



Abstract—This paper addresses optimization of the

integrated part type selection problem and machine loading

problem that are considered as NP-hard problems in

production planning of flexible manufacturing system (FMS)

and strongly determine the system’s efficiency and

productivity. The integrated problems are modelled and solved

simultaneously by using Variable Neighbourhood Search

(VNS). A new neighbourhood structure is designed to enable

the VNS produces near optimum solutions in a reasonable

amount of time. The proposed VNS improves the FMS

performance by considering two objectives, maximizing system

throughput and maintaining the balance of the system. The

resulted objective values are compared to the optimum values

produced by branch-and-bound method. The numerical

experiments show the effectiveness of the proposed VNS for

several test-bed problems.

Index Terms—Flexible manufacturing system, production

planning, part type selection problem, machine loading

problem, variable neighborhood search

I. INTRODUCTION

LEXIBLE manufacturing system (FMS) is designed to

address rapid changing customer needs on various high

quality products. Flexibility is the main feature of FMS

where a variety of products in low to medium volumes can

be produced by using computer numerically controlled

(CNC) machines and automatic transfer lines [1]. However,

building such systems using high technology equipment

requires a high initial investment. To enable early return on

investment, an optimum resources utilization and system

productivity must be achieved. These objectives can be

achieved by establishing a good production planning [2] and

a good scheduling to minimize energy consumption that

lead to production cost reduction [3].

As a tool to survive in hard competition of global market,

FMS are implemented in many manufacturing areas. The

areas include defense industries, aerospace, metal-cutting

machining, metal forming, various automotive part, and

plastic injection molding [4].

The flexibility of FMS may be used to optimize the

utilization of the production resources and also reduce the

Manuscript received June 30, 2014; revised May 11, 2015.
W. F. Mahmudy is with Faculty of Computer Science, Universitas

Brawijaya (UB), Indonesia (email: wayanfm@ub.ac.id).

production time [5, 6]. The flexibility of FMS refers to its

ability to produce various products by using same resources

(machines and tools). There are two categories of FMS

flexibility which may be divided into several sub categories.

The first is machine flexibility. By using high technology,

machines setting can be reconfigured easily to produce new

type of products for different market segments [7]. The

second is routing flexibility that means one product may be

produced by a number of alternative machining sequences.

This flexibility enables manufacturers to increase and

balance their machines utilization and decrease processing

time [5].

There are several sub-problems in the production

planning of FMS such as part type selection problem,

machine grouping problem, production ratio problem,

resource allocation problem, and machine loading problem

[8]. However, due to the specific FMS environments, not all

the sub-problems simultaneously exist.

This study considers a plant that manufactures various

models of products. Various types of components are

assembled to build a product. For generality, the component

is called a part type. The various part types are produced by

using a same machines set called FMS. A process called

aggregate production planning produces a master planning

contains the number of each model of product that must be

manufactured. Each model of product requires several part

types. Thus, the quantity of parts types that must be

produced can be calculated.

As the FMS have technological constraints such as

limited machines availability, limited tool magazines

capacity of each machine, and limited number of tools, the

part types must be produced in several batches. This

decision process is called the part type selection.

Specifically, the part type selection is concerned with

selection of a set of part types (products) from a number of

part types in the production order into a production batch.

The selected part types in the batch will be manufactured

immediately.

The next production step is called the machine loading

problem that deals with allocation of operations for the

selected part types and loading required tool types to the

machines magazine. The next stage is scheduling that

determine order of operations of the selected part types in

the machines. The scheduling also determines the starting

time of each operation in the machine. To perform the final

product, a process called assembly operations is carried out

Optimization of Part Type Selection and

Machine Loading Problems in Flexible

Manufacturing System Using Variable

Neighborhood Search

Wayan Firdaus Mahmudy, Member, IAENG

F

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

to join related part types.

The overall stages in FMS environment are depicted in

Fig. 1. Problems addressed in this paper are shown in grey

areas. The scheduling and assembly operations problems

can be solved after solutions of the part type selection and

machine loading problems are obtained.

Fig. 1. Manufacturing processes

Even if the part type selection and machine loading

problems can be solved hierarchically in separated stages,

solving them simultaneously will produce better solutions

that are indicated by higher throughput and balance

machines’ workload [9]. Moreover, a solution produced by

the part type selection in the previous stage may become

infeasible for the machine loading the next stage [4]. Thus,

this paper focuses on the integrated part type selection and

machine loading problems.

The part type selection problem and the machine loading

problem are strongly related problems and exist in most

FMS environments. The problems also heavily determine

the system’s efficiency [10]. Higher throughput and efficient

allocation of production resources of the FMS will be

achieved by simultaneously solving part type selection and

machine loading problems [11].

The part type selection and machine loading problems

are considered as strongly NP-hard problems with a very

large search space and the optimum solution may not be

obtained by exact methods or complete enumeration in a

reasonable amount of time [7]. For a medium size problem

with 36 part types and the average possible machining

routes of 5, the total number of possible solutions for the

integrated part type selection and machine loading problems

is about . For this kind of problem, a branch-and-

bound method run on personal computer equipped with

Intel® Core™ i3-380 processor required more than 150

hours to get the optimum solution [4]. This computational

time cannot be accepted for daily operation of FMS. Thus, a

good approach to achieve near optimum solutions on

reasonable amount of time is required. While Mahmudy, et

al. [12] proved that their real-coded genetic algorithm

(RCGA) could effectively exploring a huge search space of

the problems, a series of experiments was required to obtain

the best parameters of the approach. In this paper, an

efficient variable neighbourhood search (VNS) is proposed.

Variable neighbourhood search (VNS) is meta-heuristic

technique that manages a local search (LS) technique. Here,

the LS is systematically iterated to explore larger

neighbourhood until termination condition is achieved. The

neighbourhood structure is designed to enable the LS

exploring the search space from new starting points [13].

Thus, these properties enable the VNS to escape from local

optimal areas and obtain optimum or near optimum solution.

As a simple and effective method, the VNS have been

successfully implemented to solve a various combinatorial

problems such as maximum satisfiability problem [14], job

scheduling [15], location routing problem with capacitated

depots [16], transportation and distribution [17], bin packing

problem [18], and a number variants of travelling salesman

problem [17, 19, 20].

To get more powerful VNS, the VNS is improved in

various ways. For example, Parallel Variable Neighborhood

Search (PVNS) was developed by running several instances

of VNS on different processors [21]. The study tested

various levels of parallelization strategies. The low level

was developed by parallelizing the local search of

neighborhoods. In the high level, parallelizing was done by

running several VNSs and equipping a mechanism of

cooperation (exchanging of information) among VNS

instances. Parallel VNS was also developed by

Eskandarpour, et al. [22] to solve the multi-objective

sustainable post-sales network design problem. As previous

work, the parallelization was done by running several

instances of VNS to find better Pareto optimum points.

Moreover, parallelizing the local search of neighborhoods in

the sequential VNS was done in the study of S´anchez-Oro,

et al. [23].

The VNS is also hybridized with other algorithms in

several studies. For example, Li, et al. [24] combined the

VNS with the chemical-reaction optimization (CRO) and the

estimation of distribution (EDA) to solve the hybrid flow

shop scheduling problem. Moreover, the VNS was

hybridized with the greedy randomized adaptive search

procedures to solve the targeted offers problem in direct

marketing campaigns [25].

This paper attempts to develop a new neighbourhood

structure for the VNS to effectively explore a large search

space of the integrated part type selection and machine

loading problems. This effort will enable the VNS produces

near optimum solutions in a reasonable amount of time.

II. RELATED WORKS

As the part type selection and machine loading problems

have an important role in determining the productivity and

efficiency of FMS, an extensive research has been

conducted in these areas. Various methods used in the

literature to solve the problems will be briefly discussed in

this section. The methods include mathematical

programming based approach, heuristic and meta-heuristic

approach, and hybrid approach.

Mathematical programming-based approaches were used

in few earliest studies. For instance, Stecke [8] applied a

nonlinear integer programming to solve machine grouping

and loading problems. Another study was conducted by

Mgwatu [26] that formulated two mathematical models to

solve the integrated part type selection, machine loading,

and machining optimization. A commercial package

software for mathematical programming was used to obtain

solutions of the integrated problems. A similar approach was

developed by Bilge, et al. [27] to solve the part type

selection and machine loading problems in FMS with

flexible process plans.

Exact algorithms and analytical and mathematical-

programming-based methods are robust in applications [28].

However, even if the articles discussed in this section

reported promising results, their approaches are only

suitable and were used for small and medium size problems.

They tend to become impractical when the problem size

increases and the optimum solution may not be achieved in

a reasonable amount of time [4]. Therefore, Stecke [8]

aggregate
production

planning

part type
selection

machine
loading

scheduling
assembly

operations

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

suggests to use an efficient heuristic algorithm to solve a

larger and more complex problem.

Due to their efficient computational time, heuristic based

approaches were frequently used in the production planning

of FMS. However, the heuristics were only successful in

solving problems of limited complexity. They used only

small size problems in the experiment. For example, Kim, et

al. [29] developed two-stages heuristic to address the

machine loading problem. In the first stage, a modified bin-

packing algorithm was used to produce an initial solution. In

the second stage, the initial solution was improved by

implementing a simple search algorithm. The study used

test-bed problems that had maximum number of part type of

15. By using complete enumeration [30] or branch-and-

bound methods [31] that produce the optimum solution, the

small size problems may be easily and quickly solved.

Therefore, even though they reported good results, their

heuristics are not likely to produce promising results in large

scale problems.

To address the limitations of heuristic methods, meta-

heuristic approaches were proposed in several studies. The

meta-heuristic simultaneously manages several heuristic

procedures to deal with the large space of the integrated part

type selection and machine loading problems. The

approaches included genetic algorithms [2, 31-33], particle

swarm optimization [7, 34, 35], ant colony optimization

[36], immune algorithm [37, 38], harmony search algorithm

[39], and symbiotic evolutionary algorithm [40]. The studies

reported that the meta-heuristic approaches were efficient

and produced near-optimum solutions.

As powerful population-based algorithms, genetic

algorithms and particle swarm optimization were frequently

used to solve the production planning problem in FMS. For

example, a study by Mahmudy, et al. [2] equipped a

specialized genetic algorithm with various crossover and

mutation operators to enable exploring the very large search

space of the integrated part type selection and machine

loading problems. Genetic algorithm was also used in a

study by Abazari, et al. [31]. In this study, a mixed-integer

linear mathematical programming model was firstly

developed and then integer-based chromosome was used to

represent the solution.

Other type of genetic algorithms was implemented by

Yusof, et al. [32]. The study developed constraint-

chromosome genetic algorithm to solve the machine loading

problem. The chromosome was designed to produce only

feasible solution. This effort reduced a high computational

time that is required to repair infeasible solutions.

Furthermore, knowledge-based genetic algorithm was

developed to solve machine loading problem [33]. The

proposed approach exloited tacit and explicit knowledge that

was obtained from the problem. The knowledge was used in

the stage of generating initial population and also in

applying genetic operators such as crossover, mutation, and

selection. Thus, the genetic algorithm could explore the

large search space more efficient.

Particle swarm optimization was used in several studies.

For example, Biswas and Mahapatra [7] modified particle

swarm optimization to solve the part type selection and

machine loading problems. Modification was done by

adding a mechanism to prevent early convergence. They

reported that the mechanism was effective to obtain better

solutions. A similar approach was proposed by Mahmudy

[34] that adopted chromosome representation of genetic

algorithm in [12] for his particle swarm optimization.

Another type of population-based algorithm, immune

algorithm, was also implemented to solve the part type

selection and machine loading problems. For instance,

Prakash, et al. [37] modified immune algorithm by adding a

new hypermutation operator to improve the driving forces of

the immune algorithm. A similar improvisation was done by

Dhall, et al. [38] that developed several special operators for

immune algorithm.

The complexity level of the integrated part type selection

and machine loading problems become a reason for the

researchers to develop more powerful approaches by

combining two methods. For example, Yusof, et al. [41]

combined genetic algorithm and harmony search algorithm.

The study used test-bed problems that had maximum

number of part type of 8. Furthermore, hybrid genetic

algorithm with simulated annealing was developed by

Yogeswaran, et al. [1]. Genetic algorithm also combined

with a local search as shown in works by Basnet [30] and

Mahmudy, et al. [10].

To produce satisfactory results, preliminary experiments

are required by heuristic and meta-heuristic methods to

determine their optimum parameters [42, 43]. Parameters of

several methods are shown in Table 1. The table clearly

shows that VNS has fewest parameters compare to other

methods. Thus, it will reduce computational time required in

the preliminary experiments. Fewer parameters also enable

to give more efforts on designing the best neighbourhood

structure for VNS.
TABLE I

PARAMETERS OF HEURISTIC AND META-HEURISTIC METHODS

method parameters

genetic algorithms - population size

- crossover rate

- mutation rate

- termination condition

simulated annealing - initial temperature

- cooling factor

- inner iteration

- probability of accepting worse

solution

- termination condition

particle swarm

optimization
- number of particles

- inertia vector (w)

- self-recognition component (c1)

- social component (c2)

- termination condition

tabu search - size of tabu list

- termination condition

variable

neighbourhood search
- number of neighborhoods

- termination condition

The integrated part type selection and machine loading

problems is known as NP-hard problems and finding

reasonable solutions is more difficult if other flexibilities are

addressed. An example of such flexibility is the possibility

of processing an operation in alternative machines with

different tool types [7, 10].

Due to the complexity of the problems, several

simplicities were adopted in the existing researches. For

example, Yusof, et al. [32], Basnet [30], and Biswas and

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

Mahapatra [7] ignored the tool allocation problem as the

integral part of the machine loading problem. They did not

mention specific tool types and its availability and only

mentioned the number of slots needed by the tools. This

paper attempts to fill these knowledge gaps by addressing

the machine flexibility and the occurrence of specific tool

types for the specific operations.

III. PROBLEM FORMULATION

A FMS under consideration is arranged by a number of

computer numerically controlled (CNC) machines. Each

machine has a tool magazine with limited tool slot capacity.

Thus, only limited number of tools can be attached to the

machine.

Production requirement of each part type is stated as

sequence of operations. Different set of tool types are

required by different operations. This paper considers the

flexibility of machining operations where several alternative

machines with several alternative tool types are available for

each operation. Different processing times are required for

these alternative machines.

A production process is started when production orders

that consist several part types are arrived. The system must

select which part type are loaded to the current batch due to

the limited availability of tools attached in the machines.

This approach is known as batching approach as several

production batches is required to produce all part types [4].

Several assumptions are made as follows:

- All machines are available at time 0 and never

breakdown.

- Machines are independent from each other.

- Part types are independent from each other and there

are no precedence constraints among operations of

different part types.

- A machine can only execute one operation at a given

time.

A. Subscripts and parameters

Several subscripts are used in the model as follows:

p = 1,…,P part type

o = 1,…,Op operation of part type p

t = 1,…,T tool type

m = 1,…,M machine type

Parameters of the model are defined as the following:

Cm = tool slot capacity of machine m

Nt = number of tools type t

St = number of slots required by tool type t

Bp = batch size of part type p

Vp = value (price) of part type p

µpo = set of possible machines on which operation o of part

type p can be performed

 { }: 1 if tool type t is required for processing

operation o of part type p on machine m, 0 otherwise

tpom = processing time of operation o of part type p on

machine m

B. Decision variables

Two objectives of the model are defined as follow:

 { }: 1 if part type p is selected in the current batch, 0

otherwise

 { }: 1 if machine m is selected for operation o of

part type p, 0 otherwise

The depending variable for this model is stated as follow:

 { }: 1 if tool type t is loaded to the machine m, 0

otherwise

The value of depending variable is determined once the

values of the decision variables are obtained.

C. Objectives

To measure the performance of FMS production

planning, a number of objectives were used such as

minimizing part movement [40] and minimizing tool

changeovers [40]. However, most of the studied addressed

two common objectives, maximizing system throughput and

maintaining the balance of the system. The objectives may

contribute to the other criteria of system’s performance such

as the completion time of all part types’ operations [9].

Maximizing system throughput is obtained by

maximizing the value (price or profit) of selected part types

as expressed in (1).

 ∑

 (1)

Maintaining the balance of the system is obtained by

minimizing system unbalance as shown in (2). Wm is

workload of machine m and W is the average machine

workload. Here, length of scheduling period for each

machine (Lm) is predetermined and overloading of the

machines is allowed.

 ∑ | |

 (2)

 ∑ ∑

 ̅
∑

The two objective functions in the problem must be

converted to a single objective function which is used to

measure the goodness of the solution produced by VNS.

Equation (2) should be converted into (3) to produce value

between 0 and 1.

∑

∑

 (3)

Minimizing system unbalance in (2) can be converted as

maximizing (4) as follow:

∑ | |

∑

 (4)

Finally, the objective function can be formulated as in

Equation (5). The values of α1 and α2 can be determined

according to the decision maker’s preference.

 (5)

D. Constraints

While considering the objectives of the system, several

constraints must be satisfied as follows:

∑ ∑

 (6)

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

∑ (7)

 (8)

∑

 (9)

∑

 (10)

Constraint (6) ensures that all operations of the selected

part types are performed on proper machines. Constraint (7)

guarantees that each operation of the selected part types

must be completed on only one machine. The machine must

be determined as the operation can be processed on several

alternative machines. Constraint (8) is used to ensure that all

required tools are attached to the selected machine for an

operation. Constraint (9) guarantees that number of tools

assigned to the machines must not exceed its availability.

Constraint (10) ensures that the number of tool slots

occupied on a machine must not exceed the machine’s tool

slot capacity.

IV. NUMERICAL EXAMPLE

A simple problem set is developed as an example of the

problem formulation. The FMS have 3 different machines

which have tool slot capacity of 15, 20 and 25 respectively.

The machines have length of scheduling period (Lm) equal to

2500. Here, overloading of the machines is permitted.

Moreover, there are 10 different tool types and each tool

type has several instances (copies) and occupies a number of

tool slots on machines’ magazine as shown in Table 2.

A production orders that consist seven part types are

arrived. Each part type has specific production requirements

as shown in Table 3. For example, part type 3 has 3

operations. Operation 1 can be executed on machines 2 or 3.

Machine 2 needs 30 unit times for processing and requires

tool types 6, 7 and 8. Different processing times and tool

types are required if machine 3 is chosen. In this case,

machine 3 needs 40 unit times and requires tool types 8, 9

and 10. Thus, it shows the occurrence of machine and tool

flexibility in the production planning problem.

TABLE II

THE AVAILABILITY OF TOOL TYPES

tool type 1 2 3 4 5 6 7 8 9 10

availability 2 3 2 3 2 3 2 3 2 3

number of
slot needed

3 3 4 4 5 5 5 3 3 3

TABLE III

PRODUCTION REQUIREMENT OF PART TYPES

part

type

batch

size

value

$
op mac time tools

1 20 5 1 2 20 2 3 5

2 1 30 4 5

3 2 30 3 4

3 30 5

2 20 3 1 1 30 1 3

2 2 20 3 4

3 2 30 4 6 7

3 40 2 1 2 30 6 7 8

3 40 8 9 10

2 2 20 1 10

3 40 2 10

3 1 20 1 2

4 20 1 1 2 30 9 10

3 20 9 10

2 2 30 6 7

1 40 6 7

3 1 30 3 4

5 30 4 1 2 40 1 2 3

2 1 40 7 8

2 30 3 4

6 30 3 1 3 20 7 8

2 2 50 9 10

3 3 10 2

7 30 5 1 1 50 1 2 3

2 40 7 9 10

2 3 30 4 6

op:operation; mac:machine; time: unit time; tools: required tool types

V. MODELING USING VNS

A. Solution Representation

A solution representation is required by VNS to

determine how solutions can be obtained from the problem.

A solution of VNS for the problem in Section 4 is shown in

Table 4. Here, the solution is represented as an array of

record contained with part type and machines sequence for

all operation of the part type.

TABLE IV
AN EXAMPLE OF SOLUTION

record part type machines

1 7 1 3

2 3 3 2 1

3 5 2 2

4 1 2 1 3

5 4 3 1 1

6 6 3 2 3

7 2 1 2 3

Table 4 shows that the first operation of part type 7 is

performed on machine 1 and the second operation is

processed in machine 3. Furthermore, part type 3 is

processed in machines 3, 2, and 1 sequentially.

After determining machines for operations, required

tool types are attached to the machines. At this stage, all

constraints such as the availability of tools and number of

empty slots on the machines are checked. For example, after

selecting part types 7, 3 and 5 according to the part type

sequence as shown in second column of Table 4, adding part

type 1 to the solution will not satisfy the constraints. Thus,

the VNS solution states that only part types 7, 3, and 5 are

selected for the current batch and the objective functions of

the problem are calculated based on the selected part types.

The other part types will be produced in the next batches.

The calculation of system throughput is presented in

Table 5. Here, the system throughput is obtained by

summing all part types’ value.

TABLE V

CALCULATION OF SYSTEM THROUGHPUT

part type
batch

size
value $

total

value

7 30 5 150

3 40 2 80

5 30 4 120

throughput 350

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

Machines’ workload and assigned tool types are

provided in Table 6. Here, used slot does not exceed the

number of slot in each machine.

TABLE VI

MACHINES WORKLOAD

mac workload unbalance
number
of slots

used
slot

tools
assigned

1 2300 200 15 10 1 2 3

2 2900 400 20 17 1 2 3 4 10

3 2500 0 25 18 4 6 8 9 10

System unbalance 600

B. Neighborhood Structure

Variable neighborhood search (VNS) works by iterating

a local search (LS) technique. In each iteration, the LS

explores the search space from a new starting point. The

starting point is determined using a mechanism called

neighborhood structure [13]. As the main feature of VNS,

the neighborhood structure is used to produce new candidate

solutions by changing initial/current solution. The changing

mechanism involves swap, insert, and exchange operations.

The neighborhood structures Nk (k=1,...,kmax) is adopted

and Nk (x) is defined as the set of solutions in the k
th

neighborhood of x. Nk (x) is obtained by randomly changing

order of k part types in the solution representation. kmax is

determined according to the size of problems used in

experiments. A large value of kmax will enable the VNS to

get better solutions. However, higher computational time is

required.

A pseudo code for the VNS is shown in Fig. 2. The

initial solution of the VNS is randomly generated. Thus,

different instances of the VNS may produce different

solutions. The value of k will be increased if there is no

improvement in the best solution. The increase of k will

drive the VNS to explore different area of the search space.

However, the value will set to 1 if a better solution is found.

This strategy will enable the VNS to exploit local optimum

area.

PROCEDURE VariableNeighborhoodSearch

Input:

curr: current/initial solution

kMax: number of neighbourhoods

Output:

best: the best solution

best  curr

k  1

WHILE k<=kMax DO

 // change order of k part types

 curr  ChangeOrder (best, k)

 // find local optimum

 bestLocal  LocalSearch (curr)

 IF Fitness(bestLocal)> Fitness(best) THEN

 best  bestLocal

 k  1

 ELSE

 k  k + 1

 END IF

END WHILE

END PROCEDURE

Fig. 2. Pseudo code of the VNS

The local search works by randomly replacing machine

for each operation with other possible machines as shown in

Fig. 3. If the new solution has better fitness value then it

replaces the current solution.

PROCEDURE LocalSearch

Input:

curr: current solution

Output:

best: the best solution

best  curr

// check each operation of the part type

FOR EACH operation Oi IN curr DO

 // Change a machine for Oi with other possible

machine

 curr  ChangeMachine (curr, Oi)

 IF Fitness(curr)> Fitness(best) THEN

 best  curr

 END IF

END FOR

END PROCEDURE

Fig. 3. Pseudo code of the local search

An example of changing order of part types to provide a

new starting point is depicted in Fig. 4. Here, k=3 so three

records (records 2, 4, and 6) are randomly chosen as

highlighted in the left part of the figure. Contents of the

selected records are randomly exchanged and the result is

depicted in the right part of the figure.

An example of changing machines of operations by the

local search is provided in Fig. 5. Here, second record is

selected and machines for operations of part type 3 are

replaced by other possible machines.

VI. RESULT AND DISCUSSION

A. Test-Bed Problems

The performance of the proposed VNS is evaluated by

using twelve test-bed problems taken form [12] available at

‘http://lecture.ub.ac.id/anggota/wayanfm/ data_test/’. The

optimum solutions for all test-bed problems are also

record
part
type

machines

1 7 1 3

2 3 2 3 1

3 6 3 2 3

4 1 2 1 3

5 2 1 2 2

6 5 2 1

7 4 2 1 1

before changing

record
part
type

machines

1 7 1 3

2 3 3 3 1

3 6 3 2 3

4 1 2 1 3

5 2 1 2 2

6 5 2 1

7 4 2 1 1

after changing

Fig. 5. An example of changing machines of operations

record
part

type
machines

1 7 1 3

2 5 2 1

3 6 3 2 3

4 3 2 3 1

5 2 1 2 2

6 1 2 1 3

7 4 2 1 1

before changing

record
part

type
machines

1 7 1 3

2 3 2 3 1

3 6 3 2 3

4 1 2 1 3

5 2 1 2 2

6 5 2 1

7 4 2 1 1

after changing

Fig. 4. An example of changing order of 3 part types

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

provided. The characteristics of the problems are shown in

Table 7. The test-bed problems are divided into three

different classes in terms of the number of part types, the

number of machines, the number of tool types, the length of

scheduling period, and the level of flexibility. Small size

problems are represented by problems 1 to 4. Problems 5 to

8 represent medium size problems whereas problems 9 to 12

represent large size problems. All machines for each

problem in the same class have an equal scheduling period

(Lm) as shown in the last column in Table 7.

TABLE VII

TEST-BED PROBLEMS

problem
num. of

part types
num. of

machines
num. of

tool types
scheduling
period (Lm)

1 8 4 20 4000

2 8 5 25 4000

3 10 4 20 4000

4 10 5 25 4000

5 16 4 20 7000

6 16 5 25 7000

7 18 4 20 7000

8 18 5 25 7000

9 24 4 20 10000

10 24 5 25 10000

11 26 4 20 10000

12 26 5 25 10000

B. Experimental Design

The VNS is implemented in Java and experiment is

carried out on personal computer equipped with AMD

Quad-Core processor working at speed 2.8 GHz and 4GB

DDR3 memory. The first stage of the experiment is

determining a proper value for kmax. For this purpose,

problem 6 is used. VNS is a stochastic method and different

solution is obtained in each run, so the VNS is run 10 times

for each value kmax ranging from 1 to 16 (number of part-

types in this problem).

TABLE VIII

OBJECTIVE VALUE OF THE PROBLEM OVER DIFFERENT VALUES

kmax time F

1 0.0024 0.640342

2 0.0034 0.782617

3 0.0038 0.802161

4 0.0050 0.883821

5 0.0048 0.937525

6 0.0048 1.051203

7 0.0060 1.015235

8 0.0064 1.030236

9 0.0074 1.048757

10 0.0154 1.116403

11 0.0070 1.032010

12 0.0086 1.136945

13 0.0100 1.210845

14 0.0078 1.181168

15 0.0106 1.167585

16 0.0104 1.365191

The result is provided in Table 8. Columns ‘time’ depicts

the time required in seconds to complete the VNS’ cycle.

Column ‘F’ denotes the objective value of the problem that

is calculated using Equation 5. Table 8 and also Fig. 6

clearly show that higher value of kmax will produce better

results. Higher kmax will enable the VNS to explore wider

area of the search space. However, the best result achieved

in this stage is far below of the optimum result. By

terminating the iteration of the VNS until a variable k

reaches kmax, the cycle of the VNS run only less than 1

second. Therefore, the cycle of the VNS that is depicted in

Fig. 2 is modified.

Fig. 6. Objective Value of the Problem over Different Values

The modified version of the VNS is presented in Fig 7.

Here, rather than terminating the iteration until k reaches

kmax, the cycle is stopped until predetermined running time.

kmax is set equal to the number of part-types in the problem.

If k reaches kmax, it value will be set to 1.

PROCEDURE VariableNeighborhoodSearch

Input:

curr: current/initial solution

kMax: number of part-types

Output:

best: the best solution

best  curr

k  1

WHILE NOT termination_condition DO

 // change order of k part types

 curr  ChangeOrder (best, k)

 // find local optimum

 bestLocal  LocalSearch (curr)

 IF Fitness(bestLocal)> Fitness(best) THEN

 best  bestLocal

 k  1

 ELSE

 k  k + 1

 END IF

 IF k=kMax THEN

 k  1

 END IF

END WHILE

END PROCEDURE

Fig. 7. Pseudo code of the Modified VNS

By determining 20 seconds of running time, the VNS is

run again 10 times and the results are presented in Table 9.

The comparison of the VNS and the modified VNS is

depicted in Fig. 8. Table 9 and Fig. 7 clearly show that the

modified VNS produce better and more stable results.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

TABLE IX

OBJECTIVE VALUE OF THE PROBLEM OVER DIFFERENT VALUES OF

MODIFIED VNS

kmax F

1 1.849487

2 1.847529

3 1.849819

4 1.849487

5 1.849819

6 1.863265

7 1.849819

8 1.872933

9 1.873597

10 1.885486

11 1.873431

12 1.885652

13 1.897209

14 1.896877

15 1.908766

16 1.908600

Fig. 8. Objective Value of the Problem over Different Values of
Modified VNS

The next stage of the experiment is determining a proper

running time of the VNS. The time should be determined so

that the VNS have most likely achieved their convergence

and have a very low chance to obtain better solution in the

next iterations. For this purpose, the biggest problem for

each class is chosen. For the small size problems, problem 4

is chosen. Firstly, the VNS is run for 1 second. To obtain a

fair result, the VNS is run 10 times and the average of the

objective function (F) is calculated. Next, running of the

VNS is repeated for 2 seconds, 3 seconds, and so on until

there is no significance improvement of the average of F.

The complete results are presented in Table 10 and their

graph is depicted in Fig. 9. The table and the graph clearly

show that for problem number 10 the VNS achieve it

convergence in around 10 seconds. Thus, the VNS will be

run 10 seconds for all small size problems.

TABLE X
THE AVERAGE OF THE OBJECTIVE VALUE OVER DIFFERENT RUNNING TIME

FOR PROBLEM 4

time average of F

1 2.5102

2 2.5166

3 2.5298

4 2.5298

5 2.5315

6 2.5281

7 2.5315

8 2.5298

9 2.5298

10 2.5315

11 2.5315

12 2.5315

Fig. 9. The Average of the Objective Value over Different Running Time

for Problem 4

For the medium size problems, problem number 8 is

chosen. The average of the objective value over different

running time for problem 8 is depicted in Fig 10. The graph

clearly shows that the VNS achieve it convergence in

around 40 seconds. Thus, the VNS will be run 40 seconds

for all medium size problems

Fig. 10. The Average of the Objective Value over Different Running Time

for Problem 8

For the large size problems, problem number 12 is

chosen. The average of the objective value over different

running time for problem 12 is depicted in Fig 11. The

graph shows that the VNS achieve it convergence in around

80 seconds. After 80 seconds the VNS cannot obtain better

results. Thus, the VNS will be run 80 seconds for all large

size problems

2.5050

2.5100

2.5150

2.5200

2.5250

2.5300

2.5350

1 2 3 4 5 6 7 8 9 10 11 12

time

av
er

ag
e

o
f

F

1.9400

1.9600

1.9800

2.0000

2.0200

2.0400

2.0600

4 8 12 16 20 24 28 32 36 40 44 48
time

av
er

ag
e

o
f

F

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

Fig. 11. The Average of the Objective Value over Different Running Time

for Problem 12

The final stage of the experiment is running the VNS that

has been modified for all test-bed problems. As obtained in

the previous stage of experiment, the VNS is run 10, 40, and

80 seconds for small, medium, and large size problems

respectively. To obtain a fair result, the VNS is run 20 times

for each test-bed problem and obtain results of value of

objective function (F), system throughput (TH), and system

unbalance (SU).

The performance of the proposed VNS is measured by

using number optimum solutions (NOS) and deviation of

objective values resulted by the VNS to its optimum values

(DEV). The optimum solutions are calculated by using a

branch-and-bound method and are obtained from [12].

Equation (11) shows the deviation of average objective

values from 20 runs of the VNS to optimum objective value.

Fopt is objective value obtained by branch-and-bound

method. FVNSr is objective value obtained by the VNS in

run r.

 |

(∑

)

⁄

| (11)

C. Numerical Results

The complete computational result is provided in Table

11. Columns ‘F’, ‘TH’ and ‘SU’ below column ‘VNS’

depict the average of fitness value, throughput and system

unbalance obtained from 20 runs of the VNS

Based on the empirical results of Table 11, perfect results

are obtained by the proposed VNS in all small size problems

(problems 1 to 4). Here, the VNS could achieve optimum

solution in all runs so the value of DEV is 0%. The results

indicate that the VNS may explore all possible solutions and

the best solution is obtained easily.

In the medium size problems (problems 5 to 8), the best

result is obtained in problem 5 with DEV of 0.40% and the

worst solution is occurred in problem 6 with DEV of 3.60%.

In addition, the VNS could produce optimum solutions in

several test-bed problems and the best result is achieved in

problem 5 with NOS of 17. The average of DEV in the

medium size problems is only 2.12% that are obtained in

only 40 seconds of computational time.

The VNS also obtains optimum solutions in several runs

in all large size problems. The best result is achieved in

problem 10 with DEV of 2.46% and the worst solution is

obtained in problem 11 with DEV of 5.88%. Overall, in

larger problems, DEV values tend to increase as the search

space becomes very large and it is impossible for the VNS

to explore all areas in limited computational time. Note that

all DEV values in large size problems are below 7% which

may be regarded as good results considering these results

are achieved in only 80 seconds.

Promising results in this research are achieved by using

only simple VNS. The neighbourhood structure is designed

to enable the VNS produces near optimum solutions in a

reasonable amount of time. Other approaches may be

supported by complex strategies to achieve good results

which may need excessive computation time. Examples of

such approaches are combining genetic algorithm with

harmony search algorithm [41], enhancing the power

genetic algorithm by combining with simulated annealing

[1] equipping genetic algorithm with local search [30], and

hybridizing particle swarm optimization with local search

methods [7].

VII. CONCLUSION AND FUTURE STUDY

A model for the integrated part type selection and

machine loading problems is developed in this paper. The

1.8000

1.8200

1.8400

1.8600

1.8800

1.9000

1.9200

1.9400

8 16 24 32 40 48 56 64 72 80 88 96 104

time

av
er

ag
e

o
f

F
TABLE XI

COMPUTATIONAL RESULTS

problem
optimum values

VNS

F TH SU

NOS F TH SU DEV(%)

1 2.545 1,616 803

20 2.545 1,616 803 0.00

2 2.926 2,591 9,838

20 2.926 2,591 9,838 0.00

3 2.972 3,058 6,858

20 2.972 3,058 6,858 0.00

4 2.531 2,196 3,233

20 2.531 2,196 3,233 0.00

 average 0.00

5 2.156 2,676 3,738

17 2.148 2,649 3,613 0.40

6 1.968 2,605 7,126

8 1.897 2,508 8,077 3.60

7 2.458 3,595 5,529

2 2.404 3,258 2,722 2.23

8 2.088 2,871 4,768

9 2.041 2,787 5,164 2.25

 average 2.12

9 2.349 4,150 4,204

2 2.201 3,814 5,424 6.30

10 1.809 3,212 10,879

7 1.765 3,083 11,043 2.46

11 2.305 4,417 5,519

2 2.169 4,134 7,253 5.88

12 2.018 3,937 9,291

5 1.909 3,837 13,192 5.38

 average 5.01

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

model considers the flexibilities of operations which

involves the availability of alternative machines and

alternative tool types. The integrated model of the NP-hard

problems is solved by using VNS. The proper

neighbourhood structure could produce promising results in

reasonable amount of time. By using 12 test bed problems

available in the literature, the proposed VNS improves the

FMS performance by considering two objectives,

maximizing system throughput and maintaining the balance

of the system. To measure the effectiveness of the proposed

VNS, the obtained results are compared to the optimum

values produced by branch-and-bound method. The

numerical experiments prove that the proposed VNS could

reach near optimum solutions in reasonable amount of time.

More complex problem will be addressed in the next

work. It includes the existence of alternative production

plans which refer to possibility of producing part on

alternative operation sequence and solving the problem for

multiple batches. Here, new solution representation and

neighbourhood structure for the VNS must be developed.

Thus, a more powerful of VNS is required. Developing new

local search methods and combining the VNS with other

heuristics methods will be considered.

REFERENCES

[1] M. Yogeswaran, S. G. Ponnambalam, and M. K. Tiwari, "An

efficient hybrid evolutionary heuristic using genetic algorithm
and simulated annealing algorithm to solve machine loading

problem in FMS," International Journal of Production

Research, vol. 47, no. 19, pp5421-5448, 2009.

[2] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, "Modeling

and optimization of part type selection and loading problems in

flexible manufacturing system using real coded genetic
algorithms," International Journal of Electrical, Computer,

Electronics and Communication Engineering, vol. 7, no. 4,

pp251-260, 2013.
[3] C. Duerden, L.-K. Shark, G. Hall, and J. Howe, "Minimisation

of energy consumption variance for multi-process

manufacturing lines through genetic algorithm manipulation of
production schedule," Engineering Letters, vol. 23, no. 1, pp40-

48, 2015.

[4] W. F. Mahmudy, "Optimisation of Integrated Multi-Period
Production Planning and Scheduling Problems in Flexible

Manufacturing Systems (FMS) Using Hybrid Genetic

Algorithms " Ph.D. Thesis, School of Engineering, University of
South Australia, 2014.

[5] H. T. N. I. K. Nejad, N. Sugimura, K. Iwamura, and Y.

Tanimizu, "Integrated dynamic process planning and scheduling

in flexible manufacturing systems via autonomous agents,"

Journal of Advanced Mechanical Design, Systems, and

Manufacturing, vol. 2, no. 4, pp719-734, 2008.
[6] A. H. R. Zaied, "Quantitative models for planning and

scheduling of flexible manufacturing system," Emirates Journal
for Engineering Research, vol. 13, no. 2, pp11-19, 2008.

[7] S. Biswas and S. Mahapatra, "Modified particle swarm

optimization for solving machine-loading problems in flexible
manufacturing systems," The International Journal of Advanced

Manufacturing Technology, vol. 39, no. 9, pp931-942, 2008.

[8] K. E. Stecke, "A hierarchical approach to solving machine
grouping and loading problems of flexible manufacturing

systems," European Journal of Operational Research, vol. 24,

no. 3, pp369-378, 1986.
[9] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, "Hybrid

genetic algorithms for multi-period part type selection and

machine loading problems in flexible manufacturing system," in
IEEE International Conference on Computational Intelligence

and Cybernetics, Yogyakarta, Indonesia, 2013, pp. 126-130.

[10] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong,
"Optimization of part type selection and loading problem with

alternative production plans in flexible manufacturing system

using hybrid genetic algorithms – Part 2: genetic operators &

results," in 5th International Conference on Knowledge and

Smart Technology (KST), Chonburi, Thailand, 2013, pp. 81-85.
[11] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, "Hybrid

genetic algorithms for part type selection and machine loading

problems with alternative production plans in flexible
manufacturing system," ECTI Transactions on Computer and

Information Technology (ECTI‐CIT), vol. 8, no. 1, pp80-93,
2014.

[12] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, "Solving
part type selection and loading problem in flexible

manufacturing system using real coded genetic algorithms – Part

II: optimization," in International Conference on Control,
Automation and Robotics, Singapore, 2012, pp. 706-710.

[13] P. Hansen, N. Mladenović, and J. Moreno Pérez, "Variable

neighbourhood search: methods and applications," Annals of
Operations Research, vol. 175, no. 1, pp367-407, 2010.

[14] N. Bouhmala, K. Hjelmervik, and K. I. Øvergaard, "A

generalized variable neighborhood search for combinatorial
optimization problems," Electronic Notes in Discrete

Mathematics, vol. 47, no. 0, pp45-52, 2015.

[15] M. Yazdani, M. Amiri, and M. Zandieh, "Flexible job-shop

scheduling with parallel variable neighborhood search

algorithm," Expert Systems with Applications, vol. 37, no. 1,

pp678-687, 2010.
[16] B. Jarboui, H. Derbel, S. Hanafi, and N. Mladenović, "Variable

neighborhood search for location routing," Computers &

Operations Research, vol. 40, no. 1, pp47-57, 2013.
[17] N. Mladenović, D. Urošević, S. d. Hanafi, and A. Ilić, "A

general variable neighborhood search for the one-commodity

pickup-and-delivery travelling salesman problem," European
Journal of Operational Research, vol. 220, no. 1, pp270-285,

2012.

[18] N. Dahmani, S. Krichen, and D. Ghazouani, "A variable
neighborhood descent approach for the two-dimensional bin

packing problem," Electronic Notes in Discrete Mathematics,

vol. 47, no. 0, pp117-124, 2015.
[19] N. Mladenovic, R. Todosijevic, and D. Urosevic, "An efficient

general variable neighborhood search for large travelling

salesman problem with time windows," Yugoslav Journal of
Operations Research vol. 23, no. 1, pp19-31, 2013.

[20] N. Mladenović, R. Todosijević, and D. Urošević, "Two level

general variable neighborhood search for attractive traveling
salesman problem," Computers & Operations Research, vol. 52,

Part B, no. 0, pp341-348, 2014.

[21] T. Davidovic and T. G. Crainic, "Parallelization strategies for
variable neighborhood search," Research Report for

Interuniversity Research Center on Enterprise Networks,

Logistics and Transportation (CIRRELT), Montreal, Canada,
2013.

[22] M. Eskandarpour, S. H. Zegordi, and E. Nikbakhsh, "A parallel

variable neighborhood search for the multi-objective sustainable
post-sales network design problem," International Journal of

Production Economics, vol. 145, no. 1, pp117-131, 2013.
[23] J. u. S´anchez-Oro, M. Sevaux, A. e. Rossi, R. Mart´i, and A.

Duarte, "Solving dynamic memory allocation problems in

embedded systems with parallel variable neighborhood search
strategies," Electronic Notes in Discrete Mathematics, vol. 47,

pp85–92, 2015.

[24] J.-q. Li, Q.-k. Pan, and F.-t. Wang, "A hybrid variable
neighborhood search for solving the hybrid flow shop

scheduling problem," Applied Soft Computing, vol. 24, no. 0,

pp63-77, 2014.
[25] T. A. Oliveira, V. N. Coelho, M. J. F. Souza, D. L. T. Boava, F.

Boava, M. Coelho, et al., "A hybrid variable neighborhood

search algorithm for targeted offers in direct marketing,"
Electronic Notes in Discrete Mathematics, vol. 47, pp205–212,

2015.

[26] M. I. Mgwatu, "Integration of part selection, machine loading
and machining optimisation decisions for balanced workload in

flexible manufacturing system," International Journal of

Industrial Engineering Computations, vol. 2, pp913–930, 2011.
[27] U. Bilge, E. Albey, U. Besikci, K. Erbatur, and A. N. Aslan,

"Mathematical models for FMS loading and part type selection

with flexible process plans," European Journal of Industrial
Engineering, 2014.

[28] T. Hasuike, "Exact and explicit solution algorithm for linear

programming problem with a second-order cone," IAENG
International Journal of Applied Mathematics, vol. 41, no. 3,

pp213-217, 2011.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

[29] H.-W. Kim, J.-M. Yu, J.-S. Kim, H.-H. Doh, D.-H. Lee, and S.-

H. Nam, "Loading algorithms for flexible manufacturing
systems with partially grouped unrelated machines and

additional tooling constraints," The International Journal of

Advanced Manufacturing Technology, vol. 58, no. 5, pp683-
691, 2012.

[30] C. Basnet, "A hybrid genetic algorithm for a loading problem in

flexible manufacturing systems," International Journal of
Production Research, vol. 50, no. 3, pp707–718, 2012.

[31] A. M. Abazari, M. Solimanpur, and H. Sattari, "Optimum

loading of machines in a flexible manufacturing system using a
mixed-integer linear mathematical programming model and

genetic algorithm," Computers & Industrial Engineering, vol.

62, no. 2, pp469-478, 2012.
[32] U. K. Yusof, R. Budiarto, and S. Deris, "Constraint-

chromosome genetic algorithm for flexible manufacturing

system machine-loading problem," International Journal of
Innovative Computing, Information and Control, vol. 8, no. 3A,

pp1591-1609, 2012.

[33] A. Sadrzadeh, "Knowledge-based genetic algorithm for dynamic
machine–tool selection and operation allocation," Arabian

Journal for Science and Engineering, vol. 39, no. 5, pp4315-

4323, 2014.
[34] W. F. Mahmudy, "Optimasi part type selection and machine

loading problems pada FMS menggunakan metode particle

swarm optimization (Optimization of part type selection and
machine loading problems in FMS using particle swarm

optimization)," in Konferensi Nasional Sistem Informasi (KNSI)
STMIK Dipanegara, Makassar, 2014, pp. 1718-1723.

[35] W. F. Mahmudy, "Improved particle swarm optimization untuk

menyelesaikan permasalahan part type selection dan machine
loading pada flexible manufacturing system (FMS) (Improved

particle swarm optimization for solving part type selection and

machine loading problems in flexible manufacturing system),"
in Konferensi Nasional Sistem Informasi, Universitas Klabat,

Airmadidi, Minahasa Utara, Sulawesi Utara, 2015, pp. 1003-

1008.
[36] M. H. M. A. Jahromi, R. Tavakkoli-Moghaddam, S. A. Jazayeri,

R. Jafari, and A. Shamsi, "Ant colony optimization for multi-

objective machine-tool selection and operation allocation in a
flexible manufacturing system," World Applied Sciences

Journal, vol. 15, no. 6, pp867-872, 2011.

[37] A. Prakash, N. Khilwani, M. K. Tiwari, and Y. Cohen,
"Modified immune algorithm for job selection and operation

allocation problem in flexible manufacturing systems," Adv.

Eng. Softw., vol. 39, no. 3, pp219-232, 2008.
[38] P. R. Dhall, S. S. Mahapatra, S. Datta, and A. Mishra, "An

improved artificial immune system for solving loading problems

in flexible manufacturing systems," presented at the Industrial
Engineering and Engineering Management (IEEM), 2010 IEEE

International Conference on, 2010.

[39] U. K. Yusof, R. Budiarto, and S. Deris, "Harmony search
algorithm for flexible manufacturing system(FMS) machine

loading problem," presented at the 2011 3rd Conference on Data

Mining and Optimization (DMO), Selangor Malaysia, 2011.
[40] K. Seok Shin, J. O. Park, and Y. Keun Kim, "Multi-objective

FMS process planning with various flexibilities using a

symbiotic evolutionary algorithm," Computers and Operations
Research, vol. 38, no. 3, pp702-712, 2011.

[41] U. K. Yusof, R. Budiarto, I. Venkat, and S. Deris, "Machine

Loading Optimization in Flexible Manufacturing System Using
a Hybrid of Bio-inspired and Musical-Composition Approach,"

in Bio-Inspired Computing: Theories and Applications (BIC-

TA), 2011 Sixth International Conference on, 2011, pp. 89-96.
[42] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, "Real

coded genetic algorithms for solving flexible job-shop

scheduling problem – Part I: modeling," Advanced Materials
Research, vol. 701, pp359-363, 2013.

[43] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, "Real

coded genetic algorithms for solving flexible job-shop
scheduling problem – Part II: optimization," Advanced

Materials Research, vol. 701, pp364-369, 2013.

IAENG International Journal of Computer Science, 42:3, IJCS_42_3_10

(Advance online publication: 10 July 2015)

__

