicating and Mobile Systems: theCalculus Cam-
bridge University Press, 1999.

V. Lam, “Dynamic workflow patterns,” inProceedings of 2008 In-
ternational Conference on Enterprise Information Systems and Web
Technologies. ISRST, 2008, pp. 160-166.

B. Weber, S. Sadig, and M. Reichert, “Beyond rigidity — dynamic
process lifecyle supportComputer Science: Research and Develop-
ment vol. 23, no. 2, pp. 47-65, 2009.

J. Mille, K. Bohm, N. Roper, and T. Sinder, “Building conference
proceedings requires adaptable workflow and content management,”
in VLDB '06, 2006, pp. 1129-1139.

G. Decker, O. Kopp, F. Leymann, and M. Weske, “Interacting services:
From specification to executionPata and Knowledge Engineering
vol. 68, no. 10, pp. 946972, 2009.

G. Decker, O. Kopp, and F. Puhlmann, “Service referrals in BPEL-
based choreographies,” 2ind European Young Researchers Workshop
on Service Oriented Computing007, pp. 25-30.

M. Pesic, M. Schonenberg, N. Sidorova, and W. van der Aalst,
“Constraint-based workflow models: Change made easy,OifM
2007, ser. LNCS 4803, 2007, pp. 77-94.

W. van der Aalst, M. Pesic, and M. Schonenberg, “Declarative work-
flows: Balancing between flexibility and suppor€omputer Science:
Research and Developmenbl. 23, no. 2, pp. 99-113, 2009.

A. Barros, G. Decker, M. Dumas, and F. Weber, “Correlation patterns
in service-oriented architectures,” IFASE 2007 ser. LNCS 4422,
2007, pp. 245-259.

D. Yang and S. Zhang, “Approach for workflow modeling usimng
calculus,”Journal of Zhejiang University SCIENCEol. 4, no. 6, pp.
643-650, 2003.

F. Puhimann and M. Weske, “Using thecalculus for formalizing
workflow patterns,” inBusiness Process Management 200805, pp.
153-168.

G. Xue, J. Lu, and S. Yao, “Investigating workflow patterns in term of
pi-calculus,” in11th International Conference on Computer Supported
Cooperative Work in DesignIEEE Computer Society, 2007, pp. 823—
827.

OMG, “Business process modeling notation specification,” Feb. 2006,
http://www.bpmn.org/; accessed December 28, 2007.

D. Yang and S. Zhang, “Using-calculus to formalize UML activity
diagram for business process modeling,’lioth IEEE International
Conference and Workshop on the Engineering of Computer-based
Systems |IEEE Computer Society, 2003, pp. 47-54.

V. Lam, “On m-calculus semantics as a formal basis for UML
activity diagrams,International Journal of Software Engineering and
Knowledge Engineeringvol. 18, no. 4, pp. 541-567, 2008.

P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede, and
N. Russell, “Pattern-based analysis of the control-flow perspective of
UML activity diagrams,” inER 2005 2005, pp. 63-78.

N. Russell, W. van der Aalst, A. ter Hofstede, and P. Wohed, “On
the suitability of UML 2.0 activity diagrams for business process
modelling,” in APCCM 2006 2006, pp. 95-104.

. . . . [23] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst, “Work-
The result of this study is not only of theoretical interest,

but also has considerable practical benefits. It serves as
a solid basis for the soundness verification of workflows,
constructed using dynamic workflow patterns. An additional
interesting avenue of investigation is to explore how the
dynamic workflow patterns can be expressed in terms fﬂg]

flow data patterns: Identification, representation and tool support,” in
24th International Conference on Conceptual Modelisgr. LNCS
3716, 2005, pp. 353-368.

] N. Russell, W. van der Aalst, A. ter Hofstede, and D. Edmond, “Work-

flow resource patterns: Identification, representation and tool support,”
in 17th Conference on Advanced Information Systems Engineseng
LNCS 3520, 2005, pp. 216-232.

A. Barros, M. Dumas, and A. ter Hofstede, “Service interaction
patterns,” in3rd International Conference on Business Process Man-
agementser. LNCS 3649, 2005, pp. 302-318.

A. Lanz, B. Weber, and M. Reichert, “Time patterns for process-aware
information systems,Requirements Engineeringol. 19, no. 2, pp.
113-141, 2014.

F. Puhlmann, “Why do we actually need the pi-calculus for business
process management?” BIS 2006, pp. 77-89.

W. van der Aalst, “Pi calculus versus Petri nets: Let us eat “humble
pie” rather than further inflate the “pi hype"BPTrendsvol. 3, no. 5,

pp. 1-11, 2005.

V. Lam, “Recovering business process models with process patterns,”
in Uncovering Essential Software Artifacts through Business Process
Archeology R. Pérez-Castillo and M. Piattini, Eds. 1GI Global, 2014,
ch. 9, pp. 223-249.

(Advance online publication: 10 July 2015)

TAENG International Journal of Computer Science, 42:3, [JCS 42 3 04

[30] ——, “A formal execution semantics and rigorous analyt&aproach
for communicating uml statechart diagrams.” Ph.D. dissertation, Uni-
versity of Bath, 2006, also available as Technical Report, University
of Bath, ISSN 1740-9497, 2006.

[31] R. Milner, Communication and Concurrency Prentice Hall, 1989.

[32] D. Sangiorgi, “Expressing mobility in process algebras: First order
and higher-order paradigms,” Ph.D. dissertation, Computer Science
Department, University of Edinburgh, 1993.

[33] J. Parrow, “An introduction to the-calculus,” inHandbook of Process
Algebra A. Bergstra, J.A. Ponse and S. Smolka, Eds. Elsevier
Science, 2001, ch. 8, pp. 479-543.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns:
Elements of Reusable Object-Oriented Softwaré\ddison-Wesley,
1995.

[35] T. Gschwind, J. Koehler, and J. Wong, “Applying patterns during
business process modeling,” BPM 2008 ser. LNCS 5240, 2008,
pp. 4-19.

[36] OMG, “UML 2.0 superstructure specification,” Aug. 2005, http://www.
omg.org; accessed July 28, 2006.

[37] G. Decker, F. Puhimann, and M. Weske, “Formalizing service inter-
actions,” inBPM 2006 ser. LNCS 4102, 2006, pp. 414-419.

[38] H. Overdick, F. Puhlmann, and M. Weske, “Towards a formal model
for agile service discovery and integration,” iI8SOC Workshop on
Dynamic Web Processe2005, http://www.icsoc.org; accessed June
18, 2011.

[39] M. Dumas, A. Grosskopf, T. Hettel, and M. Wynn, “Semantics of
standard process models with OR-joins,” @TM 2007 ser. LNCS
4803, 2007, pp. 41-58.

[40] H. Vdlzer, “A new semantics for the inclusive converging gateway in
safe processes,” iBPM 201Q ser. LNCS 6336, 2010, pp. 294-309.

[41] B. Kiepuszewski, A. ter Hofstede, and C. Bussler, “On structured
workflow modelling,” inCAISE 2000ser. LNCS 1789, 2000, pp. 431—
445,

[42] A. Polyvzanyy, L. Garcia-Bafiuelos, and M. Dumas, “Structuring
acyclic process models,” iBPM 2010 ser. LNCS 6336, 2010, pp.
276-293.

[43] A. Bog and F. Puhlmann, “A tool for the simulation af-calculus
systems,” inOpen.BPM 2006: Geschaftsprozessmanagement mit Open
Source-Technologier2006.

[44] A. Bog, F. Puhimann, and M. Weske, “The PiVizTool: Simulat-
ing choreographies with dynamic binding,” iDemo Session of
the 5th International Conference on Business Process Manage-
ment 2007, http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhimann/
bpm2007-piviztool.pdf; accessed February 17, 2008.

[45] S. Briais, The ABC User’s Guide2005, http://lamp.epfl.ch/sbriais/
abc/abcug.pdf; accessed February 17, 2008.

[46] U. Frendrup and J. Jensef,User Manual for the OBC Workbench
Department of Computer Science, Aalborg University, 2001, http://
www.cs.auc.dk/research/FS/ny/PR-pi; accessed January 20, 2005.

[47] B. Victor and F. Moller, “The mobility workbench: A tool for the
m-calculus,” iNCAV '94, ser. LNCS 818, 1994, pp. 428-440.

(Advance online publication: 10 July 2015)

