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Abstract—Matrix factorization (MF), known as the most 

effective recommendation approach, has recently been used in 

educational contexts for predicting student performance. 

However, most applications neither take into account the 

nonnegative nature of the factor matrices nor explore the 

intrinsic geometric structure of the data. In this study, we 

propose a novel regularization framework that imposes the 

locality preserving constraints into the weighted regularized 

nonnegative MF for predicting student performance. To reduce 

the complexity of neighborhood evaluation, we employ the 

k-means clustering technique to identify groups of similar 

students and tasks based on the corresponding skill profiles. We 

also provide formal analysis for the theoretical convergence 

guarantees and the correctness of the iterative multiplicative 

updating algorithm. Experiments on two benchmark data sets 

demonstrate that the proposed method outperforms traditional 

NMF approaches and some baselines. 

 
Index Terms—matrix factorization, geometric structure, 

locality preserving regularization, student performance 

prediction. 

 

I. INTRODUCTION 

he rapid growth of the internet and the emergence of 

e-commerce have led to the development of 

recommender systems which have emerged to solve the 

problem of information overload [1], [2]. The task of 

recommender systems is to recommend items that fit a user’s 

taste in order to help users select items without facing an 

overwhelming set of choices. Recommender systems have 

been successfully applied in a broad range of applications, 

such as recommending books, movies, TV program, and 

music [3]-[5].  

Recently, some of the techniques in recommender systems 

have been adopted for educational purposes. Most of this 

work has focused on building recommender systems to 

recommend objects or activities for the learners [6], [7]. On 

the other side, educational data mining has also been used to 

gain a better understanding of the student learning process   

and their overall involvement in it [8], [9]. One of the key 

tasks in educational data mining is to predict student 

performance, a difficult but useful task. Given such 

predictions, a teacher can help to focus individual student 

effort on potential problem areas given their performance in  
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previous courses. In addition, curriculum committees can use 

prediction results to guide changes in the curriculum and to 

evaluate the effects of those changes [10].  

Many studies have proposed to predict student 

performance based on various techniques, such as statistical 

analysis, machine learning, and data mining. Chamillard [11] 

used statistical analysis to predict student performance in a 

particular course. Observations from the analysis also 

provided useful insights into the relationships between 

courses in the curriculum. Kotsiantis et al. [12] applied five 

classification techniques to predict student performance in a 

distance learning system. It was found that the Naïve-Bayes 

algorithm outperformed other algorithms and achieved 74% 

accuracy for a two-class data set (pass/fail). Minaei-Bidgoli 

et al. [13] presented an approach for classifying students in 

order to predict their final grade based on features extracted 

from logged data in an education web-based system. They 

demonstrated that applying a genetic algorithm (GA) for 

optimal feature weighting could successfully improve the 

accuracy of combined classifier performance by about 

10-12%, as compared to non-GA classifiers. Sembiring et al. 

[14] used Smooth Support Vector Machine classification and 

kernel k-means clustering techniques to predict students’ 

final grades. Using this method, their study indicated a strong 

correlation between the mental condition of the students and 

their final academic performance. 

Matrix factorization (MF), a particular type of 

collaborative filtering algorithm, has received much attention 

due to its attractive scalability and accuracy for large-scale 

real-world problems, such as the Netflix Challenge [15], [16]. 

Recently, the problem of predicting student performance has 

been considered a simple matrix completion problem to 

which researchers have applied MF techniques to the 

prediction of unobserved entries in sparse matrices. For 

example, Thai-Nghe et al. [17] applied the basic matrix 

factorization for predicting student performance. The authors 

showed that using MF techniques could improve the 

prediction results as compared to traditional regression 

methods. In a later paper, the same researchers plus two 

others also proposed a tensor factorization to take the 

temporal effect into account [18]. Toscher and Jahrerp [19] 

investigated the effects of several different regularization 

schemes. They used a neural network to blend the collected 

ensemble of predictions from many factor models. The model 

results showed that the prediction accuracy of a multi-model 

ensemble was considerably improved in comparison to that 

achieved by single models. However, these approaches took 

into account neither the nonnegative nature of the factor 

matrices nor explored the intrinsic geometric structure of the 
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data.  

Nonnegative MF (NMF), an extended model of MF, deals 

with the problem of factorizing a nonnegative matrix into two 

nonnegative lower-dimension factor matrices [20]. NMF is 

very useful in cases of complete data matrices where all 

entries are observed without missing values. In practice, 

however, the data matrix is often incomplete, as in the case of 

student performance prediction, where student responses are 

usually sparse. In this study, we incorporated ridge regression 

regularization to cope with the incompleteness and related 

overfitting problems called weighted regularized NMF 

(WRNMF), as described in Section 3.2. 

Recent studies have shown that many real-world data can 

be sampled from a low-dimensional manifold that is 

embedded in a high-dimensional Euclidean space [21], [22]. 

That is, each point of the low-dimensional manifold has a 

neighborhood that is homeomorphic to the high-dimensional 

Euclidean space. To capture the geometric structure in the 

data, Cai et al. [23] proposed the Locality Preserving NMF 

(LPNMF) that uses the KL-divergence to measure the 

distance of two data points with added constraints between a 

data point and its neighbors. However, the application of 

LPNMF to a large amount of data usually suffers from 

serious computational problems. 

In this study, we have proposed a novel regularization 

framework that imposes the locality preserving constraints 

into WRNMF based on the Frobenius norm minimization. 

We also applied our method to the problem of student 

performance prediction by adding constraints to both student 

and task neighborhoods. Due to the use of local information, 

our method is able to find more interpretable 

low-dimensional representations for students and tasks. 

Moreover, we employed the k-means clustering technique to 

identify groups of students and tasks based on the 

corresponding skill profile matrices, which greatly reduced 

the computational efforts required for pair-wise similarity 

computations. Concretely, the contributions of this study 

involved the following: 

 Proposing a cluster-based locality preserving student 

modelling for student performance prediction. 

 Providing a formal analysis for the theoretical 

convergence guarantees and the correctness of the 

iterative multiplicative updating algorithm. 

 Investigating the effects of the locality preserving 

regularizations and comparing the proposed approaches 

with the standard ones. 

 

II. STUDENT PERFORMANCE PREDICTION 

The ability to predict student performance is very 

important in educational environments. Student academic 

performance is based upon diverse factors, such as personal, 

social, psychological, and other environmental variables. For 

this study, we were particularly interested in predicting 

students’ ability to solve problems encountered when 

interacting with the computer-aided tutoring system (CATS). 

In CATS, a problem is typically a task a student performs that 

involves multiple steps and belongs to a hierarchy of units 

and sections. In addition, problem tasks can be described by 

additional information, such as the skills required to solve a 

specific problem. All the meta-information about tasks can be 

described as the attributes of the tasks. Analogously, students 

can be characterized by their demographics, interests, 

knowledge levels, etc. CATS allows for the collection of all 

the information about students’ interactions with the tutoring 

system and their responses to the problem tasks. The problem 

of predicting student performance in CATS, thus, can be 

defined as estimating the response of a student for new tasks 

based on past performance and related meta-information 

stored in the system. 

Let us denote the set of students by S, the set of tasks by T, 

and the matrix of performance scores recorded in the system 

by X. Suppose that no more than one score can be made by a 

user Ss for a particular task Tt  and write this score

stX . Since not every student answers every task, matrix X is 

usually sparse. Thus, we have set 

known} is ,,|),{( stXTtSstsL  denoting the set of 

response data. Finally, we denote SM and TM  as the set of 

students and tasks meta-descriptors, respectively.  

Typically the set L is divided into a training set trainL and a 

test set testL . Then the problem of predicting student 

performance is as follows: given trainL , testL , SM  and TM , 

to learn a function ℱ : S × T → ℝ  that predicts the score 

ℱ(s, t) of a student s for a new task t, such that the objective 

function is minimal, 

min  (ℱ s, t  - Xst)
2
.

(s, t)∈Ltest

 
                         (1) 

We defined the objective function as the sum of the 

squared error. Other error measures could, however, be used 

as well. 

 

III. MATRIX FACTORIZATION FOR STUDENT PERFORMANCE 

PREDICTION  

Matrix Factorization is currently the most effective and 

efficient method for collaborative prediction and forms the 

core of many successful recommender system algorithms. 

The goal of MF models is to approximate a data matrix as the 

product of two much smaller latent matrices. MF can be 

described as follows: given a input matrix X ∈ ℝm× n   and a 

latent factor space of dimension f, ),min(1 nmf  , find 

two matrices U ∈ ℝm× f  and V ∈ ℝf× n  whose product 

approximates the input matrix as closely as possible: 

X ≈ UV              
         

          (2) 

so that UV is the low-rank approximation of X. In CATS, X 

represents the performance matrix describing m students’ 

performance scores on n tasks. Each row of U contains the f 

latent factors describing a student’s knowledge levels, and 

each column of V indicates the f kinds of knowledge 

components required for solving a task. Since each student 

attempts only a small portion of tasks, X is usually extremely 

sparse. The problem of predicting student performance can 

be seen as a matrix completion problem where the low-rank 

factors learned from observed elements are used to fill in 

unobserved elements of the performance matrix X. 
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A. Nonnegative Matrix Factorization (NMF) 

The matrix factorization presented in the previous section 

places no constraints on the elements of factor matrices U and 

V. So these two matrices may contain both positive and 

negative elements. However, the negative elements may be 

counter-intuitive and difficult to interpret. For example, 

suppose that a student has a strong conceptual understanding 

of the division of fractions and thus assigned a value of 10 for 

that factor. If a problem task does not require this knowledge 

at all, it is assigned a value of -10. Multiplying these two 

values yields a strong negative score = -100. This means the 

student is more likely to fail in solving the task. However, it is 

possible that the student may still possess the requisite 

knowledge and can solve the task correctly. 

Nonnegative MF is similar to MF but imposes additional 

constraints on the factor matrices U and V. It is required that 

all elements of both U and V be nonnegative. NMF aims to 

find two non-negative matrices whose product provides a 

good approximation of the original matrix. The basic NMF 

problem can be formulated as follows. Given the nonnegative 

performance matrix X, NMF aims to find two matrices 

U ∈ ℝ+
m× f

   and V ∈ ℝ+
f× n

  which minimize the objective 

function ℑ U, V  . One popular choice of the objective 

function ℑ is the Euclidean distance (or the Frobenius norm): 

ℑ U, V  =  X - UV F
2

subject to U ≥ 0, V ≥ 0
                    (3) 

A natural approach to solving this problem is to alternate 

between the two variables, minimizing one over one while 

keeping the other fixed, as proposed by Lee and Seung [20] 

(2001). They used an iterative multiplicative updating 

algorithm to minimize the objective function in Eq. (3): 

U ← U ⨀ 
(XVT)

(UVVT)
,

V ← V ⨀ 
(UTX)

(UTUV)
,

                          (4) 

where ⨀ and the fraction bar denote element-wise matrix 

product and division, respectively, and T is a matrix 

transpose.  

Since the performance matrix X is spare, many elements 

are missing. We extend the NMF algorithm by incorporating 

binary weights into the multiplicative updates as follows 

[24]: 

 

U ← U ⨀ 
(W ⨀ X)VT

(W ⨀ UV)VT
,

V ← V ⨀ 
UT(W ⨀ X)

UT(W ⨀ UV)
,

 

  

                    (5) 

where W is a binary weighting matrix, and Wij = 1 if Xij is 

known and Wij = 0 otherwise. We call it WNMF, which 

stands for weighted NMF. 

B. Weighted Regularized Nonnegative Matrix Factorization 

(WRNMF) 

Although a learned MF model can be used to reconstruct 

the missing data through the product of the factor matrices, 

overfitting is a serious problem for large sparse datasets. This 

often happens when a huge number of model parameters 

approximate a matrix with many missing values. An 

illustrative example is the KDD 2010 Cup competition 

datasets. There are 1,146 students in the Bridge to Algebra 

2006-2007 datasets with 3,656,871 total logged responses 

over 210,220 tasks. This means there are over 10 million free 

parameters for MF with k = 50. It is obvious that learning 10 

million parameters from 3.6 million observed values will lead 

to overfitting.  

Early stopping and regularization are two of the most 

common techniques to deal with the overfitting problem in 

MF. Usually early stopping is based on a cross-validation 

scheme that stops training the MF model when error on the 

validation set does not improve. Regularization involves 

introducing additional information to penalize the complexity 

of a learning model. In our study, the overfitting problem is 

avoided by adding a ridge regression regularization term [25] 

to the objective function, which penalizes large parameters as 

follow: 

 

ℑ U, V  =  W ⨀  X - UV  F
2  + λU U 𝐹

2  + λV V 𝐹
2 .

subject to U ≥ 0, V ≥ 0
   (6) 

where λU ≥ 0  and λV ≥ 0  are the regularization parameters 

balancing the reconstruction error of WRNMF in the first 

term and regularizations in the second and third term. Then 

the update rules in Eq. (5) become 

U ← U ⨀ 
(W ⨀ X)VT

(W ⨀ UV)VT + λUU
,

V ← V ⨀ 
UT(W ⨀ X)

UT(W ⨀ UV) + λVV
,

               (7) 

where λU ≥ 0  and λV ≥ 0  are the regularization parameters.  

C. Locality Preserving Weighted Regularized Nonnegative 

Matrix Factorization (LPNMF) 

In this section, the geometric structure of the performance 

matrix is explored. Our assumption was that if two students 

(or tasks) were similar, then they should be similar in their 

corresponding feature spaces. To apply this idea to WRNMF, 

we explicitly introduced two local regularization terms (one 

for students and the other for tasks) into the objective 

function in Eq. (6) to preserve the consistency of feature 

spaces for similar students and tasks. The closer two students 

or tasks are to each other in the feature spaces, the smaller the 

local regularizers will be. The resultant objective function is 

as follows: 

ℑ U, V  =  W ⨀  X - UV  F
2
 + λU

 U 𝐹
2

 + λV
 V 𝐹

2
 +

                        βU
  U𝑖: − U𝑗 : 

2

S𝑖𝑗
U

+
𝑖𝑗

βV
  V:𝑖 − V:𝑗 

2

S𝑖𝑗
V

𝑖𝑗

                    =  W ⨀  X - UV  F
2
 + λ

U
 U 𝐹

2
 + λV

 V 𝐹
2

 +

                        βUtr U
T
LUU  + βVtr VLVV

T 

                         subject to U ≥ 0, V ≥ 0

 (8) 

where tr() denotes the matrix trace. LU = D
U
 - S

U
 and LV = D

V
 

- S
V
 are the Laplacian matrices for students and tasks 

respectively. SU =  Sij
U   and SV =  Sij

V   are the similarity 

matrices encoding the relationships among students and tasks, 

respectively. DU =  Dij
U   and DV =  Dij

V  are diagonal 

matrices with Dii
U =  Sij

U
j    and Dii

V =  Sij
V

j   . Finally, β
U

 

and β
V

  are the two positive parameters controlling the 

contributions of the locality preserving regularizations. The 
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crucial part of local regularizations is the definition of the 

similarity matrices SU and SV , which will be explored in the 

following subsections. 

The objective function ℑ of LPNMF in Eq. (8) is not 

convex for U and V simultaneously, but it is convex for U 

when V is fixed and it is also convex for V when U is fixed. 

Following the work of Lee and Seung [20], we present an 

alternating scheme to optimize the objective.  

Since U ≥ 0 and V ≥ 0,  we introduce two Lagrangian 

multipliers, Φ ∈ ℝm×f and Ψ ∈ ℝf×n ; thus the Lagrangian 

function ℒ is 

ℒ U,V =    W ⨀  X - UV  F
2  + λU U 𝐹

2 + λV V 𝐹
2  +

     β
U

tr UTLUU  + β
V

tr VLVVT  - tr ΦUT  - tr ΨVT 
    (9) 

The partial derivatives of ℒ with, respectively, U and V 

are 

  

𝜕ℒ

𝜕U
=  -2(W ⨀ X)VT + 2 W ⨀UV VT    

 + 2λUU + 2β
U

LUU - Φ 
 
𝜕ℒ

𝜕V
=  -2UT W ⨀ X   + 2UT W ⨀UV   

+ 2λVV + 2β
V

VLV - Ψ 

     (10) 

Using the Karush-Kuhn-Tucker complementary 

condition Φ⨀U = 0  and Ψ⨀V = 0 , we get 

( -2(W ⨀ X)VT + 2 W ⨀UV VT 

+ 2λUU + 2β
U

LUU) ⨀ U = 0 

( -2UT W ⨀ X   + 2UT W ⨀UV   

 + 2λVV + 2β
V

VLV) ⨀ V= 0 

                (11) 

Equation (11) leads to the following update rules: 

U ← U ⨀ 
(W ⨀ X)V

T+ β
U

S
U

U 

(W ⨀ UV)VT + λUU + β
U

DUU
,

V ← V ⨀ 
UT(W ⨀ X) + β

V
VSV

UT(W ⨀ UV) + λVV + β
V

VDV
,

         (12) 

 

D. Convergence Analysis 

In this section, we make use of an auxiliary function 

similar to that used in Lee and Seung [20] to prove the 

convergence of the update rules in Eq. (12). Here we only 

treated the update rule for U since that of V can be proved in a 

similar fashion. We first introduce the definition of an 

auxiliary function.  

Definition 3.1. Z(U, U') is an auxiliary function for F(U) 

if the conditions 

 Z U, U'  ≥ F U , Z U, U  = F U             (13) 

are satisfied. 

Lemma 3.2. If Z is an auxiliary function for F, then F is 

nonincreasing under the update [20] 

),(minarg )()1( t

U

t UUZU 
                  (14) 

Proof: 

 )(),(),()( )()()()()1()1( tttttt UFUUZUUZUF  
 

We now show that by defining an appropriate auxiliary 

function, the update rule for U in Eq. (12) easily follows from 

Eq. (14).  

For any element Uij of U, optimizing ℑ U, V  with 

respect to Uij is equivalent to optimizing  

ℑ U  =  W ⨀  X - UV  F
2  + λU U 𝐹

2  + β
U
  U𝑖: − U𝑗 : 

2
S𝑖𝑗

U

𝑖𝑗

                                            subject to U ≥ 0

 (15) 

Let Fij denote the part of ℑ U  which is only relevant to 

Uij. The first and the second-order derivatives of Fij are 

F'ij =  
-2(W ⨀ X)VT 

+ 2 W ⨀UV VT + 2λUU + 2β
U

LUU
 

ij

F"ij = 2 Wi: ⨀Vj: Vj:
T +  2λU + 2β

U
(L

U
)
ij

  (16) 

To prove that Fij is nonincreasing under the update rules of 

Eq. (12), the following auxiliary function is introduced for 

Fij. 

Lemma 3.3.  Function 

 Z(U, Uij
(t)

) = Fij(Uij
(t)

) + F'ij(Uij
(t)

)(U - Uij
(t)

) + 

 
((W ⨀ UV)VT + λUU + β

U
DUU)

ij

Uij
(t)

(U - Uij
(t)

)
2
  
    (17) 

is an auxiliary function for Fij. 

Proof: Since  Z U, U  = Fij U   is obvious, we need only 

show that Z(U, Uij
(t)

) ≥ Fij(U) . To do this, we compare the 

Taylor series expansion of Fij U   

 Fij U =  Fij(Uij
(t)

) + F'ij(Uij
(t)

)(U - Uij
(t)

)+ 

  Wi: ⨀Vj: Vj:
T+ λU+β

U
(L

U
)
ij
 (U - Uij

(t)
)
2
  

     (18) 

with Eq. (17) to find that Z(U, Uij
(t)

) ≥ Fij(U)  is equivalent 

to 

((W ⨀ UV)VT + λUU + β
U

DUU)
ij

Uij
(t)

 ≥ 

  Wi: ⨀Vj: Vj:
T+ λU+ β

U
(L

U
)
ii
 

            (19) 

Since we have 

((W ⨀ UV)VT)ij=   

 Wic   Uil

(t)
Vlc

(t)

f

l=1

 Vjc
(t)

 ≥

n

c=1

 

 WicUij
(t)

Vjc
(t)

Vjc
(t)

n

c=1

= Wi: ⨀Vj: Vj:
TUij

(t)
 

 

        (20) 

and  

         (DUU)
ij
= 

 Dic
UUcj

(t)
 ≥ Dii

UUij
(t)

 ≥  DU- SU 
ii

m

c=1

Uij
(t)

= (L
U

)
ii
Uij

(t)
 
  (21) 

thus, Eq. (17) holds and Z(U, Uij
(t)

) ≥ Fij(U).  

According to Lemma 3.2, the update rule for Fij(U) can be 

solved by setting the gradient of Z(U, Uij
(t)

) to zero:  

∂Z(U, Uij
(t)

)

∂U
= F'ij(Uij

(t)
) + 

 2
((W ⨀ UV)VT + λUU + β

U
DUU)

ij

Uij
(t)

(U -Uij
(t)

)= 0 

    (22) 

Now we can derive the same update rule as that in Eq. (12): 
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Uij
(t+1)

= Uij
(t)
− Uij

(t)
F'ij(Uij

(t)
)

2((W ⨀ UV)VT + λUU + β
U

DUU)
ij

= Uij
(t)

 (W ⨀ X)VT   + β
U

S
U

U 
ij

((W ⨀ UV)VT  + λUU + β
U

DUU)
ij

 (23) 

 

E. Similarity Computation  

The crucial part of the LPNMF model is computing the 

similarity matrices S
U and SV for students and tasks, 

respectively. Various types of information can be encoded to 

define the proper similarity matrices. The most direct and 

intuitive way is using the student performances based on the 

assumptions that similar students have similar responses to 

the tasks and similar tasks likely receive similar student 

responses. However, this model is usually limited by the need 

to compute all pair-wise similarities between students and 

tasks due to the large amount of input data. The 

computational complexities of the similarity calculation are 

O(m
2
n) for students and O(n

2
m) for tasks. 

Instead of using the information from a single performance 

matrix, in this study we incorporated the skill information 

into the student performance prediction problem. We 

assumed that two students with similar skills would perform 

similarly and that two tasks with similar skill requirements 

would be given similar responses by the students. In CATS, 

each task is associated with zero or more skills representing 

the knowledge required for its solution. The skill 

dependencies of each task form a matrix called the Q-matrix 

[26]. The matrix Q ∈ ℝn× q  is usually an expert-generated 

matrix where Q
jl
 = 1  if task j requires skill l and equals 0 if it 

does not. Besides, a performance matrix  X ∈ ℝm× n is also 

defined where Xij = 1  if student i answers task j correctly and 

equals 0 if he answers incorrectly. If student i did not answer 

task j, then Xij = NA . 

In this study, we adopted the capability matrix proposed by 

Ayers et al. [27] to estimate the student skill profile. 

Capability matrix C is a m ×  q  matrix where Cil is the 

proportion of correctly answered tasks involving skill l that 

student i attempted. That is 

Cil=
 WijXijQjl

n
j=1

 WijQjl
n
j=1

                             (26) 

where W is the binary weighting matrix defined before. The 

capability matrix expands on sum-score by accounting for the 

number of tasks requiring skill l that student i answered. 

Values of Cil indicate the degree of certainty about skill 

mastery. For each Cil, zero indicates no skill mastery, one 

means complete mastery, and values in between are less 

certain. If a student has not seen any of the tasks requiring a 

particular skill, a value of 0.5 is assigned, indicating 

uncertainty. It can be seen that using the Q-matrix and the 

capability matrix, the computational complexities for the 

similarity computation can be reduced to O(m
2
q) for students 

and O(n
2
q) for tasks, where ),min( nmq  . However, the 

exponential complexity still renders it impractical for a large 

scale dataset. 

In response, we applied the k-means clustering method to 

the capability matrix and the Q-matrix to identify groups of 

students and tasks of similar skill profiles. Different 

distance/similarity measures were used for different types of 

data. We used the Euclidean distance for the capability 

matrix and the cosine similarity for the asymmetric binary 

Q-matrix. A task is not assigned to any groups if it does not 

require any skills to complete. The similarities between two 

users and two tasks are thus defined as 

 

Sij
U=  1     if gU i  = gU(j)

0     otherwise

Sij
V=  1     if gV i  = gV(j)

0     otherwise

                     (25) 

where gU i  and gV j  give the cluster number for student i 

and task j, respectively. The similarity measures assign a 

value of 1 if two students or tasks are in the same group and a 

value of 0 if they are in different groups. The assignment of 

binary values imposes penalty on the local regularizations for 

students or tasks that are similar in the performance spaces 

but different in the feature spaces. The k-means method 

provides an efficient way to do similarity computation that 

reduces the time complexity to O(kmq) for students and 

O(knq) for tasks. We refer to the model LPNMF with 

clustering on both students and tasks as a Unified Clustering 

LPNMF. 

 

IV. EXPERIMENTS 

In this section, the experimental results are reported to 

evaluate the performance of the proposed method. 

Specifically, we investigated the effects of the clustering and 

locality preserving regularizations on student performance 

prediction. We also made comparisons with other baselines, 

such as the global average and the student average. 

A. Datasets and Evaluation Metrics 

The data were from the 2010 KDD Cup competition on 

educational data mining. We used the Algebra 2006-2007 

and the Bridge to Algebra 2006-2007 datasets. In the rest of 

this paper, they are referred to as “Algebra” and “Bridge”, 

respectively. Each data set contained the log files of 

interactions between students and CATS and was split into 

training and test partitions as described in Table I.  
TABLE I 

DATA SETS  

Data sets Students Steps Tasks Skills 

Algebra 

(training) 
1,338 2,270,384 590,672 491 

Algebra 

(test) 
502(new) 19,342 4,697 222(new) 

Bridge 

(training) 
1,146 3,649,199 209,802 493 

Bridge 

(test) 
0(new) 7,672 418 0(new) 

 

The central element of interaction between students and 

CATS is the problem. Each problem consists of many sub 

questions called steps and belongs to a hierarchy of unit and 

section. A combination of problem hierarchy, problem name, 

and step name forms a solving step called tasks. Additionally, 

each task is associated with some knowledge components, 

relevant concepts or skills that are required to perform that 

task correctly. Finally, student responses to the problems are 

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_09

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



encoded as correct first attempt (CFA) in the data sets. The 

task of the KDD competition was to predict the CFA for each 

test data. 

The performance of the MF algorithms was evaluated by 

the root mean square error (RMSE) measure, which is 

defined as follows: 

RMSE= 
  Xij-X ij 

2

(i,j)∈Ltest

 Ltest 
                    (27) 

where Ltest represents the set of test data, Xij  is the actual 

response value for task j by student i, and X ij  is the predicted 

CFA value by the MF models.  

B. Model Settings  

Several parameters affect the performance of the MF 

algorithms. In the following experiments, the ridge 

regression parameters λU and λV were set as equal and tuned 

by searching the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. The 

dimensionality of latent factors f was set by the grid {2, 4, 8, 

16, 32, 64}. In GRNMF, the two locality preserving 

regularizations β
U

 and β
V

  were set by searching the grid 

{0.001, 0.01, 0.1, 1, 10, 50, 100}. Finally, the number of 

clusters in the k-means algorithm was set to a range of 1 to 70 

with increments of 10.  

For each data set, we used the training set to build the 

student and the task factor matrices and then predicted the 

test set by the product of these two matrices. As can be seen 

in the Algebra data set, some new test data (student and task) 

were not included in the training set. To alleviate this 

so-called cold start problem, we provided the global average 

score for the new students or new tasks. 

C. Performance on Cluster Size  

One of main tasks of the cluster-based LPNMF approach is 

to group similar students or tasks using the k-means 

algorithm. The larger the cluster size, the less similar the 

students or tasks in the corresponding cluster. On the other 

hand, small cluster sizes imply fewer students or tasks 

involved in the locality preserving regularization. To 

evaluate the sensitivity of different cluster sizes, we 

empirically set f = 32, λU = λV = 0.01 , β
U

 = 50 , and 

β
V

 = 0.01 . Fig. 1 illustrates the effects of the cluster size on 

RMSE for student clustering and task clustering LPNMF. In 

both approaches, the prediction quality improved as the 

number of clusters increased until an optimal point was 

reached; any further increments failed to improve or even 

gave worse results. The optimal numbers of clusters were 30 

and 60 for student clustering and task clustering LPNMF in 

the Bridge data set and 20 and 50 in the Algebra data set, 

respectively.  

D. Comparison 

In the next experiment, we ran each approach separately 

with different combinations of parameter values for the 

Algebra and Bridge data sets and selected the best 

performance from each approach for comparisons. Fig. 2 

presents the comparison of RMSE for the different 

approaches. The cluster-based LPNMF approaches provided 

significantly better performance than traditional regularized 

NMF and baseline methods. This showed that by considering 

the intrinsic geometrical structure of the data, LPNMF could 

learn a better compact representation of the knowledge 

structures. For both cluster-based approaches, the task 

clustering LPNMF performed better than the student 

clustering LPNMF on both data sets; this implied that 

clustering over the Q-matrix could better capture the 

geometric structure than clustering over the capability matrix. 

Overall, the unified clustering LPNMF performed the best in 

all cases.  

E. Impact of Parameters β
U

 and β
V

  

The choice of regularization parameters has a significant 

impact on the performance of an algorithm. The 

determination of good parameters is usually tedious and data 

dependent. To investigate the impact of parameters β
U

 and 

β
V

 on the performance of the corresponding approaches, we 

set the number of clusters to the optimal numbers suggested 

from previous experiments. We also fixed the dimensions of 

both student and task factors to 32. Fig. 3 shows how the 

RMSE changed with respect to varying parameter values. 

The parameter values had significant influences on the 

performance, but these influences could be quite different 

and move in opposite directions. The performance of the 

student clustering LPNMF became worse if parameter β
U

 

was set to a small value. In contrast, the task clustering 

LPNMF had a better performance when β
V

 was small. 

However, both parameters β
U

 and β
V

 reached their minima 

at 50 and 0.01, respectively.  

We observed a considerable difference in the optimal 

values between β
U

 and β
V

 . One possible reason for this 

was the unbalanced dimensions in the performance matrix. In 

the case of the Bridge datasets, the number of tasks was over 

200,000: that is about 200 times the number of students. That 

meant that many more tasks than students were involved in 

the locality preserving regularization. Therefore, the value of 

β
V

 should be small enough to avoid over-regularizing. 

F. Efficiency of Analysis 

The complexity analysis in the previous section indicates 

that the computational complexity of our approach is linear 

with respect to the size of task and student clusters, which 

proves that our approach is scalable to very large datasets. To 

demonstrate the performance efficiency, we ran the Unified 

Clustering LPNMF using the best parameter values via cross 

validation. In experiments of the Bridge and the Algebra data 

sets, each iteration needed less than 3 seconds. In Fig. 4, we 

plot both training and test performance measured by RMSE 

with respect to the number of iterations. In both experiments, 

our proposed method needs less than 100 iterations to 

converge, which only takes approximately 5 minutes. 

V. CONCLUSION 

The intrinsic geometric structure in the data provides an 

important source of information regarding data points and 

their neighborhood. This is especially useful for student 

performance prediction. In this study, we proposed a unified 

clustering locality preserving NMF which made predictions 

by considering students’ performance histories, skill profiles 

and influences from neighbors. In particular, we constructed 

two clusters on students as well as tasks based on their skill 

profiles. These clusters represented the neighborhood 

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_09

(Advance online publication: 10 July 2015)

 
______________________________________________________________________________________ 



structure of the corresponding data, which greatly reduced 

the complexity of neighborhood evaluation. To investigate 

the effects of the clustering and locality preserving 

regularizations, we compared the proposed approaches with 

the traditional NMF and some baselines. In terms of the 

prediction accuracy, the cluster-based LPNMF approaches 

achieved better results. They yielded 5% and 12% 

improvements on average, compared to that of WRNMF and 

baselines, respectively. The experimental results confirmed 

the effects of intrinsic geometric structure on prediction 

accuracy. Further, the performance of the cluster-based 

LPNMF can be improved by incorporating both student and 

task regularizations. Overall, the unified clustering LPNMF 

performed the best in all cases. 

Our study measured students’ knowledge using whole 

history information, which assumed nothing was forgotten. 

Student knowledge, however, is not static and changes over 

the time; thus, the temporal effect is an important factor in 

predicting student performance. Our future works will 

include incorporating temporal information into the LPNMF. 

Several approaches, such as tensor factorization [18] and 

feature-based MF [28], will be investigated.

 

 
Fig. 1a. Impact of the number of clusters on Algebra  data sets                                  Fig. 1b. Impact of the number of clusters on Bridge data sets 

 

       
Fig. 2a. RMSE results for different methods on Algebra data sets                        Fig. 2b. RMSE results for different methods on Bridge data sets 
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Fig. 3a. Impact of β

U
and β

V
on Algebra data sets Fig. 3b. Impact of β

U
and β

V
on Bridge data set

 

 

 

Fig. 4a. Training and Test performance on Algebra data sets                              Fig. 4b.  Training and Test performance on Bridge data sets 
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