


Abstract—In simulation system, failures of simulation nodes

and deficiencies in resources availability affect the effectiveness
of simulation system. To improve the reliability of distributed
simulation system, an optimized self-adaptive fault tolerance
approach is proposed to improve the effect of fault tolerance
and reduce the overhead. We construct the self-adaptive fault
tolerance architecture based on virtualization technology. We
divide the failures according to their locations and realize fault
tolerance by self-adaptive selection strategy. Then three main
problems of replication fault tolerance strategy are analyzed,
including node selection, number of copies and location
distribution. Solutions are proposed combining virtualization
technology. Besides, virtual machine migration is adopted and
optimized with weighted descending multi-attribute matching
method to improve the performance and reduce the overhead of
simulation system. Finally, we evaluate the performance of the
proposed fault tolerance approach using experiment data. The
effectiveness of fault tolerance is guaranteed and the overhead
is controlled at a low level.

Index Terms—fault tolerance, replication strategy, virtual
machine migration, virtualization technology, weighted
descending multi-attribute matching method

I. INTRODUCTION

A. Background and Related Works

N distributed simulation system, along with the expansion
of simulation scale and system running, the system

reliability and service availability decrease while the failure
probability increases. Once the key simulation nodes fail, the
whole simulation system would be affected and even crash. If
the system does not have the function of fault tolerance, then
the only way is to restart the whole system, which will result
in disastrous consequence and make cause simulation
process failure. Thus, to improve the fault tolerance ability in

Manuscript received March 17, 2015; revised May 06, 2015. This work

was supported in part by the Equipment Pre-research Fund of China (Grant
No. 9140A04030214JB34058).

Zhijia Chen (IAENG Member) is with the Department of Electronic and
optics, Mechanical Engineering College, Shijiazhuang, 050003, China
(corresponding author: +86-031187994267; email: youshenshui@163.com).

Yuanchang Zhu is with the Mechanical Engineering College,
Shijiazhuang, 050003, China (yuanchang_zhu_oec@163.com).

Yanqiang Di is with the Department of Electronic and optics, Mechanical
Engineering College, Shijiazhuang, 050003, China
(yanqiang_di@163.com).

Shaochong Feng is with the Department of Electronic and optics,
Mechanical Engineering College, Shijiazhuang, 050003, China
(fscsat@126.com).

simulation system, the problems caused by node failures and
resource deficiency are the key problems supposed to be
prevented and treated.

Virtualization [1] is an emerging paradigm that separates
operating system and corresponding technology
implementations from physical hardware. The development
of virtualization technology makes the usage of virtual
machine (VM) much convenient. The whole state of the
virtual machine can be saved in a small file located in a
certain server. The running virtual machine can be easily
migrated from one host to another without shutting it down.
Once the data transmission of simulation nodes in one host is
blocked because of frequent and mass data interaction,
specific VMs may be selected to migrate to another host to
balance the utilization of network resources. This is
important for the simulation system to prevent failures
caused by node collapse. Therefore, virtualization
technology provided a new reference for the fault tolerance
of simulation system.

In the area of fault tolerance, there are different strategies
for different systems. To improve the fault tolerance
performance, researchers have been carrying out lots of
investigations. In [2], a low-overhead and high-performance
fault tolerance architecture for application-specific
network-on-chip. Link-interface is developed to reduce the
hardware overhead. This architecture also improves the
average response time of system by 27% comparing to
traditional mesh. Pranesh Das [3] adopted virtualization
technology and load balance technology to redeploy the
failed nodes, normal nodes and the submitted task. The
success rate of task processing is improved by this method.
LIU Yun-sheng et al. [4] constructed distributed simulation
fault tolerance system based on HLA (High Level
Architecture). The system was composed of three modules:
the simulation resources monitoring module, data storage
module and data recovery module. They made research on
using grid technology to simplify fault tolerance
preliminarily, but still there is space in simplifying and
optimization of the system availability. To solve the
unreliability of spot instance in cloud environment [5],
Daeyong Jung et al. [6] proposed fault tolerance strategy
based on virtual machine migration. The algorithm set
checkpoint based on SLA (Service Level Agreement). When
the service failed, the service virtual machine would be
migrated to a new server. The algorithm takes effect in a
certain degree, but it is specially designed and cannot be used
universally. To satisfy high reliability and efficiency of

Optimized Self-adaptive Fault Tolerance
Strategy in Simulation System based on

Virtualization Technology

Zhijia Chen, Yuanchang Zhu, Yanqiang Di and Shaochong Feng

I

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

parallel computing system, Xu et al. [7] proposed a
multi-layer and multi-angle parallel fault tolerance computer
system. In the paper, method of processing the in-transit
message and isolated message was researched and validated
in DSP development board. However, this method has not
been validated in scale-distributed system. To deal with faults
and run-time anomalies in the infrastructure in cloud
environments, Ganesan Radhakrishnan [8] outlined an
approach to decide the mapping relation between task and
server nodes based on data throughput and task waiting time.
This method improved application fault-tolerance and
resource utilization. To achieve high level of cloud
serviceability and to meet high level of cloud SLO (Service
Level Objectives), Dawei Sun et al. [9] proposed a dynamic
adaptive fault tolerance strategy DAFT. It analyzes the
mathematical relationship between failure rate and fault
tolerance strategy: checkpoint and replication fault tolerance
strategy. However, the analysis and derivation are still not
consummate and need to be improved. Bo Yang et al. [10]
considered recovery on both processing nodes and
communication links to improve cloud service reliability.
The subtask waiting time, processing time and completion
time were modeled in theoretical. In [11], a decision
framework for prioritizing business applications for SaaS
migration was proposed. In the algorithm, the total system
life cycle cost was analyzed for cost estimation. It provides
reference for the fault tolerance in virtualization
environment.

B. Contributions

To realize high performance and low overhead of fault
tolerance in simulation system, we propose an optimized
self-adaptive fault tolerance strategy based on virtualization
technology. Using the experience of fault tolerance strategies
in above researches for reference, we take advantage of
virtualization technology to optimize replication fault
tolerance strategy and virtual machine migration based fault
tolerance strategy. According to the failure location, the fault
tolerance strategy is adopted by self-adaptive selecting. Our
contributions are summarized in the following:

(1) Introduce virtualization technology to the fault
tolerance system to improve the effectiveness and reduce the
overhead of fault tolerance.

(2) Construct the fault tolerance architecture of
simulation system using virtualization technology.
According to the failure locations, we divide the failures as
two layers: virtual resource layer and physical resource layer.
In different layers, different fault tolerance strategies are
adopted by self-adaptive.

(3) Systematically analyze the problems of replication
fault tolerance strategy. By reasonable formulation of the
mathematical modeling, the simulation node selection,
number of copies and location distribution are resolved and
optimized.

(4) Propose the weighted descending multi-attribute
matching method to realize the virtual machine migration.
With the method, the overhead and the effectiveness of the
virtual machine migration strategy are improved.

Overall, the logical analysis and experiment results show
that the optimized self-adaptive fault tolerance strategy is

effective for simulation system fault tolerance. The strategy
is also qualified for reducing the overhead.

II. FAULT TOLERANCE SYSTEM OVERVIEW

To analyze the failures in simulation system, we divide the
failures into two types [12]: application layer failure and
resource layer failure. Application layer failures mean the
failures occur in the upper layer such as simulation middle
ware, simulation applications and simulation processes;
resource layer failures mean the failures occur in simulation
resources that simulation application rely on, especially
physical resources or virtual physical resources. Resource
layer failures include machine crashes and network block
failures, etc. This paper puts emphasis on resource layer
failure tolerance based on virtualization technology. When
failure occurs in resource layer, replication strategy or virtual
machine migration strategy can be adopted. Especially when
failures occur in virtual machine, the virtual machine
migration will not work, as it cannot clear the virtual machine
level failures. Thus, the replication fault tolerance needs to be
adopted to guarantee the system reliability and service
availability.

A. System Architecture

As depicted in Fig. 1, the fault tolerance system is
constructed as four-layer architecture. From bottom layer to
top layer, there are physical resource layer, virtualization
layer, fault tolerance layer and user layer. In physical
resource layer, multiple data centers are created in different
geographic locations containing physic resources including
CPU, GPU, RAM and storage, etc. One data center is also
called one resource pool [13]. The resource pools are
connected by network and provide hardware infrastructure
for creating virtual machines. Virtualization layer contains
virtualization software and virtual resources such as virtual
CPU (vCPU), virtual GPU (vGPU) and virtual memory etc.
The virtual resources compose virtual machines by
customizing. The virtualization software is Hypervisor,
which is also known as virtual machine monitor (VMM) [14].
Through virtualization software, the physical resources are
virtualized as virtual resources. Then the virtual resources are
configured as different kinds of virtual machines. Virtual
machines can provide simulation services for users like
physical machines. The management of virtual machines is
transparent to upper level users and thus users need not
concern about the management of VMs because it can be
achieved by data center managers. The scalability and
flexibility of virtual machines architecture provide excellent
support for users’ simulation fault tolerance services. In fault
tolerance layer, by optimizing replication strategy and virtual
machine migration strategy, the overhead is decreased. Here
the fault tolerance strategy mainly focuses on fault recovery
and decrease of the fault tolerance overhead. The fault
monitoring and predicting is not our scope. Corresponding
failure monitoring strategy is introduced [15]. Through
self-adaptive choosing fault tolerance strategy, the reliability
of simulation system is improved. In user layer, users can
connect to simulation center and process corresponding
simulation task. The simulation service reliability is
guaranteed by fault tolerance layer.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

Fig. 1 The architecture of fault tolerance system

The operating principle of the proposed dynamic fault
tolerance system is depicted in Fig. 2. As simulation
resources include physical resources and virtual resources,
thus, when failures happen, we first distinguish the specific
position that failures locate. If the failure happens in physical
resource layer, then we can adopt the replication strategy to
start the simulation in another server to avoid the CPU,
network failures etc. Meanwhile, we can adopt the optimized
VM migration strategy to reduce the overhead, as the
replication strategy needs more physical resources than VM
migration does. If the failure happens in virtual resource layer,
then the VM migration strategy will not be effective because
migration cannot solve the virtual machine level failure.
Therefore, we can adopt replication strategy, copy the
simulation node to other servers and start the simulation node
when original simulation node fails.

Fig. 2 The sketch map of relationship and principle of dynamic fault

tolerance system

B. Assumptions and Problem Descriptions

To make the research more convincing and precise, we
make description to the problems as follows:

(1) Failure model: with the time advancing, the system
failure probability follows an exponential distribution [16]:

0 0
()

1 0
n t

t
F t

e t


 

 
 (1)

The failure probability density function is:

0 0

()
0

n t

t
f t

e t 


 


 (2)

In time interval (a, b), the failure expectation value means
the weighted average value of the potential failures in the
interval, which can be expressed as:

 () ()
b

a
E t f d    (3)

(2) Failures occur randomly. Failures will be detected once

they happen with system running.
(3) All failures follow the same distribution and the

recovery time is the same when the same fault tolerance
strategy is adopted.

(4) If one node fails or the network of the node fails, the
simulation error will not influence the interaction
communication of other nodes, and the node can re-join the
simulation net after recovery.

(5) We assume the virtual environment is Xen, in which
the VM migration time, replication time and recovery time
are known.

III. REPLICATION FAULT TOLERANCE STRATEGY

In traditional checkpoint strategy [17], it mainly focuses
on simulation application failures. Although it can roll back
to the checkpoint when simulation application fails, when the
physical resource problems arise, checkpoint will not take
effect any more. In IaaS (Infrastructure as a Service) cloud
simulation system, using virtual machines created by
virtualization technology, we can provide replication for
simulation system to avoid system crash caused by single
node error. This can improve the fault tolerance effect.

The relation of simulation nodes and backup nodes in
replication fault tolerance is shown in Fig. 3. In the
architecture, the simulation nodes and backup nodes are
physical isolated, which can keep the backup nodes from
suffering disaster caused by simulation nodes fault.
Therefore, the backup of simulation system data will not be
influenced and replication fault tolerance strategy can be
implemented effectively. When the system is running, we set
a heartbeat time, in which the simulation node sends the
updating information to the backup node and the backup
node will send feedback information to the simulation node,
as shown in step ①. If the backup node does not receive the
updating information from the simulation node in the
stipulated time, then we regard the simulation node as failure.
The backup node is set as new simulation node to replace the
original failure simulation node. The new simulation node
communicates with other nodes to advance the simulation
proceeding, as shown in step ②. Meanwhile, system tries to
create new backup node in the place of the original
simulation node. If the failure cannot recover, the original
simulation node will be marked as “dead machine”. The
“dead machine” will not interact with other nodes. This may
result the number of copy decreasing under a certain
threshold. To guarantee the fault tolerance performance,
system will create backup node close to the “dead machine”
and start a new round replication procedure. The new copy
node starts heartbeat interaction with simulation node, as
depicted in step ③.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

Fig. 3 The relation of simulation nodes and backup nodes in replication

strategy

In replication strategy, the optimization mainly considers
the following questions. (1) If the original node selection and
the copy time selection are improper, the fault tolerance
capability cannot be strengthened. Thus, the data type and
replication moment selection is important for reducing the
fault recovery time and improve the fault tolerance effect. (2)
With the growth of the number of the copies, the maintenance
of the system will increase. Too many copies will also cause
unnecessary overhead. (3) The improper location of copies
will cause bandwidth over-occupation, time delay and
performance decrease. Thus, the aim of location selection is
to process the tasks successfully and minimize the time delay
as well.

A. Node and Moment Selection of Replication

In order to improve the efficiency and reduce the overhead,
referring to Pareto principle [18] and temporal locality
principle [19], we select the dynamic simulation node
according to user data interaction frequency and data quantity.
When the dynamic degree kd of node kN is up to a certain

threshold, the replication operation is triggered. To calculate

kd , we first introduce forgetting parameter  .  has an

exponential function relation with the time interval from start
time st to current time pt and data interaction frequency.

Smaller the forgetting parameter  is, the dynamic degree is

higher and vice versa. The forgetting parameter  can be

calculated using the follow formula:

(,) , {1,2,...}p s

k

t t

p st t e k



 

  (4)

Set p st t t   ，then formula (4) can be simplified as

follows:

(,)
k

t
p st t e




 
 (5)

From formula (5) we can see the range of  is:  0,1  .

k represents the number of data interaction times of node

kN in time interval t . If 0
k

t



, then

0

lim 0
k

t

k

t

e



 






  ;

If
k

t



, then lim 0

k

t

k

t

e



 






  .

The dynamic degree kd of node kN in the interval form

start time st to current time pt can be calculated as：

 1(,) 1 (,)
p

i s

t

k k i i i p
t t

d I t t t t


     (6)

Where 1(,)k i iI t t  means the data interaction number of

times in time interval 1[,)i it t  . From formula (6), we can see

that the more interaction times one node has, smaller the
forgetting parameter is, and higher the dynamic degree is.

We define k as the multiplication of node dynamic

degree and weight kw .

k k kd w   (7)

If k is greater than the set threshold, we regard node kN

as a key node. Then the replication operation of node kN

will be triggered. If k is smaller than the set threshold, then

the dynamic degree is not high enough and node kN is not a

key node. The replication operation of node kN will not be

triggered.

B. Number of Copies

To satisfy the fault tolerance demands, new copies will be
created and old copies will be deleted. When fault tolerance
has a rational increase, the newly increased copy number

()kn inc is:

() () ()k k kn inc n new n old  (8)

Where ()kn new is the new number of copies, ()kn old is

the old number of copies. ()kn inc can be positive or negative,

means the number of copies is increased or decreased. For
node kN , the availability of new copy new has relation with

availability of current copy  as follows:
()1 (1) kn new

new    (9)

Meanwhile, the availability new of new copy in formula

(9) can be calculated using the following formula:

 1new old old      (10)

Where old means the old availability of node kN ,  is

the adjusting parameter of copy number. From formula
(10)，it can be known that the availability of new copy is
determined by old availability and the adjusting parameter
 . Here  can be calculated as follows:

() ()

()

k new k old

k new

 





 (11)

Where ()k old and ()k new are the old and new replication

parameter. We get formula (12) using simultaneous
equations (9), (10) and (11):

()1 (1) (1)kn new
old old         (12)

Changing the formation, we get:

 
 

ln 1 (1)
()

ln 1
old old

kn new
  


   




 (13)

As:
()1 (1) kn old

old    (14)

We get formula (15) using simultaneous equations (13)
and (14):

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

  
 

 
 

()ln (1) 1
()

ln 1

() ln(1) ln 1

ln 1

kn old

k

k

n new

n old

 



 


  




   




 (15)

So,

 
 

ln 1
() () ()

ln 1k k kn inc n new n old




  


 (16)

By the above analysis, we can get the number of copies
through formula (16).

In Fig. 4 we show the changing curve of number of
replications. The positive number represents that the number
of replications needs to be increased, while the negative
number represents that the number should be decreased.
From the figure, we can see that if 0  , the current
replication parameter is bigger than the old replication
parameter, then the number of replications should be added;
vice versa. Meanwhile, if the availability of the node is higher,
then the influence is smaller to the current replication number,
and the number only needs to be readjusted in a small range.
If the node availability is low, the replication number has to
be readjusted in a large range to satisfy the fault tolerance
requirement.

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
-15

-10

-5

0

5

10

15

Adjusting Parameter α

N
um

be
r

of
 r

ep
lic

at
io

ns
 t

o
be

 in
cr

ea
se

d
or

 d
ec

re
as

ed

μ=0.2

μ=0.5

μ=0.8

Fig. 4 The number of replications to be increased or decreased

C. Location Distribution

To reduce data transmission quantity and time delay and
satisfy fault tolerance requirements, the location of the copies
has to be selected properly. From the angle of decreasing
system overhead, first the original node should be selected as
replication node. However, the original simulation node may
fail to restart and recover from failure status. To reduce fault
tolerance overhead, we calculate the distance between
original simulation node and other nodes. We sort the nodes
following an ascending sequence. First, we consider the
nearest node from original simulation node and compare the
resource quantity of original node and the target node. If the
target node can provide enough simulation resources, then
we create the copy on the node. Otherwise, according to
distance sequence, we compare the resources of original
simulation node and target node in ascending order until the
condition is satisfied. The procedure can be concluded as
follows:

(1) Calculate the distance between original simulation

node and the target nodes;
(2) Compare the distances and sort in an ascending

sequence;
(3) Calculate the available resource quantity of each

target node;
(4) Compare the resource quantity between original

simulation node and the nearest target node to decide whether
the target node can effectively process the simulation task;

(5) If the resource quantity of target node is more than the
original simulation node, then the target node is selected as
replication node;

(6) Otherwise, search target node according to the
resource quantity and the ascending distance sequence until
condition 4) is satisfied. Then the target node is selected as
replication node.

IV. OPTIMIZATION OF FAULT TOLERANCE BASED ON

VIRTUAL MACHINE MIGRATION STRATEGY

Virtual machine migration strategy mainly deals with the
following problems. (1) The server has to shut down because
of power or maintenance, which will cause the virtual
machine unable to process simulation task during the period.
(2) Simulation virtual machine resource shortage caused by
server resource overutilization can be resolved by virtual
machine migration. Migration to a new server is able to
provide enough resource for the simulation virtual machine
and improve the simulation environment [20]. In this paper,
we adopt weighted descending multi-attribute matching
method to realize the virtual machine migration.

By real-time monitoring of the remaining resource of the
current server, we construct the remaining resource vector

 , , ,CPU Mem Net GPUs s s ss . Here CPUs means the remaining

CPU resource, Mems means the remaining memory resource,

Nets means the remaining network bandwidth resource, GPUs

means the remaining GPU resource. Once we find the server
is short of certain kind of resource, we will start the virtual
machine migration procedure.

According to the maximum utilization of CPU, memory,
network and GPU resource of each simulation virtual
machine in history, we construct the resource utilization
matrix U .

 
1 1 1 1

2 2 2 2

1 2
, , ,

n

n n n n

CPU Mem Net GPU

T CPU Mem Net GPU

vm vm vm

CPU Mem Net GPU

u u u u

u u u u
U u u u

u u u u

 
 
    
 
 
 


   

In accordance with the simulation task requirements for
resources, different resource types are assigned with different
weights, including CPU weight CPUw , memory weight Memw ,

network bandwidth weight netw and GPU weight GPUw . For

example, distributed data transmission task is mainly reliable
on network performance, so we weight network bandwidth
over other resources. While for 3D model simulation task, it
is more reliable on GPU performance as well as memory
performance, so we weight GPU and memory over other
resources. Using the weighted simulation resource
requirement, it is more applicable for different simulation
nodes and different simulation tasks. The requirements of

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

simulation tasks are prone to be satisfied as the
corresponding weights assigned to the simulation tasks.
Different weights compose the weight matrix W .

 
1 1 1 1

2 2 2 2

1 2
, , ,

n

n n n n

CPU Mem Net GPU

T CPU Mem Net GPU

vm vm vm

CPU Mem Net GPU

w w w w

w w w w
W w w w

w w w w

 
 
    
 
 
 


   

i , s.t. 1ij
j

w  .

In each row of matrix W , different weight represents the
degree that the simulation node demands for the resource. We
get the weighted requirements matrix by multiplying weight
and the corresponding resource requirements as follows:

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

n n n n

n

CPU CPU Mem Mem St Net GPU GPU

CPU CPU Mem Mem St Net GPU GPU

CPU CPU Mem Mem St Net GPU GPU

CPU Mem Net GPU

CPU Mem Net GPU

CPU M

w u w u w u w u

w u w u w u w u
U

w u w u w u w u

u u u u

u u u u

u u

    
 

      
 
     



   

   

ˆ ˆ
n n nem Net GPUu u

 
 
 
 
 
 
 

According to the weights, we define the resource types as
primary, secondary and so on. For example, in a 3D model
simulation node, the GPU resource will be defined as primary
resource and the memory resource will be defined as
secondary resource. Compare the elements of S and iU .

,i j , if j ijs u  , then there are virtual machines have to

be migrated from the current server. In each column of the

weighted requirements matrix Û , compare the elements of
the same column. Then arrange the elements in a descending
order. We select the virtual machine that has the largest
weighted requirement resource as the VM needs to be
migrated.

Now we consider the selection of migration target server.
We get the remaining resource quantity of the target servers
by real time monitoring and construct target server remaining
resource matrix R .

1 1 1 1

2 2 2 2

n n n n

CPU Mem Net GPU

CPU Mem Net GPU

CPU Mem Net GPU

r r r r

r r r r
R

r r r r

 
 
   
 
 
 

   

Here CPUr means the remaining CPU resource, Memr

means the remaining memory resource, Netr means the

remaining network bandwidth resource, GPUr means the

remaining GPU resource. To realize high availability and
reliability of target server, we need to prevent the overload of
target server. First, we compare the remaining resource kjr of

target server and the maximum requirements iju of the

virtual machine to be migrated. For all the elements of matrix

kR and matrix ˆ
iU , ,i j , if ˆkj ijr u , then we regard the

server can be selected as target server. If there are two or
more servers that satisfy the inequality constraints, we need
to match the simulation resources according to their weights.
We sort the corresponding row of matrix R in a descending
sequence according to the weighted resource type of the
selected VM. Then we choose the first row of the sorted
matrix R . The first server will be the target server. If there
are two or more servers having the same primary weighted
remaining resource, then the secondary weighted remaining
resource will be measured, until the target server is selected.
If the original server is still short of resource after the virtual
machine is migrated, then the virtual machine will be
migrated according to the descending order until the server
resource provision reaches a reasonable level. The pseudo
code of optimized VM migration procedure is presented in
Algorithm 1.
Algorithm 1 Optimized virtual machine migration

input: remaining resource vector of original server S
 resource utilization matrix of VMs U
 resource remaining matrix of target servers R
output: {VMk, server l}: Selected VM to be migrated, the target server

for i=1 to N // N is the number of the VMs hosted in the original server
for j=1 to M // M is the number of resource types of VM

weight the jth resource of VMi as wij according to the simulation tasks
requirements;

get weighted resource utilization ˆiju by multiplying resource

utilization uij by wij ;
end for

sort ˆiu in a descending sequence;

end for

select the VM that has the maximum ˆku , marked as VMk; // select the VM to

be migrated
for i=1 to Q // Q is the number of the target servers

sort the servers according to the primary resource type;

compare ˆlu with the remaining resources ijr of server i ;

mark the row number i ;
end for

if ˆij kr u , then

if there is only one server l satisfy the constraint, then
server l is the target server;

else
do

compare the secondary resource type;
if the optimal target server l is selected, then

break;
end if

while (1)
end if

end if
return {VMk, server l}. // return the VM that needs to be migrated and the
target server number

Above is the optimization of virtual machine migration
method. Now we consider the overhead of the virtual
machine migration. As the storage of physical resource pool
is storage area network (SAN) [21], thus the storage is not
migrated. Here we mainly consider the memory migration to
be brief and to the point. Suppose the memory is M (Byte),
the network bandwidth among servers is B (bps). In
research [22,23], dynamic migration technology is
introduced which can realize virtual machine migration
without shutting down. Here we do not give details due to
limited space and we mainly consider the migration time
under such a technology.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

In memory iterative copy operating procedure, set the
memory-modifying rate is i in the thi round, which is

called dirty page rate. Then the transmission time of the thi
round is:

1

11 1
1

1

8
, 1

8
8

, 2

i

ji
ji i

i

j

M
i

B

Mt
t

i
B

B






 




 

       








 (17)

Set the total number of migration times is N. It means after
N times of migration, the amount of dirty page is less than a
certain threshold or the number of migration times is greater
than a certain threshold. The total migration time is:

1

1
1

1
2

1

8

i

jN
j

MM i
i

j

M
M

T
B

B












 
 

   
 
 
 





 (18)

From above analysis, we can see that the actual
transmission data is larger than the virtual machine memory.
The totality of the transmission data is:

1

1
1

2
2

1

8

i

jN
j

MM MM i
i

j

M

D T B M
B












 
 

     
 
 
 





 (19)

V. EXPERIMENTAL EVALUATION

We evaluated the optimized fault tolerance algorithm on
the simulated cloud platform CloudSim [24]. There are 20
virtual machines were created and the configuration
parameters are shown in TABLE I. The simulation task
number varies from 50 to 3200. The parameters of task are
shown in TABLE II.

TABLE I VIRTUAL MACHINE CONFIGURATION PARAMETERS
PEs MIPS RAM BW STORAGE

1 1000 512 1000 10000

TABLE II THE TASK PARAMETERS

Length File size Number
1000 300 50-3200

A. Performance of Fault Tolerance Degree

Fault tolerance degree ftd is defined as the ratio of

successful processing number of the tasks to the total number
of the submitted tasks.

s
ft

t

N
d

N
 (20)

sN is the number of the successfully executed tasks, tN is

the number of the submitted tasks. In Fig. 5, the comparison
of fault tolerance degree is shown when different strategies
are adopted. The X-axis represents the number of simulation
tasks, which vary from 50 to 3200. The Y-axis represents the
fault tolerance degree as mentioned in the above equation.
The fault tolerance degree is greater than 80% when the
optimized self-adaptive fault tolerance strategy is adopted.
The replication strategy mainly depends on resource

redundancy and realizes system reliability by sacrificing the
physical resources. The system reliability of this strategy is
also high and the fault tolerance degree is greater than 70%.
When virtual machine migration strategy is adopted, the fault
tolerance degree is lower than when other strategies are
adopted. When virtual machine migrates, some time is
needed and during this time interval, the submitted tasks will
not be processed. Therefore, the fault tolerance degree is
lower when the VM migration strategy is adopted.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

50 100 200 400 800 1600 3200

F
au

lt
 T

ol
er

an
ce

 D
eg

re
e

Number of Tasks

Optimized Self-
adjusting Fault
Tolerance Strategy

Replication
Strategy

Virtual Machine
Migration

Fig. 5 The comparison of fault tolerance degree

B. Evaluation of Physical Resource Overhead

Fig. 6 shows the physical resource overhead comparison
when different fault tolerance strategies are adopted. The
X-axis represents the number of simulation tasks, which vary
from 50 to 400. The Y-axis represents the fault tolerance
resource overhead. We can see that the resource overhead of
replication strategy is the heaviest. This is because the
replication strategy creates new copies in different locations.
Meanwhile, the transmissions of simulation data among these
copies also need to consume network bandwidth. The VM
migration strategy only consumes network bandwidth while
dirty page refreshing, thus the resource overhead is lighter
comparing with replication strategy. When the optimized
self-adaptive fault tolerance strategy is adopted, the resource
overhead is lighter than VM migration strategy. This is
because our proposed method optimizes the two typical fault
tolerance strategies and the self-adaptive choosing of the
optimized strategies. The proposed self-adaptive fault
tolerance strategy realizes minimum overhead on the premise
of effective fault tolerance.

0

500

1000

1500

2000

2500

3000

50 100 150 200 250 300 350 400

F
au

lt
 T

ol
er

an
ce

 R
es

ou
rc

e
O

ve
rh

ea
d

Number of Tasks

Optimized Self-
adjusting Fault
Tolerance Strategy

Replication
Strategy

Virtual Machine
Migration

Fig. 6 Comparison of fault tolerance resource overhead

C. Evaluation of Time Overhead

The time consuming condition is shown in Fig. 7. The
X-axis represents the number of simulation tasks, which vary
from 50 to 400. The Y-axis represents the fault tolerance time
overhead. In the procedure of virtual machine migration, the

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

memory state has to be copied continuously. So the migration
and recovery of virtual machine both need some time. Thus,
the time overhead is heavy. While we adopt replication
strategy, multi copies are running as the original simulation
node does. When original node collapses, the copies can
replace the original node and execute the simulation tasks as
soon as possible. Therefore, the time overhead is lighter than
the virtual machine migration. This properly explains the
utilization of physical redundancy to get time efficiency in
turn. The proposed optimized self-adaptive fault tolerance
strategy reduces the time overhead of fault tolerance. It
chooses the most effective method to realize fault tolerance,
thus the overhead is smaller than replication strategy and VM
migration strategy.

0

500

1000

1500

2000

2500

3000

3500

50 100 150 200 250 300 350 400

F
au

lt
 T

ol
er

an
ce

 T
im

e
O

ve
rh

ea
d

Number of Tasks

Optimized Self-
adjusting Fault
Tolerance Strategy

Replication
Strategy

Virtual Machine
Migration

Fig. 7 Comparison of the fault tolerance time overhead

VI. CONCLUDING REMARKS AND DISCUSSIONS

Based on typical fault tolerance, we propose an optimized
fault tolerance strategy using virtualization technology. We
research the optimization of the number copies and the
location of replication strategy and propose an optimization
method based on virtualization technology. Meanwhile, we
introduce virtual machine migration based fault tolerance
strategy to guarantee the system stability. We propose the
weighted descending multi-attribute matching method to
realize simulation resource sensitive matching of simulation
virtual machine to be migrated and target server. By above
mentioned methods, effective and light overhead fault
tolerance is realized. Our research does an overall
consideration of the practical conditions. However, the
research still mainly provides a theoretical analysis. The
future goal is to test the method in a cloud system for
practical use.

REFERENCES
[1] Qi Z, Yao J, Zhang C, et al., “VGRIS: virtualized GPU resource

isolation and scheduling in cloud gaming,” ACM Transactions on
Architecture & Code Optimization, vol. 11, no. 2, pp61-85, 2014.

[2] Fathollah Karimi Koupaei, Ahmad Khademzadeh, Majid Janidarmian,
“Low-Overhead and High-Performance Fault-Tolerant Architecture
for Application-Specific Network-on-Chip,” IAENG International
Journal of Computer Science, vol. 39, no. 1, pp96-101, 2012.

[3] Pranesh Das, “Virtualization and Fault Tolerance in Cloud
Computing,” Rourkela: National Institute of Technology Rourkela.
2013.

[4] LIU Yun-sheng, ZHA Ya-bing, ZHANG Chuan-fu, et al., “Research of
Fault-Tolerance Mechanism in Distributed Simulation System,”
Journal of System Simulation, vol. 17, no. 2, pp355-357, 2005.

[5] Ling Qian, Zhiguo Luo, Yujian Du, et al., “Cloud Computing: An
Overview,” Lecture Notes in Computer Science, vol. 5931, no. 1,
pp626-631, 2009.

[6] Daeyong Jung, SungHo Chin, Kwang Sik Chung, et al., “VM
Migration for Fault Tolerance in Spot Instance Based Cloud
Computing,” Grid and Pervasive Computing, vol. 7861, no. 1,
pp142-151, 2013.

[7] Xu Xiaodong, Zhao Jianting, Xu Chunlei, “Fault Tolerance in
Real-Time and Multitask Parallel Computing System,” Computer
Engineering and Applications, vol. 49, no. 9, pp33-37, 2013.

[8] Ganesan Radhakrishnan, “Adaptive Application Scaling for
Improving Fault-Tolerance and Availability in the Cloud,” Bell Labs
Technical Journal, vol. 17, no. 2, pp5-14, 2012.

[9] Dawei Sun, Guiran Chang, Changsheng Miao, “Analyzing, Modeling
and Evaluating Dynamic Adaptive Fault Tolerance Strategies in Cloud
Computing Environments,” Journal of Supercomputing, vol. 66, no. 1,
pp193-228, 2013.

[10] Bo Yang, Feng Tan, Yuan-Shun Dai, “Performance Evaluation of
Cloud Service Considering Fault Recovery,” Journal of
Supercomputing, vol. 65, no. 1, pp426-444, 2013.

[11] Eugene Rex L. Jalao, Dan L. Shunk, Teresa Wu, “Life Cycle Costs and
the Analytic Network Process for Software-as-a-Service Migration,”
IAENG International Journal of Computer Science, vol. 39, no. 3,
pp269-275, 2012.

[12] Liu Yunsheng, “Research on Key Technologies of Fault Tolerance of
Large Scale Distributed Simulation System,” Changsha: National
University of Defense Technology, 2006.

[13] Lu Huang, Haishan Chen, Tingting Hu, “Survey on Resource
Allocation Policy and Job Scheduling Algorithms of Cloud
Computing,” Journal of Software, vol. 8, no. 2, pp480-487, 2013.

[14] Zhen Xiao, Weijia Song, Qi Chen, “Dynamic Resource Allocation
using Virtual Machines for Cloud Computing Environment,” IEEE
Transaction on Parallel and Distributed Systems, vol. 24, no. 6,
pp1107-1117, 2013.

[15] Kyoungho An, “Resource Management and Fault Tolerance Principles
for Supporting Distributed Real-time and Embedded Systems in the
Cloud,” Middleware 2012 Doctoral Symposium, pp4, 2012.

[16] Wang Jing, Wang Gaocai, Huang Yihai, “Study on Fault Tolerance of
Mesh Networks based on Node Stochastic Failure Probability,”
Journal of Chinese Computer Systems, vol. 31, no. 5, pp888-891,
2010.

[17] Zhang Haojia, “A VM-level Fault-Tolerant System for Virtual Clusters
with Coordinated Checkpointing,” Wuhan: Huazhong University of
Science and Technology, 2010.

[18] Susumu Cato, “Pareto Principles, Positive Responsiveness, and
Majority Decisions,” Theory and Decision, vol. 71, no. 4, pp503-518,
2011.

[19] Ruay-Shiung Chang, Hui-Ping Chang, “A Dynamic Data Replication
Strategy Using Access-weights in Data Grids,” Journal of
Supercomputing, vol. 45, no. 3, pp277-295, 2008.

[20] Anju Bala, Inderveer Chana, “VM Migration Approach for Autonomic
Fault Tolerance in Cloud Computing,” International Conference on
Grid and Cloud Computing and Applications, pp3-9, 2013.

[21] Jun Yao, Ji-Wu Shu, Wei-Min Zheng, “Distributed Storage Cluster
Design for Remote Mirroring Based on Storage Area Network,”
Journal of Computer Science & Technology, vol. 22, no. 4, pp521-526,
2007.

[22] Ma Fei, “Research on Virtual Machine Placement and Live Migration
in Cloud Data Center,” Beijing: Beijing Jiaotong University, 2013.

[23] Du Yuyang, “Research on Virtual Machine State Migration and
Phase-Change Memory Wear-Leveling Method,” Beijing: Tsinghua
University, 2011.

[24] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, et al.,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Jounal of Software: Practice and Experience, vol. 41, no.
1, pp23-50, 2010.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_02

(Advance online publication: 21 November 2015)

__

