

Abstract—This paper introduces an effective Particle Swarm
Optimization (PSO) based algorithm for solving Traveling
Salesman Problem (TSP). Among prominent PSO based
methods, the proposed Velocity Tentative PSO (VTPSO)
considers Swap Sequence (SS) for velocity operation of the
particles. A velocity SS is a collection of several Swap Operators
(SOs) where each one indicates two positions in a tour those
might be swapped. The existing methods apply all the SOs of the
calculated SS on a solution to get a new solution. Conversely, the
proposed VTPSO considers the calculated SS as the tentative
velocity and checks the tentative solutions when applies the SOs
one after another sequentially. The best tentative tour with a
portion of SS is considered as the next solution point of a particle
in VTPSO. Such intermediate tentative tour evaluation not only
helps to get better solution but also reduces overall
computational time. The experimental results on a large number
of benchmark TSPs reveal that the proposed VTPSO is able to
produce better tour compared to other prominent existing
methods.

Index Terms—Swap Sequence, Partial Search, Particle
Swarm Optimization, Traveling Salesman Problem.

I. INTRODUCTION

ARTICLE Swarm Optimization (PSO) is a popular
optimization method on metaphor of social behavior of

flocks of birds or schools of fishes [1-3]. PSO is a simple
model of social learning whose emergent behavior has been
found popularity in solving difficult optimization problems.
In PSO, each particle represents a potential solution and
moves to a new position (i.e., search a new point) at every
iteration based on the calculated velocity. The processes of
iteration continue until the stopping criterion is reached.

PSO has been investigated on various continuous [2-6] and
combinatorial optimization tasks [7-18]. PSO was proposed
for continuous problems (e.g., function optimization) and has
been proven to solve such problems effectively [2-3]. In
function optimization domain, a particle represents a position
in the multidimensional search space. At every step, each

particle changes position based on its velocity depending on
its previous best position and the best position particles ever
visited.

 PSO has also been found as an efficient method to solve
combinatorial problems such as Traveling Salesman Problem
(TSP) [7-16]. TSP is a well-studied combinatorial
optimization problem in which a salesman is required to
complete a tour with the minimum distance visiting all the
assigned cities exactly for once. To solve TSP with PSO, each
particle represents a complete tour as a feasible solution and
velocity is a measure to update the tour for better solution.
Many prominent PSO based methods use Swap Sequence
(SS) for velocity operation [10-11]. A SS is a collection of
several Swap Operators (SOs) and each one indicates two
positions in a tour those might be swapped. All SOs of a SS
are applied on a particle’s tour maintaining order and hence
implication of the SS transforms the TSP tour into a new one.

Basic SS based PSO (SSPSO) [10], the pioneer PSO based
method for TSP, transformed PSO operations (i.e., velocity
calculation and position update) of continuous domain to
handle TSP, the combinatorial problem. SSPSO calculates
the velocity SS for each particle considering its present tour,
previous best tour and the global best tour. Conceiving the
idea of SSPSO, other algorithms to solve TSP are Self-
Tentative PSO (STPSO) and Enhanced Self-Tentative PSO
(ESTPSO) [11-12]. STPSO considers tentative behavior that
tries to improve each particle placing a node in a different
position. ESTPSO also tries to improve each particle with
block of nodes adjustment in addition to the single node
adjustment of STPSO [11].

In this study, a new PSO based algorithm has been
proposed and investigated for solving TSP. The proposed
Velocity Tentative PSO (VTPSO) calculates velocity SS
similar to existing methods but apply the SS in a different and
optimal way. In the existing PSO based algorithms, the new
tour of TSP is considered after applying all the SOs of a SS
and no intermediate measure is considered. On the other
hand, VTPSO considers the calculated velocity SS as
tentative velocity, measures tours with portions of it and
conceive comparatively better new tour with a portion or full
tentative SS. The proposed method is shown to perform well
when tested on a suite of benchmark TSPs.

The rest of the paper is organized as follows. Section II
describes some related PSO based methods those solve TSP.
Section III explains the proposed VTPSO in detail. Section
IV presents proficiency of the proposed method comparing
with three prominent methods in solving benchmark TSPs.
Finally, Section V concludes this paper with some remarks
and outlines several future research directions opened by this
study.

Velocity Tentative PSO: An Optimal Velocity
Implementation based Particle Swarm Optimization

to Solve Traveling Salesman Problem

M. A. H. Akhand, Member, IAENG, Shahina Akter, M. A. Rashid and S. B. Yaakob

P

Manuscript received September 11, 2014; revised April 24, 2015. This
work was supported in part by Khulna University of Engineering &
Technology (KUET), Khulna, Bangladesh; University Sultan Zainal Abidin
(UniSZA), Malaysia and University Malaysia Perlis (UniMAP), Malaysia.

M. A. H. Akhand is with the Department of Computer Science and
Engineering, KUET (Corresponding author, phone: +880-41-774318, e-
mail: akhand@cse.kuet.ac.bd, website: www.kuet.ac.bd/cse/akhand).

Shahina Akter is with the Department of Computer Science and
Engineering, KUET (e-mail: shahina_akter23@yahoo.com).

M. A. Rashid is with Faculty of Design Arts and Engineering
Technology, UniSZA (e-mail: marashid@unisza.edu.my).

S. B. Yaakob is with School of Electrical Systems Engineering, UniMAP
(e-mail: shamshul@unimap.edu.my).

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

II. EXISTING PSO BASED METHODS TO SOLVE TSP

The TSP requires to find the shortest circular tour visiting
every city exactly once from a set of given cities [8]. TSP is
the most popular combinatorial problem because it has many
real-world applications such as drilling a printed circuit
board, computer wiring, order picking problem in
warehouses, vehicle routing, X-Ray crystallography [19].
Almost every new approach for solving engineering and
optimization problems has been tested on the TSP as a
general test bench; and interest grows in the recent years to
solve it new ways. Recently, a number of PSO based methods
have been investigated for solving TSP [9-15]. Each particle
holds a feasible tour as a solution point and its velocity
conceives a measure to change the tour towards a new tour.
The existing methods use different techniques and parameters
for calculating the velocity and then find new tours for
particles. A number of prominent PSO based methods use
operators Swap Operator and Swap Sequence for velocity
operation [10-12]. Following subsections explain the
operators in detail and then present the prominent methods to
make the paper self-contained.

A. Swap Operator (SO) and Swap Sequence (SS)

A SO [10-12] contains a pair of indexes that indicate two
cities those might be swapped in a tour. Suppose, a TSP has
five cities and a solution is	� = (1 − 3 − 5 − 	2 − 4).	 Let a SO
is SO(2,4), then new solution (��) with it like below

�� = 	�	 + 	��(2,4) = 	 (1 − 3 − 5 − 2 − 4) + 	��(2,4) 								
= 	 (1 − 2 − 5 − 3 − 4),

where ‘+’ means to apply SO on the solution S.
A SS [10-12] is a collection of one or more SO(s) that

might be applied on a solution one after another sequentially.
To solve TSP, the velocity of PSO is represented as SS and a
velocity SS can be defined as:

��� = (���, ���, ���, . . . ���),	 (1)

where	���, ���, ���, . . . ���	are SOs. A SS acts on a solution
applying all its SOs maintaining its sequence and then finally
produces a new tour. This can be described by the following
formula:

�� = �� + ��� = �� + (���, ���, ���, …	, ���) (2)

The order of SOs in the SS is important because
implementation of same SOs in different order may give
different solutions from the original solution. The VSS may
also get from solutions S1 and S2 in the following equation.

��� = �� − 	�� = (���, ���, ���, …	, ���)	, (3)
where ‘-’ means need to apply SOs of VSS on solution S1 to
get S2. As an example, if �� = (1 − 2 − 3 − 4 − 5)	and �� =

(2 − 3 − 1 − 5 − 4)		then ��� = ��(1,2), ��(2,3), ��(4,5).
Moreover, several SSs can be merged into a new SS; the

operator Ä defines the merging operation. If SS1=SO(1,2),

SO(5,2) and SS2=SO(5,3), SO(4,1) then new Swap Sequence
SS(new) merging SS1 and SS2 is

��(���) = ���Ä	��� = {��(1,2), ��(5,2)}Ä{��(5,3), ��(4,1)}

= 	��(1,2), ��(5,2), ��(5,3), ��(4,1)								(4)

It is noted that the different SSs acting on the same solution
may produce the same new solution. All these SSs are named
the equivalent set of SSs. In the equivalent set, the sequence
which has the least SOs is called Basic Swap Sequence
(BSS). As an example, both velocity swap sequences ��� =

��(1,2), ��(2,3), ��(4,5)	 and ��� = ��(1,2), ��(3,4),

��(3,5), ��(2,3), ��(2,4) give same new solution �� =

(2 − 3 − 1 − 5 − 4)		if applied on �� = (1 − 2 − 3 − 4 −

5)	individually. Therefore SS1 is the BSS. It also find using
Eq. (3) i.e., S2 – S1.

B. Swap Sequence based PSO (SSPSO)

SSPSO [7] is the pioneer method to solve TSP that
considers each particle as a complete tour and uses SS as
velocity to get a new tour applying all its SOs on a tour. The
SOs of the velocity SS of a particle is measured considering
its previous best tour (Pi) and the best tour particles ever
encountered (G). SSPSO follows Eq. (5) and Eq. (6) for
velocity calculation and position update, respectively.

��
(�)

= ��
(���)Ä	� ��� − ��

(���)
�Ä	� �� − ��

(���)
� 	�, ��[1,0] (5)

��
(�)

= ��
(���)

+	��
(�) (6)

In Eq. (5), α, β are random numbers,		� ��� − ��
(���)

� means

all SOs in BSS for ��� − ��
(���)

� should be maintained with

the probability of α, which is the same for � �� − ��
(���)

�. The

bigger the value of α (and β) the greater the influence of Pi
(and G) will be maintained on present velocity calculation
selecting more SOs from the portion. After velocity SS
calculation using Eq. (5), each particle moves to a new tour

solution (��
(�)

) applying whole SS on its previous solution

(��
(���)) using Eq. (6).

C. Self-Tentative and Enhanced Self-Tentative PSO

Self-Tentative PSO (STPSO) [11] applies a tentative
behavior based operation after PSO operations to improve
each particle in each iteration. For PSO operations, STPSO
calculates velocity for each particle according to Eq. (7) and
updates position like SSPSO using Eq. (6).

	��
(�)

= ���
(���)Ä	��	. ��	 ��� − ��

(���)
�Ä		��. �� �� − ��

(���)
�	 (7)

In Eq. (7), c1 and c2 are learning factors, and r1 and r2 are
random values between 0 and 1. The Eq. (7) is more closer to
original PSO equation of function optimization considering a
portion of previous velocity in present velocity based on the
value of the scalling factor �.

Tentative operation of STPSO tries to improve each
particle placing a node of it in a different position in each
iteration after PSO operations. For each particle, from the
second node to the end the following actions are done: delete
the node from the original position; measure fitness values
with different positions and place it for which it gives the best
fitness [11]. After this self-tentative operation, each particle
would get a better position if any single node position
changes can improve its fitness. This tentative behavior is
important when random adjustment operators are hard to
improve the solutions. But the single node adjustment is not
sufficient to get optimal result in some cases [12]. To get
better result, Enhanced Self-Tentative PSO (ESTPSO)
considers block node adjustment in STPSO [11, 12].

ESTPSO tries to improve each particle placing a block of
nodes in a different position after the single node adjustment
of each particle. It may overcome limitation of single node
adjustment but block length selection is difficult to determine.
If block length is set from 2 to N-2 for a TSP having N cities,
it is hard to end in the limited time. If the length is set to a

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

fixed value, the adjustment process becomes stable and hard
to find the better solution. Therefore, ESTPSO adopted a
dynamic strategy based on iteration. The block size k is
determined as a random number between 2 and Kmax. And
Kmax changes according to the iteration t and its calculation
method is shown below.

IF (� > 50 and t< 30% of tmax) THEN ���� = 	⎡(1	/	10)		�⎤

ELSE IF (t > 65% of tmax) THEN ���� = 	⎡(1	/	3)	�⎤		

ELSE ���� = 	⎡(1/5)	�⎤ (8)

As of Eq. (8), the subsequence max length (Kmax) becomes
longer with t becomes bigger. ESTPSO then tries to improve
each particle reallocating every subsequence block from the
second node to	� − �	 + 	1 as like the single node
adjustment. Detailed description regarding block node
adjustment is available in the existing studies [11, 12].
ESTPSO is the best performed PSO based method so far for
TSP.

Algorithm 1 shows steps of ESTPSO to solve TSP. In
initialization (Step 1), it defines the number of particles and
assigns a random TSP tour as well as a random velocity SS to
each of the particle. At this initial stage, previous best
solution of each particle (Pi) is considered as the current
random tour of it and global best solution (G) is the best tour
among them. ESTPSO checks termination criterion at the end
of each iteration (in Step 4); usually a sufficiently good
fitness of G or a maximum number of iterations is considered
as the termination criteria. If a termination criterion does not
meet, it continues updating positions of the particles again as
indicates the loop to Step 2 from Step 4.

In ESTPSO, the block node adjustment (Step 3.b) after
single node adjustment (Step 3.a) is only the addition to
STPSO. On the other hand, employment of tentative
operation (Step 3) in ESTPSO is the major addition to
SSPSO. Moreover, ESTPSO uses Eq. (7) for velocity
calculation, whereas SSPSO uses Eq. (5). A modification on
ESTPSO is also available that also checks reverse placement
of a block [12].

III. PROPOSED VELOCITY TENTATIVE PSO (VTPSO)

This section explains proposed VTPSO to solve TSP.
Similar to prominent PSO based methods as explained in the
previous section, VTPSO considers SS for velocity operation

of particles. In the existing methods, the new tour is
considered after applying all the SOs of a SS and no
intermediate measure is considered. It is notable that every
SO implementation gives a new tour, and therefore, there is a
chance to get a better tour with some of SOs instead of all the
SOs. The main objective of VTPSO is to achieve better result
considering such intermediate tours.

Proposed VTPSO calculates velocity SS as like as the
conventional methods that described already. But it conceives
a measure called partial search (PS) to apply calculated SS to
update particle’s position (i.e., TSP tour). It measures
performance of tours applying SOs of the calculated SS one
after another, and the final velocity is considered for which it
gives better tour. Therefore, the final velocity may be a
portion (from the beginning) of calculated velocity SS.
Moreover, VTPSO conceives a moderate self-tentative
technique to improve its performance.

Algorithm 2 shows the steps of the proposed VTPSO to
solve TSP considering the PS technique. Like other
population based algorithm, VTPSO initializes the
population with random solutions and tries to improve them
at every iteration step. In initialization (Step 1), VTPSO
defines the number of particles, assigns a random TSP tour
and a random velocity SS to each of the particle. At this initial
stage, previous best solution of each particle (Pi) is
considered as the current random tour of it and global best
solution (G) is the best tour among them.

At each iteration step, VTPSO calculates velocity SS (Step
2.a) using Eq. (9) that is similar to traditional methods (e.g.,
ESTPSO), and considers (i) last applied velocity (v(t-1)), (ii)
previous best solution of the particle (Pi) and (iii) global best
solution of the swarm (G). However, Eq. (9) of VTPSO for
velocity SS calculation is simpler than Eq. (7) of ESTPSO.
The Eq. (7) of ESTPSO requires values of three user defined
parameters	�, ��	and	��	; but VTPSO does not have any
parameter to set and α, β in Eq. (9) are random numbers
between 0 and 1.

��
(�)

= ��
(���)Ä	� ��� − ��

(���)
�Ä	� �� − 	��

(���)
� �, ��[1,0] (9)

VTPSO does not apply calculated velocity SS on a particle
to get its new position like a traditional method. But it
considers the calculated velocity as tentative velocity as its
name regards. A number of tentative tours is evaluated with
the tentative velocity SS and the particle moves to the best
one among those tentative tours. A portion or complete
velocity SS that gave the best tour considers previous velocity

(��
(���)

) of the next iteration of Eq. (9). The best tour finding

from several tentative tours is considered as the PS and is the

Algorithm 1: Enhanced Self-Tentative PSO (ESTPSO)

Step 1: Initialization

Step 2: For each particle �� 	in the swarm

a. Calculate velocity ��
(�)

according to Eq. (7)

b. Update solution using Eq. (6)

c. Update �� if the new solution ��
(�)

 is superior to ��

d. Update �	if the new solution ��
(�)

 is superior to		� 	

Step 3: Tentative Operation on Each Particle	��

a. Single Node Adjustment

b. Block Node Adjustment

c. Update �� if the new solution ��
(�)

 is superior to ��

d. Update �	if the new solution ��
(�)

 is superior to		� 	

Step 4: Loop to Step 2 until a termination criterion is met

Step 5: Take the global best solution �	as an outcome

Algorithm 2: Velocity Tentative PSO (VTPSO)

Step 1: Initialization.

Step 2: For each particle �� 	in the swarm

a. Calculate velocity ��
(�)

 using Eq. (9)

b. Update ��
(�)

 through Partial Search manner

c. Apply Tentative Operation on ��
(�)

 if is Superior to ��

d. Update �� if the new solution ��
(�)

 is superior to ��

e. Update �	if the new solution ��
(�)

 is superior to		� 	

Step 3: Loop to Step 2 until a termination criterion is met

Step 4: Take the global best solution �	as an outcome

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

main attraction of VTPSO; therefore, Step 2.b in Fig. 2 for
such operation is marked in bold-faced.

PS seeks better result with a portion of calculated tentative
velocity SS. It is already mentioned that a traditional method
applies all the SOs of a velocity SS on a tour and generates a
new tour with the whole SS although implementation of every
successive SO transforms a tour into a new tour. While a
traditional method ignores the intermediate tours, the PS
technique explores the option of getting better tour
considering the intermediate tours with a SS applying its SOs
one by one.

 Suppose	��
(�)

= ���, ���, ���, . . . ���	then in PS

	��
�(�)

= 	 	��
(���)

+ ���

	��
�(�)

= 	��
�(�)

+ ��� = 	 	��
(���)

+ ��� + ���

………………………………….

					��
�(�)

= 	 	��
���(�)

+ ���

In the above cases 	��
�(�)

, 	��
�(�)

, … . . , 	��
�(�)

		are the tentative

intermediate tours; and the final tour ��
(�)

	in PS is the tentative

tour having the minimum tour cost.

	��
(�)

= 	��
�(�)

	, (10)

where 	��
�(�) provides the minimum tour cost among

	��
�(�)

, 	��
�(�)

, … 	��
�(�)

… 	��
�(�)

.	 Finally, the velocity considered

as 	��
(�)

= ���, ���, ���, . . . ��� 1 < j ≤ n.

The final velocity may also get from new and previous
positions of the particle using the equation

	��
(�)

= 	��
(�)

− 	��
(���). (11)

The above scenario can be described clearly with specific
tour example. Consider a tour Xi

(t-1) of 10 cities where city
position is the number of the city.

	��
(���)

= 	1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10	

If velocity SS is ��� = ��(1,4), ��(2,5), ��(2,4)	the
implementation of the SOs gives two intermediate tours

(i.e.,	��
�(�)

	and		��
�(�)

) and finally reaches at 	��
�(�)

.	

��
�(�)

= ��
(���)

+ ��(1,4) = � − 2 − 3 − � − 5 − 6 − 7 − 	8 − 9 − 10

��
�(�)

= 	��
�(�)

+ ��(2,5) = 	4 − � − 3 − 1 − � − 6 − 7 − 8 − 9 − 10

��
�(�)

= ��
�(�)

+ ��(2,4) = 	4 − � − 3 − � − 2 − 6 − 7 − 8 − 9 − 10

A traditional method only considers the last one to update a

tour (i. e. , 	��
(�)

= 	��
�(�)

). On the other hand, PS evaluates all

the solutions since all three are the complete tours and an

intermediate one (here	��
�(�)

	or	��
�(�)

) might be better than the

last one (i.e.,	��
�(�)

). In PS technique all three tours (i.e.,	��
�(�)

,

	��
�(�)

	and		��
�(�)

) are considered as tentative tours. The final

tour in PS technique is the best one among the three. If tour

	��
�(�)

 is found better than 	��
�(�)

	and		��
�(�)

 then 	��
�(�)

 is

considered as the next solution point (i.e.,	��
(�)

= 	��
�(�)

).

Applied velocity in this case contains first two SOs of the

calculated velocity SS, i.e., 	��
(�)

= ��(1,4), ��(2,5).

VTPSO calculates fitness of every new position (Xi) of a
particle and compares to its previous best Pi. If Xi is found
better than Pi then VTPSO applies Self-Tentative (ST)
operation on (Xi) owing to improve it furthermore. Such
selective ST operation might be helpful to improve overall

performance of VTPSO with a minimal time complexity. The
ST operation of VTPSO (Step 2.c) consists of the Single
Node Adjustment of STPSO/ESTPSO and a simplified
version of ESTPSO Block Node Adjustment. The block size
k is considered as a random number between 2 and Kmax; and
the value of Kmax is defined as N/2, i.e., half of total cities of
the given problem. After ST operation, Pi is updated (Step
2.d)) if new solution Xi is found better than Pi. The method
also compares Xi with G and updates G accordingly if it is
found inferior to Xi (Step 2.e).

VTPSO checks termination criterion at the end of each
iteration (in Step 3); a sufficiently good fitness of G or a
maximum number of iterations is considered as the
termination criteria similar to other methods. If a termination
criterion does not meet, it continues updating positions of the
particles again as indicates the loop to Step 2 from Step 3.

A. Effect of Partial Search (PS) in Tour Cost Calculation

PS technique might not increase computational cost
although it evaluates intermediate tours. The technique of
tour cost calculation is an element of effectiveness of PS. In
general, cost of a tour is calculated accumulating all
individual links’ costs. If all the links’ cost are accumulated
for every SO implementation PS will incur much time than a
traditional method, normally (n-1) times for a velocity SS
having n SOs. But it does not require to consider all the links
to get cost of a new tour implementing SO(s) on a tour which
cost is known. Since a SO indexes two cities in a tour to
interchange their positions, implementation of a SO requires
to discard costs of four links and add costs of four new links
that associate with the indexed cities. Suppose a swap

operator SO(1,4) on 	��
(���)

= 	1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 −

9 − 10 gives 	��
(�)

	= 		��
(���)

+ 		��(1,4) = 	4 − 2 − 3 − 1 −

5 − 6 − 7 − 8 − 9 − 10. For the tour cost of 	��
(�)
,	link costs of

1-2, 10-1, 3-4 and 4-5 were discarded as well as link costs of

4-2, 10-4, 3-1 and 1-5 were added with the tour cost of 	��
(���).

An analytical comparison can be outlined between two
different tour cost calculation methods: (1) updating cost of
the previous tour (that follows VTPSO) modifying only for
the cities that a SO indicates to interchange; and (2)
accumulating all the links’ cost that uses a traditional method.
Suppose, t is the required time to read a link cost and n is the
number SOs in the velocity SS. In VTPSO, the time to get a
tentative tour updating 8 links’ cost for a SO is

TSO = 8t. (12)

Thus, total time requires in VTPSO to update a tour for a
velocity SS having n SOs is

T VTPSO= nTSO = 8nt. (13)

On the other hand, a traditional method calculates tour cost
for a velocity SS accumulating all the links’ costs of the tour.
And for problem having N cities the time a method requires
is

T = tN. (14)

It is notable that tour cost calculation of VTPSO depends on
the number of SOs, regardless of the number of cities in the
problem. On the other hand, tour cost calculation of a
traditional method depends on the number of cities in the
problem. It is remarkable from Eq. (13) and Eq. (14) that a
traditional method might be faster than VTPSO for problems

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

having few cities and VTPSO might compete for large sized
problems. Moreover, VTPSO might be time efficient for
small sized SS, i.e., a SS consists of less number of SOs.
Finally, PS technique may explore better result evaluating
intermediate tentative tours without increasing the
computational time.

B. Comparison and Contrast with the Traditional Methods

Proposed VTPSO introduces different way of getting new
tour with calculated velocity SS. It calculates velocity SS
similar to conventional SS based methods (e.g., SSPSO,
STPSO, ESTPSO), but in case of velocity implementation on
a particle (i.e., current tour) it follows a different way. A
conventional method gets new tour applying all the SOs in
the calculated velocity SS. On the other hand, VTPSO
considers the calculated velocity as tentative velocity and
evaluates a number of tentative tours applying SOs of the SS
one after another sequentially. The next solution point (i.e.,
tour) is considered as the best tentative tour and applied
velocity is a portion of SS from the beginning that gave the
best tour. Although VTPSO evaluates a number of
intermediate tours it might not increase computational cost as
explained in the previous section. On the other hand, VTPSO
might converge faster than a conventional method because it
may conceive a better tour with a portion of SS than with the
whole SS.

VTPSO conceives ST behavior owing to achieve better
outcome like ESTPSO, but in a different manner. ESTPSO
applies ST operation (i.e., single node adjustment and block
node adjustment) on each and every individual particle after
PSO operations (Step 3 of Fig. 1). Thus, ESTPSO obviously
induces a huge computational cost with PSO operations. On
the other hand, VTPSO applies ST operation on selected
particles that might not increase computational cost much but
might enhance the performance of VTPSO. Finally, VTPSO
seems to be a cost effective method for better TSP solution.

IV. EXPERIMENTAL STUDIES

This section experimentally investigates the proficiency of
the proposed VTPSO algorithm to solve benchmark TSPs.
The performance of VTPSO compared to ESTPSO [9] (the
prominent SS based PSO method) and other two prominent
methods for TSP. The experimental methodology were
chosen carefully for fair comparison. Finally, experimental
analyses have also been given for better understanding of the
way of performance improvement in the proposed method
while solving TSP.

A. Bench Mark Data and Experimental Methodology

In this study, a suite of benchmark problems are considered
from TSPLIB [20] where number of cities varied from 14 to
318 and give a diverse test bed. A numeric value in the
problem name presents the number of cities in that tour. For
example, burma14 and rat195 have 14 and 195 cities,
respectively. A city is represented as a coordinate in a
problem and therefore tour cost matrix is prepared after
calculating distances using the coordinates.

For ESTPSO, the value of scalling factor � of Eq. (7) is
calculated using Eq. (15) that is identified to give better result
according to the previous study [9].

� = 0.1 − (1 − ���(1 − 2 ∗ �/�)) ∗ 0.05	,	 (15)

where t and T are current iteration and total iteration,
respectively. On the other hand, VTPSO does not require any
parameter to set for velocity SS calculation as it uses Eq. (9)
that is simpler than Eq. (7) of ESTPSO.

The algorithms were implemented on Visual C++ of Visual
Studio 2010. For proper understanding, experiments have
been conducted on a single machine (HP Pro, Intel (R) Core
(TM) i5-3470 CPU 3.20 GHz, 4 GB RAM) with Windows 7
Professional OS.

B. Experimental Results Comparing with ESTPSO

This section presents experimental results of the proposed
VTPSO and compares with the results of ESTPSO on a suite
of 45 benchmark TSPs. For the fair comparison, the
population size was 100; the number of iteration was set at
500 as the termination criteria for both VTPSO and ESTPSO.
For each problem, outcomes of 20 individual runs by a
method are summarized and considered in performance
comparison. Since experiments were conducted in a single
machine with same experimental settings for both the
methods, comparison between the methods on the basis of
required time to solve a problem is considered as a good
choice to identify the proficiency of a method.

Table I compares problem wise achieved tour cost (average
and best) and average required time between ESTPSO and
VTPSO from 20 individual runs. Pair two tailed t-test was
conducted to determine the significance in the variation of
results. If tour cost of VTPSO was found significantly better
than ESTPSO by t-test for a particular problem, it is marked
with a plus (+) sign in the column of t-test evaluation. On the
other hand, a minus (−) sign indicates VTPSO was
significantly worse than ESTPSO for a particular problem. A
single plus/minus means the tour cost difference between
ESTPSO and VTPSO was statistically significant with 95%
confidence interval and a double plus/minus is for 99%
confidence interval. The bottom of the table shows the
average outcome over all 45 problems.

The results presented in the Table I clearly indicate the
effectiveness of the proposed VTPSO to solve benchmark
TSPs. The proposed method is shown better than ESTPSO on
the basis of average tour cost of 45 problems. The average
tour cost achieved by VTPSO was 23241.30; on the other
hand ESTPSO achieved average tour cost of 23969.16.
VTPSO is found better than ESTPSO for 34 cases and the t-
test shows that the performance of VTPSO is significantly
better than ESTPSO on 33 problems. ESTPSO, however,
significantly outperformed VTPSO on only two problems
(i.e., fri26 and hk48). In general, ESTPSO was competitive to
VTPSO for only small sized problems (e.g., burma14,
ulysses16); otherwise VTPSO outperformed ESTPSO.

The interesting observation from results of Table I is that
VTPSO is much more time efficient than ESTPSO but
provides suitable solution with minimal tour costs. Since the
algorithms were tested on same machine with defined fair
setting (unbiased to any one of those), the time requirement
differs due to algorithmic matter. Moreover, finding better
result with lesser time is more interesting that is provided by
VTPSO. PS in VTPSO encourages to find better solution
early. In addition, velocity SS size might reduce with iteration
in VTPSO and might enhanced it to take overall less time to
solve a problem. On the other hand, ST operation on each

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

particle (at each iteration) makes ESTPSO computationally
much expensive in general. But VTPSO applied moderate ST
operation on selected particles. Velocity tentative based PS
along with ST operation on selected particles makes VTPSO
faster convergence and therefore returns good result with less
time. As an example, VTPSO took 174.23 seconds for rd100
problem. For the same problem, ESTPSO took more than
double time of VTPSO i.e., 452.18 seconds. But VTPSO
achieved better result than ESTPSO for the problem; average
tour costs achieved by VTPSO and ESTPSO are 8453.56 and
8762.08, respectively. In general, VTPSO took time less than
half of ESTPSO to solve a benchmark TSP.

It is also observable from Table I that VTPSO outperforms

ESTPSO on the basis of best outcome (i.e., minimum tour
cost) from among 20 independent runs. For few small sized
problems (e.g., burma14, gr24), both ESTPSO and VTPSO
achieved same tour cost in all 20 independent runs. On the
other hand, most of the cases, especially for large sized
problems, VTPSO achieved better (i.e., lower) minimum tour
costs than ESTPSO. Out of 45 cases, VTPSO outperformed
ESTPSO for 32 cases; ESTPSO was better than VTPSO for
only four cases; and both the methods showed same minimum
tour cost for rest nine cases. Among the existing methods,
ESTPSO is the best performed PSO based method so far;
therefore outperformance of VTPSO over ESTPSO indicates
the essence of PS based PSO operation to solve TSPs.

TABLE I
COMPARISON BETWEEN ESTPSO AND VTPSO OVER 20 INDEPENDENT RUNS TO SOLVE BENCHMARK TSPS.

Sl. Problem
Average Tour Cost (Standard Deviation) t-test eval. of

VTPSO with
ESTPSO

Minimum Tour Cost (No of
Times Min. Cost Achieved)

Average Req. Time
in Second

ESTPSO VTPSO ESTPSO VTPSO ESTPSO VTPSO

1 burma14 30.87 (0.0) 30.87 (0.0) 30.87 (20) 30.87 (20) 16.96 13.03

2 ulysses16 73.99 (0.0) 74 (0.02) 73.99 (18) 73.99 (5) 21.71 15.48

3 gr17 2332.58 (0.0) 2337.2 (13.86) 2332.58 (20) 2332.58 (18) 19.15 15.51

4 gr21 2672.27 (0.0) 2681.41 (27.42) 2672.27 (20) 2672.27 (18) 25.84 19.34

5 ulysses22 75.34 (0.07) 75.41 (0.17) 75.31 (17) 75.31 (13) 33.6 20.68

6 gr24 1249.82 (0.0) 1249.82 (0.0) 1249.82 (20) 1249.82 (20) 29.31 22.02

7 fri26 635.58 (0.0) 639.87 (7.44) - 635.58 (20) 635.58 (14) 32.82 24.51

8 bays29 9074.15 (0.0) 9125.15 (107.99) 9074.15 (20) 9074.15 (16) 43.27 29.09

9 hk48 11202.87 (160.19) 11629.01 (260.53) - - 11104.67 (5) 11130.68 (1) 123.13 58.1

10 eil51 444.56 (6.37) 441.76 (5.94) 429.51 (1) 428.98 (1) 157.98 67.75

11 berlin52 7804.2 (172.7) 7879.6 (200.93) 7544.37 (2) 7544.37 (2) 151.52 65.58

12 st70 709.7 (16.1) 716.11 (18.74) 687.17 (2) 682.57 (1) 245.17 98.64

13 eil76 582.44 (9.92) 572.19 (7.65) + + 564.07 (1) 560.44 (1) 286.36 120.88

14 gr96 560.27 (15.81) 544.71 (14.63) + + 531.84 (1) 521.25 (1) 410.03 162.77

15 rat99 1381.41 (42.65) 1330.27 (33.66) + + 1261.47 (1) 1254.54 (1) 429.69 168.46

16 kroa100 23463.91 (967.02) 22484.26 (641.24) + + 21644.63 (1) 21438.19 (1) 456.37 176.59

17 kroB100 24377.23 (825.43) 23374.96 (398.79) + + 22934.09 (1) 22648.29 (1) 443.89 189.64

18 kroC100 22829.39 (966.47) 22247.78 (580.99) + 21370.58 (1) 21120.65 (1) 440.68 182.34

19 kroD100 23415.68 (770.93) 22800.59 (546.97) + + 21847.23 (1) 21927.6 (1) 445.34 191.01

20 kroE100 24348.24 (853.96) 23458.78 (404.8) + + 22939.22 (1) 22600.28 (1) 453.11 180.97

21 rd100 8762.08 (240.78) 8453.56 (216.7) + + 8167.28 (1) 7944.32 (1) 452.18 174.23

22 eil101 697.8 (14.06) 681.02 (10.28) + + 675.27 (1) 663.28 (1) 470.81 184.65

23 lin105 16381.44 (620.73) 15961.57 (431.69) + 15112.43 (1) 15213.56 (1) 469.93 189.41

24 pr124 65852.22 (2185.46) 64605.79 (1158.19) + 62545.29 (1) 62856.17 (1) 613.59 258.87

25 bier127 127725.83 (2163.69) 124662.81 (3343.96) + + 123046.3 (1) 120291.87 (1) 693 286.16

26 ch130 6711.41 (183.02) 6549.88 (154.37) + + 6402.41 (1) 6309.26 (1) 717.15 274.32

27 gr137 810.45 (17.91) 777.4 (17.43) + + 777.4 (1) 740.8 (1) 748.95 282.67

28 pr144 65894.2 (3143.31) 62675.47 (2276.87) + + 60024.85 (1) 59969.91 (1) 839.24 325.55

29 ch150 7302.21 (196.72) 7179.44 (150.08) + 6898.65 (1) 6873.38 (1) 882.93 363.22

30 kroA150 29531.52 (726.99) 28298.44 (457.1) + + 28054.71 (1) 27505.26 (1) 903.16 359.52

31 kroB150 29119.96 (682.16) 28037.59 (501.19) + + 27733.8 (1) 27408.19 (1) 914.42 381.23

32 pr152 80544.89 (2146.41) 76249.77 (1381.28) + + 77950.22 (1) 74166.1 (1) 832.96 321.93

33 u159 48256.85 (1576.09) 45691.99 (1241.51) + + 45135.09 (1) 43827.25 (1) 956.7 396.28

34 rat195 2669.82 (48.23) 2587.59 (50.21) + + 2566.11 (1) 2475.17 (1) 1407.43 586.83

35 d198 17222.85 (229.54) 16577.31 (236.6) + + 16616.54 (1) 16168.11 (1) 1404.75 573.01

36 kroA200 32987.91 (898.74) 32209.01 (550.24) + + 31318.23 (1) 31032.43 (1) 1463.24 612.19

38 kroB200 33141.56 (703.43) 32024.59 (470.22) + + 31589.7 (1) 31175.18 (1) 1481.23 614.32

39 gr202 525.04 (8.85) 513.12 (9.1) + 508.51 (1) 499.91 (1) 1501.18 610.85

40 ts225 142008.18 (3646.96) 139670.69 (3189.63) + 136529.72 (1) 135246.68 (1) 1838.72 784.16

41 tsp225 4345.66 (108.43) 4280.7 (91.85) + + 4181.36 (1) 4149.42 (1) 1759.1 753.29

42 pr226 92600.97 (4465.36) 88466.55 (2715.16) + + 85558.5 (1) 83753.97 (1) 1794.44 732.09

43 gr229 1793.68 (27.74) 1751.61 (16.54) + + 1749.99 (1) 1721.48 (1) 1897.12 792.49

44 gil262 2716.61 (70.9) 2634 (46.41) + + 2573.83 (1) 2573.19 (1) 2424.19 968.51

44 pr264 56196.38 (1166.34) 54781.23 (1306.87) + 53795.16 (1) 52763.29 (1) 2376.31 984.95

45 lin318 47548.35 (939.12) 46843.62 (906.0) + + 45882.51 (1) 44869.69 (1) 3431.37 1424.16

 Average 23969.16 23241.30 22764.38 22404.45 812.00 334.61
 Best 9 34 4 32 0 45

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

C. Experimental Analyses Comparing with ESTPSO

This section first investigates why VTPSO requires less
time than ESTPSO to get the solution on the basis of SS size
over iteration. It then investigates the effect of population size
(i.e., number particles) and the number of iteration on the
performance of ESTPSO and VTPSO. Three problems with
different sizes were selected for the analyses and those are
eil51, gr99 and eil101.

1) Velocity Swap Sequence and Time over Iteration

Figure 1 presents velocity SS size, global best (i.e., G)
solution tour cost and time (in seconds) elapsed from the
beginning over iteration for three sample cases of the selected
problems. A SS holds several SOs and therefore its size at a

particular iteration point is the average number of SOs for all
the particles’ SS. Since operation of a velocity SS is the
collective operations of its individual SOs, a large SS (having
many SOs) requires more time than a small one to calculate
as well as implement for getting a new tour. It is notable that
a particle’s solution or tour (Xi) closer to its previous best (i.e.,
Pi) and/or G generates smaller velocity SS.

ESTPSO applies ST operation out of PSO operations on
each particle at each iteration owing to improve each one.
Therefore, average velocity SS is maintained at a level
throughout iteration in ESTPSO due to such self-
improvement besides PSO operations. On the other hand,
VTPSO applies ST operation on selected particle with PSO
operations and considers PS. Simultaneous operations of both

(a) Swap Sequence vs. Iteration. (b) Global best Tour Cost and Time vs. Iteration.

Fig. 1. Velocity swap sequence size, global best (G) tour cost and require time (in seconds) elapsed over iteration.

0

7

14

21

28

0 100 200 300 400 500

S
w

ap
 S

eq
u

en
ce

Iteration

ESTPSO VTPSOeil51

0

40

80

120

160

400

500

600

700

0 100 200 300 400 500

ESTPSO(Tour Cost)

VTPSO(Tour Cost)

ESTPSO(Time)

VTPSO(Time)

Iteration

T
o

u
r

C
o

st

T
im

e

eil51

0

10

20

30

40

50

0 100 200 300 400 500

S
w

ap
 S

eq
u

en
ce

Iteration

ESTPSO VTPSOgr96

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500

ESTPSO(Tour Cost)
VTPSO(Tour Cost)
ESTPSO(Time)
VTPSO(Time)

T
o

u
r

C
o

st

T
im

e

Iteration

gr96

0

10

20

30

40

50

60

0 100 200 300 400 500

S
w

ap
 S

eq
u

en
ce

Iteration

ESTPSO VTPSOeil101

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500

ESTPSO(Tour Cost)
VTPSO(Tour Cost)
ESTPSO(Time)
VTPSO(Time)

T
o

u
r

C
o

st

T
im

e

Iteration

eil101

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

the things might be the reason for velocity SS size reduction
(Fig. 1(a)) and faster convergence (Fig. 1(b)) over iterations
in VTPSO. At the beginning of iteration, VTPSO seems
slower than ESTPSO since SS size of VTPSO is much larger
than ESTPSO. But in general, VTPSO is much more time
efficient than ESTPSO because of ST operation on selected
particles and smaller SS at later iteration period. On the basis
of achieved solution, both ESTPSO and VTPSO showed bad
result at the beginning and improved over iteration. However,
VTPSO outperformed ESTPSO showing better result (i.e.,
smaller tour cost of G) for all the three cases. Finally, partial
search and selected ST operations make VTPSO efficient in
terms of better TSP outcome as well as required time to give
solution.

2) Effects of Population Size and Total Iteration

This section investigates the performance of ESTPSO and
VTPSO varying population size (i.e., number of particles)
and total number of iteration. The results presented in Table
I are for the fixed number of population size (=100) and
iteration (=500) for all the problems. It is interesting to
observe how the algorithms perform on the variation of both
the parameters.

Figure 2 shows the achieved tour cost and required time (in
seconds) for different population sizes varied from 5 to 500
while total iteration was fixed at 500. The presented results
are the average for 10 independent runs. In Fig. 2(a), Standard
Deviation (SD) values for 10 runs are placed as vertical bars
on the average tour cost. It is seen from the figure that both
the methods showed worst tour cost at very small population
(e.g., 5) and improved with population size. As an example,
for gr96 problem at population size 20, ESTPSO and VTPSO
achieved tour costs of 568.04 and 552.18, respectively. For
the same problem ESTPSO and VTPSO achieved tour costs
of 540.87 and 533.38, respectively, at population size 400. It
is common to get better result with larger population but
computational time increases much when population size
increases as seen in Fig. 2(b). To solve same gr96 problem,
ESTPSO took 83.89 and 1665.04 seconds for population
sizes 20 and 400, respectively. On the other hand, although
VTPSO took more time for larger population but the time it
took much less than ESTPSO and found more efficient for
larger population. VTPSO took only 33.02 and 646.79
seconds for population sizes 20 and 400, respectively, to
solve gr96. At a glance, VTPSO is better than ESTPSO taking
less time regardless of population size.

Figure 3 shows the achieved tour cost and required time for
different fixed number of iterations varied from 10 to 1000
while population size was fixed at 100. The presented results
are the average for 10 independent runs. From Fig. 3 (a) it is
observed that both ESTPSO and VTPSO showed the worst
tour costs at iteration 10 and improved rapidly up to a certain
value (e.g., 200 for eil51) and after that improvement was not
significant. As an example, for eil101 problem, ESTPSO and
VTPSO achieved tour costs of 709.49 and 722.5,
respectively, at iteration 20. For the same eil101 problem,
ESTPSO and VTPSO achieved tour costs of 695.14 and
674.16, respectively, at iteration 400. It is notable from the
Fig. 3(a) that VTPSO outperformed ESTPSO showing better
tour cost but it took less time at any value of iteration as seen
in Fig. 3(b). For the 400 iteration of eil101 problem, ESTPSO

 (a) Tour Cost vs. Population Size.

 (b) Required Time vs. Population Size.

Fig. 2. Variation effect of population size on tour cost and require
time.

430

440

450

460

470

0 100 200 300 400 500

T
o

u
r

C
o

st

Population Size

ESTPSO VTPSOeil51

520

540

560

580

600

0 100 200 300 400 500

T
o

u
r

C
o

st

Population Size

ESTPSO VTPSOgr96

650

670

690

710

0 100 200 300 400 500

T
o

u
r

C
o

st

Population Size

ESTPSO VTPSOeil101

0

500

1000

1500

2000

0 100 200 300 400 500

T
im

e

Population Size

ESTPSO (eil51)

VTPSO (eil51)

ESTPSO (gr96)

VTPSO (gr96)

ESTPSO (eil101)

VTPSO (eil101)

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

took 372.78 seconds; but VTPSO took 158.57 seconds that is
less than half of ESTPSO. Finally, the Figs. 2 and 3 clarified
VTPSO as a good method to solve TSP.

D. Experimental Results Comparing with ACO and PSM

While VTPSO is shown to outperform the prominent PSO
based method ESTPSO, this section compares performance
of VTPSO with other prominent methods for TSP for better
understanding. We have considered Ant Colony
Optimization (ACO) [22-23] and Producer-Scrounger
Method (PSM) [24] to compare the outcome of proposed
VTPSO with the methods. ACO is the pioneer as well as most
popular swarm intelligence based method for TSP. On the
other hand, PSM is the most recent method to solve TSP.
ACO, PSM and VTPSO have been tested on a suite of 20
benchmark problems with fair settings. For the fair
comparison, the number of iteration was set at 500 for the
algorithms. The number of ants in ACO was equal to the
number of cities as it desired. On the other hand, the
population size was varied from 100 to 200 for PSM and
VTPSO. In ACO, alpha and beta were set to 1 and 3,
respectively. On the other hand, the RNC (rate of near cities
consideration) for producer scanning in PSM was set to 0.1.
The selected parameters were not optimal values, but
considered for simplicity as well as for fairness in
comparison. The experiments performed on the same
computer described earlier.

Table II compares performance of ACO, PSM and VTPSO
for solving the benchmark TSPs on the basis of 20
independent runs to solve a problem with a method. For a
particular problem, the best tour cost (i.e., smallest value)
among the three algorithms is shown in bold-face type and
worst one (i.e., largest value) is shown in underlined face
type. Bottom of the table shows the achieved average tour
cost and best/worst summary (which indicates on how many
problem instances a method gave best/worst result) for all 20
problems by the methods. A Win/Draw/Loss summary of the
results is also presented for better understanding. Pair two
tailed t-test was conducted to determine the significance in
the variation of results of VTPSO with ACO and PSM. If tour
cost of VTPSO was found significantly better than
ACO/PSM by t-test for a particular problem, it is marked with
a plus (+) sign in the column of t-test evaluation. On the other
hand, a minus (−) sign indicates VTPSO was significantly
worse than ACO/PSM for a particular problem. A single
plus/minus means the tour cost difference was statistically
significant with 95% confidence interval and a double
plus/minus is for 99% confidence interval.

The average tour costs presented in the Table II indicate
that VTSPSO is the best and PSM is the worst. The average
tour cost over all 20 problems was 12745.46 for VTPSO, the
value is the best among the three methods. The achieved
average tour costs for ACO and PSM were 14026.29 and
15147.38, respectively. PSM is shown worst tour costs for 15
problems out of 20 cases showing best for none. In pair
Win/Draw/Loss comparison, PSM is better than ACO for five
cases only. ACO is found best for only one problem (i.e.,
gr17) and worst for six cases. On the other hand, proposed
VTPSO is shown best for 19 cases but worst for none. In pair
Win/Draw/Loss comparison, VTPSO is better than ACO and
PSM for 19 and all 20 cases, respectively. Moreover, t-test

 (a) Tour Cost vs. Total Iteration.

 (b) Required Time vs. Total Iteration.

Fig. 3. Variation effect of fixed total iteration on tour cost and
require time.

430

445

460

475

0 200 400 600 800 1000

T
o

u
r

C
o

st

Total Iteration

ESTPSO VTPSOeil51

510

540

570

600

0 200 400 600 800 1000

T
o

u
r

C
o

st

Total Iteration

ESTPSO VTPSOgr96

650

675

700

725

750

0 200 400 600 800 1000

T
o

u
r

C
o

st

Total Iteration

ESTPSO VTPSOeil101

0

250

500

750

1000

0 200 400 600 800 1000

T
im

e

Total Iteration

ESTPSO (eil51)

VTPSO (eil51)

ESTPSO (gr96)

VTPSO (gr96)

ESTPSO (eil101)

VTPSO (eil101)

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

shows that the performance of VTPSO was significantly
better than ACO and PSM on 19 and 18 problems,
respectively.

On the basis of minimum tour costs presented in the Table
II, VTPSO is the best and ACO is the worst. ACO is the
prominent method for solving TSP and considers population
size as the number cities of a given problem. ACO starts
placing different ants in different cities and its initialization
does not differ among individual runs [21-22]. Therefore, the
tour costs achieved by ACO in different runs are found
consistent showing lower SD values. For several problems,
especially small sized ones (e.g., ulysses16, gr17, gr21), ACO
was shown same tour cost in all 20 individual runs and
therefore SD of average tour cost is shown as zero for the
problems in the table. For any problem, PSM gave most
variant outcomes among different runs showing largest SD
value. Consequently, PSM was shown to outperform ACO on
the basis of minimum tour cost from 20 runs. PSM achieved
minimum tour cost better than ACO in 13 cases, in which six
cases PSM was the best along with proposed VTPSO.
However, PSM was shown worst for seven cases on the basis
minimum tour cost. On the other hand, VTPSO was shown to
achieve best minimum tour cost for all the cases except gr17;
gr17 is a small sized problem and all three methods achieved
equal minimum tour cost of 2332.58 for it. Moreover,
according to Win/Draw/Loss summary, VTPSO is better than
ACO and PSM for 19 and 13 cases, respectively; rest of the
cases VTPSO is shown same tour cost of ACO and PSM, i.e.,
one and seven cases, respectively. Finally, proposed VTPSO
seems significantly better than ACO and PSM to solve TSP.

E. Effects of Population Size and Iteration Comparing
with ACO and PSM

This section investigates the performance of ACO, PSM
and VTPSO varying population size (i.e., number of
individuals) and number of iteration. The experiments
performed on the same machine explained before. Three
problems with different sizes (i.e., eil51, gr96 and eil101)
were selected for the analyses.

Figure 4 shows the achieved tour cost for different
population sizes varied from 5 to 500 for PSM and VTPSO.
Number of ants in ACO was equal to the number of cities of a
particular problem as it desired. The presented results are the
average for 10 independent runs for fixed 500 iteration as
termination criteria; SD values for the runs are placed as
vertical bars on the average tour cost. Since population size
was fixed in ACO for a particular problem it showed invariant
performance in the figure. While ACO is unable to work with
different population size, PSM and VTPSO may outperform
ACO varying population size. For eil51 problem, ACO was
shown tour cost of 504.03; but both PSM and VTPSO
outperformed ACO at any population size. PSM and VTPSO
were shown tour costs of 479.37 and 442.35, respectively, at
population size 100. However, PSM was also found less
invariant with population size as seen in Fig. 4. Because PSM
is producer (the single best solution) centric; and it is reported
that PSM may works well and gives suitable result with
relatively small population size [23]. On the other hand,
VTPSO seems to perform well with population variation and
may outperform ACO and PSM. For gr96 problem, as an
example, VTPSO achieved tour costs of 577.97 and 534.96

TABLE II
COMPARISON OF THE EXPERIMENTAL RESULTS OF THE PROPOSED VTPSO WITH ACO AND PSM TO SOLVE BENCHMARK TSPS.

Sl. Problem
Average Tour Cost (Standard Deviation)

t-test eval. of
VTPSO

Minimum Tour Cost

ACO PSM VTPSO ACO PSM ACO PSM VTPSO

1 burma14 31.31 (0.24) 30.9 (0.1) 30.87 (0.0) + + 31.21 30.87 30.87

2 ulysses16 77.13 (0.0) 74.22 (0.31) 74.0 (0.02) + + + + 77.13 73.99 73.99

3 gr17 2332.58 (0.0) 2350.4 (44.76) 2337.2 (13.86) 2332.58 2332.58 2332.58

4 gr21 2955.42 (0.0) 2966.43 (250.07) 2681.41 (27.42) + + + + 2955.42 2672.27 2672.27

5 ulysses22 86.19 (0.07) 78.09 (3.7) 75.41 (0.17) + + + 86.08 75.31 75.31

6 gr24 1267.13 (0.0) 1367.3 (97.51) 1249.82 (0.0) + + + + 1267.13 1251.33 1249.82

7 fri26 646.39 (0.37) 697.64 (45.95) 639.87 (7.44) + + + + 644.8 635.58 635.58

8 bays29 9964.78 (0.0) 9681.97 (377.14) 9125.15 (107.99) + + + + 9964.78 9074.15 9074.15

9 hk48 12723.18 (68.36) 13188.05 (805.78) 11483.65 (256.08) + + + + 12699.86 11757.54 11104.67

10 eil51 502.26 (9.96) 486.34 (29.97) 442.51 (5.98) + + + + 461.42 445.81 428.86

11 berlin52 8061.57 (48.94) 8800.91 (525.06) 7863.06 (214.99) + + + + 7870.45 7806.24 7544.37

12 st70 745.11 (7.86) 850.77 (53.89) 716.11 (18.74) + + + + 734.19 743.75 682.57

13 eil76 598.87 (7.23) 629.12 (25.78) 566.25 (7.42) + + + + 583.28 586.67 554.64

14 gr96 588.76 (9.15) 607.7 (31.26) 537.38 (15.03) + + + + 564.37 556.64 515.12

15 rat99 1368.95 (1.08) 1471.25 (66.2) 1330.27 (33.66) + + + + 1366.3 1366.58 1254.54

16 kroa100 24662.12 (81.77) 29134.2 (2087.6) 22388.06 (645.9) + + + + 24524.53 24872.86 21399.53

17 kroB100 25369.53 (508.8) 30759.27 (2275.7) 23211.26 (499.27) + + + + 24675.03 26641.31 22305.35

18 kroC100 23293.17 (105.0) 28882.39 (2260.0) 22278.36 (659.16) + + + + 23248.13 24741.26 21063.05

19 rd100 9420.6 (58.82) 10389.55 (749.11) 8453.56 (216.7) + + + + 9210.67 9134.8 7944.32

20 eil101 738.64 (4.91) 764.67 (33.91) 672.32 (9.33) + + + + 729.95 722.88 657.62

 Average 14026.29

15147.38

12745.46

 13965.82

13432.35

12293.84
 Best/Worst 1/6 0/15 19/0 1/13 6/7 19/0

Method Pairwise Win/Draw/Loss Summary on Average Tour Cost and Minimum Tour Cost
ACO PSM VTPSO ACO PSM VTPSO

ACO - 5/0/15 19/0/1 - 13/1/6 19/1/0

PSM - 20/0/0 - 13/7/0

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

for population sizes of 5 and 200, respectively. For the same
problem, ACO achieved tour cost of 586.98 and the best tour
cost of PSM was 603.32 at population size 450. At a glance,
proposed VTPSO has shown the ability to achieve better
result varying population size.

Figure 5 compares performance among ACO, PSM and
VTPSO for iteration variation; iteration varied from 10 to
1000. In the experiments, population size was fixed at 100 for
PSM and VTPSO; and the number ants in ACO was equal to
the number of cities of a particular problem. The presented
results in figures are the average for 10 independent runs; SD
values are also placed as vertical bars on the average tour cost.
According to the results presented for the problems in the
figure, all the methods are shown to perform worse for small
number of iteration. However, ACO is shown the most

invariant and PSM is shown the most variant in performance
for iteration variation. As an example, for eil101 problem at
iteration 10, the achieved tour costs were 741.37, 2458.78 and
750.81 for ACO, PSM and VTPSO, respectively. For the
same problem, the best tour costs were 733.15 for ACO (at
50 iteration) and 738.17 for PSM (at 1000 iteration). On the
other hand, VTPSO was shown the best tour cost of 674.16
(at 400 iteration) and the achieved tour cost is much better
(i.e., lower) than the achieved best values of ACO and PSM.
With larger variation for iteration variation, PSM was inferior
to ACO for small number iterations while it was
outperformed ACO for larger iteration. As an example, for
eil51 problem, ACO was better than PSM until iteration 100
but after that PSM outperformed ACO. However, proposed
VTPSO always outperformed ACO and PSM for any value

Fig. 4. Variation effect of population size on tour costs of ACO,
PSM and VTPSO.

 Fig. 5. Variation effect of total number of iteration on tour costs
of ACO, PSM and VTPSO.

425

450

475

500

525

0 100 200 300 400 500

T
o

u
r

C
o

st

Population Size

ACO PSM VTPSOeil51

400

500

600

700

800

0 200 400 600 800 1000

T
o

u
r

C
o

st

Total Iteration

ACO PSM VTPSOeil51

500

550

600

650

700

0 100 200 300 400 500

T
o

u
r

C
o

st

Population Size

ACO PSM VTPSOgr96

500

625

750

875

1000

0 200 400 600 800 1000

T
o

u
r

C
o

st

Total Iteration

ACO PSM VTPSOgr96

650

700

750

800

0 100 200 300 400 500

T
o

u
r

C
o

st

Population Size

ACO PSM VTPSOeil101

600

750

900

1050

1200

0 200 400 600 800 1000

T
o

u
r

C
o

st

Total Iteration

ACO PSM VTPSOeil101

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

of iteration for eil51. The similar performance of the
proposed VTPSO for gr96 and eil101 problems reveals that
VTPSO is an effective method for TSP.

V. CONCLUSIONS

TSP is a popular combinatorial optimization problem and
interest grows in recent years to solve it new ways. This study
investigated a new PSO based method, called Velocity
Tentative PSO (VTPSO), to solve TSP. In VTPSO, each
particle represents a complete tour and velocity is measured
as a Swap Sequence (SS) consisting of several Swap
Operators (SOs). In the conventional existing methods, a new
tour is considered after applying a complete velocity SS with
all its SOs. In contrast, proposed VTPSO considered
calculated velocity SS as the tentative velocity; checked all
the tentative solutions applying SOs of the SS one after
another sequentially; and picked the best solution among the
tentative solutions. VTPSO has been tested on a large number
of benchmark TSPs and it outperformed ESTPSO, the
prominent PSO based method. More interestingly, VTPSO
took less than half time of ESTPSO to solve a benchmark
TSP, in general. The reason behind the less time requirement
by VTPSO has been revealed from the experimental analyses;
VTPSO applied self-tentative operation on selected particles
and its velocity SS size reduced over iteration. Moreover,
VTPSO also compared with two other prominent methods
(i.e., ACO and PSM) for TSP and outperformed both of the
methods in solving benchmark TSPs.

A potential future direction is also opened from this study.
This study considered partial search maintaining the sequence
of SOs in the velocity SS and identified that a portion of SS
may give better outcome than whole SS implementation. It is
notable that SOs may be applied independently without
sequence because velocity SS of a particle comes from three
different sources: its previous velocity, difference with
previous best solution and difference with global best
solution. Algorithm development with such consideration
may give better result and remain as future study.

REFERENCES

[1] R. Eberhart and J. Kennedy, “A New Optimizer Using Particles
Swarm Theory,” in Proc. Sixth International Symposium on Micro
Machine and Human Science, Nagoya, Japan, October 1995, pp.
39–43.

[2] J. J. Liang, A. K Qin, P. N Suganthan and S Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” Journal of evolutionary
computation, vol. 10, no. 3, pp. 281–295, 2006.

[3] A Banks, J. Vincent, and C. Anyakoha, “A review of particle
swarm optimization. Part II: hybridization, combinatorial,
multicriteria and constrained optimization, and indicative
applications,” Journal of Natural Computing, vol. 7, no. 1, pp.
109–124, 2007.

[4] L. Chuang, Y. Lin, and C. Yang, “Data Clustering Using Chaotic
Particle Swarm Optimization,” IAENG International Journal of
Computer Science, vol. 39, no. 2, pp. 208–213, 2012.

[5] Z. Zhong and D. Pi, “Forecasting Satellite Attitude Volatility Using
Support Vector Regression with Particle Swarm,” IAENG
International Journal of Computer Science, vol. 41, no. 3, pp. 153–
162, 2014.

[6] Hong Zhang, “An Analysis of Multiple Particle Swarm Optimizers
with Inertia Weight for Multi-objective Optimization,” IAENG

International Journal of Computer Science, vol. 39, no. 2, pp. 190–
199, 2012.

[7] Y. F. Liao, D. H. Yau and C. L. Chen, “Evolutionary algorithm to
traveling salesman problems,” Computers & Mathematics with
Applications, Elsevier Publisher, vol. 64, no. 5, pp. 788–797, 2012.

[8] M. R Bonyadi, M. R Azghadi and H. S Hosseini, “Population-
Based Optimization Algorithms for Solving the Travelling
Salesman Problem,” Travelling Salesman Problem, Book edited
by: Federico Greco, InTech Publisher, Vienna, Austria 2008.

[9] X. Yan, C. Zhang, W. Luo, W Li, W, Chen and H. Liu, “Solve
Traveling Salesman Problem Using Particle Swarm Optimization
Algorithm,” International Journal of Computer Science Issues,
vol. 9, no. 6-2, pp. 264–271, 2012.

[10] K. P. Wang, L. Huang, C. G. Zhou and W. Pang, “Particle swarm
optimization for traveling salesman problem,” in Proc.
International Conference on Machine Learning and Cybernetics,
November 2003, pp. 1583–1585.

[11] X. Wei, Z. Jiang-wei and Z. Hon-lin, “Enhanced Self-Tentative
Particle Swarm Optimization Algorithm for TSP,” Journal of north
china electric power university, vol. 36, no. 6, pp. 69–74, 2009.

[12] J. Zhang and W. Si, “Improved Enhanced Self-Tentative PSO
Algorithm for TSP,” in Proc. Sixth IEEE International Conference
on Natural Computation 2010, Yantai, Shandong, August 2010,
pp. 2638–2641.

[13] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu and Q. X. Wang, “Particle
swarm optimization-based algorithms for TSP and generalized
TSP,” Information Processing Letters, vol. 103, pp. 169–176,
2007.

[14] H. Fan, “Discrete Particle Swarm Optimization for TSP based on
Neighborhood,” Journal of Computational Information Systems
(JCIS), vol. 6, pp. 3407–3414, 2010.

[15] W. Zhong, J. Zhang and W. Chen, “A Novel Discrete Particle
Swarm Optimization to solve Traveling Salesman problem,” IEEE
Congress on Evolutionary Computation, 2007, pp. 3286–3287.

[16] M. F. Tasgetiren, P. N. Suganthan and Q. Pan, “A Discrete Particle
Swarm Optimization Algorithm for the Generalized Traveling
Salesman Problem,” in Proc. 9th annual conference on Genetic
And Evolutionary Computation, 2007, pp. 158–167.

[17] E. F. G. Goldbarg, M. C. Goldbarg and G. R.de Souza, “Particle
Swarm Optimization Algorithm for Traveling Salesman Problem,”
Traveling Salesman Problem, Federico Greco(Ed.), InTech, 2008.

[18] E. Montero, M. C. Riff and L. Altamirano, “A PSO algorithm to
solve a Real Course+Exam Timetabling Problem,” International
conference on swarm intelligence, Cergy, France, June 14–15,
2011, pp. 24-1–24-8.

[19] R. Matai, S. Singh and M. L. Mittal, “Traveling Salesman Problem:
an Overview of Applications, Formulations, and Solution
Approaches,” Edited by D. Davendra, InTech, 2010, pp. 1–24.

[20] TSPLIB - a library of sample instances for the TSP. Available:
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[21] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence:
From Natural to Artificial Systems, Oxford University Press,
Oxford, 1999.

[22] O. Cordon, F. Herrera, T. Stutzle, “A review on the ant colony
optimization metaheuristic: basis, models and new trends,”
Mathware and Soft Computing, vol. 9, pp. 141–175, 2002.

[23] M. A. H. Akhand, P. C. Shill, Md. Forhad Hossen, A. B. M. Junaed
and K. Murase, “Producer-Scrounger Method to Solve Traveling
Salesman Problem,” I.J. Intelligent Systems and Applications
(IJISA), vol. 7, no. 3, pp. 29–36, 2015.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_07

(Advance online publication: 10 July 2015)

__

