
A Simple Polynomial Time Algorithm for the
Generalized LCS Problem with Multiple Substring

Exclusive Constraints
Daxin Zhu, Lei Wang, Jun Tian∗ and Xiaodong Wang∗

Abstract—In this paper, we present a simple polynomial
time algorithm for a generalized longest common subsequence
problem with multiple substring exclusion constraints. Given
two sequences X and Y of lengths m and n, respectively, and
a set of constraint strings P of total length r, we are to find
a common subsequence z of X and Y which excludes each of
strings in P as a substring and the length of z is maximized.
The problem was declared to be NP-hard [1], but we finally
found that this is not true. A new polynomial time solution for
this problem is presented in this paper. The correctness of the
new algorithm is proved. The time complexity of our algorithm
is analyzed.

Index Terms—generalized longest common subsequence, NP-
hard problems, dynamic programming, time complexity

I. INTRODUCTION

In this paper, we consider a generalized longest common
subsequence problem with multiple substring exclusive con-
straints. The longest common subsequence (LCS) problem
is a well-known measurement for computing the similarity
of two strings, and it is crucial in various applications. In
this problem, we are interested in a longest sequence which
is a subsequence of both sequences. The problem is well
studied and is used in many applications, like DNA and
protein analysis, text information retrieval, file comparing,
music information retrieval, or spelling correction.

The most referred algorithm, proposed by Wagner and
Fischer [29], solves the LCS problem by using a dynamic
programming algorithm in quadratic time. Other advanced
algorithms were proposed in the past decades [2]–[4], [16],
[17], [19], [21].

Manuscript received January 18, 2015; revised May 22, 2015.
This work was supported in part by the Natural Science Foundation of

Fujian under Grant No.2013J01247, Fujian Provincial Key Laboratory of
Data-Intensive Computing and Fujian University Laboratory of Intelligent
Computing and Information Processing.

Daxin Zhu is with Quanzhou Normal University, Quanzhou,
China.(email:dex@qztc.edu.cn)

Lei Wang is with Facebook, 1 Hacker Way, Menlo Park, CA 94052, USA.
Jun Tian is with Fujian Medical University, Fuzhou, China.
Xiaodong Wang is with Fujian University of Technology, Fuzhou, China.
∗Corresponding author.

If the number of input sequences is not fixed, the problem
to find the LCS of multiple sequences has been proved to
be NP-hard [23]. Some approximate and heuristic algorithms
were proposed for these problems [6], [25].

Therefore, the constrained LCS (CLCS) problem, a recent
variant of the LCS problem which was first addressed by
Tsai (2003), has received much attention.

There are also a lot of generalizations of this similarity
measure. Applying the constraints to the LCS problem is
meaningful for some biological applications [24]. One of the
recent variants of the LCS problem, the constrained longest
common subsequence (CLCS) which was first addressed by
Tsai [27], has received much attention. It generalizes the LCS
measure by introduction of a third sequence, which allows
to extort that the obtained CLCS has some special properties
[26]. For two given input sequences X and Y of lengths m
and n, respectively, and a constrained sequence P of length
r, the CLCS problem is to find the common subsequences
Z of X and Y such that P is a subsequence of Z and the
length of Z is the maximum.

The most referred algorithms were proposed independently
[5], [8], which solve the CLCS problem in O(mnr) time
and space by using dynamic programming algorithms. Some
improved algorithms have also been proposed [11], [18]. The
LCS and CLCS problems on the indeterminate strings were
discussed in [20]. Moreover, the problem was extended to the
one with weighted constraints, a more generalized problem
[24].

Recently, a new variant of the CLCS problem, the re-
stricted LCS problem, was proposed [14], which excludes
the given constraint as a subsequence of the answer. The
restricted LCS problem becomes NP-hard when the number
of constraints is not fixed.

Some more generalized forms of the CLCS problem, the
generalized constrained longest common subsequence (GC-
LCS) problems, were addressed independently by Chen and
Chao [7]. For the two input sequences X and Y of lengths
n and m, respectively, and a constraint string P of length
r, the GC-LCS problem is a set of four problems which

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

are to find the LCS of X and Y including/excluding P as
a subsequence/substring, respectively. The four generalized
constrained LCS [7] can be summarized in Table 1.

Table I
THE GC-LCS PROBLEMS

Problem Output

SEQ-IC-LCS
The longest common subsequence of X and Y

including P as a subsequence

STR-IC-LCS
The longest common subsequence of X and Y

including P as a substring

SEQ-EC-LCS
The longest common subsequence of X and Y

excluding P as a subsequence

STR-EC-LCS
The longest common subsequence of X and Y

excluding P as a substring

For the four problems in Table 1, O(mnr) time algorithms
were proposed [7]. However, their algorithm for STR-EC-
LCS is not correct. In a recent paper, a correct O(mnr) time
dynamic programming algorithm was proposed [30]. For all
four variants in Table 1, O(r(m+n) + (m+n) log(m+n))

time algorithms were proposed by using the finite automata
[12]. Recently, a quadratic algorithm to the STR-IC-LCS
problem was proposed [10], and the time complexity of [12]
was pointed out not correct.

The four GC-LCS problems can be generalized further to
the cases of multiple constraints. In these generalized cases,
the single constrained pattern P will be generalized to a set of
d constraints P = {P1, · · · , Pd} of total length r, as shown
in Table 2.

Table II
THE MULTIPLE-GC-LCS PROBLEMS

Problem Output

M-SEQ-IC-LCS
The longest common subsequence of X and Y

including Pi ∈ P as a subsequence

M-STR-IC-LCS
The longest common subsequence of X and Y

including Pi ∈ P as a substring

M-SEQ-EC-LCS
The longest common subsequence of X and Y

excluding Pi ∈ P as a subsequence

M-STR-EC-LCS
The longest common subsequence of X and Y

excluding Pi ∈ P as a substring

The problem M-SEQ-IC-LCS has been proved to be NP-
hard in [13]. The problem M-SEQ-EC-LCS has also been
proved to be NP-hard in [14], [28]. In addition, the problems
M-STR-IC-LCS and M-STR-EC-LCS were also declared to
be NP-hard in [7], but without a proof. The exponential-
time algorithms for solving these two problems were also
presented in [7].

We will discuss the problem M-STR-EC-LCS in this
paper. The failure functions in the Knuth-Morris-Pratt algo-
rithm [22] for solving the string matching problem have been
proved very helpful for solving the STR-EC-LCS problem.
It has been found by Aho and Corasick [1] that the failure

functions can be generalized to the case of keyword tree
to speedup the exact string matching of multiple patterns.
This idea can be very helpful in our dynamic programming
algorithm. This is the main idea of our new algorithm. A
polynomial time algorithm is presented for the M-STR-EC-
LCS problem based on this observation. The time complexity
of our new dynamic programming algorithm for the M-STR-
EC-LCS problem is O(nmr), where n and m are the lengths
of the two given input strings, and r is the total length of d
constraint strings. This fact proves by reduction to absurdity
that the M-STR-EC-LCS problem is not NP-hard.

The organization of the paper is as follows.
In the following 4 sections we describe our presented

dynamic programming algorithm for the M-STR-EC-LCS
problem.

In Section 2 the preliminary knowledge for presenting our
algorithm for the M-STR-EC-LCS problem is discussed. In
Section 3 we give a new dynamic programming solution for
the M-STR-EC-LCS problem with time complexity O(nmr),
where n and m are the lengths of the two given input strings,
and r is the total length of d constraint strings. In Section 4
we discuss the issues to implement the algorithm efficiently.
Some concluding remarks are in Section 5.

II. PRELIMINARIES

A sequence is a string of characters over an alphabet
∑

.
A subsequence of a sequence X is obtained by deleting zero
or more characters from X (not necessarily contiguous). A
substring of a sequence X is a subsequence of successive
characters within X .

For a given sequence X = x1x2 · · ·xn of length n, the ith
character of X is denoted as xi ∈

∑
for any i = 1, · · · , n.

A substring of X from position i to j can be denoted as
X[i : j] = xixi+1 · · ·xj . If i 6= 1 or j 6= n, then the substring
X[i : j] = xixi+1 · · ·xj is called a proper substring of X .
A substring X[i : j] = xixi+1 · · ·xj is called a prefix or a
suffix of X if i = 1 or j = n, respectively.

For the two input sequences X = x1x2 · · ·xn and Y =

y1y2 · · · ym of lengths n and m, respectively, and a set of d
constraints P = {P1, · · · , Pd} of total length r, the multiple
STR-EC-LCS problem M-STR-EC-LCS is to find an LCS of
X and Y excluding each of constraint Pi ∈ P as a substring.

The most important difference between the problems STR-
EC-LCS and M-STR-EC-LCS is the number of constraints.
For ease of discussion, we will make the following two
assumptions on the constraint set P .

Assumption 1: There are no duplicated strings in the con-
straint set P .

Assumption 2: No string in the constraint set P is a proper
substring of any other string in P .

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

Keyword tree [2], [7] is a main data structure in our
dynamic programming algorithm to process the constraint
set P of the M-STR-EC-LCS problem.

Definition 1: The Keyword tree for set P is a rooted
directed tree T satisfying 3 conditions: 1. each edge is
labeled with exactly one character; 2. any two edges out
of the same node have distinct labels; and 3. every string Pi

in P maps to some node v of T such that the characters on
the path from the root of T to v exactly spell out Pi, and
every leaf of T is mapped to some string in P .

For example, Figure 1(a) shows the keyword tree T for
the constraint set P = {aab, aba, ba}, where d = 3, r = 8.
Clearly, every node in the keyword tree corresponds to a
prefix of one of the strings in set P , and every prefix of a
string Pi in P maps to a distinct node in the keyword tree T .
The keyword tree for set P of total length r of all strings can
be easily constructed in O(r) time for a constant alphabet
size. Because no two edges out of any node of T are labeled
with the same character, the keyword tree T can be used to
search for all occurrences in a text X of strings from P .

The failure functions in the Knuth-Morris-Pratt algorithm
for solving the string matching problem can be generalized to
the case of keyword tree to speedup the exact string matching
of multiple patterns as follows.

In order to identify the nodes of T , we assign numbers
0, 1, · · · , t−1 to all t nodes of T in their preorder numbering.
Then, each node will be assigned an integer i, 0 ≤ i < t, as
shown in Fig.1. For each node numbered i of a keyword tree
T , the concatenation of characters on the path from the root
to the node i spells out a string denoted as L(i). The string
L(i) is also called the label of the node i in the keyword tree
T . For any node i of T , define lp(i) to be the length of the
longest proper suffix of string L(i) that is a prefix of some
string in T .

It can be verified readily that for each node i of T , if
A is an lp(i)-length suffix of string L(i), then there must
be a unique node pre(i) in T such that L(pre(i)) = A. If
lp(i) = 0 then pre(i) = 0 is the root of T .

Definition 2: The ordered pair (i, pre(i)) is called a fail-
ure link.

The failure link is a direct generalization of the failure
functions in the KMP algorithm. For example, in Figure 1(a),
failure links are shown as pointers from every node i to node
pre(i) where lp(i) > 0. The other failure links point to the
root and are not shown.

The failure links of T define actually a failure function
pre for the constraint set P .

For example, for the nodes i = 1, 2, 3, 4, 5, 6, 7 in Fig.1,
the corresponding values of failure function are pre(i) =

0, 1, 4, 6, 7, 0, 1, as shown in Fig.1(a).

The failure function pre is used to speedup the search for
all occurrences in a text X of strings from P . As stated in
[7], the failure function pre can be computed in O(r) time.

In the keyword tree application in our dynamic program-
ming algorithm, a function σ will be mentioned frequently.
For a string S and a given keyword tree T , if the label L(i)

of a node numbered i is also a suffix of S, then the node i
is called a suffix node of S in T .

Definition 3: For any string S and a given keyword tree
T , the unique suffix node of S in T with maximum depth is
denoted as σ(S). That is:

|L(σ(S))| = max
0≤i<t

{|L(i)||L(i) is a suffix of S}
(1)

where t is the number of nodes in T .
For example, if S = aabaaabb, then in the keyword tree

T of Fig.1, the node 6 is the only suffix node of S in T ,
therefore σ(S) = 6.

In our keyword tree application, we are only interested in
the nonleaf nodes of the tree. So, we can renumber the nodes
of the tree only for nonleaf nodes, omitting the leaf nodes of
the tree, as shown in Fig.1(b). After renumbering, the failure
function of the tree will also be changed accordingly.

If a string Pi in the constraint set P is a proper substring
of another string Pj in P , then an LCS of X and Y excluding
Pi must also exclude Pj . For this reason, the constraint string
Pj can be removed from constraint set P without changing
the solution of the problem. For example, the string ba is
a proper substring of the string aba in the keyword tree of
Fig.1(b). Therefore, the string aba can be removed from the
keyword tree, as shown in Fig.1(c). We will show shortly
how to remove these redundant strings from constraint set
P in O(r) time. In the following sections, discussions are
based on the Assumptions 1 and 2 on the constraint set P .
The number of nonleaf nodes of the keyword tree for the
constraint set P is denoted as s. In the worst case s = r−d.
The root of the keyword tree is numbered 0, and the other
nonleaf nodes are numbered 1, 2, · · · , s−1 in their preorder
numbering. For example, in Fig.1(c), there are s = 4 nonleaf
nodes in T . The labels for the four nonleaf nodes are L(0) =

∅, L(1) = a, L(2) = aa and L(3) = b respectively.
The symbol ⊕ is also used to denote the string concate-

nation. For example, if S1 = aaa and S2 = bbb, then it is
readily seen that S1 ⊕ S2 = aaabbb.

III. A SIMPLE DYNAMIC PROGRAMMING ALGORITHM

In the following discussions, we will call ’a sequence
excluding each of constraint string in P as a substring’ a
sequence excluding P for short.

Definition 4: Let Z(i, j, k) denote the set of all LCSs of
X[i : n] and Y [j : m] such that for each z ∈ Z(i, j, k),

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

Figure 1. Keyword Trees

L(k) ⊕ z excludes P , where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
0 ≤ k < s. The length of an LCS in Z(i, j, k) is denoted as
f(i, j, k).

If we can compute f(i, j, k) for any 1 ≤ i ≤ n, 1 ≤ j ≤
m, and 0 ≤ k < s efficiently, then the length of an LCS of
X and Y excluding P must be f(1, 1, 0).

By using the keyword tree data structure described in the
last section, we can give a recursive formula for computing
f(i, j, k) by the following Theorem.

Theorem 1: For the two input sequences X = x1x2 · · ·xn
and Y = y1y2 · · · ym of lengths n and m, respectively, and a
set of d constraints P = {P1, · · · , Pd} of total length r, let
Z(i, j, k) and f(i, j, k) be defined as in Definition 4. Suppose
a keyword tree T for the constraint set P has been built, and
the s nonleaf nodes of T are numbered in their preorder
numbering. The label of the node numbered k(0 ≤ k < s)

is denoted as L(k). Then, for any 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and 0 ≤ k < s, f(i, j, k) can be computed by the following
recursive formula (2).

where q = σ(L(k)⊕xi), and the boundary conditions are
f(i,m + 1, k) = f(n + 1, j, k) = 0 for any 1 ≤ i ≤ n, 1 ≤
j ≤ m, and 0 ≤ k ≤ s.
Proof.

For any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k < s, suppose
f(i, j, k) = t and z = z1 · · · zt ∈ Z(i, j, k).

First of all, we notice that for each pair (i′, j′), 1 ≤ i′ ≤
n, 1 ≤ j′ ≤ m, such that i′ ≥ i and j′ ≥ j, we have
f(i′, j′, k) ≤ f(i, j, k), since a common subsequence z of
X[i′ : n] and Y [j′ : m] satisfying L(k) ⊕ z excluding P

is also a common subsequence of X[i : n] and Y [j : m]

satisfying L(k)⊕ z excluding P .
(1) In the case of xi 6= yj , we have xi 6= z1 or yj 6= z1.
(1.1)If xi 6= z1, then z = z1 · · · zt is a common subse-

quence of X[i + 1 : n] and Y [j : m] satisfying L(k) ⊕ z
excluding P , and so f(i + 1, j, k) ≥ t. On the other hand,
f(i + 1, j, k) ≤ f(i, j, k) = t. Therefore, in this case we
have f(i, j, k) = f(i+ 1, j, k).

(1.2)If yj 6= z1, then we can prove similarly that in this
case, f(i, j, k) = f(i, j + 1, k).

Combining the two subcases we conclude that in the case
of xi 6= yj , we have

f(i, j, k) = max {f(i+ 1, j, k), f(i, j + 1, k)} .

(2) In the case of xi = yj and q < s, there are also two
subcases to be distinguished.

(2.1)If xi = yj 6= z1, then z = z1 · · · zt is also a common
subsequence of X[i + 1 : n] and Y [j + 1 : m] satisfying
L(k)⊕ z excluding P , and so f(i+ 1, j + 1, k) ≥ t. On the
other hand, f(i+ 1, j + 1, k) ≤ f(i, j, k) = t. Therefore, in
this case we have f(i, j, k) = f(i+ 1, j + 1, k).

(2.2)If xi = yj = z1, then f(i, j, k) = t > 0 and z =

z1 · · · zt is an LCS of X[i : n] and Y [j : m] satisfying
L(k)⊕z excluding P , and thus z′ = z2, · · · , zt is a common
subsequence of X[i + 1 : n] and Y [j + 1 : m] satisfying
L(k)⊕xi⊕ z′ excluding P . If q = σ(L(k)⊕xi), then L(q)

is the longest suffix of L(k) ⊕ xi that is also a label of a
node of the keyword tree T , and therefore z′ = z2, · · · , zt is
also a common subsequence of X[i+1 : n] and Y [j+1 : m]

satisfying L(q)⊕ z′ excluding P . In other words,

f(i+ 1, j + 1, q) ≥ t− 1 = f(i, j, k)− 1. (3)

On the other hand, if L(q) is the longest suffix of L(k)⊕xi,
f(i+ 1, j + 1, q) = s and v = v1 · · · vs ∈ Z(i+ 1, j + 1, q),
then v is an LCS of X[i+ 1 : n] and Y [j+ 1 : m] satisfying
L(q)⊕ v excluding P . In this case v′ = xi⊕ v is a common
subsequence of X[i : n] and Y [j : m] satisfying L(k)⊕xi⊕
v′ excluding P , since L(q) is the longest suffix of L(k)⊕xi
and q < r. Therefore,

f(i, j, k) ≥ s+ 1 = f(i+ 1, j+, q) + 1. (4)

Combining (3) and (4) we have, in this case,

f(i, j, k) = 1 + f(i+ 1, j+, q). (5)

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

f(i, j, k) =

{
max {f(i+ 1, j + 1, k), 1 + f(i+ 1, j + 1, q)} if xi = yj and q < s

max {f(i+ 1, j, k), f(i, j + 1, k)} otherwise
(2)

Combining the two subcases in the case of xi = yj and
q < r, we conclude that the recursive formula (2) is correct
for this case.

(3) In the case of xi = yj and q = s, we must have
xi = yj 6= z1, otherwise L(k) ⊕ z will including the string
L(k)⊕ xi corresponding to a leaf node of the keyword tree
T . Similar to the subcase (2.1), we can conclude that in this
case,
f(i, j, k) = f(i+ 1, j + 1, k)

= max{f(i+ 1, j, k), f(i, j + 1, k)}.
The proof is complete. �

IV. THE IMPLEMENTATION OF THE ALGORITHM

According to Theorem 1, our algorithm for computing
f(i, j, k) is a standard 2-dimensional dynamic programming
algorithm. By the recursive formula (2), the dynamic pro-
gramming algorithm for computing f(i, j, k) can be imple-
mented as the following Algorithm 1.

In Algorithm 1, s is the number of nonleaf nodes of the
keyword tree T for set P . The root of the keyword tree
is numbered 0, and the other nonleaf nodes are numbered
1, 2, · · · , s−1 in their preorder numbering. L(t) is the label
of node numbered t in the keyword tree T .

To implement our algorithm efficiently, the most important
thing is to compte σ(L(k) ⊕ xi) for each 0 ≤ k < s and
xi, 1 ≤ i ≤ n, in line 9 efficiently.

It is obvious that σ(L(k) ⊕ xi) = g if there is an edge
(k, g) out of the node k labeled xi. It will be more complex
to compute σ(L(k)⊕xi) if there is no edge out of the node
k labeled xi. In this case the matched node label has to
be changed to the longest proper suffix of L(k) that is a
prefix of some string in T and the corresponding node h

has an out edge (h, g) labeled xi. Therefore, in this case,
σ(L(k)⊕ xi) = g.

This computation is very similar to the search algorithm in
the keyword tree T for the multiple string matching problem
[2], [7].

With pre-computed prefix function pre, the function
σ(L(k)⊕ ch) for each character ch ∈

∑
and 1 ≤ k ≤ s can

be described as the following Algorithm 2.
To speedup, we can pre-compute a table λ(k, ch) of the

function σ(L(k) ⊕ ch) for each character ch ∈
∑

and 1 ≤
k ≤ s.

When we precompute the prefix function pre, for every
edge (k, g) labeled with character ch, the value of λ(k, ch)

can be assigned directly to g. The other values of the table

Algorithm 1 M-STR-EC-LCS
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths
n and m, respectively, and a set of d constraints P =

{P1, · · · , Pd} of total length r
Output: The length of an LCS of X and Y excluding
P

1: Build a keyword tree T for P
2: for all i, j, k , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k ≤ s

do
3: f(i,m + 1, k) ← 0, f(n + 1, j, k) ← 0 {boundary

condition}
4: end for
5: for i = n down to 1 do
6: for j = m down to 1 do
7: for k = 0 to s do
8: f(i, j, k)← max{f(i+ 1, j, k), f(i, j + 1, k)}
9: q ← σ(L(k)⊕ xi)

10: if xi = yj and q < s then
11: f(i, j, k)← max{f(i+ 1, j + 1, k), 1 + f(i+

1, j + 1, q)}
12: end if
13: end for
14: end for
15: end for
16: return f(1, 1, 0)

Algorithm 2 σ(k, ch)

Input: Integer k and character ch
Output: σ(L(k)⊕ch)

1: while k ≥ 0 do
2: if there is an edge (k, h) labeled ch out of the node

k of T then
3: return h

4: else
5: k ← pre(k)

6: end if
7: end while
8: return 0

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

λ can be computed by using the prefix function pre in the
following recursive algorithm 3.

Algorithm 3 λ(k, ch)

Input: Integer k, character ch
Output: Value of λ(k, ch)

1: if k > 0 and λ(k, ch) = 0 then
2: λ(k, ch)← λ(pre(k), ch)

3: end if
4: return λ(k, ch)

The time cost of computing all values λ(k, ch) of the
table for each character ch ∈

∑
and 1 ≤ k ≤ s by above

preprocessing algorithm is obviously O(s|Σ|). By using this
pre-computed table λ, the value of function σ(L(k) ⊕ ch)

for each character ch ∈
∑

and 1 ≤ k < s can be computed
readily in O(1) time.

With this pre-computed table λ, the loop body of above
algorithm 1 requires only O(1) time. Therefore, our dynamic
programming algorithm for computing the length of an LCS
of X and Y excluding P requires O(nmr) time and O(r|Σ|)
preprocessing time.

Until now we have assumed that our algorithm is im-
plemented under Assumption 1 and Assumption 2 on the
constraint set P . We now describe how to relax the two
assumptions.

If Assumption 1 is violated, then there must be some
duplicated strings in the constraint set P . In this case, we can
first sort the strings in the constraint set P , then duplicated
strings can be removed from P easily and then Assumption
1 on the constraint set P is satisfied. It is clear that removed
strings will not change the solution of the problem.

For Assumption 2, we first notice that a string A in the
constraint set P is a proper substring of string B in P , if
and only if in the keyword tree T of P , there is a directed
path of failure links from a node v on the path from the
root to the leaf node corresponding to string B to the leaf
node corresponding to string A [7]. For example, in Fig.1(a),
there is a directed path of failure links from node 5 to node
7 and thus we know the string ba corresponding to node 7
is a proper substring of string aba corresponding to node 5.

With this fact, if Assumption 2 is violated, we can remove
all super-strings from the constraint set P as follows. We
first build a keyword tree T for the constraint set P , then
mark all nodes passed by a directed path of failure links to a
leaf node in T by using a depth first traversal of T . All the
strings corresponding to the marked leaf node can then be
removed from P . Assumption 2 is now satisfied on the new
constraint set and the keyword tree T for the new constraint
set is then rebuilt. It is not difficult to do this preprocessing
in O(r) time. It is clear that the removed super-strings will

not change the solution of the problem.
If we want to get the answer LCS of X and Y excluding P ,

but not just its length, we can also present a simple recursive
back tracing algorithm for this purpose as the following
Algorithm 4.

Algorithm 4 back(i, j, k)

Comments: A recursive back tracing algorithm to construct
the answer LCS

1: if i > n or j > m then
2: return
3: end if
4: if xi = yj and f(i, j, k) = 1 + f(i+ 1, j + 1, λ(k, xi))

then
5: print xi

6: back(i+ 1, j + 1, λ(k, xi))

7: else if f(i+ 1, j, k) > f(i, j + 1, k) then
8: back(i+ 1, j, k)

9: else
10: back(i, j + 1, k)

11: end if

In the end of our new algorithm, a function call
back(1, 1, 0) will produce the answer LCS accordingly.

Since the cost of the computation λ(k, xi) is O(1), the
algorithm back(i, j, k) will cost O(max(n,m)) in the worst
case.

Finally we summarize our results in the following Theo-
rem.

Theorem 2: The Algorithm 1 solves M-STR-EC-LCS
problem correctly in O(nmr) time and O(nmr) space, with
preprocessing time O(r|Σ|).

V. CONCLUDING REMARKS

We have suggested a new dynamic programming solution
for the M-STR-EC-LCS problem. The M-STR-IC-LCS prob-
lem is another interesting generalized constrained longest
common subsequence (GC-LCS) which is very similar to
the M-STR-EC-LCS problem. The M-STR-IC-LCS problem
is to find an LCS of two main sequences, in which a set of
constraint strings must be included as its substrings. It is not
clear that whether the same technique of this paper can be
applied to this problem to achieve an efficient algorithm. We
will investigate the problem further.

REFERENCES

[1] Aho A.V., Corasick M.J., Efficient string matching: an aid to biblio-
graphic search, Commun ACM 18(6), 1975, pp. 333-340.

[2] Ann H.Y., Yang C.B., Tseng C.T., Hor C.Y., A fast and simple
algorithm for computing the longest common subsequence of run-
length encoded strings, Inform Process Lett 108(11), 2008, pp.360-
364.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

[3] Ann H.Y., Yang C.B., Peng Y.H., Liaw B.C., Efficient algorithms for
the block edit problems, Inf Comput 208(3),2010, pp. 221-229.

[4] Arslan A.N., Egecioglu O., Algorithms for the constrained longest
common subsequence problems, Int J Found Comput Sci 16(6), 2005,
pp. 1099-1109.

[5] Blum C., Blesa M.J., Lpez-Ibnez M., Beam search for the longest
common subsequence problem, Comput Oper Res 36(12), 2009, pp.
3178-3186.

[6] Chen Y.C., Chao K.M., On the generalized constrained longest com-
mon subsequence problems, J Comb Optim 21(3), 2011, pp. 383-392.

[7] Chin F.Y.L.,Santis A.D.,Ferrara A.L.,Ho N.L.,Kim S.K., A simple
algorithm for the constrained sequence problems, Inform Process Lett
90(4), 2004, pp. 175-179.

[8] Crochemore M.,Hancart C., and Lecroq T., Algorithms on strings,
Cambridge University Press, Cambridge, UK, 2007.

[9] Deorowicz S., Quadratic-time algorithm for a string constrained LCS
problem, Inform Process Lett 112(11), 2012, pp. 423-426.

[10] Deorowicz S., Obstoj J., Constrained longest common subsequence
computing algorithms in practice, Comput Inform 29(3), 2010, pp.
427-445.

[11] Farhana E., Ferdous J., Moosa T., Rahman M.S., Finite automata based
algorithms for the generalized constrained longest common subse-
quence problems, In: Proceedings of the 17th international conference
on string processing and information retrieval, SPIRE10, Los Cabos,
Mexico, 2010, pp. 243-249.

[12] Gotthilf Z., Hermelin D., Lewenstein M., Constrained LCS: hardness
and approximation. In: Proceedings of the 19th annual symposium on
combinatorial pattern matching, CPM’08, Pisa, Italy, 2008, pp. 255-
262.

[13] Gotthilf Z., Hermelin D., Landau G.M., Lewenstein M., Restricted
LCS. In: Proceedings of the 17th international conference on string
processing and information retrieval, SPIRE’10, Los Cabos, Mexico,
2010, pp. 250-257.

[14] Gusfield, D.,Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
Cambridge, UK, 1997.

[15] Hirschberg D.S., Algorithms for the longest common subsequence
problem, J ACM 24(4), 1977, pp. 664-675.

[16] Iliopoulos C.S., Rahman M.S., New efficient algorithms for the LCS
and constrained LCS problems, Inform Process Lett 106(1), 2008, pp.
13-18.

[17] Iliopoulos C.S., Rahman M.S., A new efficient algorithm for comput-
ing the longest common subsequence, Theor Comput Sci 45(2), 2009,
pp. 355-371.

[18] Iliopoulos C.S., Rahman M.S., Rytter W., Algorithms for two versions
of LCS problem for indeterminate strings, J Comb Math Comb Comput
71, 2009, pp. 155-172.

[19] Iliopoulos C.S., Rahman M.S., Vorcek M., Vagner L., Finite automata
based algorithms on subsequences and supersequences of degenerate
strings, J Discret Algorithm 8(2), 2010, pp. 117-130.

[20] Knuth D.E., Morris J.H.Jr, Pratt V., Fast pattern matching in strings,
SIAM J Comput 6(2), 1977, pp. 323-350.

[21] Maier D., The complexity of some problems on subsequences and
supersequences, J ACM 25, 1978, pp. 322-336.

[22] Peng Y.H., Yang C.B., Huang K.S., Tseng K.T., An algorithm and
applications to sequence alignment with weighted constraints, Int J
Found Comput Sci 21(1),2010, pp. 51-59.

[23] Shyu S.J., Tsai C.Y., Finding the longest common subsequence for
multiple biological sequences by ant colony optimization, Comput
Oper Res 36(1), 2009, pp. 73-91.

[24] Tang C.Y., Lu C.L., Constrained multiple sequence alignment tool de-
velopment and its application to RNase family alignment, J Bioinform
Comput Biol 1, 2003, pp. 267-287.

[25] Tsai Y.T., The constrained longest common subsequence problem,
Inform Process Lett 88(4), 2003, pp. 173-176.

[26] Tseng C.T., Yang C.B., Ann H.Y., Efficient algorithms for the longest

common subsequence problem with sequential substring constraints,
J Complexity 29, 2013, pp. 44-52.

[27] Wagner R., Fischer M., The string-to-string correction problem, J ACM
21(1), 1974, pp. 168-173.

[28] Wang L., Wang X., Wu Y., Zhu D., A dynamic programming solution
to a generalized LCS problem, Inform Process Lett 113(1), 2013, pp.
723-728.

[29] Yan J., Li M., and Xu J., An Adaptive Strategy Applied to Memetic
Algorithms, IAENG International Journal of Computer Science, 42:2,
pp73-84, 2015.

[30] Zhu D., Wang L., Tian J. and Wang X., Efficient Algorithms for
a Generalized Shuffling Problem, IAENG International Journal of
Computer Science, 41:4, pp237-248, 2014.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_06

(Advance online publication: 10 July 2015)

__

