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Abstract—Lazy evaluation is a computational scheme which
delays the evaluation of an expression until its value is needed,
trying to improve the performance particularly when dealing
with large data structure. In this paper, we apply this mecha-
nism to a multi-context algebraic reasoning system which, on a
large data structure called the nodes, efficiently simulates paral-
lel processes each executing an algebraic reasoning procedure
under a particular context (or a premise). In particular, the
multi-completion system MKB simulates the parallel Knuth-
Bendix completion procedures, which, given a set of equations
and a set of reduction orderings, try to generate a complete (i.e.,
terminating and confluent) term rewriting system equivalent
to the input equations. Exploiting the lazy evaluation, we
present an efficient implementation of MKB, called lz-mkb,
and implement it in a functional, object-oriented programming
language Scala which features the lazy evaluation mechanism.
The experiments with standard sample problems show that lz-
mkb is more efficient than the original MKB implementation of
Kurihara and Kondo.

Index Terms—Term rewriting system, Completion, Multi-
Completion, Kunth-Bendix completion, Lazy evaluation.

I. INTRODUCTION

MULTI-CONTEXT algebraic reasoning systems effi-
ciently simulate parallel processes each executing an

algebraic reasoning procedure under a particular context (or
a premise). Those systems are used to reason about alge-
braic computational systems such as term rewriting systems
(TRSs), which are a concise and rigorous representation of
computational systems in terms of rewrite rules. In fact,
TRSs are studied and used in various areas of computer
science, including automated theorem proving, analysis and
implementation of abstract data types, and decidability of
word problems. A TRS is said to be complete if it satisfies
the properties called termination and confluence.

The well-known procedure for the completion of TRS was
invented by Knuth and Bendix [5] in 1970 and affected
a lot of researchers since then. Given a set of equations
and a reduction ordering on a set of terms, the procedure
(called KB in this paper) uses the ordering to orient equations
(either from left to right or from right to left to transform
them into rewrite rules) and tries to generate a complete
TRS equationally equivalent to the input set of equations.
The resultant TRS can be used to decide the equational
consequences (word problems) of the input equations.
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Actually, however, the KB leads to three possible results:
success, failure, or divergence. In the success case, the pro-
cedure stops and outputs a complete TRS. In the failure case,
the procedure stops but only returns a failure message with an
unorientable equation. In the divergence case, the procedure
falls into an infinite loop, trying to generate an infinite set
of rewrite rules. The result of KB seriously depends on the
given reduction ordering. With a good ordering, it would lead
to a success, but otherwise, it would cause the failure or the
divergence. In the latter case, we could try to avoid them by
changing the ordering to appropriate one, but the problem is
that it is very difficult for ordinary software designers and
AI researchers to design or choose an appropriate ordering.

Therefore, automatic search for appropriate orderings is
desired. But according to the possibility of divergence, we
cannot try candidate orderings one by one. Also, it is not ef-
ficient to simply create processes for each different ordering
and run them in parallel on a machine, because the number
of candidate orderings normally exceeds ten thousands even
for a small problem.

In 1999, this problem was partially solved by a completion
procedure called MKB [6]. MKB is a single procedure that
efficiently simulates execution of multiple processes each
running KB with a different reduction ordering. The key
idea of MKB lies in a data structure called node. The
node contains a pair s : t of terms and three sets of
indices to orderings to show whether or not each process
contains rules s → t, t → s, or an equation s = t. The
well-designed inference rules of MKB allows an efficient
simulation of multiple inferences in several processes all in
a single operation.

In this paper, we present an efficient implementation
of MKB, called lz-mkb, by exploiting the lazy evaluation
schemes. The lazy evaluation, sometimes called the call-by-
need, is a computational scheme which delays the evaluation
of an expression until its value is needed and which also
avoids repeated evaluations by the ‘memoization’ mechanism
to share the common computational results. Thus the lazy
evaluation can lead to the improvement of performance by
avoiding needless calculations particularly when dealing with
a large data structure with compound objects. Noting that
MKB works on a large data structure of nodes, we introduced
the lazy evaluation scheme into MKB to develop lz-mkb.
The actual implementation of lz-mkb is written in Scala, a
rising programming language supporting both functional and
object-oriented programming, featuring the lazy evaluation.

This paper is organized as follows. In Section II, we will
provide a brief review on TRSs and completion procedures
KB and MKB. In Section III, we will discuss the implemen-
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tation of lz-mkb. The result of the experiments will be shown
and discussed in Section IV. In Section V, we will conclude
with possible future work. This paper is an extension of
our preliminary work [4] with additional experiments and
analyses.

II. PRELIMINARIES

A. Term Rewriting Systems

Let us briefly review the basic notions for term rewriting
systems(TRS) [1] [2] [3] [8] [12]. We start with the basic
definitions.

Definition 2.1: A signature Σ is a set of function sym-
bols, where each f ∈ Σ is associated with a non-negative
integer n, the arity of f . The elements of Σ with arity n=0
are called constant symbols.

Let V be a set of variables such that Σ ∩ V = ∅. With
Σ and V we can build terms.

Definition 2.2: The set T (Σ, V ) of all terms over Σ and
V is recursively defined as follows: V ⊆ T (Σ, V ) (i.e., all
variables are terms) and if t1, . . . , tn ∈ T (Σ, V ) and f ∈ Σ,
then f(t1, . . . , tn) ∈ T (Σ, V ), where n is the arity of f .

For example, if f is a function symbol with arity 2 and
{x, y} are variables, then f(x, y) is a term. We write s ≡ t
when the terms s and t are identical. A term s is a subterm
of t, if either s ≡ t or t ≡ f(t1, . . . , tn) and s is a subterm
of some tk(1 ≤ k ≤ n).

Variables can be replaced by terms with specified substitu-
tions. A substitution is a function σ : V → T (Σ, V ) such
that σ(x) 6= x for only finitely many xs. We can extend
any substitution σ to a mapping σ : T (Σ, V ) → T (Σ, V )
by defining σ(f(s1, . . . , sn)) = f(σ(s1), . . . , σ(sn)). The
application σ(s) of σ to s is often written as sσ. A term
t is an instance of a term s if there exists a substitution σ
such that sσ ≡ t. Two terms s and t are variants of each
other and denoted by s

.= t, if s is an instance of t and vice
versa (i.e., s and t are syntactically the same up to renaming
variables). Now we can define TRS as follows:

Definition 2.3: A rewrite rule l → r is an ordered pair
of terms such that l is not a variable and every variable
contained in r is also in l. A term rewriting system (TRS),
denoted by R, is a set of rewrite rules.

When we use TRS to solve specified problems, some prop-
erties such as termination and confluence are expected to
hold most of the time. To talk about those properties, we
need more definitions as follows.

Let � be a new symbol which does not occur in Σ ∪ V .
A context, denoted by C, is a term t ∈ T (Σ, V ∪{2}) with
exactly one occurrence of �. C[s] denotes the term obtained
by replacing � in C with s.

Definition 2.4: The reduction relation→R⊆ T (Σ, V )×
T (Σ, V ) is defined by s→R t iff there exists a rule l→ r ∈
R, a context C, and a substitution σ such that s ≡ C[lσ]
and C[rσ] ≡ t. A term s is reducible if s →R t for some
t; otherwise, s is a normal form.

A TRS R terminates if there is no infinite rewrite
sequence s0 →R s1 →R · · · . We also say that R has
the termination property or R is terminating. The ter-
mination property of TRS can be proved by the following
definition and theorem.

Definition 2.5: A strict partial order � on T (Σ, V ) is
called a reduction order if it possesses the following
properties.

• closed under substitution:
s � t implies sσ � tσ for any substitution σ.

• closed under context:
s � t implies C[s] � C[t] for any context C.

• well-founded:
there exist no infinite decreasing sequences t1 � t2 �
t3 � · · · .

Theorem 2.6: A term rewriting system R terminates iff
there exists a reduction order � that satisfies l � r for all
l→ r ∈ R.

After termination we talk about confluence, which is also
an important property often expected.

Definition 2.7: Two terms s, t in TRS R are joinable
(notation s ↓ t), if there exists a term v such that s →∗

R v
and t→∗

R v, where →∗
R is the reflexive transitive closure of

→R.
Theorem 2.8: A TRS R is confluent iff for all terms

s, t, u ∈ T (Σ, V ), u→∗
R s and u→∗

R t implies s ↓ t.
Definition 2.9: The composition στ of two substitutions

σ and τ is defined as s(στ) = (sσ)τ . A substitution σ
is more general than a substitution σ′ if there exists a
substitution δ such that σ′ = σδ. For two terms s and t,
if there is a substitution σ such that sσ ≡ tσ, σ is a unifier
of s and t. We denote the most general unifier of s and t by
mgu(s, t).

With Definition 2.9 we can define critical pairs as
follows:

Definition 2.10: Consider two rewrite rules l1 → r1 and
l2 → r2 in a TRS R with no common variables. (If they
have common variables, we can rename them properly.) If a
term s is a subterm of l1 denoted by l1[s], and if there exists
an mgu(s, l2) = σ, then the pair 〈l1σ[r2σ], r1σ〉 of terms is
called a critical pair of l1 → r1 and l2 → r2.

For example, let f be a function symbol, {a, b, c} be
variables, and consider two rewrite rules f(a) → b and
a→ c. By setting s = a (the argument of f(a)) and l2 = a
(the left-hand side of the second rule) , we have the empty
mgu (or the identical mapping, meaning that no variables
need to be replaced). Since l1[r2] = f(c) and r1 = b, we
obtain 〈f(c), b〉 as a critical pair. In TRS, confluence can be
decided with critical pairs.

Theorem 2.11: A terminating TRS is confluent iff all
critical pairs (p, q) satisfy p ↓ q.

If a TRS R satisfies termination and confluence, we say
R is complete (or convergent) or R has the completion
property.

B. Completion procedure

To complete a TRS, we need some procedures. Here we
will talk about the standard completion procedure KB and
multi-completion procedure MKB [5] [6].

Given a set of equations E0 and a reduction ordering �,
the standard completion procedure KB tries to generate a
convergent set Rc of rewrite rules that is contained in �
and that induces the same equational theory as E0. The KB
procedure implements the following six inference rules.
DELETE: (E ∪ {s↔ s}; R) ` (E; R)
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COMPOSE: (E; R ∪ {s→ t}) ` (E; R ∪ {s→ u})
if t→R u

SIMPLIFY: (E ∪ {s↔ t}; R) ` (E ∪ {s↔ u}; R)
if t→R u

ORIENT: (E ∪ {s↔ t}; R) ` (E; R ∪ {s→ t})
if s � t

COLLAPSE: (E; R ∪ {t→ s}) ` (E ∪ {u↔ s}; R)
if l→ r ∈ R, t→{l→r} u, and t B l

DEDUCE: (E; R) ` (E ∪ {s↔ t}; R)
if u→R s and u→R t

The new symbol B here denotes the encompassment
ordering defined as follows.

Definition 2.12: An encompassment order B on a set
of terms is defined by s B t iff some subterm of s is an
instance of t and s 6 .= t.

For example, if {f, g} are function symbols and {x, y, z}
variables, then f(x, g(x)) B f(y, g(z)) but f(x, g(y)) 6B
f(z, g(z)). KB starts from the initial state (E0, R0) where
R0 = ∅. The procedure changes the states in a possibly
infinite completion sequence (E0; R0) ` (E1; R1) ` · · · by
its inference rules. The result of the completion sequence is
the sets Ec and Rc. When Ec = ∅, Rc will be a confluent
and terminating TRS satisfying ↔∗

Rc
=↔∗

E0
, which means

KB procedure has succeeded. And the sequence has failed if
Ec 6= ∅.

A completion procedure for multiple reduction orderings
called MKB developed in [6] accepts a finite set of reduction
orderings O = {�1, . . . ,�n} and a set of equations E0 as
input. The proper output is a set of a convergent rewrite rules
Rc. To achieve the multi-completion, MKB effectively sim-
ulates KB procedures in n parallel processes {P1, . . . , Pn}
corresponding to O. Let I = {1, . . . , n} be the index set and
i ∈ I be an index. In this setting, Pi executes KB for the
reduction order �i and the common input E0. The inference
rules of MKB which simulate the related KB inferences all in
a single operation is based on a special data structure called
the node defined below.

Definition 2.13: A node is a tuple 〈s : t, R0, R1, E〉,
where s : t is an ordered pair of terms s and t called datum,
and R0, R1, E are subsets of I called labels such that:

• R0, R1 and E are mutually disjoint. (i.e., R0 ∩ R1 =
R0 ∩ E = R1 ∩ E = ∅)

• i ∈ R0 implies s �i t, and i ∈ R1 implies t �i s

Intuitively, the set R0(R1) represents the indices of pro-
cesses executing KB in which the set of rewrite rules R

currently contains s→ t (t→ s), and E represents those of
processes in which E contains an equation s↔ t (or t↔ s).
The node 〈s : t, R0, R1, E〉 is considered to be identical with
the node 〈t : s,R1, R0, E〉, hence the inference rules of MKB
working on a set N of nodes defined below implicitly specify
the symmetric cases.
DELETE: N ∪ {〈s : s, ∅, ∅, E〉} ` N

if E 6= ∅
ORIENT: N ∪ {〈s : t, R0, R1, E ∪ E′〉} `

N ∪ {〈s : t, R0 ∪ E′, R1, E〉}
if E′ 6= ∅, E ∩ E′ = ∅,
and s �i t for all i ∈ E′

REWRITE 1: N ∪ {〈s : t, R0, R1, E〉} `

N∪

{
〈s : t, R0\R, R1, E\R〉
〈s : u,R0 ∩R, ∅, E ∩R〉

}

if 〈l : r,R, . . . , . . . 〉 ∈ N, t→{l→r} u,
t

.= l, and (R0 ∪ E) ∩R 6= ∅
REWRITE 2: N ∪ {〈s : t, R0, R1, E〉} ` N∪{

〈s : t, R0\R, R1\R,E\R〉
〈s : u,R0 ∩R, ∅, (R1 ∪ E) ∩R〉

}
if 〈l : r,R, . . . , . . . 〉 ∈ N, t→{l→r} u,
t B l, and (R0 ∪R1 ∪ E) ∩R 6= ∅

DEDUCE: N ` N ∪ {〈s : t, ∅, ∅, R ∩R′〉}
if 〈l : r,R, . . . , . . . 〉 ∈ N,
〈l′ : r′, R′, . . . , . . . 〉 ∈ N, R ∩R′ 6= ∅,
and s←{l→r} u→{l′→r′} t

GC: N ∪ {〈s : t, ∅, ∅, ∅〉} ` N

SUBSUME: N ∪

{
〈s : t, R0, R1, E〉
〈s′ : t′, R′

0, R
′
1, E

′〉

}
`

N ∪ {〈s : t, R0 ∪R′
0, R1 ∪R′

1, E
′′〉}

if s : t and s′ : t′ are variants and
E′′ = (E\(R′

0 ∪R′
1)) ∪ (E′\(R0 ∪R1))

Given the current set N of nodes, (E[N, i]; R[N, i]) de-
fined in the following represents the current set of equations
and rewrite rules in a process Pi.

Definition 2.14: Let n = 〈s : t, R0, R1, E〉 be a node and
i ∈ I be an index. The E-projection E[n, i] of n onto i is a
(singleton or empty) set of equations defined by

E[n, i] =

{
{s↔ t}, if i ∈ E,

∅, otherwise.

Similarly, the R-projection R[n, i] of n onto i is a set of
rules defined by

R[n, i] =


{s→ t}, if i ∈ R0,

{t→ s}, if i ∈ R1,

∅, otherwise.

These notions can also be extended for a set N of nodes as
follows:

E[N, i] =
∪

n∈N

E[n, i], R[N, i] =
∪

n∈N

R[n, i]

MKB starts with the initial set N0 of nodes:

N0 = {〈s : t, ∅, ∅, I〉 | s↔ t ∈ E0},

which means, given the initial set of equations E0, we
have (E[N0, i]; R[N0, i]) = (E0; ∅) for all i ∈ I . The state
sequence of MKB is generated as N0 ` N1 ` · · · ` Nc.
If E[Nc, i] is empty and all critical pairs of R[Nc, i] have
been created, MKB returns R[Nc, i] as the result, which is
a convergent TRS obtained by a successful KB sequence in
the process Pi.

III. IMPLEMENTATION

In this section we will discuss the details about the imple-
mentation. We implemented an algebraic reasoning system
called lz-mkb based on MKB in [6] by using lazy evaluation
mechanism of the programming language Scala. Scala is
a programming language which supports functional pro-
gramming and object-oriented programming. The program
was designed in an object-oriented way so that we could
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build and reuse the classes to organize the term structures,
subsitutions, nodes, inference rules, etc. At the same time, we
also followed the discipline of functional programming (e.g.,
“uniform return type” principle [7]) in coding so that it could
be safer and easier to execute the program in a physically
parallel computational environment.

The node, a basic unit of MKB, is implemented as a
class which contains an equation object as a datum and three
bitsets as labels. We chose bitset1to gain efficiency because
there were numerous set operations during the computation.
We also created a class called nodes for the set N of nodes
for which several inference rules of MKB are defined. We
will discuss the implemented operations below in comparison
with the original inference rules of MKB one by one.

The operation N.delete() simply removes from N all nodes
that contain a trivial equation, and returns the remaining
nodes as N ′. This operation is only applied to the nodes
created by rules REWRITE and DEDUCE.

The operation n.orient() orients the equation from left to
right or right to left by changing their labels from E to
R0 or E to R1 according to the reduction order in each
process. Notice that the application of the reduction order to
an equation should be done twice (i.e., one with s : t and
one with t : s) in theory, but in practice we implemented it
so that it was executed only once, noting that at most one
of them should be true. The indices still remaining after this
operation in E correspond to the reduction orders that failed
to orient the equation.

The operation rewrite(N, N’) is not included in the class
of nodes but it takes nodes as arguments. In the original
idea of MKB, REWRITE 1 and REWRITE 2 simulate the
COMPOSE, SIMPLIFY and COLLAPSE (if appropriate
conditions are satisfied) in one single operation. More ex-
actly, REWRITE 1 and REWRITE 2 are repeatedly applied
to N∪N ′, rewriting the data of N by the rules of N ′ until no
more rewriting is possible. It returns the set of nodes created
in this process and the mutation operations are applied to N
so that N is updated as

N := N − {original nodes} ∪ {updated nodes}.

In our implementation, we follow the discipline of func-
tional programming by never mutating the nodes. We just
update them from outside. This means the method needs to
return the intermediate results as fresh sets of nodes. The
result is structured as a tuple 〈D, N, M〉 where:

D: the nodes rewritten by rewrite(N, N ′)(i.e., the orig-
inal ones with the original datum s : t)

N: the nodes “created” by rewrite(N,N ′)(i.e., the new
nodes with the original datum s : t and updated
labels)

M: the nodes “modified” during rewrite(N,N ′)(i.e., the
new nodes with a new datum s : u and updated
labels)

Normally, after the rewrite(N, N’) operation, N should be
updated as N := N + M − D. If N only has one node in
it (i.e., N = {n}), the modified n would be returned by
M.head.

Notice that to the symmetric cases of nodes, we
just use the mirrors which refer to the symmetric

1a data structure defined in Scala’s library

nodes of the original N and N ′ as input. In other
words, in every one-step rewrite, we need to do this
operation four times with different combinations from
{(N, N ′), (N.mir,N ′.mir), (N.mir,N ′), (N, N ′.mir)}
one by one. Surely (N, N ′) is updated after every single
rewrite 1 or rewrite 2. In this way, we obtain a tuple
〈D∞,N∞,M∞〉 of three nodes in which every calculated
node is included and no more rewrite can be applied.
Finally, the tuple 〈D∞, N∞ −D∞, M∞ −D∞〉 is returned
as the result of the operation rewrite(N, N ′).

The operation N.deduce(n) generates all the possible
critical pairs between n and {n} ∪ N . We consider all
combinations of pair of nodes. For example, consider two
nodes n = 〈a : b, R0, R1, . . . 〉 and n′ = 〈c : d,R′

0, R
′
1, . . . 〉.

The operation {n}.deduce(n′) considers the critical pairs
from {a ↔ b, c ↔ d}, which means the modification of
labels should be considered for each of {R0 ∩ R′

0, R1 ∩
R′

0, R0 ∩R′
0, R

′
1 ∩R′

0}.
The operation N.garbagecollect() has no related infer-

ence rules in KB. In MKB, it can effectively reduce the size
of the current node database by removing nodes with three
empty labels, because no processes contain the corresponding
rule or equation.

The operation N.subsume() combines two nodes into
a single one when they contain the variant data (which
are the same as each other up to renaming of variables).
The duplicate indices in the third labels are removed to
preserve the label conditions. We exploited a programming
technique called lazy evaluation to gain efficiency in the
implementation. To discuss the details, we consider with
the pseudocode of implementation presented as Algorithm 1,
based on the presentation in [4]. The operation N.subsume()
is invoked by the operation union(N,N ′) which is designed
for combining nodes N and N ′. We observe that in every
iteration of the while loop, the union(N, N ′) operation is
called at least once (i.e., for every chosen n, subsume()
would be called at line 9 once; And for those that satisfied
the proper conditions of line11 and line 13, two more
operations are required). This means subsume() would be
invoked frequently during the whole procedure. It would
make the program slower to simply check all of the nodes
in N , when N was updated after rewrite operations. To gain
efficiency, we created a lazy hash map [Is, N], where N is a
list of nodes and Is is a lazy value defined in the node class
as the size of the node (i.e., for a node n = 〈s : t, r0, r1, e〉,
n.size = s.size + t.size), so that we need only check the
nodes with the same size as the original nodes. This check
can be done efficiently by using the hash map with the node
size as its key. In other words, for every n ∈ N , n uses its
size In as the key to [Is, N], then the set Nn containing all
the nodes with same size In is looked up for the nodes with
variant data. In our Scala program, the hash map [Is, N ] is
declared to be lazy, because it is calculated only once and
then be stored as a constant object ready to be returned for
repeated calculation requests afterwards.

Notice that the procedure success(No, Nc) checks if this
completion process has succeeded. The process succeeds if
there exists an index i ∈ I such that i is not contained
in any labels of No and any E labels of Nc nodes. Then
E[No∪Nc, i] = ∅, and R[Nc, i] is a convergent set of rewrite
rules contained in �i. We also created lazy values in nodes
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Algorithm 1 lz-mkb(E, O)
1: No := {〈s : t, ∅, ∅, I〉 | s ↔ t ∈ E} where I =
{1, . . . , |O|}

2: Nc := ∅
3: while success(No, Nc) = false do
4: if No = ∅ then
5: return(fail)
6: else
7: n := No.choose()
8: 〈D, N, M〉 := rewrite({n}, Nc)
9: No := union(No − {n}, N.delete())

10: n := M.head
11: if n 6= 〈. . . , ∅, ∅, ∅〉 then
12: n := n.orient()
13: if n 6= 〈. . . , ∅, ∅, . . . 〉 then
14: 〈D,N, M〉 := rewrite(Nc, {n})
15: No := union(No, N.delete())
16: Nc := Nc + M−D

17: Nc := Nc.garbagecollect()
18: No := union(No, deduce(n,Nc).delete())
19: end if
20: Nc := union(Nc, {n})
21: end if
22: end if
23: end while
24: return R[Nc, i] where i = success(No, Nc)

to hold the occurrences of the index i in the labels, so that we
do not need to calculate it in the unchanged Nc every time.
This also makes the computation efficient as N.choose()
operation will always choose the minimal node in terms of
its size.

IV. EXPERIMENT

In this section, we will show how the program performed
with the lazy evaluation when run on a PC with i5 CPU
and 4GB main memory. All the problems solvable using the
lexicographic path orderings for the termination check were
selected as the sample problems from [11]. For example,
the problem 1 is from the group theory. It contains three
equations

E0 =


f(x, f(y, z)) = f(f(x, y), z),
f(x, i(x)) = e,

f(x, e) = x,

where {f, i, e} are function symbols (f is a binary operation,
i represents the inverse and e is the identity element) and
{x, y, z} are variables. Given E0 and total lexicographic path
orderings on {f, i, e}, the program returned a complete TRS

Rc as follows:

Rc =



f(x, i(x))→ e

f(i(y), y)→ e

i(e)→ e

i(f(x, z))→ f(i(z), i(x))
i(i(x))→ x

f(x, e)→ x

f(e, x)→ x

f(i(x), f(x, z))→ z

f(x, f(i(x), z))→ z

f(f(x, y), z)→ f(x, f(y, z))

The computation time for each examined problem is sum-
marized in TABLE I. The results obtained by the program
using the lazy evaluation are labeled lz-mkb, and those
obtained by the original one are labeled mkb. Clearly, lz-mkb
is more efficient than mkb in all the problems examined.

TABLE I
COMPUTATION TIME OF MKB AND LZ-MKB

problem mkb(ms) lz-mkb(ms) reduced time reduced(%)

1 15003 1959 13044 86.94
2 160 130 30 18.75
5 14997 2738 12259 81.74
8 275 205 70 25.45
11 90 60 30 33.33
14 480 351 129 26.88
17 85 65 20 23.53
19 730 471 259 35.48
30 140 95 45 32.14

avg. - - - 40.47

We have summarized the lazy values used during the
experiments in TABLE II. The label in Node n = 〈s :
t, r0, r1, e〉 calculates the union of r0, r1 and e. The labels
in Nodes N collects all labels of the nodes in N . Associated
with N is a hash table which stores the nodes using their
size as the hash key. It is used to gain efficiency during
the optional operation N.subsume(). The size and subterm
in Term are called frequently during the whole rewrite
operation.

TABLE II

Class lazy values
Nodes hash table labels
Term size subterm
Node label size(hash index)

To see the different effects to the efficiency of the program
with lazy Nodes(hash table,labels), lazy Term(size,subterm)
or lazy Node(label,size), we ran them separately with the
same problems as TABLE I. The results are shown in TABLE
III, IV, and V.

We can see the program with “Lazy Nodes Only” (TABLE
III) works well with about 13 % reduced time on the average,
because among all the callings of operation union(N,N’) quite
many of them return the original N , so the duplicate calcula-
tion of the hash table is avoided. Also, the examination with
“Lazy Term Only” (TABLE IV) shows the best result with
26 % reduced time due to the frequency of rewriting callings
during the whole procedure. However, the results with “Lazy
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TABLE III
MKB AND LZ-MKB(LAZY NODES ONLY)

problem mkb(ms) lz-mkb(ms)
lazy Nodes reduced time reduced(%)

1 15003 12303 2700 18.00
2 160 140 20 12.5
5 14997 14468 529 3.53
8 275 230 45 16.36

11 90 75 15 16.67
14 480 400 80 16.67
17 85 80 5 5.88
19 730 570 160 21.92
30 140 130 10 7.14

avg. - - - 13.18

TABLE IV
MKB AND LZ-MKB(LAZY TERM ONLY)

problem mkb(ms) lz-mkb(ms)
lazy Term reduced time reduced(%)

1 15003 2624 12379 82.51
2 160 145 15 9.38
5 14997 3890 11107 74.06
8 275 255 20 7.27

11 90 76 14 15.56
14 480 440 40 8.33
17 85 80 5 5.88
19 730 660 70 9.59
30 140 110 30 21.43

avg. - - - 26.00

Node Only” (TABLE V) are not very well with only 1.2 %
reduced time (they have nearly the same computation time
with the program without lazy values). The label and size
in Node are always called at least once for every node by
Nodes to create its hash table or check the end conditions,
which could be the explanation for the results in TABLE V.

V. CONCLUSION

We have presented lz-mkb: an efficient implementation
of the multi-completion system MKB by using the lazy
evaluation mechanism of the Scala programming language.
The experiments show that lz-mkb is more efficient than
MKB in all the problems examined. We have discussed the
details by separately running the programs with different
settings for the laziness. To design and implement lz-mkb in
a physically parallel computational environment is a possible
work in future. Implementation of extended versions of MKB
and other algebraic reasoning systems proposed in [9] [10]
[13] is also an interesting future work.
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