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Abstract—In simulation system, failures of simulation nodes 

and deficiencies in resources availability affect the effectiveness 
of simulation system. To improve the reliability of distributed 
simulation system, an optimized self-adaptive fault tolerance 
approach is proposed to improve the effect of fault tolerance 
and reduce the overhead. We construct the self-adaptive fault 
tolerance architecture based on virtualization technology. We 
divide the failures according to their locations and realize fault 
tolerance by self-adaptive selection strategy. Then three main 
problems of replication fault tolerance strategy are analyzed, 
including node selection, number of copies and location 
distribution. Solutions are proposed combining virtualization 
technology. Besides, virtual machine migration is adopted and 
optimized with weighted descending multi-attribute matching 
method to improve the performance and reduce the overhead of 
simulation system. Finally, we evaluate the performance of the 
proposed fault tolerance approach using experiment data. The 
effectiveness of fault tolerance is guaranteed and the overhead 
is controlled at a low level. 
 

Index Terms—fault tolerance, replication strategy, virtual 
machine migration, virtualization technology, weighted 
descending multi-attribute matching method 
 

I. INTRODUCTION 

A. Background and Related Works 

N distributed simulation system, along with the expansion 
of simulation scale and system running, the system 

reliability and service availability decrease while the failure 
probability increases. Once the key simulation nodes fail, the 
whole simulation system would be affected and even crash. If 
the system does not have the function of fault tolerance, then 
the only way is to restart the whole system, which will result 
in disastrous consequence and make cause simulation 
process failure. Thus, to improve the fault tolerance ability in 
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simulation system, the problems caused by node failures and 
resource deficiency are the key problems supposed to be 
prevented and treated.  

Virtualization [1] is an emerging paradigm that separates 
operating system and corresponding technology 
implementations from physical hardware. The development 
of virtualization technology makes the usage of virtual 
machine (VM) much convenient. The whole state of the 
virtual machine can be saved in a small file located in a 
certain server. The running virtual machine can be easily 
migrated from one host to another without shutting it down. 
Once the data transmission of simulation nodes in one host is 
blocked because of frequent and mass data interaction, 
specific VMs may be selected to migrate to another host to 
balance the utilization of network resources. This is 
important for the simulation system to prevent failures 
caused by node collapse. Therefore, virtualization 
technology provided a new reference for the fault tolerance 
of simulation system.  

In the area of fault tolerance, there are different strategies 
for different systems. To improve the fault tolerance 
performance, researchers have been carrying out lots of 
investigations. In [2], a low-overhead and high-performance 
fault tolerance architecture for application-specific 
network-on-chip. Link-interface is developed to reduce the 
hardware overhead. This architecture also improves the 
average response time of system by 27% comparing to 
traditional mesh. Pranesh Das [3] adopted virtualization 
technology and load balance technology to redeploy the 
failed nodes, normal nodes and the submitted task. The 
success rate of task processing is improved by this method. 
LIU Yun-sheng et al. [4] constructed distributed simulation 
fault tolerance system based on HLA (High Level 
Architecture). The system was composed of three modules: 
the simulation resources monitoring module, data storage 
module and data recovery module. They made research on 
using grid technology to simplify fault tolerance 
preliminarily, but still there is space in simplifying and 
optimization of the system availability. To solve the 
unreliability of spot instance in cloud environment [5], 
Daeyong Jung et al. [6] proposed fault tolerance strategy 
based on virtual machine migration. The algorithm set 
checkpoint based on SLA (Service Level Agreement). When 
the service failed, the service virtual machine would be 
migrated to a new server. The algorithm takes effect in a 
certain degree, but it is specially designed and cannot be used 
universally. To satisfy high reliability and efficiency of 
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parallel computing system, Xu et al. [7] proposed a 
multi-layer and multi-angle parallel fault tolerance computer 
system. In the paper, method of processing the in-transit 
message and isolated message was researched and validated 
in DSP development board. However, this method has not 
been validated in scale-distributed system. To deal with faults 
and run-time anomalies in the infrastructure in cloud 
environments, Ganesan Radhakrishnan [8] outlined an 
approach to decide the mapping relation between task and 
server nodes based on data throughput and task waiting time. 
This method improved application fault-tolerance and 
resource utilization. To achieve high level of cloud 
serviceability and to meet high level of cloud SLO (Service 
Level Objectives), Dawei Sun et al. [9] proposed a dynamic 
adaptive fault tolerance strategy DAFT. It analyzes the 
mathematical relationship between failure rate and fault 
tolerance strategy: checkpoint and replication fault tolerance 
strategy. However, the analysis and derivation are still not 
consummate and need to be improved. Bo Yang et al. [10] 
considered recovery on both processing nodes and 
communication links to improve cloud service reliability. 
The subtask waiting time, processing time and completion 
time were modeled in theoretical. In [11], a decision 
framework for prioritizing business applications for SaaS 
migration was proposed. In the algorithm, the total system 
life cycle cost was analyzed for cost estimation. It provides 
reference for the fault tolerance in virtualization 
environment.  

B. Contributions 

To realize high performance and low overhead of fault 
tolerance in simulation system, we propose an optimized 
self-adaptive fault tolerance strategy based on virtualization 
technology. Using the experience of fault tolerance strategies 
in above researches for reference, we take advantage of 
virtualization technology to optimize replication fault 
tolerance strategy and virtual machine migration based fault 
tolerance strategy. According to the failure location, the fault 
tolerance strategy is adopted by self-adaptive selecting. Our 
contributions are summarized in the following: 

(1) Introduce virtualization technology to the fault 
tolerance system to improve the effectiveness and reduce the 
overhead of fault tolerance. 

(2) Construct the fault tolerance architecture of 
simulation system using virtualization technology. 
According to the failure locations, we divide the failures as 
two layers: virtual resource layer and physical resource layer. 
In different layers, different fault tolerance strategies are 
adopted by self-adaptive. 

(3) Systematically analyze the problems of replication 
fault tolerance strategy. By reasonable formulation of the 
mathematical modeling, the simulation node selection, 
number of copies and location distribution are resolved and 
optimized. 

(4) Propose the weighted descending multi-attribute 
matching method to realize the virtual machine migration. 
With the method, the overhead and the effectiveness of the 
virtual machine migration strategy are improved. 

Overall, the logical analysis and experiment results show 
that the optimized self-adaptive fault tolerance strategy is 

effective for simulation system fault tolerance. The strategy 
is also qualified for reducing the overhead. 

II. FAULT TOLERANCE SYSTEM OVERVIEW 

To analyze the failures in simulation system, we divide the 
failures into two types [12]: application layer failure and 
resource layer failure. Application layer failures mean the 
failures occur in the upper layer such as simulation middle 
ware, simulation applications and simulation processes; 
resource layer failures mean the failures occur in simulation 
resources that simulation application rely on, especially 
physical resources or virtual physical resources. Resource 
layer failures include machine crashes and network block 
failures, etc. This paper puts emphasis on resource layer 
failure tolerance based on virtualization technology. When 
failure occurs in resource layer, replication strategy or virtual 
machine migration strategy can be adopted. Especially when 
failures occur in virtual machine, the virtual machine 
migration will not work, as it cannot clear the virtual machine 
level failures. Thus, the replication fault tolerance needs to be 
adopted to guarantee the system reliability and service 
availability.  

A. System Architecture 

As depicted in Fig. 1, the fault tolerance system is 
constructed as four-layer architecture. From bottom layer to 
top layer, there are physical resource layer, virtualization 
layer, fault tolerance layer and user layer. In physical 
resource layer, multiple data centers are created in different 
geographic locations containing physic resources including 
CPU, GPU, RAM and storage, etc. One data center is also 
called one resource pool [13]. The resource pools are 
connected by network and provide hardware infrastructure 
for creating virtual machines. Virtualization layer contains 
virtualization software and virtual resources such as virtual 
CPU (vCPU), virtual GPU (vGPU) and virtual memory etc. 
The virtual resources compose virtual machines by 
customizing. The virtualization software is Hypervisor, 
which is also known as virtual machine monitor (VMM) [14]. 
Through virtualization software, the physical resources are 
virtualized as virtual resources. Then the virtual resources are 
configured as different kinds of virtual machines. Virtual 
machines can provide simulation services for users like 
physical machines. The management of virtual machines is 
transparent to upper level users and thus users need not 
concern about the management of VMs because it can be 
achieved by data center managers. The scalability and 
flexibility of virtual machines architecture provide excellent 
support for users’ simulation fault tolerance services. In fault 
tolerance layer, by optimizing replication strategy and virtual 
machine migration strategy, the overhead is decreased. Here 
the fault tolerance strategy mainly focuses on fault recovery 
and decrease of the fault tolerance overhead. The fault 
monitoring and predicting is not our scope. Corresponding 
failure monitoring strategy is introduced [15]. Through 
self-adaptive choosing fault tolerance strategy, the reliability 
of simulation system is improved. In user layer, users can 
connect to simulation center and process corresponding 
simulation task. The simulation service reliability is 
guaranteed by fault tolerance layer. 
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Fig. 1 The architecture of fault tolerance system 

The operating principle of the proposed dynamic fault 
tolerance system is depicted in Fig. 2. As simulation 
resources include physical resources and virtual resources, 
thus, when failures happen, we first distinguish the specific 
position that failures locate. If the failure happens in physical 
resource layer, then we can adopt the replication strategy to 
start the simulation in another server to avoid the CPU, 
network failures etc. Meanwhile, we can adopt the optimized 
VM migration strategy to reduce the overhead, as the 
replication strategy needs more physical resources than VM 
migration does. If the failure happens in virtual resource layer, 
then the VM migration strategy will not be effective because 
migration cannot solve the virtual machine level failure. 
Therefore, we can adopt replication strategy, copy the 
simulation node to other servers and start the simulation node 
when original simulation node fails. 

 
Fig. 2 The sketch map of relationship and principle of dynamic fault 

tolerance system 

B. Assumptions and Problem Descriptions 

To make the research more convincing and precise, we 
make description to the problems as follows:  

(1) Failure model: with the time advancing, the system 
failure probability follows an exponential distribution [16]: 
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n t
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 

 
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The failure probability density function is: 
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In time interval (a, b), the failure expectation value means 
the weighted average value of the potential failures in the 
interval, which can be expressed as:  

 ( ) ( )
b

a
E t f d                                (3) 

(2) Failures occur randomly. Failures will be detected once 

they happen with system running.  
(3) All failures follow the same distribution and the 

recovery time is the same when the same fault tolerance 
strategy is adopted.  

(4) If one node fails or the network of the node fails, the 
simulation error will not influence the interaction 
communication of other nodes, and the node can re-join the 
simulation net after recovery. 

(5) We assume the virtual environment is Xen, in which 
the VM migration time, replication time and recovery time 
are known. 

III. REPLICATION FAULT TOLERANCE STRATEGY 

In traditional checkpoint strategy [17], it mainly focuses 
on simulation application failures. Although it can roll back 
to the checkpoint when simulation application fails, when the 
physical resource problems arise, checkpoint will not take 
effect any more. In IaaS (Infrastructure as a Service) cloud 
simulation system, using virtual machines created by 
virtualization technology, we can provide replication for 
simulation system to avoid system crash caused by single 
node error. This can improve the fault tolerance effect.  

The relation of simulation nodes and backup nodes in 
replication fault tolerance is shown in Fig. 3. In the 
architecture, the simulation nodes and backup nodes are 
physical isolated, which can keep the backup nodes from 
suffering disaster caused by simulation nodes fault. 
Therefore, the backup of simulation system data will not be 
influenced and replication fault tolerance strategy can be 
implemented effectively. When the system is running, we set 
a heartbeat time, in which the simulation node sends the 
updating information to the backup node and the backup 
node will send feedback information to the simulation node, 
as shown in step ①. If the backup node does not receive the 
updating information from the simulation node in the 
stipulated time, then we regard the simulation node as failure. 
The backup node is set as new simulation node to replace the 
original failure simulation node. The new simulation node 
communicates with other nodes to advance the simulation 
proceeding, as shown in step ②. Meanwhile, system tries to 
create new backup node in the place of the original 
simulation node. If the failure cannot recover, the original 
simulation node will be marked as “dead machine”. The 
“dead machine” will not interact with other nodes. This may 
result the number of copy decreasing under a certain 
threshold. To guarantee the fault tolerance performance, 
system will create backup node close to the “dead machine” 
and start a new round replication procedure. The new copy 
node starts heartbeat interaction with simulation node, as 
depicted in step ③.  
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Fig. 3 The relation of simulation nodes and backup nodes in replication 

strategy 

In replication strategy, the optimization mainly considers 
the following questions. (1) If the original node selection and 
the copy time selection are improper, the fault tolerance 
capability cannot be strengthened. Thus, the data type and 
replication moment selection is important for reducing the 
fault recovery time and improve the fault tolerance effect. (2) 
With the growth of the number of the copies, the maintenance 
of the system will increase. Too many copies will also cause 
unnecessary overhead. (3) The improper location of copies 
will cause bandwidth over-occupation, time delay and 
performance decrease. Thus, the aim of location selection is 
to process the tasks successfully and minimize the time delay 
as well. 

A. Node and Moment Selection of Replication 

In order to improve the efficiency and reduce the overhead, 
referring to Pareto principle [18] and temporal locality 
principle [19], we select the dynamic simulation node 
according to user data interaction frequency and data quantity. 
When the dynamic degree kd  of node kN  is up to a certain 

threshold, the replication operation is triggered. To calculate 

kd , we first introduce forgetting parameter  .   has an 

exponential function relation with the time interval from start 
time st  to current time pt  and data interaction frequency. 

Smaller the forgetting parameter   is, the dynamic degree is 

higher and vice versa. The forgetting parameter   can be 

calculated using the follow formula: 

( , ) , {1,2,...}p s

k

t t
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                     (4) 

Set p st t t   ，then formula (4) can be simplified as 

follows: 
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From formula (5) we can see the range of  is:  0,1  . 

k  represents the number of data interaction times of node 

kN  in time interval t . If 0
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The dynamic degree kd  of node kN  in the interval form 

start time st  to current time pt  can be calculated as： 

 1( , ) 1 ( , )
p

i s

t

k k i i i p
t t

d I t t t t


                      (6) 

Where 1( , )k i iI t t   means the data interaction number of 

times in time interval 1[ , )i it t  . From formula (6), we can see 

that the more interaction times one node has, smaller the 
forgetting parameter is, and higher the dynamic degree is. 

We define k  as the multiplication of node dynamic 

degree and weight kw .  

k k kd w                                     (7) 

If k  is greater than the set threshold, we regard node kN  

as a key node. Then the replication operation of node kN  

will be triggered. If k  is smaller than the set threshold, then 

the dynamic degree is not high enough and node kN  is not a 

key node. The replication operation of node kN  will not be 

triggered.  

B. Number of Copies 

To satisfy the fault tolerance demands, new copies will be 
created and old copies will be deleted. When fault tolerance 
has a rational increase, the newly increased copy number 

( )kn inc  is: 

( ) ( ) ( )k k kn inc n new n old                        (8) 

Where ( )kn new  is the new number of copies, ( )kn old  is 

the old number of copies. ( )kn inc  can be positive or negative, 

means the number of copies is increased or decreased. For 
node kN , the availability of new copy new  has relation with 

availability of current copy   as follows: 
( )1 (1 ) kn new

new                              (9) 

Meanwhile, the availability new  of new copy in formula 

(9) can be calculated using the following formula: 

 1new old old                           (10) 

Where old  means the old availability of node kN ,   is 

the adjusting parameter of copy number. From formula 
(10)，it can be known that the availability of new copy is 
determined by old availability and the adjusting parameter 
 . Here   can be calculated as follows: 

( ) ( )

( )

k new k old

k new

 





                         (11) 

Where ( )k old  and ( )k new  are the old and new replication 

parameter. We get formula (12) using simultaneous 
equations (9), (10) and (11): 

( )1 (1 ) (1 )kn new
old old                      (12) 

Changing the formation, we get: 

 
 

ln 1 (1 )
( )

ln 1
old old

kn new
  


   
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            (13) 

As: 
( )1 (1 ) kn old

old                            (14) 

We get formula (15) using simultaneous equations (13) 
and (14): 
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So, 
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By the above analysis, we can get the number of copies 
through formula (16). 

In Fig. 4 we show the changing curve of number of 
replications. The positive number represents that the number 
of replications needs to be increased, while the negative 
number represents that the number should be decreased. 
From the figure, we can see that if 0  , the current 
replication parameter is bigger than the old replication 
parameter, then the number of replications should be added; 
vice versa. Meanwhile, if the availability of the node is higher, 
then the influence is smaller to the current replication number, 
and the number only needs to be readjusted in a small range. 
If the node availability is low, the replication number has to 
be readjusted in a large range to satisfy the fault tolerance 
requirement. 
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Fig. 4 The number of replications to be increased or decreased 

C. Location Distribution 

To reduce data transmission quantity and time delay and 
satisfy fault tolerance requirements, the location of the copies 
has to be selected properly. From the angle of decreasing 
system overhead, first the original node should be selected as 
replication node. However, the original simulation node may 
fail to restart and recover from failure status. To reduce fault 
tolerance overhead, we calculate the distance between 
original simulation node and other nodes. We sort the nodes 
following an ascending sequence. First, we consider the 
nearest node from original simulation node and compare the 
resource quantity of original node and the target node. If the 
target node can provide enough simulation resources, then 
we create the copy on the node. Otherwise, according to 
distance sequence, we compare the resources of original 
simulation node and target node in ascending order until the 
condition is satisfied. The procedure can be concluded as 
follows: 

(1) Calculate the distance between original simulation 

node and the target nodes; 
(2) Compare the distances and sort in an ascending 

sequence; 
(3) Calculate the available resource quantity of each 

target node; 
(4) Compare the resource quantity between original 

simulation node and the nearest target node to decide whether 
the target node can effectively process the simulation task; 

(5) If the resource quantity of target node is more than the 
original simulation node, then the target node is selected as 
replication node; 

(6) Otherwise, search target node according to the 
resource quantity and the ascending distance sequence until 
condition 4) is satisfied. Then the target node is selected as 
replication node.  

IV. OPTIMIZATION OF FAULT TOLERANCE BASED ON 

VIRTUAL MACHINE MIGRATION STRATEGY 

Virtual machine migration strategy mainly deals with the 
following problems. (1) The server has to shut down because 
of power or maintenance, which will cause the virtual 
machine unable to process simulation task during the period. 
(2) Simulation virtual machine resource shortage caused by 
server resource overutilization can be resolved by virtual 
machine migration. Migration to a new server is able to 
provide enough resource for the simulation virtual machine 
and improve the simulation environment [20]. In this paper, 
we adopt weighted descending multi-attribute matching 
method to realize the virtual machine migration. 

By real-time monitoring of the remaining resource of the 
current server, we construct the remaining resource vector 

 , , ,CPU Mem Net GPUs s s ss . Here CPUs  means the remaining 

CPU resource, Mems  means the remaining memory resource, 

Nets  means the remaining network bandwidth resource, GPUs  

means the remaining GPU resource. Once we find the server 
is short of certain kind of resource, we will start the virtual 
machine migration procedure.  

According to the maximum utilization of CPU, memory, 
network and GPU resource of each simulation virtual 
machine in history, we construct the resource utilization 
matrix U . 

 
1 1 1 1

2 2 2 2

1 2
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In accordance with the simulation task requirements for 
resources, different resource types are assigned with different 
weights, including CPU weight CPUw , memory weight Memw , 

network bandwidth weight netw  and GPU weight GPUw . For 

example, distributed data transmission task is mainly reliable 
on network performance, so we weight network bandwidth 
over other resources. While for 3D model simulation task, it 
is more reliable on GPU performance as well as memory 
performance, so we weight GPU and memory over other 
resources. Using the weighted simulation resource 
requirement, it is more applicable for different simulation 
nodes and different simulation tasks. The requirements of 
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simulation tasks are prone to be satisfied as the 
corresponding weights assigned to the simulation tasks. 
Different weights compose the weight matrix W .  
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i , s.t. 1ij
j

w  . 

In each row of matrix W , different weight represents the 
degree that the simulation node demands for the resource. We 
get the weighted requirements matrix by multiplying weight 
and the corresponding resource requirements as follows:  
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According to the weights, we define the resource types as 
primary, secondary and so on. For example, in a 3D model 
simulation node, the GPU resource will be defined as primary 
resource and the memory resource will be defined as 
secondary resource. Compare the elements of S  and iU . 

,i j , if j ijs u  , then there are virtual machines have to 

be migrated from the current server. In each column of the 

weighted requirements matrix Û , compare the elements of 
the same column. Then arrange the elements in a descending 
order. We select the virtual machine that has the largest 
weighted requirement resource as the VM needs to be 
migrated. 

Now we consider the selection of migration target server. 
We get the remaining resource quantity of the target servers 
by real time monitoring and construct target server remaining 
resource matrix R . 

1 1 1 1

2 2 2 2

n n n n

CPU Mem Net GPU

CPU Mem Net GPU

CPU Mem Net GPU

r r r r

r r r r
R

r r r r

 
 
   
 
 
 

   
 

Here CPUr  means the remaining CPU resource, Memr  

means the remaining memory resource, Netr  means the 

remaining network bandwidth resource, GPUr  means the 

remaining GPU resource. To realize high availability and 
reliability of target server, we need to prevent the overload of 
target server. First, we compare the remaining resource kjr  of 

target server and the maximum requirements iju  of the 

virtual machine to be migrated. For all the elements of matrix 

kR  and matrix ˆ
iU , ,i j , if ˆkj ijr u , then we regard the 

server can be selected as target server. If there are two or 
more servers that satisfy the inequality constraints, we need 
to match the simulation resources according to their weights. 
We sort the corresponding row of matrix R  in a descending 
sequence according to the weighted resource type of the 
selected VM. Then we choose the first row of the sorted 
matrix R . The first server will be the target server. If there 
are two or more servers having the same primary weighted 
remaining resource, then the secondary weighted remaining 
resource will be measured, until the target server is selected. 
If the original server is still short of resource after the virtual 
machine is migrated, then the virtual machine will be 
migrated according to the descending order until the server 
resource provision reaches a reasonable level. The pseudo 
code of optimized VM migration procedure is presented in 
Algorithm 1. 
Algorithm 1 Optimized virtual machine migration 

input: remaining resource vector of original server S 
           resource utilization matrix of VMs U 
           resource remaining matrix of target servers R 
output: {VMk, server l}: Selected VM to be migrated, the target server 

for i=1 to N     // N is the number of the VMs hosted in the original server 
for j=1 to M    // M is the number of resource types of VM 

weight the jth resource of VMi as wij according to the simulation tasks 
requirements; 

get weighted resource utilization ˆiju  by multiplying resource 

utilization uij by wij ; 
end for 

sort ˆiu  in a descending sequence; 

end for 

select the VM that has the maximum ˆku , marked as VMk; // select the VM to 

be migrated 
for i=1 to Q  // Q is the number of the target servers 

sort the servers according to the primary resource type; 

compare ˆlu  with the remaining resources ijr  of server i ; 

mark the row number i ; 
end for 

if ˆij kr u , then 

if there is only one server l satisfy the constraint, then 
server l is the target server; 

else 
do 

compare the secondary resource type; 
if the optimal target server l is selected, then 

break; 
end if 

while (1) 
end if 

end if 
return {VMk, server l}.  // return the VM that needs to be migrated and the 
target server number 

Above is the optimization of virtual machine migration 
method. Now we consider the overhead of the virtual 
machine migration. As the storage of physical resource pool 
is storage area network (SAN) [21], thus the storage is not 
migrated. Here we mainly consider the memory migration to 
be brief and to the point. Suppose the memory is M  (Byte), 
the network bandwidth among servers is B  (bps). In 
research [22,23], dynamic migration technology is 
introduced which can realize virtual machine migration 
without shutting down. Here we do not give details due to 
limited space and we mainly consider the migration time 
under such a technology.  
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In memory iterative copy operating procedure, set the 
memory-modifying rate is i  in the thi  round, which is 

called dirty page rate. Then the transmission time of the thi  
round is: 
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Set the total number of migration times is N. It means after 
N times of migration, the amount of dirty page is less than a 
certain threshold or the number of migration times is greater 
than a certain threshold. The total migration time is: 
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From above analysis, we can see that the actual 
transmission data is larger than the virtual machine memory. 
The totality of the transmission data is: 
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V. EXPERIMENTAL EVALUATION 

We evaluated the optimized fault tolerance algorithm on 
the simulated cloud platform CloudSim [24]. There are 20 
virtual machines were created and the configuration 
parameters are shown in TABLE I. The simulation task 
number varies from 50 to 3200. The parameters of task are 
shown in TABLE II. 

TABLE I VIRTUAL MACHINE CONFIGURATION PARAMETERS 
PEs MIPS RAM BW STORAGE 

1 1000 512 1000 10000 

TABLE II THE TASK PARAMETERS 

Length File size Number 
1000 300 50-3200 

A. Performance of Fault Tolerance Degree  

Fault tolerance degree ftd  is defined as the ratio of 

successful processing number of the tasks to the total number 
of the submitted tasks.  

s
ft

t

N
d

N
                                   (20) 

sN  is the number of the successfully executed tasks, tN is 

the number of the submitted tasks. In Fig. 5, the comparison 
of fault tolerance degree is shown when different strategies 
are adopted. The X-axis represents the number of simulation 
tasks, which vary from 50 to 3200. The Y-axis represents the 
fault tolerance degree as mentioned in the above equation. 
The fault tolerance degree is greater than 80% when the 
optimized self-adaptive fault tolerance strategy is adopted. 
The replication strategy mainly depends on resource 

redundancy and realizes system reliability by sacrificing the 
physical resources. The system reliability of this strategy is 
also high and the fault tolerance degree is greater than 70%. 
When virtual machine migration strategy is adopted, the fault 
tolerance degree is lower than when other strategies are 
adopted. When virtual machine migrates, some time is 
needed and during this time interval, the submitted tasks will 
not be processed. Therefore, the fault tolerance degree is 
lower when the VM migration strategy is adopted.  
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Fig. 5 The comparison of fault tolerance degree 

B. Evaluation of Physical Resource Overhead 

Fig. 6 shows the physical resource overhead comparison 
when different fault tolerance strategies are adopted. The 
X-axis represents the number of simulation tasks, which vary 
from 50 to 400. The Y-axis represents the fault tolerance 
resource overhead. We can see that the resource overhead of 
replication strategy is the heaviest. This is because the 
replication strategy creates new copies in different locations. 
Meanwhile, the transmissions of simulation data among these 
copies also need to consume network bandwidth. The VM 
migration strategy only consumes network bandwidth while 
dirty page refreshing, thus the resource overhead is lighter 
comparing with replication strategy. When the optimized 
self-adaptive fault tolerance strategy is adopted, the resource 
overhead is lighter than VM migration strategy. This is 
because our proposed method optimizes the two typical fault 
tolerance strategies and the self-adaptive choosing of the 
optimized strategies. The proposed self-adaptive fault 
tolerance strategy realizes minimum overhead on the premise 
of effective fault tolerance. 
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Fig. 6 Comparison of fault tolerance resource overhead 

C. Evaluation of Time Overhead 

The time consuming condition is shown in Fig. 7. The 
X-axis represents the number of simulation tasks, which vary 
from 50 to 400. The Y-axis represents the fault tolerance time 
overhead. In the procedure of virtual machine migration, the 
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memory state has to be copied continuously. So the migration 
and recovery of virtual machine both need some time. Thus, 
the time overhead is heavy. While we adopt replication 
strategy, multi copies are running as the original simulation 
node does. When original node collapses, the copies can 
replace the original node and execute the simulation tasks as 
soon as possible. Therefore, the time overhead is lighter than 
the virtual machine migration. This properly explains the 
utilization of physical redundancy to get time efficiency in 
turn. The proposed optimized self-adaptive fault tolerance 
strategy reduces the time overhead of fault tolerance. It 
chooses the most effective method to realize fault tolerance, 
thus the overhead is smaller than replication strategy and VM 
migration strategy. 
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Fig. 7 Comparison of the fault tolerance time overhead 

VI. CONCLUDING REMARKS AND DISCUSSIONS 

Based on typical fault tolerance, we propose an optimized 
fault tolerance strategy using virtualization technology. We 
research the optimization of the number copies and the 
location of replication strategy and propose an optimization 
method based on virtualization technology. Meanwhile, we 
introduce virtual machine migration based fault tolerance 
strategy to guarantee the system stability. We propose the 
weighted descending multi-attribute matching method to 
realize simulation resource sensitive matching of simulation 
virtual machine to be migrated and target server. By above 
mentioned methods, effective and light overhead fault 
tolerance is realized. Our research does an overall 
consideration of the practical conditions. However, the 
research still mainly provides a theoretical analysis. The 
future goal is to test the method in a cloud system for 
practical use. 
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