
 

Abstract—This paper introduces an effective Particle Swarm 
Optimization (PSO) based algorithm for solving Traveling 
Salesman Problem (TSP).  Among prominent PSO based 
methods, the proposed Velocity Tentative PSO (VTPSO) 
considers Swap Sequence (SS) for velocity operation of the 
particles. A velocity SS is a collection of several Swap Operators 
(SOs) where each one indicates two positions in a tour those 
might be swapped. The existing methods apply all the SOs of the 
calculated SS on a solution to get a new solution. Conversely, the 
proposed VTPSO considers the calculated SS as the tentative 
velocity and checks the tentative solutions when applies the SOs 
one after another sequentially. The best tentative tour with a 
portion of SS is considered as the next solution point of a particle 
in VTPSO. Such intermediate tentative tour evaluation not only 
helps to get better solution but also reduces overall 
computational time. The experimental results on a large number 
of benchmark TSPs reveal that the proposed VTPSO is able to 
produce better tour compared to other prominent existing 
methods.  
 

Index Terms—Swap Sequence, Partial Search, Particle 
Swarm Optimization, Traveling Salesman Problem. 
 

I. INTRODUCTION 

ARTICLE Swarm Optimization (PSO) is a popular 
optimization method on metaphor of social behavior of 

flocks of birds or schools of fishes [1-3]. PSO is a simple 
model of social learning whose emergent behavior has been 
found popularity in solving difficult optimization problems. 
In PSO, each particle represents a potential solution and 
moves to a new position (i.e., search a new point) at every 
iteration based on the calculated velocity. The processes of 
iteration continue until the stopping criterion is reached.  

PSO has been investigated on various continuous [2-6] and 
combinatorial optimization tasks [7-18]. PSO was proposed 
for continuous problems (e.g., function optimization) and has 
been proven to solve such problems effectively [2-3]. In 
function optimization domain, a particle represents a position 
in the multidimensional search space. At every step, each 

particle changes position based on its velocity depending on 
its previous best position and the best position particles ever 
visited. 

 PSO has also been found as an efficient method to solve 
combinatorial problems such as Traveling Salesman Problem 
(TSP) [7-16]. TSP is a well-studied combinatorial 
optimization problem in which a salesman is required to 
complete a tour with the minimum distance visiting all the 
assigned cities exactly for once. To solve TSP with PSO, each 
particle represents a complete tour as a feasible solution and 
velocity is a measure to update the tour for better solution. 
Many prominent PSO based methods use Swap Sequence 
(SS) for velocity operation [10-11]. A SS is a collection of 
several Swap Operators (SOs) and each one indicates two 
positions in a tour those might be swapped. All SOs of a SS 
are applied on a particle’s tour maintaining order and hence 
implication of the SS transforms the TSP tour into a new one. 

Basic SS based PSO (SSPSO) [10], the pioneer PSO based 
method for TSP, transformed PSO operations (i.e., velocity 
calculation and position update) of continuous domain to 
handle TSP, the combinatorial problem. SSPSO calculates 
the velocity SS for each particle considering its present tour, 
previous best tour and the global best tour. Conceiving the 
idea of SSPSO, other algorithms to solve TSP are Self-
Tentative PSO (STPSO) and Enhanced Self-Tentative PSO 
(ESTPSO) [11-12]. STPSO considers tentative behavior that 
tries to improve each particle placing a node in a different 
position. ESTPSO also tries to improve each particle with 
block of nodes adjustment in addition to the single node 
adjustment of STPSO [11].  

In this study, a new PSO based algorithm has been 
proposed and investigated for solving TSP. The proposed 
Velocity Tentative PSO (VTPSO) calculates velocity SS 
similar to existing methods but apply the SS in a different and 
optimal way. In the existing PSO based algorithms, the new 
tour of TSP is considered after applying all the SOs of a SS 
and no intermediate measure is considered. On the other 
hand, VTPSO considers the calculated velocity SS as 
tentative velocity, measures tours with portions of it and 
conceive comparatively better new tour with a portion or full 
tentative SS. The proposed method is shown to perform well 
when tested on a suite of benchmark TSPs. 

The rest of the paper is organized as follows. Section II 
describes some related PSO based methods those solve TSP. 
Section III explains the proposed VTPSO in detail. Section 
IV presents proficiency of the proposed method comparing 
with three prominent methods in solving benchmark TSPs. 
Finally, Section V concludes this paper with some remarks 
and outlines several future research directions opened by this 
study.  
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II. EXISTING PSO BASED METHODS TO SOLVE TSP 

The TSP requires to find the shortest circular tour visiting 
every city exactly once from a set of given cities [8]. TSP is 
the most popular combinatorial problem because it has many 
real-world applications such as drilling a printed circuit 
board, computer wiring, order picking problem in 
warehouses, vehicle routing, X-Ray crystallography [19]. 
Almost every new approach for solving engineering and 
optimization problems has been tested on the TSP as a 
general test bench; and interest grows in the recent years to 
solve it new ways. Recently, a number of PSO based methods 
have been investigated for solving TSP [9-15]. Each particle 
holds a feasible tour as a solution point and its velocity 
conceives a measure to change the tour towards a new tour. 
The existing methods use different techniques and parameters 
for calculating the velocity and then find new tours for 
particles. A number of prominent PSO based methods use 
operators Swap Operator and Swap Sequence for velocity 
operation [10-12]. Following subsections explain the 
operators in detail and then present the prominent methods to 
make the paper self-contained. 

A. Swap Operator (SO) and Swap Sequence (SS) 

A SO [10-12] contains a pair of indexes that indicate two 
cities those might be swapped in a tour. Suppose, a TSP has 
five cities and a solution is	� = (1 − 3 − 5 − 	2 − 4).	 Let a SO 
is SO(2,4), then new solution (��) with it like below 

�� = 	�	 + 	��(2,4) = 	 (1 − 3 − 5 − 2 − 4) + 	��(2,4) 								
= 	 (1 − 2 − 5 − 3 − 4), 

where ‘+’ means to apply SO on the solution S. 
A SS [10-12] is a collection of one or more SO(s) that 

might be applied on a solution one after another sequentially. 
To solve TSP, the velocity of PSO is represented as SS and a 
velocity SS can be defined as: 

��� = (���, ���, ���, . . . ���),	          (1) 

where	���, ���, ���, . . . ���	are SOs. A SS acts on a solution 
applying all its SOs maintaining its sequence and then finally 
produces a new tour. This can be described by the following 
formula: 

�� = �� + ��� = �� + (���, ���, ���, …	, ���)     (2) 

The order of SOs in the SS is important because 
implementation of same SOs in different order may give 
different solutions from the original solution. The VSS may 
also get from solutions S1 and S2 in the following equation.    

��� = �� − 	�� = (���, ���, ���, …	, ���)	,             (3) 
where ‘-’ means need to apply SOs of VSS on solution S1 to 
get S2. As an example, if �� = (1 − 2 − 3 − 4 − 5)	and �� =

(2 − 3 − 1 − 5 − 4)		then ��� = ��(1,2), ��(2,3), ��(4,5). 
Moreover, several SSs can be merged into a new SS; the 

operator Ä defines the merging operation. If SS1=SO(1,2), 

SO(5,2) and SS2=SO(5,3), SO(4,1) then new Swap Sequence 
SS(new) merging SS1 and SS2 is 

��(���) = ���Ä	��� = {��(1,2), ��(5,2)}Ä{��(5,3), ��(4,1)}

= 	��(1,2), ��(5,2), ��(5,3), ��(4,1)								(4) 

It is noted that the different SSs acting on the same solution 
may produce the same new solution. All these SSs are named 
the equivalent set of SSs. In the equivalent set, the sequence 
which has the least SOs is called Basic Swap Sequence 
(BSS). As an example, both velocity swap sequences ��� =

��(1,2), ��(2,3), ��(4,5)	 and ��� = ��(1,2), ��(3,4),

��(3,5), ��(2,3), ��(2,4) give same new solution �� =

(2 − 3 − 1 − 5 − 4)		if applied on �� = (1 − 2 − 3 − 4 −

5)	individually. Therefore SS1 is the BSS. It also find using 
Eq. (3) i.e., S2 – S1. 

B. Swap Sequence based PSO (SSPSO)  

SSPSO [7] is the pioneer method to solve TSP that 
considers each particle as a complete tour and uses SS as 
velocity to get a new tour applying all its SOs on a tour. The 
SOs of the velocity SS of a particle is measured considering 
its previous best tour (Pi) and the best tour particles ever 
encountered (G). SSPSO follows Eq. (5) and Eq. (6) for 
velocity calculation and position update, respectively. 

��
(�)

= ��
(���)Ä	� ��� − ��

(���)
�Ä	� �� − ��

(���)
� 	�, ��[1,0]  (5) 

��
(�)

= ��
(���)

+	��
(�)                         (6) 

In Eq. (5), α, β are random numbers,		� ��� − ��
(���)

� means 

all SOs in BSS for ��� − ��
(���)

� should be maintained with 

the probability of α, which is the same for � �� − ��
(���)

�. The 

bigger the value of α (and β) the greater the influence of Pi 
(and G) will be maintained on present velocity calculation 
selecting more SOs from the portion. After velocity SS 
calculation using Eq. (5), each particle moves to a new tour 

solution (��
(�)

) applying whole SS on its previous solution 

(��
(���)) using Eq. (6).   

C. Self-Tentative and Enhanced Self-Tentative PSO  

Self-Tentative PSO (STPSO) [11] applies a tentative 
behavior based operation after PSO operations to improve 
each particle in each iteration. For PSO operations, STPSO 
calculates velocity for each particle according to Eq. (7) and 
updates position like SSPSO using Eq. (6). 

	��
(�)

= ���
(���)Ä	��	. ��	 ��� − ��

(���)
�Ä		��. �� �� − ��

(���)
�	 (7) 

In Eq. (7), c1 and c2 are learning factors, and r1 and r2 are 
random values between 0 and 1. The Eq. (7) is more closer to 
original PSO equation of function optimization considering a 
portion of previous velocity in present velocity based on the 
value of the scalling factor �.  

Tentative operation of STPSO tries to improve each 
particle placing a node of it in a different position in each 
iteration after PSO operations. For each particle, from the 
second node to the end the following actions are done: delete 
the node from the original position; measure fitness values 
with different positions and place it for which it gives the best 
fitness [11]. After this self-tentative operation, each particle 
would get a better position if any single node position 
changes can improve its fitness. This tentative behavior is 
important when random adjustment operators are hard to 
improve the solutions. But the single node adjustment is not 
sufficient to get optimal result in some cases [12]. To get 
better result, Enhanced Self-Tentative PSO (ESTPSO) 
considers block node adjustment in STPSO [11, 12].  

ESTPSO tries to improve each particle placing a block of 
nodes in a different position after the single node adjustment 
of each particle. It may overcome limitation of single node 
adjustment but block length selection is difficult to determine. 
If block length is set from 2 to N-2 for a TSP having N cities, 
it is hard to end in the limited time. If the length is set to a 

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



 

fixed value, the adjustment process becomes stable and hard 
to find the better solution. Therefore, ESTPSO adopted a 
dynamic strategy based on iteration. The block size k is 
determined as a random number between 2 and Kmax. And 
Kmax changes according to the iteration t and its calculation 
method is shown below.  

IF (� > 50 and t< 30% of tmax) THEN ���� = 	⎡(1	/	10	)		�⎤   

ELSE IF (t > 65% of tmax) THEN ���� = 	⎡(1	/	3)	�⎤		   

ELSE ���� = 	⎡(1/5)	�⎤              (8) 

As of Eq. (8), the subsequence max length (Kmax) becomes 
longer with t becomes bigger. ESTPSO then tries to improve 
each particle reallocating every subsequence block from the 
second node to	� − �	 + 	1 as like the single node 
adjustment. Detailed description regarding block node 
adjustment is available in the existing studies [11, 12]. 
ESTPSO is the best performed PSO based method so far for 
TSP. 

Algorithm 1 shows steps of ESTPSO to solve TSP. In 
initialization (Step 1), it defines the number of particles and 
assigns a random TSP tour as well as a random velocity SS to 
each of the particle. At this initial stage, previous best 
solution of each particle (Pi) is considered as the current 
random tour of it and global best solution (G) is the best tour 
among them. ESTPSO checks termination criterion at the end 
of each iteration (in Step 4); usually a sufficiently good 
fitness of G or a maximum number of iterations is considered 
as the termination criteria. If a termination criterion does not 
meet, it continues updating positions of the particles again as 
indicates the loop to Step 2 from Step 4.  

In ESTPSO, the block node adjustment (Step 3.b) after 
single node adjustment (Step 3.a) is only the addition to 
STPSO. On the other hand, employment of tentative 
operation (Step 3) in ESTPSO is the major addition to 
SSPSO. Moreover, ESTPSO uses Eq. (7) for velocity 
calculation, whereas SSPSO uses Eq. (5). A modification on 
ESTPSO is also available that also checks reverse placement 
of a block [12]. 

III. PROPOSED VELOCITY TENTATIVE PSO (VTPSO) 

This section explains proposed VTPSO to solve TSP. 
Similar to prominent PSO based methods as explained in the 
previous section, VTPSO considers SS for velocity operation 

of particles. In the existing methods, the new tour is 
considered after applying all the SOs of a SS and no 
intermediate measure is considered. It is notable that every 
SO implementation gives a new tour, and therefore, there is a 
chance to get a better tour with some of SOs instead of all the 
SOs. The main objective of VTPSO is to achieve better result 
considering such intermediate tours. 

Proposed VTPSO calculates velocity SS as like as the 
conventional methods that described already. But it conceives 
a measure called partial search (PS) to apply calculated SS to 
update particle’s position (i.e., TSP tour). It measures 
performance of tours applying SOs of the calculated SS one 
after another, and the final velocity is considered for which it 
gives better tour. Therefore, the final velocity may be a 
portion (from the beginning) of calculated velocity SS. 
Moreover, VTPSO conceives a moderate self-tentative 
technique to improve its performance.  

Algorithm 2 shows the steps of the proposed VTPSO to 
solve TSP considering the PS technique. Like other 
population based algorithm, VTPSO initializes the 
population with random solutions and tries to improve them 
at every iteration step. In initialization (Step 1), VTPSO 
defines the number of particles, assigns a random TSP tour 
and a random velocity SS to each of the particle. At this initial 
stage, previous best solution of each particle (Pi) is 
considered as the current random tour of it and global best 
solution (G) is the best tour among them. 

At each iteration step, VTPSO calculates velocity SS (Step 
2.a) using Eq. (9) that is similar to traditional methods (e.g., 
ESTPSO), and considers (i) last applied velocity (v(t-1)), (ii) 
previous best solution of the particle (Pi) and (iii) global best 
solution of the swarm (G). However, Eq. (9) of VTPSO for 
velocity SS calculation is simpler than Eq. (7) of ESTPSO. 
The Eq. (7) of ESTPSO requires values of three user defined 
parameters	�, ��	and	��	; but VTPSO does not have any 
parameter to set and α, β in Eq. (9) are random numbers 
between 0 and 1.  

��
(�)

= ��
(���)Ä	� ��� − ��

(���)
�Ä	� �� − 	��

(���)
� �, ��[1,0]  (9)  

VTPSO does not apply calculated velocity SS on a particle 
to get its new position like a traditional method. But it 
considers the calculated velocity as tentative velocity as its 
name regards. A number of tentative tours is evaluated with 
the tentative velocity SS and the particle moves to the best 
one among those tentative tours. A portion or complete 
velocity SS that gave the best tour considers previous velocity 

(��
(���)

) of the next iteration of Eq. (9). The best tour finding 

from several tentative tours is considered as the PS and is the 

Algorithm 1:  Enhanced Self-Tentative PSO (ESTPSO) 

Step 1: Initialization 

Step 2: For each particle �� 	in the swarm  

a. Calculate velocity ��
(�)

according to Eq. (7) 

b. Update solution using   Eq. (6) 

c. Update �� if the new solution ��
(�)

 is superior to �� 

d. Update �	if the new solution ��
(�)

 is superior to		� 	 

Step 3: Tentative Operation on Each Particle	��   

a. Single Node Adjustment 

b. Block Node Adjustment 

c. Update �� if the new solution ��
(�)

 is superior to �� 

d. Update �	if the new solution ��
(�)

 is superior to		� 	 

Step 4: Loop to Step 2 until a termination criterion is met 

Step 5: Take the global best solution �	as an outcome 

 

Algorithm 2:   Velocity Tentative PSO (VTPSO) 

Step 1: Initialization.   

Step 2: For each particle �� 	in the swarm  

a. Calculate velocity ��
(�)

 using Eq. (9) 

b. Update  ��
(�)

 through Partial Search manner  

c. Apply Tentative Operation on ��
(�)

 if is Superior to �� 

d. Update �� if the new solution ��
(�)

 is superior to �� 

e. Update �	if the new solution ��
(�)

 is superior to		� 	 
 

Step 3: Loop to Step 2 until a termination criterion is met 

Step 4: Take the global best solution �	as an outcome 
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main attraction of VTPSO; therefore, Step 2.b in Fig. 2 for 
such operation is marked in bold-faced.  

PS seeks better result with a portion of calculated tentative 
velocity SS. It is already mentioned that a traditional method 
applies all the SOs of a velocity SS on a tour and generates a 
new tour with the whole SS although implementation of every 
successive SO transforms a tour into a new tour. While a 
traditional method ignores the intermediate tours, the PS 
technique explores the option of getting better tour 
considering the intermediate tours with a SS applying its SOs 
one by one. 

 Suppose	��
(�)

= ���, ���, ���, . . . ���	then in PS 

	��
�(�)

= 	 	��
(���)

+ ���     

	��
�(�)

= 	��
�(�)

+ ��� = 	 	��
(���)

+ ��� + ��� 

…………………………………. 

					��
�(�)

= 	 	��
���(�)

+ ���         

In the above cases 	��
�(�)

, 	��
�(�)

, … . . , 	��
�(�)

		are the tentative 

intermediate tours; and the final tour ��
(�)

	in PS is the tentative 

tour having the minimum tour cost. 

	��
(�)

= 	��
�(�)

	,                      (10) 

where 	��
�(�) provides the minimum tour cost among  

	��
�(�)

, 	��
�(�)

, … 	��
�(�)

… 	��
�(�)

.	 Finally, the velocity considered 

as 	��
(�)

= ���, ���, ���, . . . ���    1 < j ≤ n.    

The final velocity may also get from new and previous 
positions of the particle using the equation 

	��
(�)

= 	��
(�)

− 	��
(���).                                       (11) 

The above scenario can be described clearly with specific 
tour example. Consider a tour Xi

(t-1) of 10 cities where city 
position is the number of the city.  

	��
(���)

= 	1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10	  

If velocity SS is ��� = ��(1,4), ��(2,5), ��(2,4)	the 
implementation of the SOs gives two intermediate tours 

(i.e.,	��
�(�)

	and		��
�(�)

) and finally reaches at 	��
�(�)

.	  

��
�(�)

= ��
(���)

+ ��(1,4) = � − 2 − 3 − � − 5 − 6 − 7 − 	8 − 9 − 10   

��
�(�)

= 	��
�(�)

+ ��(2,5) = 	4 − � − 3 − 1 − � − 6 − 7 − 8 − 9 − 10 

��
�(�)

= ��
�(�)

+ ��(2,4) = 	4 − � − 3 − � − 2 − 6 − 7 − 8 − 9 − 10 

A traditional method only considers the last one to update a 

tour (i. e. , 	��
(�)

= 	��
�(�)

). On the other hand, PS evaluates all 

the solutions since all three are the complete tours and an 

intermediate one (here	��
�(�)

	or	��
�(�)

) might be better than the 

last one (i.e.,	��
�(�)

). In PS technique all three tours (i.e.,	��
�(�)

,

	��
�(�)

	and		��
�(�)

	) are considered as tentative tours. The final 

tour in PS technique is the best one among the three. If tour 

	��
�(�)

 is found better than 	��
�(�)

	and		��
�(�)

 then 	��
�(�)

 is 

considered as the next solution point (i.e.,	��
(�)

= 	��
�(�)

). 

Applied velocity in this case contains first two SOs of the 

calculated velocity SS, i.e., 	��
(�)

= ��(1,4), ��(2,5). 

VTPSO calculates fitness of every new position (Xi) of a 
particle and compares to its previous best Pi. If Xi is found 
better than Pi then VTPSO applies Self-Tentative (ST) 
operation on (Xi) owing to improve it furthermore. Such 
selective ST operation might be helpful to improve overall 

performance of VTPSO with a minimal time complexity. The 
ST operation of VTPSO (Step 2.c) consists of the Single 
Node Adjustment of STPSO/ESTPSO and a simplified 
version of ESTPSO Block Node Adjustment. The block size 
k is considered as a random number between 2 and Kmax; and 
the value of Kmax is defined as N/2, i.e., half of total cities of 
the given problem. After ST operation, Pi is updated (Step 
2.d)) if new solution Xi is found better than Pi. The method 
also compares Xi with G and updates G accordingly if it is 
found inferior to Xi (Step 2.e). 

VTPSO checks termination criterion at the end of each 
iteration (in Step 3); a sufficiently good fitness of G or a 
maximum number of iterations is considered as the 
termination criteria similar to other methods. If a termination 
criterion does not meet, it continues updating positions of the 
particles again as indicates the loop to Step 2 from Step 3.  

A. Effect of Partial Search (PS) in Tour Cost Calculation 

PS technique might not increase computational cost 
although it evaluates intermediate tours. The technique of 
tour cost calculation is an element of effectiveness of PS. In 
general, cost of a tour is calculated accumulating all 
individual links’ costs. If all the links’ cost are accumulated 
for every SO implementation PS will incur much time than a 
traditional method, normally (n-1) times for a velocity SS 
having n SOs. But it does not require to consider all the links 
to get cost of a new tour implementing SO(s) on a tour which 
cost is known. Since a SO indexes two cities in a tour to 
interchange their positions, implementation of a SO requires 
to discard costs of four links and add costs of four new links 
that associate with the indexed cities. Suppose a swap 

operator SO(1,4) on 	��
(���)

= 	1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 −

9 − 10 gives 	��
(�)

	= 		��
(���)

+ 		��(1,4) = 	4 − 2 − 3 − 1 −

5 − 6 − 7 − 8 − 9 − 10. For the tour cost of 	��
(�)
,	link costs of 

1-2, 10-1, 3-4 and 4-5 were discarded as well as link costs of 

4-2, 10-4, 3-1 and 1-5 were added with the tour cost of 	��
(���).  

An analytical comparison can be outlined between two 
different tour cost calculation methods: (1) updating cost of 
the previous tour (that follows VTPSO) modifying only for 
the cities that a SO indicates to interchange; and (2) 
accumulating all the links’ cost that uses a traditional method.  
Suppose, t is the required time to read a link cost and n is the 
number SOs in the velocity SS. In VTPSO, the time to get a 
tentative tour updating 8 links’ cost for a SO is  

TSO = 8t.                    (12) 

Thus, total time requires in VTPSO to update a tour for a 
velocity SS having n SOs is 

T VTPSO= nTSO = 8nt.              (13) 

On the other hand, a traditional method calculates tour cost 
for a velocity SS accumulating all the links’ costs of the tour. 
And for problem having N cities the time a method requires 
is         

T = tN.                         (14) 

It is notable that tour cost calculation of VTPSO depends on 
the number of SOs, regardless of the number of cities in the 
problem. On the other hand, tour cost calculation of a 
traditional method depends on the number of cities in the 
problem. It is remarkable from Eq. (13) and Eq. (14) that a 
traditional method might be faster than VTPSO for problems 
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having few cities and VTPSO might compete for large sized 
problems. Moreover, VTPSO might be time efficient for 
small sized SS, i.e., a SS consists of less number of SOs. 
Finally, PS technique may explore better result evaluating 
intermediate tentative tours without increasing the 
computational time.  

B. Comparison and Contrast with the Traditional Methods  

Proposed VTPSO introduces different way of getting new 
tour with calculated velocity SS. It calculates velocity SS 
similar to conventional SS based methods (e.g., SSPSO, 
STPSO, ESTPSO), but in case of velocity implementation on 
a particle (i.e., current tour) it follows a different way. A 
conventional method gets new tour applying all the SOs in 
the calculated velocity SS. On the other hand, VTPSO 
considers the calculated velocity as tentative velocity and 
evaluates a number of tentative tours applying SOs of the SS 
one after another sequentially. The next solution point (i.e., 
tour) is considered as the best tentative tour and applied 
velocity is a portion of SS from the beginning that gave the 
best tour. Although VTPSO evaluates a number of 
intermediate tours it might not increase computational cost as 
explained in the previous section. On the other hand, VTPSO 
might converge faster than a conventional method because it 
may conceive a better tour with a portion of SS than with the 
whole SS.  

VTPSO conceives ST behavior owing to achieve better 
outcome like ESTPSO, but in a different manner. ESTPSO 
applies ST operation (i.e., single node adjustment and block 
node adjustment) on each and every individual particle after 
PSO operations (Step 3 of Fig. 1). Thus, ESTPSO obviously 
induces a huge computational cost with PSO operations. On 
the other hand, VTPSO applies ST operation on selected 
particles that might not increase computational cost much but 
might enhance the performance of VTPSO. Finally, VTPSO 
seems to be a cost effective method for better TSP solution.  

IV. EXPERIMENTAL STUDIES  

This section experimentally investigates the proficiency of 
the proposed VTPSO algorithm to solve benchmark TSPs. 
The performance of VTPSO compared to ESTPSO [9] (the 
prominent SS based PSO method) and other two prominent 
methods for TSP. The experimental methodology were 
chosen carefully for fair comparison. Finally, experimental 
analyses have also been given for better understanding of the 
way of performance improvement in the proposed method 
while solving TSP. 

A. Bench Mark Data and Experimental Methodology 

In this study, a suite of benchmark problems are considered 
from TSPLIB [20] where number of cities varied from 14 to 
318 and give a diverse test bed. A numeric value in the 
problem name presents the number of cities in that tour. For 
example, burma14 and rat195 have 14 and 195 cities, 
respectively. A city is represented as a coordinate in a 
problem and therefore tour cost matrix is prepared after 
calculating distances using the coordinates. 

For ESTPSO, the value of scalling factor � of Eq. (7) is 
calculated using Eq. (15) that is identified to give better result 
according to the previous study [9].  

� = 0.1 − (1 − ���(1 − 2 ∗ �/�)) ∗ 0.05	,	      (15) 

where t and T are current iteration and total iteration, 
respectively. On the other hand, VTPSO does not require any 
parameter to set for velocity SS calculation as it uses Eq. (9) 
that is simpler than Eq. (7) of ESTPSO. 

The algorithms were implemented on Visual C++ of Visual 
Studio 2010. For proper understanding, experiments have 
been conducted on a single machine (HP Pro, Intel (R) Core 
(TM) i5-3470 CPU 3.20 GHz, 4 GB RAM) with Windows 7 
Professional OS.  

B. Experimental Results Comparing with ESTPSO 

This section presents experimental results of the proposed 
VTPSO and compares with the results of ESTPSO on a suite 
of 45 benchmark TSPs. For the fair comparison, the 
population size was 100; the number of iteration was set at 
500 as the termination criteria for both VTPSO and ESTPSO. 
For each problem, outcomes of 20 individual runs by a 
method are summarized and considered in performance 
comparison. Since experiments were conducted in a single 
machine with same experimental settings for both the 
methods, comparison between the methods on the basis of 
required time to solve a problem is considered as a good 
choice to identify the proficiency of a method.  

Table I compares problem wise achieved tour cost (average 
and best) and average required time between ESTPSO and 
VTPSO from 20 individual runs. Pair two tailed t-test was 
conducted to determine the significance in the variation of 
results. If tour cost of VTPSO was found significantly better 
than ESTPSO by t-test for a particular problem, it is marked 
with a plus (+) sign in the column of t-test evaluation. On the 
other hand, a minus (−) sign indicates VTPSO was 
significantly worse than ESTPSO for a particular problem. A 
single plus/minus means the tour cost difference between 
ESTPSO and VTPSO was statistically significant with 95% 
confidence interval and a double plus/minus is for 99% 
confidence interval. The bottom of the table shows the 
average outcome over all 45 problems.  

The results presented in the Table I clearly indicate the 
effectiveness of the proposed VTPSO to solve benchmark 
TSPs. The proposed method is shown better than ESTPSO on 
the basis of average tour cost of 45 problems. The average 
tour cost achieved by VTPSO was 23241.30; on the other 
hand ESTPSO achieved average tour cost of 23969.16. 
VTPSO is found better than ESTPSO for 34 cases and the t-
test shows that the performance of VTPSO is significantly 
better than ESTPSO on 33 problems. ESTPSO, however, 
significantly outperformed VTPSO on only two problems 
(i.e., fri26 and hk48). In general, ESTPSO was competitive to 
VTPSO for only small sized problems (e.g., burma14, 
ulysses16); otherwise VTPSO outperformed ESTPSO.  

The interesting observation from results of Table I is that 
VTPSO is much more time efficient than ESTPSO but 
provides suitable solution with minimal tour costs. Since the 
algorithms were tested on same machine with defined fair 
setting (unbiased to any one of those), the time requirement 
differs due to algorithmic matter. Moreover, finding better 
result with lesser time is more interesting that is provided by 
VTPSO. PS in VTPSO encourages to find better solution 
early. In addition, velocity SS size might reduce with iteration 
in VTPSO and might enhanced it to take overall less time to 
solve a problem. On the other hand, ST operation on each 
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particle (at each iteration) makes ESTPSO computationally 
much expensive in general. But VTPSO applied moderate ST 
operation on selected particles. Velocity tentative based PS 
along with ST operation on selected particles makes VTPSO 
faster convergence and therefore returns good result with less 
time. As an example, VTPSO took 174.23 seconds for rd100 
problem. For the same problem, ESTPSO took more than 
double time of VTPSO i.e., 452.18 seconds. But VTPSO 
achieved better result than ESTPSO for the problem; average 
tour costs achieved by VTPSO and ESTPSO are 8453.56 and 
8762.08, respectively. In general, VTPSO took time less than 
half of ESTPSO to solve a benchmark TSP.  

It is also observable from Table I that VTPSO outperforms 

ESTPSO on the basis of best outcome (i.e., minimum tour 
cost) from among 20 independent runs. For few small sized 
problems (e.g., burma14, gr24), both ESTPSO and VTPSO 
achieved same tour cost in all 20 independent runs. On the 
other hand, most of the cases, especially for large sized 
problems, VTPSO achieved better (i.e., lower) minimum tour 
costs than ESTPSO. Out of 45 cases, VTPSO outperformed 
ESTPSO for 32 cases; ESTPSO was better than VTPSO for 
only four cases; and both the methods showed same minimum 
tour cost for rest nine cases. Among the existing methods, 
ESTPSO is the best performed PSO based method so far; 
therefore outperformance of VTPSO over ESTPSO indicates 
the essence of PS based PSO operation to solve TSPs. 

TABLE I 
COMPARISON BETWEEN ESTPSO AND VTPSO OVER 20 INDEPENDENT RUNS TO SOLVE BENCHMARK TSPS. 

Sl. Problem 
Average Tour Cost (Standard Deviation) t-test eval. of 

VTPSO with 
ESTPSO  

Minimum Tour Cost (No of 
Times Min. Cost Achieved) 

Average Req. Time 
in Second 

ESTPSO VTPSO ESTPSO VTPSO ESTPSO VTPSO 

1 burma14 30.87 (0.0) 30.87 (0.0)  30.87 (20) 30.87 (20) 16.96 13.03 

2 ulysses16 73.99 (0.0) 74 (0.02)  73.99 (18) 73.99 (5) 21.71 15.48 

3 gr17 2332.58 (0.0) 2337.2 (13.86)  2332.58 (20) 2332.58 (18) 19.15 15.51 

4 gr21 2672.27 (0.0) 2681.41 (27.42)  2672.27 (20) 2672.27 (18) 25.84 19.34 

5 ulysses22 75.34 (0.07) 75.41 (0.17)  75.31 (17) 75.31 (13) 33.6 20.68 

6 gr24 1249.82 (0.0) 1249.82 (0.0)  1249.82 (20) 1249.82 (20) 29.31 22.02 

7 fri26 635.58 (0.0) 639.87 (7.44) - 635.58 (20) 635.58 (14) 32.82 24.51 

8 bays29 9074.15 (0.0) 9125.15 (107.99)  9074.15 (20) 9074.15 (16) 43.27 29.09 

9 hk48 11202.87 (160.19) 11629.01 (260.53) - - 11104.67 (5) 11130.68 (1) 123.13 58.1 

10 eil51 444.56 (6.37) 441.76 (5.94)  429.51 (1) 428.98 (1) 157.98 67.75 

11 berlin52 7804.2 (172.7) 7879.6 (200.93)  7544.37 (2) 7544.37 (2) 151.52 65.58 

12 st70 709.7 (16.1) 716.11 (18.74)  687.17 (2) 682.57 (1) 245.17 98.64 

13 eil76 582.44 (9.92) 572.19 (7.65) + + 564.07 (1) 560.44 (1) 286.36 120.88 

14 gr96 560.27 (15.81) 544.71 (14.63) + + 531.84 (1) 521.25 (1) 410.03 162.77 

15 rat99 1381.41 (42.65) 1330.27 (33.66) + + 1261.47 (1) 1254.54 (1) 429.69 168.46 

16 kroa100 23463.91 (967.02) 22484.26 (641.24) + + 21644.63 (1) 21438.19 (1) 456.37 176.59 

17 kroB100 24377.23 (825.43) 23374.96 (398.79) + + 22934.09 (1) 22648.29 (1) 443.89 189.64 

18 kroC100 22829.39 (966.47) 22247.78 (580.99) + 21370.58 (1) 21120.65 (1) 440.68 182.34 

19 kroD100 23415.68 (770.93) 22800.59 (546.97) + + 21847.23 (1) 21927.6 (1) 445.34 191.01 

20 kroE100 24348.24 (853.96) 23458.78 (404.8) + + 22939.22 (1) 22600.28 (1) 453.11 180.97 

21 rd100 8762.08 (240.78) 8453.56 (216.7) + + 8167.28 (1) 7944.32 (1) 452.18 174.23 

22 eil101 697.8 (14.06) 681.02 (10.28) + + 675.27 (1) 663.28 (1) 470.81 184.65 

23 lin105 16381.44 (620.73) 15961.57 (431.69) + 15112.43 (1) 15213.56 (1) 469.93 189.41 

24 pr124 65852.22 (2185.46) 64605.79 (1158.19) + 62545.29 (1) 62856.17 (1) 613.59 258.87 

25 bier127 127725.83 (2163.69) 124662.81 (3343.96) + + 123046.3 (1) 120291.87 (1) 693 286.16 

26 ch130 6711.41 (183.02) 6549.88 (154.37) + + 6402.41 (1) 6309.26 (1) 717.15 274.32 

27 gr137 810.45 (17.91) 777.4 (17.43) + + 777.4 (1) 740.8 (1) 748.95 282.67 

28 pr144 65894.2 (3143.31) 62675.47 (2276.87) + + 60024.85 (1) 59969.91 (1) 839.24 325.55 

29 ch150 7302.21 (196.72) 7179.44 (150.08) + 6898.65 (1) 6873.38 (1) 882.93 363.22 

30 kroA150 29531.52 (726.99) 28298.44 (457.1) + + 28054.71 (1) 27505.26 (1) 903.16 359.52 

31 kroB150 29119.96 (682.16) 28037.59 (501.19) + + 27733.8 (1) 27408.19 (1) 914.42 381.23 

32 pr152 80544.89 (2146.41) 76249.77 (1381.28) + + 77950.22 (1) 74166.1 (1) 832.96 321.93 

33 u159 48256.85 (1576.09) 45691.99 (1241.51) + + 45135.09 (1) 43827.25 (1) 956.7 396.28 

34 rat195 2669.82 (48.23) 2587.59 (50.21) + + 2566.11 (1) 2475.17 (1) 1407.43 586.83 

35 d198 17222.85 (229.54) 16577.31 (236.6) + + 16616.54 (1) 16168.11 (1) 1404.75 573.01 

36 kroA200 32987.91 (898.74) 32209.01 (550.24) + + 31318.23 (1) 31032.43 (1) 1463.24 612.19 

38 kroB200 33141.56 (703.43) 32024.59 (470.22) + + 31589.7 (1) 31175.18 (1) 1481.23 614.32 

39 gr202 525.04 (8.85) 513.12 (9.1) + 508.51 (1) 499.91 (1) 1501.18 610.85 

40 ts225 142008.18 (3646.96) 139670.69 (3189.63) + 136529.72 (1) 135246.68 (1) 1838.72 784.16 

41 tsp225 4345.66 (108.43) 4280.7 (91.85) + + 4181.36 (1) 4149.42 (1) 1759.1 753.29 

42 pr226 92600.97 (4465.36) 88466.55 (2715.16) + + 85558.5 (1) 83753.97 (1) 1794.44 732.09 

43 gr229 1793.68 (27.74) 1751.61 (16.54) + + 1749.99 (1) 1721.48 (1) 1897.12 792.49 

44 gil262 2716.61 (70.9) 2634 (46.41) + + 2573.83 (1) 2573.19 (1) 2424.19 968.51 

44 pr264 56196.38 (1166.34) 54781.23 (1306.87) + 53795.16 (1) 52763.29 (1) 2376.31 984.95 

45 lin318 47548.35 (939.12) 46843.62 (906.0) + + 45882.51 (1) 44869.69 (1) 3431.37 1424.16 

 Average 23969.16 23241.30  22764.38 22404.45 812.00 334.61 
 Best 9 34  4 32 0 45 
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C. Experimental Analyses Comparing with ESTPSO 

This section first investigates why VTPSO requires less 
time than ESTPSO to get the solution on the basis of SS size 
over iteration. It then investigates the effect of population size 
(i.e., number particles) and the number of iteration on the 
performance of ESTPSO and VTPSO. Three problems with 
different sizes were selected for the analyses and those are 
eil51, gr99 and eil101. 

1) Velocity Swap Sequence and Time over Iteration 

Figure 1 presents velocity SS size, global best (i.e., G) 
solution tour cost and time (in seconds) elapsed from the 
beginning over iteration for three sample cases of the selected 
problems. A SS holds several SOs and therefore its size at a 

particular iteration point is the average number of SOs for all 
the particles’ SS. Since operation of a velocity SS is the 
collective operations of its individual SOs, a large SS (having 
many SOs) requires more time than a small one to calculate 
as well as implement for getting a new tour. It is notable that 
a particle’s solution or tour (Xi) closer to its previous best (i.e., 
Pi) and/or G generates smaller velocity SS.  

ESTPSO applies ST operation out of PSO operations on 
each particle at each iteration owing to improve each one. 
Therefore, average velocity SS is maintained at a level 
throughout iteration in ESTPSO due to such self-
improvement besides PSO operations. On the other hand, 
VTPSO applies ST operation on selected particle with PSO 
operations and considers PS. Simultaneous operations of both 

  

  

  
(a) Swap Sequence vs. Iteration. (b) Global best Tour Cost and Time vs. Iteration. 

Fig. 1. Velocity swap sequence size, global best (G) tour cost and require time (in seconds) elapsed over iteration.  
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the things might be the reason for velocity SS size reduction 
(Fig. 1(a)) and faster convergence (Fig. 1(b)) over iterations 
in VTPSO. At the beginning of iteration, VTPSO seems 
slower than ESTPSO since SS size of VTPSO is much larger 
than ESTPSO. But in general, VTPSO is much more time 
efficient than ESTPSO because of ST operation on selected 
particles and smaller SS at later iteration period. On the basis 
of achieved solution, both ESTPSO and VTPSO showed bad 
result at the beginning and improved over iteration. However, 
VTPSO outperformed ESTPSO showing better result (i.e., 
smaller tour cost of G) for all the three cases. Finally, partial 
search and selected ST operations make VTPSO efficient in 
terms of better TSP outcome as well as required time to give 
solution. 

2) Effects of Population Size and Total Iteration  

This section investigates the performance of ESTPSO and 
VTPSO varying population size (i.e., number of particles) 
and total number of iteration. The results presented in Table 
I are for the fixed number of population size (=100) and 
iteration (=500) for all the problems. It is interesting to 
observe how the algorithms perform on the variation of both 
the parameters.  

Figure 2 shows the achieved tour cost and required time (in 
seconds) for different population sizes varied from 5 to 500 
while total iteration was fixed at 500. The presented results 
are the average for 10 independent runs. In Fig. 2(a), Standard 
Deviation (SD) values for 10 runs are placed as vertical bars 
on the average tour cost. It is seen from the figure that both 
the methods showed worst tour cost at very small population 
(e.g., 5) and improved with population size. As an example, 
for gr96 problem at population size 20, ESTPSO and VTPSO 
achieved tour costs of 568.04 and 552.18, respectively. For 
the same problem ESTPSO and VTPSO achieved tour costs 
of 540.87 and 533.38, respectively, at population size 400. It 
is common to get better result with larger population but 
computational time increases much when population size 
increases as seen in Fig. 2(b). To solve same gr96 problem, 
ESTPSO took 83.89 and 1665.04 seconds for population 
sizes 20 and 400, respectively. On the other hand, although 
VTPSO took more time for larger population but the time it 
took much less than ESTPSO and found more efficient for 
larger population. VTPSO took only 33.02 and 646.79 
seconds for population sizes 20 and 400, respectively, to 
solve gr96. At a glance, VTPSO is better than ESTPSO taking 
less time regardless of population size. 

Figure 3 shows the achieved tour cost and required time for 
different fixed number of iterations varied from 10 to 1000 
while population size was fixed at 100. The presented results 
are the average for 10 independent runs. From Fig. 3 (a) it is 
observed that both ESTPSO and VTPSO showed the worst 
tour costs at iteration 10 and improved rapidly up to a certain 
value (e.g., 200 for eil51) and after that improvement was not 
significant. As an example, for eil101 problem, ESTPSO and 
VTPSO achieved tour costs of 709.49 and 722.5, 
respectively, at iteration 20. For the same eil101 problem, 
ESTPSO and VTPSO achieved tour costs of 695.14 and 
674.16, respectively, at iteration 400. It is notable from the 
Fig. 3(a) that VTPSO outperformed ESTPSO showing better 
tour cost but it took less time at any value of iteration as seen 
in Fig. 3(b). For the 400 iteration of eil101 problem, ESTPSO 

 (a)  Tour Cost vs. Population Size. 
  

 (b) Required Time vs. Population Size. 
 

Fig. 2. Variation effect of population size on tour cost and require 
time. 
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took 372.78 seconds; but VTPSO took 158.57 seconds that is 
less than half of ESTPSO. Finally, the Figs. 2 and 3 clarified 
VTPSO as a good method to solve TSP.   

D. Experimental Results Comparing with ACO and PSM 

While VTPSO is shown to outperform the prominent PSO 
based method ESTPSO, this section compares performance 
of VTPSO with other prominent methods for TSP for better 
understanding. We have considered Ant Colony 
Optimization (ACO) [22-23] and Producer-Scrounger 
Method (PSM) [24] to compare the outcome of proposed 
VTPSO with the methods. ACO is the pioneer as well as most 
popular swarm intelligence based method for TSP. On the 
other hand, PSM is the most recent method to solve TSP. 
ACO, PSM and VTPSO have been tested on a suite of 20 
benchmark problems with fair settings. For the fair 
comparison, the number of iteration was set at 500 for the 
algorithms. The number of ants in ACO was equal to the 
number of cities as it desired. On the other hand, the 
population size was varied from 100 to 200 for PSM and 
VTPSO. In ACO, alpha and beta were set to 1 and 3, 
respectively. On the other hand, the RNC (rate of near cities 
consideration) for producer scanning in PSM was set to 0.1. 
The selected parameters were not optimal values, but 
considered for simplicity as well as for fairness in 
comparison. The experiments performed on the same 
computer described earlier. 

Table II compares performance of ACO, PSM and VTPSO 
for solving the benchmark TSPs on the basis of 20 
independent runs to solve a problem with a method. For a 
particular problem, the best tour cost (i.e., smallest value) 
among the three algorithms is shown in bold-face type and 
worst one (i.e., largest value) is shown in underlined face 
type. Bottom of the table shows the achieved average tour 
cost and best/worst summary (which indicates on how many 
problem instances a method gave best/worst result) for all 20 
problems by the methods. A Win/Draw/Loss summary of the 
results is also presented for better understanding. Pair two 
tailed t-test was conducted to determine the significance in 
the variation of results of VTPSO with ACO and PSM. If tour 
cost of VTPSO was found significantly better than 
ACO/PSM by t-test for a particular problem, it is marked with 
a plus (+) sign in the column of t-test evaluation. On the other 
hand, a minus (−) sign indicates VTPSO was significantly 
worse than ACO/PSM for a particular problem. A single 
plus/minus means the tour cost difference was statistically 
significant with 95% confidence interval and a double 
plus/minus is for 99% confidence interval.  

The average tour costs presented in the Table II indicate 
that VTSPSO is the best and PSM is the worst. The average 
tour cost over all 20 problems was 12745.46 for VTPSO, the 
value is the best among the three methods. The achieved 
average tour costs for ACO and PSM were 14026.29 and 
15147.38, respectively. PSM is shown worst tour costs for 15 
problems out of 20 cases showing best for none. In pair 
Win/Draw/Loss comparison, PSM is better than ACO for five 
cases only. ACO is found best for only one problem (i.e., 
gr17) and worst for six cases. On the other hand, proposed 
VTPSO is shown best for 19 cases but worst for none. In pair 
Win/Draw/Loss comparison, VTPSO is better than ACO and 
PSM for 19 and all 20 cases, respectively. Moreover, t-test 

 (a)  Tour Cost vs. Total Iteration. 
 

 (b) Required Time vs. Total Iteration. 
 

Fig. 3. Variation effect of fixed total iteration on tour cost and 
require time. 
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shows that the performance of VTPSO was significantly 
better than ACO and PSM on 19 and 18 problems, 
respectively. 

On the basis of minimum tour costs presented in the Table 
II, VTPSO is the best and ACO is the worst. ACO is the 
prominent method for solving TSP and considers population 
size as the number cities of a given problem. ACO starts 
placing different ants in different cities and its initialization 
does not differ among individual runs [21-22]. Therefore, the 
tour costs achieved by ACO in different runs are found 
consistent showing lower SD values. For several problems, 
especially small sized ones (e.g., ulysses16, gr17, gr21), ACO 
was shown same tour cost in all 20 individual runs and 
therefore SD of average tour cost is shown as zero for the 
problems in the table. For any problem, PSM gave most 
variant outcomes among different runs showing largest SD 
value. Consequently, PSM was shown to outperform ACO on 
the basis of minimum tour cost from 20 runs. PSM achieved 
minimum tour cost better than ACO in 13 cases, in which six 
cases PSM was the best along with proposed VTPSO. 
However, PSM was shown worst for seven cases on the basis 
minimum tour cost. On the other hand, VTPSO was shown to 
achieve best minimum tour cost for all the cases except gr17; 
gr17 is a small sized problem and all three methods achieved 
equal minimum tour cost of 2332.58 for it. Moreover, 
according to Win/Draw/Loss summary, VTPSO is better than 
ACO and PSM for 19 and 13 cases, respectively; rest of the 
cases VTPSO is shown same tour cost of ACO and PSM, i.e., 
one and seven cases, respectively. Finally, proposed VTPSO 
seems significantly better than ACO and PSM to solve TSP. 

E. Effects of Population Size and Iteration Comparing 
with ACO and PSM  

This section investigates the performance of ACO, PSM 
and VTPSO varying population size (i.e., number of 
individuals) and number of iteration. The experiments 
performed on the same machine explained before. Three 
problems with different sizes (i.e., eil51, gr96 and eil101) 
were selected for the analyses.  

Figure 4 shows the achieved tour cost for different 
population sizes varied from 5 to 500 for PSM and VTPSO. 
Number of ants in ACO was equal to the number of cities of a 
particular problem as it desired. The presented results are the 
average for 10 independent runs for fixed 500 iteration as 
termination criteria; SD values for the runs are placed as 
vertical bars on the average tour cost. Since population size 
was fixed in ACO for a particular problem it showed invariant 
performance in the figure. While ACO is unable to work with 
different population size, PSM and VTPSO may outperform 
ACO varying population size. For eil51 problem, ACO was 
shown tour cost of 504.03; but both PSM and VTPSO 
outperformed ACO at any population size. PSM and VTPSO 
were shown tour costs of 479.37 and 442.35, respectively, at 
population size 100. However, PSM was also found less 
invariant with population size as seen in Fig. 4. Because PSM 
is producer (the single best solution) centric; and it is reported 
that PSM may works well and gives suitable result with 
relatively small population size [23]. On the other hand, 
VTPSO seems to perform well with population variation and 
may outperform ACO and PSM. For gr96 problem, as an 
example, VTPSO achieved tour costs of 577.97 and 534.96 

TABLE II 
COMPARISON OF THE EXPERIMENTAL RESULTS OF THE PROPOSED VTPSO WITH ACO AND PSM TO SOLVE BENCHMARK TSPS. 

Sl. Problem 
Average Tour Cost (Standard Deviation)  

t-test eval. of 
VTPSO 

Minimum Tour Cost  

ACO PSM VTPSO ACO PSM ACO PSM VTPSO 

1 burma14 31.31 (0.24) 30.9 (0.1) 30.87 (0.0) + +   31.21 30.87 30.87 

2 ulysses16 77.13 (0.0) 74.22 (0.31) 74.0 (0.02) + + + + 77.13 73.99 73.99 

3 gr17 2332.58 (0.0) 2350.4 (44.76) 2337.2 (13.86)     2332.58 2332.58 2332.58 

4 gr21 2955.42 (0.0) 2966.43 (250.07) 2681.41 (27.42) + + + + 2955.42 2672.27 2672.27 

5 ulysses22 86.19 (0.07) 78.09 (3.7) 75.41 (0.17) + + + 86.08 75.31 75.31 

6 gr24 1267.13 (0.0) 1367.3 (97.51) 1249.82 (0.0) + + + + 1267.13 1251.33 1249.82 

7 fri26 646.39 (0.37) 697.64 (45.95) 639.87 (7.44) + + + + 644.8 635.58 635.58 

8 bays29 9964.78 (0.0) 9681.97 (377.14) 9125.15 (107.99) + + + + 9964.78 9074.15 9074.15 

9 hk48 12723.18 (68.36) 13188.05 (805.78) 11483.65 (256.08) + + + + 12699.86 11757.54 11104.67 

10 eil51 502.26 (9.96) 486.34 (29.97) 442.51 (5.98) + + + + 461.42 445.81 428.86 

11 berlin52 8061.57 (48.94) 8800.91 (525.06) 7863.06 (214.99) + + + + 7870.45 7806.24 7544.37 

12 st70 745.11 (7.86) 850.77 (53.89) 716.11 (18.74) + + + + 734.19 743.75 682.57 

13 eil76 598.87 (7.23) 629.12 (25.78) 566.25 (7.42) + + + + 583.28 586.67 554.64 

14 gr96 588.76 (9.15) 607.7 (31.26) 537.38 (15.03) + + + + 564.37 556.64 515.12 

15 rat99 1368.95 (1.08) 1471.25 (66.2) 1330.27 (33.66) + + + + 1366.3 1366.58 1254.54 

16 kroa100 24662.12 (81.77) 29134.2 (2087.6) 22388.06 (645.9) + + + + 24524.53 24872.86 21399.53 

17 kroB100 25369.53 (508.8) 30759.27 (2275.7) 23211.26 (499.27) + + + + 24675.03 26641.31 22305.35 

18 kroC100 23293.17 (105.0) 28882.39 (2260.0) 22278.36 (659.16) + + + + 23248.13 24741.26 21063.05 

19 rd100 9420.6 (58.82) 10389.55 (749.11) 8453.56 (216.7) + + + + 9210.67 9134.8 7944.32 

20 eil101 738.64 (4.91) 764.67 (33.91) 672.32 (9.33) + + + + 729.95 722.88 657.62 

 Average 14026.29 
 

15147.38 
 

12745.46 
 

 13965.82 
 

13432.35 
 

12293.84 
  Best/Worst 1/6 0/15 19/0  1/13 6/7 19/0 

 

Method Pairwise Win/Draw/Loss Summary on Average Tour Cost and Minimum Tour Cost 
ACO PSM VTPSO  ACO PSM VTPSO 

ACO - 5/0/15 19/0/1  - 13/1/6 19/1/0 

PSM  - 20/0/0   - 13/7/0 
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for population sizes of 5 and 200, respectively. For the same 
problem, ACO achieved tour cost of 586.98 and the best tour 
cost of PSM was 603.32 at population size 450. At a glance, 
proposed VTPSO has shown the ability to achieve better 
result varying population size. 

Figure 5 compares performance among ACO, PSM and 
VTPSO for iteration variation; iteration varied from 10 to 
1000. In the experiments, population size was fixed at 100 for 
PSM and VTPSO; and the number ants in ACO was equal to 
the number of cities of a particular problem. The presented 
results in figures are the average for 10 independent runs; SD 
values are also placed as vertical bars on the average tour cost. 
According to the results presented for the problems in the 
figure, all the methods are shown to perform worse for small 
number of iteration. However, ACO is shown the most 

invariant and PSM is shown the most variant in performance 
for iteration variation. As an example, for eil101 problem at 
iteration 10, the achieved tour costs were 741.37, 2458.78 and 
750.81 for ACO, PSM and VTPSO, respectively. For the 
same problem, the best tour costs were 733.15 for ACO (at 
50 iteration) and 738.17 for PSM (at 1000 iteration). On the 
other hand, VTPSO was shown the best tour cost of 674.16 
(at 400 iteration) and the achieved tour cost is much better 
(i.e., lower) than the achieved best values of ACO and PSM. 
With larger variation for iteration variation, PSM was inferior 
to ACO for small number iterations while it was 
outperformed ACO for larger iteration. As an example, for 
eil51 problem, ACO was better than PSM until iteration 100 
but after that PSM outperformed ACO. However, proposed 
VTPSO always outperformed ACO and PSM for any value 

 

 

 

Fig. 4. Variation effect of population size on tour costs of ACO, 
PSM and VTPSO. 

 Fig. 5. Variation effect of total number of iteration on tour costs 
of ACO, PSM and VTPSO. 
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of iteration for eil51. The similar performance of the 
proposed VTPSO for gr96 and eil101 problems reveals that 
VTPSO is an effective method for TSP.    

V. CONCLUSIONS 

TSP is a popular combinatorial optimization problem and 
interest grows in recent years to solve it new ways. This study 
investigated a new PSO based method, called Velocity 
Tentative PSO (VTPSO), to solve TSP. In VTPSO, each 
particle represents a complete tour and velocity is measured 
as a Swap Sequence (SS) consisting of several Swap 
Operators (SOs). In the conventional existing methods, a new 
tour is considered after applying a complete velocity SS with 
all its SOs. In contrast, proposed VTPSO considered 
calculated velocity SS as the tentative velocity; checked all 
the tentative solutions applying SOs of the SS one after 
another sequentially; and picked the best solution among the 
tentative solutions. VTPSO has been tested on a large number 
of benchmark TSPs and it outperformed ESTPSO, the 
prominent PSO based method. More interestingly, VTPSO 
took less than half time of ESTPSO to solve a benchmark 
TSP, in general. The reason behind the less time requirement 
by VTPSO has been revealed from the experimental analyses; 
VTPSO applied self-tentative operation on selected particles 
and its velocity SS size reduced over iteration. Moreover, 
VTPSO also compared with two other prominent methods 
(i.e., ACO and PSM) for TSP and outperformed both of the 
methods in solving benchmark TSPs.  

A potential future direction is also opened from this study. 
This study considered partial search maintaining the sequence 
of SOs in the velocity SS and identified that a portion of SS 
may give better outcome than whole SS implementation. It is 
notable that SOs may be applied independently without 
sequence because velocity SS of a particle comes from three 
different sources: its previous velocity, difference with 
previous best solution and difference with global best 
solution. Algorithm development with such consideration 
may give better result and remain as future study.  
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