A Formal Proof of Correctness of Construct Association from PROMELA to Java

Suprapto, Member, IAENG, Retantyo Wardoyo, Belawati H. Widjaja, and Reza Pulungan

Abstract—The association between the subset of PROMELA’s constructs (or statements) and the subset of Java’s constructs is intended to provide a collection of rules that can be used as a reference in developing a model of code translator from a PROMELA model to a Java program. The idea arises from the fact that, both PROMELA model and Java program are built (or composed) by various elementary elements called constructs. Although this kind of association has already been introduced in some previous researches, they provided no proofs about its correctness.

In this paper we propose a formal proof of association’s correctness by showing the equivalence (or similarity) of the program graphs for every two associated constructs in the association. The correctness of association means that every two associated constructs in association have equivalent semantics. In addition, at the end of this paper we also introduce a translator tool we have developed based on this association’s definition to translate PROMELA model to Java program.

Index Terms—Constructs association, PROMELA, Java, correctness, equivalence, preserving, program graph, similarity, semantics.

I. INTRODUCTION

The widespread use of source-to-source translation for imperative languages would help software engineering if such translator could be written and if it were easier to translate an existing program into another language than building the program from scratch [5]. Source-to-source translation has been studied by various researchers, and is often used together with program optimization. It is sometime, however, used without program optimization. Translators that do not optimize programs but only preserve the same structure from one language to another have significant potential for software engineering.

A translator was also developed to detect deadlock existence on Java programs based on PROMELA and SPIN [2]. An abstract formal model expressed in PROMELA is generated from Java source using the Java2Spin translator. Then the model is analyzed by SPIN [7], [8], and possible error traces are converted back to traces of Java statements and reported to the user. An indirect way of model checking C programs was proposed in [11] by first translating the C code to PROMELA. The translator was developed by using syntax-directed translation techniques to perform the translations, and several tools and languages are involved.

PROMELA is one of the most widely used modeling language to model systems, especially distributed, reactive and concurrent ones [10]. On the other hand, some parts of Java language can be used in the translation of certain PROMELA properties. Therefore, Java is one of a few reasonable candidates that can be used as a target language for PROMELA translation [6].

A construct association from PROMELA to Java is an association from a subset of PROMELA’s statements (or constructs) to a subset of Java’s statements associating every statement in the first subset to probably more than one statement in the second subset. According to their functionality, statements in PROMELA can be classified into five groups, i.e., meta terms (9 statements), declarators (21 statements), control flows (8 statements), basic statements (6 statements), and predefined (21 statements) [17]. Of them, however, there are only ten constructs in PROMELA to be selected in the association. The selection was made by considering that some constructs in a PROMELA model are only used for verification purpose, hence, they are not required in the system (or Java program) development. In addition, some bigger constructs can be composed by several elementary ones. An informal definition of construct association is given in Table I.

Even though this kind of associations has already been introduced in previous researches [3], [6], [16], [17], however, the proof that can guarantee the association’s correctness has never been provided. This research proposes a formal proof of association’s correctness by showing the equivalence of semantics for pair of associated constructs, and this equivalence in turn is proven by their program graphs similarity. The proof is performed by executing the following steps:

1. For each two associated constructs in the association:
 1.1 Derive the program graph for PROMELA construct, and its associate Java construct.

\begin{table}[h]
\centering
\caption{Construct association between a subset of PROMELA and Java constructs}
\begin{tabular}{|l|l|}
\hline
PROMELA & Java \\
\hline
Expression & Expression \\
Assignment & Assignment \\
Send and receive & Two defined methods in separate classes together with the required channel (buffer) that can be invoked either by regular invocation or by socket programming. \\
atomic & while \cdots switch, namely a switch in a while loop. \\
\texttt{d_step} & synchronize \\
\texttt{if \cdots fs} & Generally, a program is specifically built to have a priority in selecting certain condition; in which case nondeterminisms can be removed. Otherwise, if nondeterminism is preserved (or at least imitated), randomize is implemented. \\
Deterministic & Fixed repetition for loop. \\
\texttt{for} & Repetition of selection together with nondeterminism resolution as described for \texttt{if \cdots fs}. \\
\texttt{unless} & Exception handling \texttt{try..catch}. \\
\hline
\end{tabular}
\end{table}
II. PRELIMINARIES

A. Program Graph

A program graph (PG) over a set of typed variables is a digraph whose edges are labeled with conditions on these variables and actions. It is formally defined as follows [1]:

Definition 1. A program graph PG over set Var of typed variables is a tuple $(\text{Loc}, \text{Act}, \text{Effect}, \hookrightarrow, \text{Loc}_0, g_0)$, with:

- Loc is a set of locations,
- Act is a set of actions,
- $\text{Effect} : \text{Act} \times \text{Eval}(\text{Var}) \times \text{Eval}(\text{Var})$ is an effect function,
- $\hookrightarrow \subseteq \text{Loc} \times \text{Cond}(\text{Var}) \times \text{Act} \times \text{Loc}$ is the conditional transition relation,
- $\text{Loc}_0 \subseteq \text{Loc}$ is a set of initial locations, and
- $g_0 \in \text{Cond}(\text{Var})$ is the initial condition.

The program graph associated with a statement (or construct) stmt formalizes the control flow when it is being executed. It means the substatements play the role of the states, and a special location exit must be provided in order to model termination. Roughly speaking, any guarded command $g \Rightarrow \text{stmt}$ corresponds to an edge with the label $g : \alpha$ where α stands for the first action of stmt [1].

The notation $\ell \xrightarrow{g:\alpha} \ell'$ is used to concisely represent $(\ell, g, \alpha, \ell') \in \hookrightarrow$. The condition g is also called the guard of the conditional transition $\ell \xrightarrow{g:\alpha} \ell'$. If the guard is tautology (e.g., $g = \text{true}$ or $g = (x < 1) \lor (x \geq 1)$), then it is simply written as $\ell \xrightarrow{} \ell'$.

The behavior of location $\ell \in \text{Loc}$ depends on the current variable evaluation η. A nondeterministic selection is made between all transitions $\ell \xrightarrow{g:\alpha} \ell'$ that satisfy the condition g in evaluation η (i.e., $\eta \models g$). The execution of action α changes the evaluation of variables according to $\text{Effect}(\alpha, \cdot, \cdot)$. Subsequently, the system changes into location ℓ'. If no such transition is possible, the system stops.

A location ℓ in a program graph is ignorable if the execution of action α does not change the evaluation of variables according to $\text{Effect}(\alpha, \cdot, \cdot)$ of the next location ℓ', provided that any variable involved in the computation is completely new and independent. More formally, this concept might be stated in the following proposition. The ignorable locations is illustrated in Fig. 1.

Proposition 1. Let L_A, L_B be any two locations in a program graph PG over variable Var, and L_1, L_2, \ldots, L_m are locations induced by introducing any new variables $x' \notin \text{Var}$. Then the existence of L_1, L_2, \ldots, L_m in between L_A and L_B is ignorable. Hence, locations L_1, L_2, \ldots, L_m can be coalesced with L_1 into a new single location, and they (i.e., locations L_1, L_2, \ldots, L_m) are called coalesceable locations.

B. Substatements

The set of substatements of a PROMELA statement (construct) stmt is defined recursively [1]. The set of substatements for an atomic statement $\text{stmt} \in \{\text{expr}, x = \text{expr}, c?x, e\text{expr}\}$ is sub(stmt) = $\{\text{stmt, exit}\}$, since an atomic statement only requires one-step of execution. For sequential composition $\text{stmt}_1;\text{stmt}_2$, the set of substatements is defined as:

\[
\text{sub}(\text{stmt}_1;\text{stmt}_2) = \{\text{stmt}_1';\text{stmt}_2 | \text{stmt}_1' \in \text{sub}(\text{stmt}_1) \setminus \{\text{exit}\}\}\cup \text{sub}(\text{stmt}_2).
\]

As an illustration, consider the sequential composition in Listing 1.

Listing 1: Sequential composition

\[
\begin{align*}
\ldots \quad x & = x + 3; \\
\ldots \quad y & = 2y + 2; \\
\ldots \quad z & = 3z + 1; \\
\ldots
\end{align*}
\]

Since all constructs in the composition are assignment and in PROMELA assignments are always atomic, then $\text{sub}(x = x + 3; y = 2y + 2; z = 3z + 1) = \{(x = x + 3; y = 2y + 2; z = 3z + 1), (y = 2y + 2; z = 3z + 1), (z = 3z + 1, \text{exit})\}$. These substatements determine a set of location, Loc, of program graph. In addition, assignments are always executable, so that the condition of transition is always true. $\text{Act} = \{x = x + 3; y = 2y + 2; z = 3z + 1\}$, and $\text{Loc}_0 = \{(x = x + 3; y = 2y + 2; z = 3z + 1)\}$. Then, the corresponding program graph is shown in Fig. 2.

The set of substatements of if · · · fi selection statement is defined incrementally, as the set consisting of the if · · · fi statement itself plus substatements of its guarded commands. That is, let $i ff i$ be $i ff i \gg g_1 \rightarrow \text{stmt}_1 \ldots : \ldots \rightarrow g_n \rightarrow \text{stmt}_n fi$, then:

\[
\text{sub}(i ff i) = \{i ff i, \text{exit}\} \cup \bigcup_{1 \leq i \leq n} \{\text{stmt}_i' | \text{stmt}_i' \in \text{sub}(\text{stmt}_i)\} \setminus \{\text{stmt}_i, \text{exit}\}\}
\]

where stmt_i' is the first action in stmt_i.

An example for a conditional statement $i ff i$ is shown in Listing 2.
Listing 2: A conditional statement if \(\cdots \) fi

\[
\begin{align*}
\text{cond} & = \text{if} & \text{true} & \rightarrow x = x + 1; \quad y = 2y + 1; \quad z = 3z + 1; \\
& & \quad z = 3z + 1; \\
& & \quad x == 0 & \rightarrow c!x; \quad c!y; \\
& & \quad c?z & \rightarrow y = 3z + 5; \\
\text{fi}
\end{align*}
\]

According to the definition of substatements for conditional statements, \(\text{sub}(\text{cond}) = \{\text{cond}, \text{exit}\} \cup \{y = 2y + 1; \quad z = 3z + 1; \quad x = 3z + 1\} \cup \{c!y\} \). There are three edges going out of the initial location \(\text{cond} \) with label \text{true} : \(x = x + 1 \) to location \(y = 2y + 1 \); \(z = 3z + 1 \), then leaving this location with label \text{true} : \(y = 2y + 1 \) for location \(z = 3z + 1 \), and subsequently leaving this location with label \text{true} : \(z = 3z + 1 \) for location \text{exit}. Meanwhile, an edge from location \(\text{cond} \) with label \(x == 0 \) goes to location \(c!y \), then leaves this location with label \text{false} : \(c!y \) for location \text{exit}. In addition, out of location \(\text{cond} \) there is an edge labeled \text{false} : \(y = 3z + 5 \) leaving for location \text{exit}. Since, there is always an executable guard (i.e., \text{true}), then it does not block. Consequently, there is no edge returning to initial location \(\text{cond} \). Graphically, the program graph for conditional construct \(\text{if} \cdots \text{fi} \) is shown in Fig. 3.

![Fig. 3: Program graph for construct if \(\cdots \) fi in Listing 2](Image)

Similarly, the set of substatements of a do-\(\cdots \) od repetition statement is defined as the set containing of the do-\(\cdots \) od statement itself plus \text{exit}, and substatements of its guarded commands plus \text{loop} minus \text{exit}.

Let \(\text{dood} \) be do : \(g_1 \rightarrow \text{stmt}_1 \cdots : g_n \rightarrow \text{stmt}_n \ \text{od} \), then:

\[
\text{sub}(\text{dood}) = \{\text{loop}, \text{exit}\} \cup \bigcup_{1 \leq i \leq n} \{\text{stmt}_i' \mid \text{stmt}_i' \in \text{sub}(\text{stmt}_i) \setminus \{\text{stmt}_i', \text{exit}\}\}
\]

where \(\text{stmt}_i' \) is the first statement in \(\text{stmt}_i \).

According to the definition of the set of substatements of atomic, then \(\text{sub}(\text{atomic}(\text{stmt}_1; \text{stmt}_2; \ldots ; \text{stmt}_n)) = \{\text{atomic}(\text{stmt}_1; \text{stmt}_2; \ldots ; \text{stmt}_n), \text{atomic}(\text{stmt}_{i+1}; \text{stmt}_{i+2}; \ldots ; \text{stmt}_n), \text{exit}\}\) it strongly restates that atomic is indivisible. The same is true for \(\text{d}_\text{step} \), hence \(\text{sub}(\text{do}_{\text{step}}(\text{stmt})) = \{\text{do}_{\text{step}}(\text{stmt}), \text{exit}\} \).

For \text{unless} statement, let \text{unless} construct represent \(\{\text{stmt}_1; \ldots ; \text{stmt}_m\} \) unless \(\{\text{stmt}_2; \ldots ; \text{stmt}_n\} \), then:

\[
\text{sub}(\text{unless} \text{construct}) = \text{sub}(\text{stmt}_2; \ldots ; \text{stmt}_n),
\]

if \(\text{stmt}_2 \) never executable.

Then, it can be seen that each element in the set of substatements of PROMELA as well as Java constructs corresponds to the locations of program graph for the corresponding construct. For example, the locations of program graph for atomic statement such as assignment are assignment itself and exit, namely \(\text{sub}(\text{assignment}) = \{\text{assignment}, \text{exit}\} \). Similarly, the locations in program graph for \(\text{if} \cdots \text{fi} \) selection statement is \(\text{if} \text{fi} \) itself plus union of locations of each guarded command.

C. Semantics

As mentioned before, the intention of this research is to formally prove the semantics’ equivalence of every two associated constructs in the association. Therefore, the following lemma helps explain the formal semantics of any PROMELA as well as Java statements.

Lemma 1

The semantics for any statement of both PROMELA and Java \(\text{stmt} \) is described by three rules that classify them into one-step statement, multi-step statement, and blocked statement. If the computation of \(\text{stmt} \) terminates in one step by the execution of action \(\alpha \), then control of \(\text{stmt} \) moves to exit after executing \(\alpha \):

\[
\text{stmt} \xrightarrow{\alpha} \text{exit}
\]

If the first step of \(\text{stmt} \) leads to a location (or statement) different from exit, then the rule looks like:

\[
\text{stmt} \xrightarrow{\alpha} \text{stmt} \neq \text{exit}
\]

On the other hand, if the computation of \(\text{stmt} \) for some reasons cannot be performed (blocked), then control does not move. The following rule will satisfy:

\[
\text{stmt} \xrightarrow{\alpha} \text{stmt}
\]

As a consequence, Lemma 1 leads to a more general form of sequential composition \(\text{stmt}_1; \text{stmt}_2 \), that is stated in the following corollary.

Corollary 1

Sequential composition \(\text{stmt}_1; \text{stmt}_2 \) is defined by two rules that distinguish whether or not \(\text{stmt}_1 \) terminates in one step. If the computation of \(\text{stmt}_1 \) terminates in one step by executing action \(\alpha \), then control of \(\text{stmt}_1; \text{stmt}_2 \) moves to \(\text{stmt}_2 \) after executing \(\alpha \):

\[
\text{stmt}_1 \xrightarrow{\alpha} \text{exit} \quad \Rightarrow \quad \text{stmt}_2 \xrightarrow{\alpha} \text{stmt}_2
\]

If the first step of \(\text{stmt}_1 \) leads to a location (or statement) different from exit, then the following rule applies [1]:

\[
\text{stmt}_1 \xrightarrow{\alpha} \text{stmt}_1 \neq \text{exit} \quad \Rightarrow \quad \text{stmt}_1; \text{stmt}_2 \xrightarrow{\alpha} \text{stmt}_1; \text{stmt}_2
\]

If the computation of \(\text{stmt}_1 \) for some reasons cannot be performed (blocked), then control does not move, and the following rule will satisfy:

\[
\text{stmt}_1 \xrightarrow{\alpha} \text{stmt}_1 \quad \Rightarrow \quad \text{stmt}_1; \text{stmt}_2 \xrightarrow{\alpha} \text{stmt}_1; \text{stmt}_2
\]
Inference rules for both PROMELA and Java constructs, such as expression, assignment, send, receive, etc., will be derived from both Lemma 1 and Corollary 1. Subsequently, these rules are used to generate program graphs for the corresponding constructs.

D. Program Graph Equivalence

The definition of equivalence (or similarity) between two program graphs is inspired by the definition of digraph isomorphism. The only difference is that the bijective function f maps two locations representing statements from two different program graphs. For any two locations ℓ_1 and ℓ_2, $f(\ell_1) = \ell_2$ if and only if both ℓ_1 and ℓ_2 represent two semantically equivalent statements or substatements. The formal definition of program graph similarity is stated in the Definition 2.

Definition 2. Let $PG_1 = (Loc_1, Act_1, Effect_1, \rightarrow_1, Loc_{01}, g_{01})$ and $PG_2 = (Loc_2, Act_2, Effect_2, \rightarrow_2, Loc_{02}, g_{02})$ be two PGs over variables Var_1 and Var_2, respectively. PG_1 and PG_2 are called equivalent (or similar), denoted $PG_1 \simeq PG_2$, only if there are two bijective functions $f : Loc_1 \rightarrow Loc_2$ and $g : Loc_1 \times Loc_1 \rightarrow Loc_2 \times Loc_2$, such that:

- for any $\ell_1 \in Loc_1$ there is $\ell_2 \in Loc_2$ such that $f(\ell_1) = \ell_2$; and
- for any $(\ell'_1, \ell''_1) \in Loc_1 \times Loc_1$ there is $(\ell_2', \ell_2'') \in Loc_2 \times Loc_2$ such that $g((\ell'_1, \ell''_1)) = ((\ell_2', \ell_2''))$, where $f(\ell'_1) = \ell_2'$, $f(\ell''_1) = \ell_2''$.

III. DISCUSSION

The list of construct associations between the subset of PROMELA and Java constructs in Table I can be formally defined in the Definition 3.

Definition 3. Let P and J be the subset of PROMELA constructs and Java constructs, respectively, in CA (construct association). CA is defined as a relation from P to J, namely $CA : P \rightarrow J$, such that for any construct $Cp_i \in P$, and $Cj_k \in J$, $(Cp_i, Cj_k) \in CA$ only if there is a PROMELA construct Cp_i associated with a Java construct Cj_k. This is illustrated in Fig. 4.

![Fig. 4: Association diagram from set P to J](image)

The correctness of association defined in Definition 3 is proved by showing the similarity between two program graphs of every two associated constructs in association.

Theorem 1. The association CA is correct only if for every association $(Cp_i, Cj_k) \in CA$, $Cp_i \in P$, and $Cj_k \in J$, then $PG(Cp_i) \simeq PG(Cj_k)$, where $PG(Cp_i)$ is a program graph for Cp_i, and $PG(Cj_k)$ is a program graph for Cj_k.

The proof of Theorem 1 is given in the following subsection.

A. The proof of Construct Association’s Correctness

The proof is carried out for all association $(Cp_i, Cj_k) \in CA; Cp_i \in P, Cj_k \in J$ (see Fig. 4).

According to the Definition 1, a program graph consists of a set of locations Loc, a set of actions Act, an effect function $Effect$, a conditional transition relation \rightarrow, a set of initial locations Loc_0, and an initial condition g_0.

Loc is determined by the corresponding set of substatements, while the conditional transition relation is provided by inference rules represented in Structured Operational Semantics (SOS) notation determining the transition from one location to other locations. In the level of program graph, actions are normally in the form of expression, assignment, and send or receive. The effect function could be any evaluation function that has any possibility to change variable’s value in the construct. In graphical representation of program graph, the initial location will be denoted by double-line circle (or ellipse) pointed by an arrow.

1) Expression: In PROMELA, an expression $expr$ is the most elementary construct in modeling, and it is an atomic statement [1]. Therefore, it only needs one step of execution when the value of $expr$ is not zero [9], it means that there is a transition from an initial location to the next location $exit$. This transition is depicted by the following inference rule.

$$expr \rightarrow value(expr) \neq 0 \rightarrow exit$$

On the other hand, if the value of $expr$ is zero, then there is no transition to the next location. Since the expression $expr$ blocks, the execution cannot be continued, namely it has to wait until the value of $expr$ is not zero. The inference rule for this transition is as follows:

$$expr \rightarrow value(expr) = 0 \rightarrow expr$$

The set of locations Loc of a program graph for $expr$, $PG(expr)$ is determined by its substatement, so that $Loc = sub(expr) = \{expr, exit\}$. Act is the evaluation of $expr$, conditional transition relation is represented by its inference rules, the initial location, $Loc_0 = \{expr\}$, and the initial condition, $g_0 = val(expr) \neq 0$. Then, the program graph for $expr$, $PG(expr)$, is shown in Fig. 5.

In Java, an expression $expr$ has a similar form with the one in PROMELA. Unlike expression in PROMELA, expression in Java is not atomic—especially for the long one. However, the synchronization in Java can be used to ensure that there is no other process interfering the result of expression evaluation. In this way, the atomicity of $expr$ can be preserved. In Java, this implementation is carried out by defining some methods, such as lock() and unlock() in a class containing global variables. Suppose $header$ is the name of the intended class, then the implementation of locking is shown in Listing 3.
This implementation guarantees atomicity, and the program graph for \(expr_J \) can be generated in similar way. For example, transition to the next location \(exit \) will occur only if the value of \(expr_J \) is not zero. See the following inference rules:

\[
expr_J \rightarrow \text{value}(expr_J) \neq 0 \rightarrow exit
\]

Otherwise, transition will move back to the initial location, \(expr_J \), as it is shown by the following inference rule:

\[
expr_J \rightarrow \text{value}(expr_J) = 0 \rightarrow expr_J.
\]

Formally, a program graph for \(expr_J \), \(PG(expr_J) \) consists of a set of locations, \(Loc = \cup \{(expr_J, exit)\} \), a set of actions, \(Act \) containing the evaluation of \(expr_J \), conditional transition relation is represented by its inference rules, a set of initial location, \(Loc_0 = \{expr_J\} \), and an initial condition, \(g_0 \) is \(val(expr_J) \neq 0 \). Then, the program graph for \(expr_J \) is shown in Fig. 6.

![Fig. 5: A program graph for a PROMELA expression, expr_p](image)

The last step is proving that \(PG(expr_P) \simeq PG(expr_J) \) is satisfied. It can be seen from Fig. 5 and Fig. 6 that there must be two bijective functions \(f \) and \(g \), such that \(f(expr_P) = expr_J \), \(f(exit) = exit \); and \(g(expr_P, exit) = (expr_J, exit) \), \(g(expr_P, expr_P) = (expr_J, expr_J) \). Hence, it is proven that \(PG(expr_P) \simeq PG(expr_J) \).

2) Assignment: Given the association \((assgn_P, assgn_J) \in CA\), and we prove that \(PG(assgn_P) \simeq PG(assgn_J) \).

In PROMELA, an assignment has the form of \(x = expr_P \), and like an expression, an assignment is atomic [1]. In addition, it is always executable provided that the value of \(expr_P \) and \(x \) are compatible, i.e., \(dom(value(expr_P)) \subseteq dom(x) \). The effect of its execution is that the value of \(expr_P \) is stored to variable \(x \). Since an assignment is atomic, it only requires one step of execution. The transition occurs from the initial location \(assgn_P \) to the next location \(exit \) as depicted by the following inference rule:

\[
assgn_P \rightarrow \text{dom}(value(expr_P)) \subseteq \text{dom}(x) : x \leftarrow value(expr_P) \rightarrow exit
\]

A program graph for \(assgn_P \) consists of \(Loc = \{assgn_P, exit\} \), \(Act \) contains evaluation of \(x = expr_P \), conditional transition relation is represented by inference rules, \(Loc_0 = \{assgn_P\} \), and \(g_0 \) is true (an assignment is always executable). Graphically, a program graph for \(assgn_P \) is then shown in Fig. 7.

![Fig. 7: A program graph for a PROMELA assignment, assgn_p](image)

In Java, an assignment \(assgn_J \) also has the form of \(x = expr_J \). It is always executable, provided that \(x \) and \(expr_J \) are compatible, i.e., \(type(value(\text{expr}_J)) \subseteq type(value(x)) \). The effect of its execution is that the value of \(expr_J \) is stored to \(x \). Because assignment contains expression, and in Java expression is not atomic, then assignment is not atomic. However, by giving it the same handling as in expression (i.e., \(\text{header.lock}(); x = expr_J; \text{header.unlock}(); \)), it can be made atomic. Hence, the transition occurs from the initial location \(assgn_J \) to the next location \(exit \) as described by the following inference rule:

\[
assgn_J \rightarrow \text{type}(value(\text{expr}_J)) \subseteq \text{type}(value(x)) \rightarrow exit
\]

Formally, a program graph for \(assgn_J \) consists of \(Loc = \{assgn_J, exit\} \), \(Act \) contains evaluation of \(x := expr_J \), conditional transition relation is inference rule, \(Loc_0 = \{assgn_J\} \), and \(g_0 \) is true (an assignment is always executable). And graphically, it is shown in Fig. 8.

![Fig. 8: A program graph for a Java assignment, assgn_j](image)

The last step is proving the similarity between \(PG(assgn_P) \) and \(PG(assgn_J) \). From Fig. 7 and Fig. 8, it can be seen that these two program graphs are exactly the same. Therefor, there must be two bijective functions \(f \) and \(g \), such that \(f(assgn_P) = assgn_J \), \(f(exit) = exit \); and \(g((assgn_P, exit)) = (assgn_J, exit) \). Hence, it is proven that \(PG(assgn_P) \simeq PG(assgn_J)\).

3) Communications: PROMELA has two kinds of communication operations, i.e., \(\text{send} \) and \(\text{receive} \) statements. They are atomic [1]. Both \(\text{send} \) and \(\text{receive} \) operations assume that the capacity of communication media (or channel) is greater than zero (buffered, or asynchronous) [9].

In PROMELA, \(\text{send} \) operation has two forms: \(\text{e} expr \) and \(\text{e!} expr \). These operations can be performed when the channel \(e \) is not full, otherwise it will block (i.e., it has to wait until there is a space in the channel). In addition, \(expr \) and \(e \) must be compatible. Each of these \(\text{send} \) operations, \(\text{e} expr \) and \(\text{e!} expr \), gives different effect to the channel. \(\text{e} expr \) and \(\text{e!} expr \) place the value of \(expr \) in the rear, and in the front of channel, respectively.

This operation requires one step of execution, so that when all conditions are met the transition occurs from initial
location \(send_P \) to the next location \(exit \). Their transitions are depicted by the following inference rules:

\[
\neg \text{full}(c) \quad \text{c.expr} \overset{\text{dom(c.expr)} \subseteq \text{dom}(c) \cdot \text{c.rear} + \text{value(c.expr)}}{\rightarrow} \text{exit}
\]

and

\[
\neg \text{full}(c) \quad \text{c.expr} \overset{\text{dom(c.expr)} \subseteq \text{dom}(c) \cdot \text{c.front} + \text{value(c.expr)}}{\rightarrow} \text{exit}
\]

A program graph for \(send \) consists of \(\text{Loc} = \text{sub}(send) = \{ \text{c.expr}, \text{exit} \} \). \(\text{Act} \) contains expression, and assignment forms, conditional transition relation is its inference rules, \(\text{Loc}_0 = \{ \text{c.expr} \} \), and \(g_0 = \neg \text{full}(c) \). Graphically, a program graph for \(send \) is then shown in Fig. 9.

![Fig. 9: A program graph for a send operation, c.expr](image)

As mentioned above, the only difference between \(c.expr \) and \(c.expr \) is on the effect to the channel. Therefore, they have the same program graph (see Fig. 9).

On the other hand, \(receive \) statement is used for receiving messages from channels. Unlike \(send \) statement, it has four forms: \(c.?x \), \(c.?x \), \(c.? x > \), and \(c.? ? x > \), where \(c \) and \(x \) denote the name of the channel and the list of argument(s) used to receive the messages, respectively.

The first and third forms of the statement (written in \(? \)) are executable if the first message in the channel matches the pattern from the receive statement. While, the second and fourth forms of the statement (written in \(? \)) are executable if there exists at least one message anywhere in the channel that matches the pattern from the receive statement.

A match of a message is obtained if all message fields that contain constant values in the receive statement equal the values of the corresponding message fields in the message. If no angle brackets are used, the message is removed from the channel buffer after the values are copied, otherwise (angle brackets are used), the message is not removed and remains in the channel.

For any form of \(receive \) statement, it should be assumed that the channel \(c \) is not empty, otherwise it blocks (it has to wait until there is a value in the channel). \(c.?x \) needs an additional requirement: \(c \) and \(x \) must be compatible. The effect of \(c.?x \) operation is that the value of the front channel (i.e., \(c.front \)) will be taken from \(c \) and stored into \(x \).

When all requirements are met, there will be a transition from the initial location \(c.?x \) to the next location \(exit \) as depicted in the following inference rule:

\[
\neg \text{empty}(c) \quad c.?x \overset{\text{dom(c)} \subseteq \text{dom}(c) \cdot x = c.i \cdot \text{front} + \text{value(c)}}{\rightarrow} \text{exit}
\]

The compatibility requirement for \(c.? ? x \) is softer than the one for the previous statement, which is there must be at least one \(i, \text{front} \leq i \leq \text{rear} \) such that \(c.i \) and \(x \) are compatible. The effect of \(c.? ? x \) operation is that the value of the \(i \)-th position in \(c \) (i.e., \(c.i \)) will be taken and stored into \(x \).

When all requirements are met, there will be a transition from the initial location \(c.? ? x \) to the next location \(exit \) as depicted in the following inference rule:

\[
\neg \text{empty}(c) \quad c.? ? x \overset{\text{dom(c)} \subseteq \text{dom}(c) \cdot x = c.i \cdot \text{front} + \text{value(c)}}{\rightarrow} \text{exit}
\]

for some \(i, \text{front} \leq i \leq \text{rear} \).

The program graph for the \(receive \) statements \(c.?x \), \(c.? ? x \), or \(c.? ? x \) is, respectively, defined formally with \(\text{Loc} = \text{sub}(c.i) = \{ c.?x, \text{exit} \} \), \(\text{Loc} = \text{sub}(c.i) = \{ c.? ? x, \text{exit} \} \), and \(\text{Loc} = \text{sub}(c.i) = \{ c.? ? ? x, \text{exit} \} \). \(\text{Act} \) contains expression, assignment forms. The conditional transition relation is inference rule, \(\text{Loc}_0 = \{ c.i \} \), \(\text{Loc}_0 = \{ c.i \} \), and \(\text{Loc}_0 = \{ c.i \} \), and \(g_0 = \neg \text{empty}(c) \). Based on the way the value moves from the channel to the variable, the program graph for \(c.?x \) and \(c.? ? x \) are very much the same. Therefore, the program graphs for \(receive \) statements are sufficiently depicted one in Fig. 10.

![Fig. 10: A program graph for a receive statement](image)

Communication operations between two or more processes in Java (i.e., both send and receive), either they are in the same computer or different computers are implemented by defining a separate class containing at least a buffer and two methods. Particularly, when two or more communicating processes are in different computers, then either socket programming or Remote Method Invocation (RMI) should be implemented.

In Java, socket programming is the most widely used concept in networking [14], [15]. Sockets provide the communication mechanism between two computers using TCP (Transmission Control Protocol). A client program creates a socket on its end of the communication and attempts to connect that socket to a server. When the connection is made, the server creates a socket object on its end of the communication. The client and server can now communicate by writing to and reading from the socket [14], [15]. When a communication is performed via socket, the success of both operations actually does not only depend on contention of the buffer, but also on the network connection. The sending and receiving can only proceed when the buffer is not full and is not empty, respectively, plus connection is still maintained.

In accordance with the implementation discussed above, \(send \) and \(receive \) statements in PROMELA are implemented by a method \(send \) and \(receive \) respectively in Java. In this way, they can be defined in a similar way to \(send \) and \(receive \) statements in PROMELA. Hence, the program graph for \(send \) statement in PROMELA and \(send \) method in Java, \(receive \) statement in PROMELA and \(receive \) method in Java are equivalent (or similar).

4) **Weak Atomicity:** Given \(\text{atomic} \) in CA, for \(\text{atomic} \in P \), while \(\text{atomic} \in J \), and we prove that \(PG(\text{atomic}) \simeq PG(\text{atomic} \cdot \text{while} \cdot \text{atomic}) \).

In PROMELA, an atomic construct is expressed in a form of atomic\{stmt1, \ldots , stmt_n\}, in which stmt_i for \(1 \leq i \leq n \).
n can be any construct. The effect of an atomic evaluation toward the change of variable's values is postponed until the last statement $stmt_n$ is completely evaluated. In the execution of an atomic construct, there might be $stmt_j$ for some j, $1 \leq j \leq n$, that blocks, and control flow stays in the location where the list of arguments $stmt_1, \ldots, stmt_{j-1}$ for some j, $1 \leq j \leq n$ has completely been executed. The rest of arguments list $stmt_j, \ldots, stmt_n$ will be treated exactly the same as an atomic except with shorter length of the list. Hence, during an atomic construct's execution, it is possible that other process(es) take control until $stmt_j$ is executable.

The inference rule of an atomic construct if all statements in the argument list are executable during the execution is defined as:

$$
\forall i, 1 \leq i \leq n, stmt_i \text{ executable} \\
\text{atomic}\{stmt_1, \ldots, stmt_n\} \rightarrow \text{exit}
$$

However, if for some i, $1 \leq i \leq n$, $stmt_i$ blocks, it is defined as:

$$
\exists i, stmt_i \text{ block} \\
\text{atomic}\{stmt_1, \ldots, stmt_n\} \rightarrow \text{atomic}\{stmt_1, \ldots, stmt_{n-1}\}.
$$

In the latter case, the transition stops in the "temporary" location $\text{atomic}\{stmt_1, \ldots, stmt_{n-1}\}$. Whenever $stmt_i$ becomes executable, it will be treated similarly as the previous one except with the shorter list of arguments.

Formally, a program graph for an atomic PG(atomic) consists of a set of locations, $\text{Loc} = \text{sub(atomic)} = \{\text{atomic}\{stmt_1, \ldots, stmt_n\}, \text{atomic}\{stmt_1, \ldots, stmt_i\}, \text{exit}\};$ a set of actions, Act consists of actions in the form of an expression, assignment, send or receive; $\text{Loc}_0 = \{\text{atomic}\{stmt_1, \ldots, stmt_n\}\}$, and g_0 is $stmt_1$ executable. Therefore, a program graph for an atomic construct is graphically depicted in Fig. 11.

The execution of a sequence $stmt_1, stmt_2, \ldots, stmt_n$ inside atomic might be interleaved by a certain number of other processes because of blocking. The consequence is that an atomic is partitioned into several subatomics. Even so, the effect of variable valuation will be accumulated at the execution of the last statement in the list of arguments.

Fig. 11: A program graph for an atomic construct

In Java, an atomic construct is implemented by a switch construct inside of a while loop. The switch construct is used to accommodate a number of guards, while the while loop is used to make the flow of program keeps returning to the loop until the last statement in the atomic is completely executed. A Java code fragment of switch – while implementation is depicted in Listing 4.

Listing 4: An implementation of atomic in Java

```java
... int stmt_nmb = 1;
while (stmt_nmb <= nmbr_of_stmt) {
    header.lock();
    switch (stmt_nmb) {
    case 1:
        if (!stmt_1) break;
        stmt_1:
        stmt_nmb = 2;
    case 2:
        if (!stmt_2) break;
        stmt_2:
        stmt_nmb = 3;
        ...
    case n:
        if (!stmt_n) break;
        stmt_n:
        stmt_nmb = nmbr_of_stmt + 1;
    }
    header.unlock();
    }...
```

The loop of a while is exited when $stmt_nmb > nmbr_of_stmt$—when all statements in the argument list of an atomic had completely been executed ($nmbr_of_stmt$ denotes the number of statements are in an atomic construct). The block of switch is surrounded by header.lock() and header.unlock() to ensure the atomicity of a stmt execution in each case. According to the switch definition in Listing 4, for any i, $1 \leq i \leq n$, if $stmt_i$ is false then exit from switch before updating the value of $stmt_nmb$. If $i \leq n$, then $stmt_nmb \leq nmbr_of_stmt$ and program control is still in while loop. However, once exit the switch, header.unlock() is executed—the lock is released. This means that other processes are allowed to take a control flow until $stmt_i$ becomes true. It is similar with what happen in an atomic construct when $stmt_i$ is not executable.

The inference rules for while – switch are defined as follows: If $stmt_i$ is executable for all $i, 1 \leq i \leq n$ during the execution, then:

$$
\forall i, 1 \leq i \leq n, stmt_i \text{ executable} \\
[\text{while – switch}]\{stmt_1, \ldots, stmt_n\} \rightarrow \text{exit}
$$

However, when there is $i, 1 \leq i \leq n$, and $stmt_i$ is not executable, then

$$
\exists i, 2 \leq i \leq n \text{ block} \\
[\text{while – switch}](\{stmt_1, \ldots, stmt_n\}) \rightarrow [\text{while – switch}](\{stmt_1, \ldots, stmt_n\})
$$

Formally, a program graph for a while – switch construct consists of a set of locations, $\text{Loc} = \text{sub(while – switch)} = \{\text{while – switch}(stmt_1, \ldots, stmt_n), \text{while – switch}(stmt_1, \ldots, stmt_n, \text{exit})\};$ a set of actions, Act consists of either an expression, assignment, send or receive; $\text{Loc}_0 = \{\text{while – switch}(stmt_1, \ldots, stmt_n)\}$, and g_0 is $stmt_1$ executable. And, the corresponding program graph is shown in Fig. 12.

To prove the equivalence (or similarity) between the program graph for atomic construct and one for while – switch construct in Java is done by comparing the program graph in Fig. 11 and one in Fig. 12, and it is evident that $\text{PG(atomic)} \simeq \text{PG(while – switch)}$.

5) Strong Atomicity: Given $(d_{\text{step}}, \text{synchronize}) \in \text{CA}$, for $d_{\text{step}} \in P$, $\text{synchronize} \in J$, and we prove that $\text{PG}(d_{\text{step}}) \simeq \text{PG}(\text{synchronize})$.

(Advance online publication: 21 November 2015)
Step introduced a deterministic code fragment that is executed indivisibly [17]. Syntactically, it is like atomic construct, except some differences: (1) goto cannot come into or go out of a step sequence; (2) the sequence is executed deterministically, if non-determinism occurs, it is carried out in deterministic manner, for example, by always selecting the first true (or executable) guard in every selection and repetition structure; and (3) if the execution of any statement inside the sequence can block, it is an error. For this reason, in most cases send and receive statements cannot be used inside a step sequence.

Fig. 12: A program graph for a while-switch construct in Java

Formally, a program graph for a step construct consists of a set of locations, Loc = sub(step) = \{step(stmt1, ..., stmtn), exit\}; a set of actions, Act is in the form of an expression, assignment, or send and receive; a set of initial locations, Loc0 = \{step(stmt1, ..., stmtn)\}; and an initial condition, go which is the executability of stmt1 (i.e., the first statement in the sequence). And graphically, a program graph for a step construct is shown in Fig. 13.

Fig. 13: A program graph for a step construct

The above situation can only be achieved when a step construct is in the verified model—all statements in the argument list are already proved executable. Otherwise, the program graph for a step will consist of a set of locations, Loc = sub(step) = \{step(stmt1, ..., stmtn), error, exit\}; a set of actions, Act is in the form of an expression, assignment, send or receive; a set of initial locations, Loc0 = \{step(stmt1, ..., stmtn)\}; and an initial condition, go which is the executability of stmt1. And graphically, a program graph for a step with the possibility of error is presented in Fig. 14.

Fig. 14: A program graph for a step construct with the possibility of error

Java provides a synchronized keyword to methods that cause only one invocation of a synchronized method on the same object at a time. Every object has an intrinsic lock associated with it. A thread that needs exclusive and consistent access to an object’s fields has to acquire the object’s intrinsic lock before accessing them, and then release the intrinsic lock when it is done with them. A Java method may be synchronized, which guarantees that at most one thread can execute the method at a time. Other threads wishing access are forced to wait until the currently executing thread completes [14],[15].

There is also a synchronized statement in Java that forces threads to execute a block of code sequentially. Unlike synchronized methods, synchronized statements must specify the object that provides the intrinsic lock.

Synchronize in Java might be used to implement a step construct in PROMELA. In accordance with a step construct’s behavior, however, synchronized statement is more appropriate than synchronized method.

The inference rule for a synchronize is defined as:

\[
\text{synchronize}\{stmt1, \ldots, stmtn\} \rightarrow \text{exit}
\]

Formally, a program graph for a synchronize consists of a set of locations, Loc = sub(synchronize) = \{synchronize(stmt1, ..., stmtn), exit\}; a set of actions, Act consists of either an expression, assignment, send or receive; set of initial locations, Loc0 = \{synchronize(stmt1, ..., stmtn)\}; and go0 is the executability of stmt1. And the program graph for a synchronize is shown in Fig. 15.

Fig. 15: A program graph for a synchronize in Java

To prove the equivalence (or similarity) between the program graph for a step and one for a synchronize is done by comparing these two program graphs from Fig. 13 and Fig. 15 respectively. It is evident that there must be two bijection functions f and g such that \(f(\text{step}) = \text{synchronize}, f(\text{exit}) = \text{exit}, \) and \(g(\text{step}, \text{exit}) = g(\text{synchronize}, \text{exit}).\) Hence, it is proven that \(PG(\text{step}) \approx PG(\text{synchronize}).\)

The synchronize’s implementation in Fig. 15 is taken by assuming (or assuring) that every \(stmt_i, 1 \leq i \leq n,\) is executable. Otherwise, it is error as described in the following inference rule:

\[
\exists i; 1 \leq i \leq n, stmt_i \text{ block synchronize}\{stmt1, \ldots, stmtn\} \rightarrow \text{error}.
\]

Formally, a program graph for a synchronize with error has a set of locations, Loc = \{synchronize(stmt1, ..., stmtn), error, exit\}; a set of actions, Act is in the form of an expression, assignment, send or receive. The conditional transition relation is its inference rules; a set of initial locations Loc0 = \{synchronize(stmt1, ..., stmtn)\}, and the initial condition go is the executability of stmt1. The program graph for a synchronize with error is shown in Fig. 16.

(Advance online publication: 21 November 2015)
The only difference with a program graph in the previous case (i.e., one with no error) is an additional location exit. Therefore, in this case there is also an equivalence (or a similarity) between a program graph for a \(d\)-step with error and one for synchronize with error.

![Program Graph for Synchronize with Error](image)

Fig. 16: The program graph for a synchronize with Error in Java

6) Selection iffi: In PROMELA, a selection construct iffi has a unique start and stop state. Each option sequence inside the construct defines outgoing transitions for the start state, leading to the stop state. By default, the end of each option sequence leads to the control state that follows the construct [17].

The selection construct iffi must have at least one option sequence (for some integer \(i\), \(1 \leq i \leq n\)). A sequence, \(stmt_i\) for some \(i\), \(1 \leq i \leq n\), can be selected for execution only when its guard statement \(g_i\) is executable. If more than one guard statements are executable, one of them will be selected in non-deterministic manner. Otherwise, if there is no executable guard statement, the selection construct as a whole blocks. This means that a non-deterministic selection construct iffi as a whole is executable only if there is at least one guard inside it is executable.

Listing 5: A syntax of the selection construct, iffi

```java
if
  { :: \(g_1\) -> stmt_1;
    :: \(g_2\) -> stmt_2;
    ...
    :: \(g_n\) -> stmt_n;
  }
fi
```

The syntax of the selection construct iffi is expressed in a form as shown in Listing 5.

The inference rules of a selection construct iffi are defined as:

\[
stmt_i \stackrel{\beta_\alpha}{\rightarrow} stmt_i' \quad \text{iffi} \quad \text{if } \neg g_i \land \beta_\alpha \rightarrow stmt_i'
\]

when the corresponding statement \(stmt_i\) of the selected guard \(g_i\) requires more than one step of execution, or:

\[
 stmt_i \stackrel{\beta_\alpha}{\rightarrow} stmt_i' = \text{exit} \quad \text{iffi} \quad \text{if } \neg g_i \land \beta_\alpha \rightarrow \text{exit}
\]

when the corresponding statement \(stmt_i\) of \(g_i\) is one step of execution, or:

\[
 stmt_i \stackrel{\neg g_1 \land \neg g_2 \land \ldots \land \neg g_n}{\rightarrow} \text{iffi}
\]

when there is no guard holds, the selection blocks.

Formally, a program graph for a nondeterministic selection construct iffi has a set of locations, \(Loc = \text{sub}(\text{iffi}) = \{\text{iffi}, \text{exit}\} \cup \bigcup_{1 \leq i \leq n}(\text{sub}(\text{stmt}_i) \setminus \{\text{stmt}', \text{exit}\})\); a set of actions, \(Act\) is normally in the form of an expression, assignment, and send or receive; conditional transition relation is all inference rules mentioned above; a set of initial locations, \(Loc_0 = \{\text{iffi}\}\); and an initial condition, \(g_0\) is guard for selected option \(g_i\)’s. And graphically, it is shown in Fig. 17.

![Program Graph for Nondeterministic Selection Construct iffi](image)

Fig. 17: A program graph for a nondeterministic selection construct iffi

In Java, a nondeterministic selection construct iffi is implemented in two approaches: (i) randomize, and (2) priority. The behavior of the randomize approach is closer to the one of selection construct iffi in PROMELA than the priority. Since the priority approach behaves like most general purpose (programming) languages including Java.

Furthermore, the randomize approach is implemented in two versions (i.e., iffi-[R1], iffi-[R2]). The first version of randomize initially generates a random number \(i, 1 \leq i \leq n\) for some positive integer \(n\) (in which \(n\) is number of guards inside selection construct iffi). Then the value of \(i\) is assigned to a variable choice to select the matching case in the switch construct, and evaluate the guard \(g_i\). If the guard \(g_i\) holds (or executable), the corresponding sequence \(stmt_i\) will be executed. Otherwise, the function will generate another random number \(j\) repeatedly until finds a guard \(g_j\) for some \(j, 1 \leq j \leq n\) holds. As normal, \(\text{header.lock()}\) and \(\text{header.unlock()}\) are used to guarantee an atomicity. Then, a Java code fragment for this implementation is shown in Listing 6.

Listing 6: A Java code fragment of random selection in Java version one

```java

boolean if_flag=false;
while (!if_flag) {
  int choice=1+Math.random()*numbr_of_opts;
  switch (choice) {
    case 1:
      header.lock();
      if (g_1) {
        header.unlock();
        break;
      }
    case 2:
      header.lock();
      if (g_2) {
        header.unlock();
      }
      ...
  }
}
```

(Advance online publication: 21 November 2015)
break;
 } if_flag=true;
stmt_2;
break;
 ...
 case n:
header.lock();
if (!g_n) {
 header.unlock();
break:
}
 if_flag=true;
stmt_n;
break:
}
header.unlock();
...

There are two levels of break statement used in this implementation; one is inside if statement and the other
is outside. The former is used to exit from switch when guard_i
is not true, and allow another process to take the program
control (by unlocking). While the later is used to exit from the
switch when a guard g_i is true, after executing stmt_i.
Therefore, a statement header.unlock() is placed outside the
while loop.

The semantics of a Java selection construct using the
randomize approach version one is formally explained by
the following inference rules: If a randomly selected guard g_i
satisfied, and the corresponding action stmt_i is not one-step
statement, then there is a transition to the location stmt_i:

\[i \leftarrow \text{random}(1...n) \land \text{sequence}_i \neq \text{exit} \]
\[\text{if}_i \text{r_1}^{-\text{guard}} \rightarrow \text{sequence}_i \]

If a randomly selected guard g_i satisfied, and the corre-
sponding action stmt_i is one-step statement, then there is
a transition to location exit:

\[i \leftarrow \text{random}(1...n) \land \text{sequence}_i = \text{exit} \]
\[\text{if}_i \text{r_1}^{-g_i} \rightarrow \text{exit} \]

If a randomly selected guard, g_i is not satisfied, the transition
returns to the location while:

\[i \leftarrow \text{random}(1...n) \]
\[\text{if}_i \text{r_1}^{-\text{guard}} \rightarrow \text{if}_i \text{r_1} \]

A program graph for an if_i r_1 is formally derived by
determining its components: Loc = sub(if_i r_1) =
\{if_i r_1, switch, exit\} \cup \{sub(stmt_i) \setminus \{stmt_i, exit\}\}. Act
containing an expression, assignment and send or receive,
Loc = \{if_i r_1, switch\}, and g_i is guard for selecting stmt_i.
Since a new location switch does not give any effect toward
the value changes of any other variables in the
construct, this location can be ignored. Graphically, a
program graph for construct if_i r_1 is represented in
Fig. 18.

The last step is proving PG(if_i) \simeq PG(if_i r_1). Unlike
the previous constructs, the number of locations
between these two compared program graphs is different.
This different is caused by an additional location switch
in PG(if_i r_1) to facilitate a random selection. How-
ever, in accordance with Proposition 1, location switch

in PG(if_i r_1) can be coalesced with the initial location
if_i r_1 becomes one new location, say if_i r_1'. And the
result of this coalescing process is a program graph shown
in Fig. 19.

From Fig. 19, it can be observed that number of loca-
tions in PG(if_i r_1) is equal to number of locations in
PG(if_i). Then, there must be two bijective functions f and
g mapping locations and transitions respectively from
PG(if_i) to PG(if_i r_1). Hence, this proves PG(if_i) \simeq
PG(if_i r_1).

Unlike the first version, this second version of implementa-
tion works by first checking all guards g_i in the if_i
construct. If a g_i is executable, then the number i is stored
in the corresponding position of a List variable options
(i.e., options.add(i)). If there is no executable guard (i.e.,
options.size() = 0), then blocks and waits until there is at
least one executable guard; otherwise (i.e., options.size() >
0) generates a number j, \(1 \leq j \leq \text{options.size()} \) randomly
to select the corresponding case in the switch construct.
Because all of options.size() guards in the options variable
are executable, so that any number j, \(1 \leq j \leq \text{options.size()} \) generated by the random function will cause an execution of
stmt_j. Therefore, only one level of break statement needed
in this implementation. Then, the Java code fragment of this
implementation is shown in Listing 7.

Listing 7: A Java code for if_i r_2 implementation

```
   boolean if_flag=false;
   while (!if_flag) {
```
(Advance online publication: 21 November 2015)
The next argumentation is similar to the one in the version and switch when stmt iff $i = 2$.

Marked guards. According to Proposition 1, locations for $i = 2$ becomes one new location, say $i = 2$.

The third implementation of the selection construct is by using conditional construct else if. Therefore, the

flow of execution is similar with one of else if in Java, except the process is repeated until one of condition in else if is executable. Then, the Java code fragment for this implementation is shown in Listing 8.

Listing 8: A Java code for the priority selection, $i = 2$

```
boolean if_flag=false;
while (!if_flag) {
    int choice=-1;
    header.lock();
    if (g_1) {
        choice=1;
    } else if (g_2) {
        choice=2;
    } ...
    else if (g_n) {
        choice=n;
    }
    header.unlock();
    switch (choice) {
    case 1:
        if_flag=true;
        stmt_1; break;
    case 2:
        if_flag=true;
        stmt_2; break;
    ... case options.size() :
        stmt_options.size(); break;
    } ...
}
```

The evaluations in an else − if construct is done sequentially starting from the first condition until find one satisfied, and start to execute a corresponding option stmt. If, however, there is no condition found satisfied, the evaluation of conditions is carried out repeatedly until find a satisfied one. It is why this approach is also called by the priority selection.

The semantics of the Java priority selection construct is formally explained by the following inference rules:

\[
\begin{align*}
\frac{i \leq n}{stmt_j \leftarrow stmt_i; j + 1} \\
\frac{j \leftarrow \text{random}(1\ldots m) \land stmt_j \neq \text{exit}}{i = 2 \rightarrow stmt_j}
\end{align*}
\]

when $list_j$ is a one-step statement, i.e., $stmt_j = \text{exit}$.

Formally, a program graph for the $i = 2$ construct consists of a set of locations, $Loc = \{i = 2, for, switch, exit\} \cup \{\text{stmt} \},$ a set of actions, Act normally contains an expression, assignment, send or receive; a set of initial locations, $Loc_0 = \{i = 2, for, switch\}$, and the initial condition g_0 is the executability of g_i for selecting $stmt_i$. And the program graph for the $i = 2$ construct is graphically shown in Fig. 20.

The last step is proving $PG(i = 2) \simeq PG(i = 2)$. The only different with the first version is that in $PG(i = 2)$ there are two additional locations: for to mark all satisfied guards, and switch to randomly select one among all marked guards. According to Proposition 1, locations for and switch in $PG(i = 2)$ can be coalesced with the initial location $i = 2$, becomes one new location, say $i = 2$.

The next argumentation is similar to the one in the version one, i.e., construct of $i = 2$. Hence, this concludes that $PG(i = 2) \simeq PG(i = 2)$ is proven.

The third implementation of the selection construct is by using conditional construct else if. Therefore, the
The repetition is carried out by initializing counter variable \(var \) in channel from 0, and the repetition will keep running providing the value of \(var \) is less than the length of the array. The value of \(var \) is incremented by one each time the repetition is taken.

The semantics of the deterministic repetition for version one is formally explained by the following inference rules:

\[
\frac{\text{true} \vdash \text{update}}{\frac{\begin{array}{l}
\text{for} \quad \text{var} \geq \text{expr}_1 \land \text{var} \leq \text{expr}_2
\end{array}}{\text{stmt}}}
\]

Fig. 22: A program graph for the deterministic repetition for version one

7) Deterministic repetition for: In PROMELA, the deterministic repetition construct for is represented in three version of forms (or syntaxes),

(i) \(\text{for} \ (\text{var} : \text{expr}_1 \ldots \text{expr}_n) \{ \text{stmt} \} \), the repetition keeps running providing \(\text{var} \geq \text{expr}_1 \land \text{var} \leq \text{expr}_2 \). Starting with \(\text{expr}_1 \), the value of \(\text{var} \) is incremented by one each time the repetition is taken, and the repetition will stop when the value of \(\text{var} \) reaches the value of \(\text{expr}_2 \).

A program graph for the deterministic repetition for version two is formally derived by determining its components: \(\text{Loc} = \text{sub}(\text{for}) = \{ \text{for}, \text{exit} \} \cup \{ \text{sub}(\text{stmt}) \}. \)

The graphical representation of a program graph for the deterministic repetition for is shown in Fig. 22.

(ii) \(\text{for} \ (\text{var} \in \text{array}) \{ \text{stmt} \} \), the value of \(\text{var} \) starts from 0, and the repetition will keep running providing the value of \(\text{var} \) is less than the length of the array. The value of \(\text{var} \) is incremented by one each time the repetition is taken.

The semantics of the deterministic repetition for version two is formally explained by the following inference rules:

\[
\frac{\text{true} \vdash \text{update}}{\frac{\begin{array}{l}
\text{for} \quad \text{var} < \text{length} \left(\text{array} \right)
\end{array}}{\text{stmt}}}
\]

or:

\[
\frac{\text{true} \vdash \text{update}}{\frac{\begin{array}{l}
\text{for} \quad \text{var} = \text{length} \left(\text{array} \right)
\end{array}}{\text{exit}}}
\]

A program graph for the deterministic repetition for version two is formally derived by determining its components: \(\text{Loc} = \text{sub}(\text{for}) = \{ \text{for}, \text{exit} \} \cup \{ \text{sub}(\text{stmt}) \}. \)

The graphical representation of a program graph for the deterministic repetition for is shown graphically in Fig. 23.

(iii) \(\text{for} \ (\text{var} \in \text{channel}) \{ \text{stmt} \} \), this third use of the for statement is to retrieve all messages from a channel sequentially. For doing this, the channel must be defined in a special way, with a single user-defined type as its contents. The repetition is carried out by initializing counter variable \(\text{var} \) associated with the first location of first value stored in the channel by one, and \(\text{var} \) is incremented each time the repetition is taken. The repetition keeps running when the value of \(\text{var} \) is less than or equal to the position of the last value stored in the channel; otherwise it stops.
The semantics of the deterministic repetition for version three is formally described by the following inference rules:

\[
\begin{align*}
\frac{\text{true} : \text{update}}{\text{for}} \\
\frac{\text{false} : \text{update}}{\text{for}} \\
\text{or:} \\
\frac{\text{true} : \text{update}}{-\text{boolean_expr} \rightarrow \text{for}} \\
\frac{\text{false} : \text{update}}{-\text{boolean_expr} \rightarrow \text{exit}}
\end{align*}
\]

A program graph for the deterministic repetition for version three is formally derived by determining its components: \(L_0 = \text{sub(for)}\), \(\text{Act}\), \(\text{Loc} \) contains an expression, assignment, and send or receive, \(L_0 = \{\text{for}\}\), and \(g_0\) is \(\text{boolean_expr}\). The graphical representation of a program graph is shown in Fig. 24.

Fig. 24: A program graph for the deterministic repetition for version three

In Java, the three versions of deterministic repetition for in PROMELA are implemented by a similar construct for \(\{\text{init; boolean_expr; update}\} \{\text{stmt}\}\). In this construct, the initialization step init is executed first, and only once. Then, the boolean expression boolean_expr is evaluated. If it is true, stmt is executed, otherwise, stmt is not executed and flow of control jumps to the next statement past the for loop. After stmt being executed, the flow of control jumps back up to the update statement update. It allows updating any loop control variables, and boolean_expr is again evaluated.

The repetition keeps running until find the boolean_expr is false.

The semantics of Java’s repetition for is formally explained by the following inference rules:

\[
\begin{align*}
\frac{\text{true} : \text{update}}{-\text{boolean_expr} \rightarrow \text{for}} \\
\frac{\text{false} : \text{update}}{-\text{boolean_expr} \rightarrow \text{exit}}
\end{align*}
\]

A program graph for the deterministic repetition for in Java is formally derived by determining its components: \(L_0 = \text{sub(for)}\), \(\text{Act}\) contains an expression, assignment, and send or receive, \(L_0 = \{\text{for}\}\), and \(g_0\) is \(\text{boolean_expr}\). The graphical representation of a program graph is shown in Fig. 25.

Fig. 25: A program graph for the deterministic repetition for in Java

From Fig. 22, 23, 24, and Fig. 25, it is evident that their program graphs are equivalent (or similar). In other word, it can be concluded that \(PG\{\text{for}_1\} \simeq PG\{\text{for}_J\}\), \(PG\{\text{for}_2\} \simeq PG\{\text{for}_J\}\), and \(PG\{\text{for}_3\} \simeq PG\{\text{for}_J\}\) are proven.

8) Repetition - do: A repetition construct do...has a single start and stop state. Each option sequence inside the construct defines outgoing transitions for the start state. The end of each option sequence transfer control back to the start state of the construct, allowing for repeated execution. The stop state of the construct can only be reached via a break statement from inside one of its option sequence [17].

The syntax of the repetition construct do... is expressed in a form as shown in Listing 9.

Listing 9: A syntax of the repetition construct do...

```
\text{do} \\
\{ \\
\quad \cdot \ g_1 \rightarrow \text{stmt}_1; \\
\quad \cdot \ g_2 \rightarrow \text{stmt}_2; \\
\quad \cdot \cdots \\
\quad \cdot \ g_m \rightarrow \text{stmt}_m; \\
\}\text{od}
```

The repetition construct must have at least one option sequence. An option can be selected for execution only when its guard statement is executable. If more than one guard statement is executable, one of them will be selected nondeterministically, otherwise, the repetition construct as a whole blocks. This means a repetition construct as a whole is executable if and only if there is at least one guard inside the construct is executable.

The execution flow of the repetition do... is similar to the one of the selection if... except in the repetition do... it is repeated until finds statement break. Semantics of the repetition construct do... is described by its reference rules as the following.

If the corresponding sequence stmt, of the satisfied guard \(g_i\) requires more than one step of execution, then:

\[
\frac{\text{stmt}_i \uparrow_{g_i}}{\text{do}} \\
\frac{\text{stmt}_i \uparrow_{g_i} \neq \text{exit}}{\text{do}}
\]

Otherwise, if stmt requires more than one step of execution, then:

\[
\frac{\text{stmt}_i \uparrow_{g_i} \rightarrow \text{exit}}{\text{do}}
\]

\[
\frac{\text{stmt}_i \uparrow_{g_i} \rightarrow \text{do}}{\text{do}}
\]
If the corresponding sequence \(stmt_i \) of the satisfied guard \(g_i \) is either equal to or contains \(break \) statement, then the control flow will exit from the repetition (see the following inference rule):

\[
\text{break} \in \text{stmt}_i \\
\text{dood} \mathrel{\rightharpoonup} \text{stmt}_i \setminus \{\text{break} \} \implies \text{exit}
\]

A program graph for the repetition construct \(\text{dood} \) is formally generated by determining its components: a set of locations, \(\text{Loc} = \text{sub}(\text{dood}) = \{\text{dood}, \text{exit}\} \cup \{\text{sub}(\text{stmt}_i) \setminus \{\text{stmt'}, \text{exit}\}\}; \) a set of actions \(\text{Act} \) containing an expression, assignment, send or receive; \(\text{Loc}_0 = \{\text{dood}\}, \) and \(g_0 \) is there at least one satisfied \(g_i \). And the graphical representation of a program graph is shown in Fig. 26.

![Fig. 26: A program graph for the nondeterministic repetition \(\text{dood} \)](image)

When \(\text{stmt}_i \) is completely executed and finds \(\text{break} \) statement, then exit from the loop (repetition). Otherwise, it returns to the loop and performs the similar process.

Like a nondeterministic selection construct \(\text{if} \), a nondeterministic repetition construct \(\text{dood} \) is also implemented in two approaches (i.e., (1) randomize, and (2) priority) in Java.

The first version of randomize implementation of \(\text{dood} \) initially generates a random number \(i \), \(1 \leq i \leq n \) for some positive integer \(n \) (i.e., \(n \) is number of guards inside repetition construct \(\text{dood} \)). Then the value of \(i \) is assigned to a variable \(\text{choice} \) to select the matching case in switch construct, and get the lock (header.lock()) before evaluating the corresponding guard \(g_i \). If the guard \(g_i \) holds (or executable), then release the lock (header.unlock()) before executing the corresponding sequence \(\text{stmt}_i \), and if during executing \(\text{stmt}_i \) finds \(\text{break} \) statement, the repetition terminates. Otherwise, if \(g_i \) does not hold, release the lock and exit from switch. Because the value of variable \(\text{doflag} \) is unchanged, the program control is still inside the while loop and try to generate another random number \(j \) repeatedly until finds a guard \(g_j \) for some \(j \), \(1 \leq j \leq n \) holds.

The \(\text{break} \) statement at the end of \(\text{stmt}_i \) associated with each case inside the switch is ensuring that the flow of control will not fall through to subsequent cases. A Java code fragment of randomize implementation version one is shown in Listing 10.

Listing 10: A Java code for implementation of \(\text{dood}_1 \)

```java
boolean do_flag=false;
while (!do_flag) {
    int choice=1+Math.random()*nmb_l_of_opts;
    switch (choice) {
        case 1:
            header.lock();
            if (!g_1) {
                header.unlock();
                break;
            }
            header.unlock();
            stmt_1;
            do_flag=true; // a break ? */
            break;
        case 2:
            header.lock();
            if (!g_2) {
                header.unlock();
                break;
            }
            header.unlock();
            stmt_2;
            do_flag=true; // a break ? */
            break;
        ... 
        ... 
        case n:
            header.lock();
            if (!g_n) {
                header.unlock();
                break;
            }
            header.unlock();
            stmt_n;
            do_flag=true; // a break ? */
            break;
    }
}
... 
```

The semantics of the Java repetition construct using randomize version one is formally explained by the following inference rules. If a randomly selected guard \(g_i \) satisfied, and the corresponding action \(\text{stmt}_i \) is not one-step statement, then there is a transition to location \(\text{stmt}_i' \):

\[
i \leftarrow \text{random}(1 \ldots n) \land \text{stmt}_i' \neq \text{exit}.
\]

If a randomly selected guard \(g_i \) satisfied, and the corresponding action \(\text{stmt}_i \) is one-step statement, then there is a transition to location \(\text{exit} \):

\[
i \leftarrow \text{random}(1 \ldots n) \land \text{stmt}_i = \text{exit} \land \text{break} \in \text{stmt}_i.
\]

If a randomly selected guard \(g_i \) is not satisfied, the transition return to location while:

\[
i \leftarrow \text{random}(1 \ldots n).
\]

A program graph for the \(\text{dood}_1 \) is formally derived by determining its components: a set of locations, \(\text{Loc} = \text{sub}(\text{dood}_1) = \{\text{dood}_1, \text{switch}, \text{exit}\} \cup \{\text{sub}(\text{stmt}_i) \setminus \{\text{stmt'}, \text{exit}\}\}; \) a set of actions \(\text{Act} \) containing an expression, assignment and send or receive; \(\text{Loc}_0 = \{\text{dood}_1, \text{switch}\}; \) and \(g_0 \) is guard for selected option \(g_i \)’s. Then, a graphical representation of the program graph for the randomize repetition construct version one, \(\text{dood}_1 \) is shown in Fig. 27.

(Advance online publication: 21 November 2015)
The last step is proving \(PG(\text{dood}) \simeq PG(\text{dood}_r) \).
Fortunately, the similar argumentations used in proving the equivalence (or similarity) between \(PG(\text{iffi}) \) and \(PG(\text{iffi}_r) \) also applies in this case. Hence, it is proven that \(PG(\text{dood}) \simeq PG(\text{dood}_r) \).

\[
\begin{align*}
\text{do}_j & \triangleq \text{stmt}_j : \text{do} = \text{stmt}_j; \ j + 1 \\
\text{do}_j & \triangleq \text{stmt}_j, \ j + 1
\end{align*}
\]

If \(\text{list}_j \) is not a one-step statement, i.e., \(\text{list}_j \neq \text{exit} \), then:
\[
\begin{align*}
\text{do}_j & \triangleq \text{random}(1 \ldots m) \land \text{stmt}_j \neq \text{exit} \\
\text{do}_j & \triangleq \text{stmt}_j
\end{align*}
\]

Otherwise, if \(\text{stmt}_j \) is a one-step statement, i.e., \(\text{stmt}_j = \text{exit} \), then:
\[
\begin{align*}
\text{do}_j & \triangleq \text{random}(1 \ldots m) \land \text{stmt}_j \neq \text{exit} \\
\text{do}_j & \triangleq \text{exit}
\end{align*}
\]

A program graph for the \(\text{dood}_r \) is formally derived by determining its components: a set of locations, \(\text{Loc} = \text{sub}(\text{dood}_r) = \{ \text{dood}_r, \text{for}, \text{switch}, \text{exit} \} \cup \{ \text{sub}(\text{stmt}_j) \} \); a set of actions \(\text{Act} \) containing an expression, assignment, send or receive; \(\text{Loc}_0 = \{ \text{dood}_r, \text{for}, \text{switch} \} = \{ \text{dood}_r \} \); and \(g_0 \) is guard for selected option \(g_i \)'s. The graphical representation of program graph for construct \(\text{dood}_r \) is shown in Fig. 28.

Fig. 28: A program graphs for the randomize version two in Java, \(\text{dood}_r \)

The semantics of the randomize implementation for repetition construct \(\text{dood} \) version two in Java is formally depicted by the following inference rules.

To mark \(\text{stmt}_j \) with the corresponding satisfied guard \(g_i \) into a new list variable \(\text{options} \).add(i) for \(i \geq 1 \):

\[
\begin{align*}
\text{stmt}_j & \leftarrow \text{stmt}_j; \ j + 1 \\
\text{do}_j & \triangleq \text{stmt}_j
\end{align*}
\]

Fig. 27: A program graph for the randomize repetition version one, \(\text{dood}_r \)

In Fig. 27, \(g_i \) is the first guard found satisfied in the selection implementation.

The second version of nondeterministic repetition \(\text{dood} \) implementation works similarly with one for nondeterministic selection \(\text{iffi} \) version two plus the mechanism of determining whether exit from or return to the loop. A Java code fragment for the implementation is depicted in Listing 11.

Listing 11: A Java code for the implementation of \(\text{dood}_r \)

```java
// boolean do_flag=false;
while (!do_flag) {
    List<Integer> options=new List(); // header.lock();
    if (g_1) { options.add(1); } // if (g_2) { options.add(2); }
    ... // if (g_n) { options.add(n); }
    header.unlock();

    if (options.size()>0) {
        if_flag=true;
        int choice=Math.random()*(
            options.size();
        choice=options.get(choice);
        switch(choice) {
            case 1: stmt_1; // do_flag=true; /* a break */ break;
            case 2: stmt_2; // do_flag=true; /* a break */ break;
            ... // case options.size(): stmt_options.size();
            do_flag=true; /* a break */ break;
            }
        }
    }
}
... // break
```

Fig. 28: A program graphs for the randomize version two in Java, \(\text{dood}_r \)

The last step is proving \(PG(\text{dood}) \simeq PG(\text{dood}_r) \). To do this, the argumentations used in proving \(PG(\text{iffi}) \simeq PG(\text{iffi}_r) \) will apply again in this case. Hence, it is proved that \(PG(\text{dood}) \simeq PG(\text{dood}_r) \).

The third implementation of a nondeterministic repetition construct \(\text{dood} \) is by using a conditional construct \(\text{else if} \). In this implementation, the flow of execution is similar to one of \(\text{else if} \) in Java, except the process is repeated until one of condition in \(\text{else if} \) (or from guard in \(\text{dood} \)) is executable. Then, a Java code fragment of implementation is depicted in Listing 12.

Listing 12: A Java code fragment of \(\text{dood} \) priority implementation

```java
// boolean do_flag=false;
while (!do_flag) {
    int choice=-1;
    ... // break
```
header.lock();
if (g_1) {
 choice=1;
} else if (g_2) {
 choice=2;
}
else if (g_n) {
 choice=n;
} header.unlock();

switch(choice) {
 case 1:
 stmt_1:
 do_flag=true; /* a break */ break;
 case 2:
 stmt_2:
 do_flag=true; break;

 case n:
 stmt_n:
 do_flag=true; break;
}

The conditions in else – if construct are sequentially evaluated starting from the first until find one is satisfied, and start to execute a corresponding stmt. If, however, there is no condition found satisfied, the evaluation of condition is carried out repeatedly until find a satisfied one.

The semantics of Java priority selection construct dood_pr is formally explained by the following inference rules. If there is a guard g_i for some i satisfied, but $stmt'_i \neq exit$, then:

$$
\text{for some } i, 1 \leq i \leq n \land stmt'_i \neq exit \\
\text{dood_pr} \xrightarrow{g_i} stmt'_i
$$

If there is a guard g_i for some i holds, and $stmt'_i = exit$, then:

$$
\text{for some } i, 1 \leq i \leq n \land stmt'_i = exit \\
\text{dood_pr} \xrightarrow{g_i} exit
$$

Otherwise, if there is no guard holds, then there is no transition occurs (it is still in the location dood_pr), then:

$$
\text{dood_pr} \xrightarrow{g_1 \land \ldots \land g_n \rightarrow \text{dood_pr}}
$$

![Fig. 29: A program graph for the priority repetition dood_pr](image)

A program graph for the dood_pr is formally derived by determining its components: a set of locations, $Loc = \{\text{dood_pr,exit}\} \cup \{\text{sub(stmt)}_i \setminus \{stmt',exit\}\}$; a set of actions Act containing an expresser assignment, send or receive, $Loc_0 = \{\text{dood_pr}\}$, and g_0 is the first satisfied guard g_i's. Program graph for priority repetition (dood_pr) construct is also shown graphically in Fig. 29.

To prove that $PG(\text{dood}) \simeq PG(\text{dood_pr})$ is sufficiently to show that a set of location in $PG(\text{dood_pr})$ is subset of a set of locations of $PG(\text{dood})$. From their program graphs definition, Fig.ure 26, and Fig.ure 29, it can be seen that a set of location in $PG(\text{dood_pr})$ is subset of a set of locations of $PG(\text{dood})$. Hence, it is proven that $PG(\text{dood}) \simeq PG(\text{dood_pr})$. ■

9) Exception Handling: In PROMELA, an unless construct defines an exception handling routine. Similar to the repetition and selection constructs, the unless construct is not really a statement, but a method to define the structure of the underlying automaton and to distinguish between higher and lower priority of transitions within a single process. It can appear anywhere a basic PROMELA statement can appear [17].

The unless construct has syntax:

$$\{ms_1, ms_2, \ldots, ms_n\} \text{unless}\{es_1, es_2, \ldots, es_m\},$$

in which $\{ms_1, ms_2, \ldots, ms_n\}$ and $\{es_1, es_2, \ldots, es_m\}$ are called $\{\text{main_sequence}\}$ and $\{\text{escape_sequence}\}$ respectively.

The guard of either sequence can be either a single statement, or it can be an if, ifnot, dood, or lower level unless construct with multiple guards and options for execution. The way of how to execute the unless construct can be explained as follows. Anytime to execute statement listed in main_sequence, the guard (first statement in escape_sequence) es1 will be checked first. If it is executable, the flow of control will move to escape_sequence, and will never return to main_sequence. So that, if the first statement is executable in the time the-ith statement in main_sequence being executed, starting the ith statement until the last statement in main_sequence will never be executed.

The semantics of the unless construct is explained by the following inference rules: For some $i, i = 1, 2, \ldots, n - 1, n$:

$$ms_i = exit \\
ms_i; ms_{i+1}; \ldots; ms_n \xrightarrow{es_1} ms_{i+1}; ms_{i+2}; \ldots; ms_n,$$

when es_1 is not executable, and ms_i is one-step execution statement ($ms_i = exit$), then there is a transition from $ms_i; ms_{i+1}; \ldots; ms_n$ to $ms_{i+1}; ms_{i+2}; \ldots; ms_n$, or:

$$ms_i \neq exit \\
ms_i; ms_{i+1}; \ldots; ms_n \xrightarrow{es_1} ms_{i}; ms_{i+1}; \ldots; ms_n,$$

when es_1 is not executable, but ms_i is multi-step execution statement ($ms_i \neq exit$), then there is a transition from $ms_i; ms_{i+1}; \ldots; ms_n$ to $ms_i; ms_{i+1}; \ldots; ms_n$, or:

$$ms_i; ms_{i+1}; \ldots; ms_n \xrightarrow{es_1} es_1 es_2; \ldots; es_m;$$

when es_1 is executable, the control flow moves to $es_1; es_2; \ldots; es_m$ and never comes back.

(Advance online publication: 21 November 2015)
A program graph for the `unless` construct is derived by determining its components: a set of locations, \(\text{Loc} = (\text{unless}) = \{\text{unless}, \text{exit}\} \cup \{ \text{sub}(\text{stmt}_i) \} \setminus \{ \text{exit} \} \); a set of actions, \(\text{Act} \) containing an expression, assignment, send or receive; a set of initial locations, \(\text{Loc}_0 = \{\text{unless}\} \); and an initial condition, \(g_0 \) is \(e_{s_1} \). Then, the graphical representation of the program graph is shown in Fig. 30.

Fig. 30: A program graph for the `unless` construct

Based on the `unless` construct’s flow of execution, and there is no direct corresponding construct in Java, then the `unless` construct is implemented by `try – catch` construct. In order to simulate the `unless` construct’s flow of execution, a Java code fragment of this implementation is described in Listing 13.

Listing 13: A Java code fragment of `try – catch` implementation for `unless`

```
... try {
    if (es_1 != 0) throw New Exception;
    ms_1;
    if (es_1 != 0) throw New Exception;
    ms_2;
    ...
    if (es_1 != 0) throw New Exception;
    ms_n;
} catch(Exception ex) { es_1; es_2; ; ; es_m }
...}
```

Each time \(ms_i \), \(i \in \{1, 2, ..., n\} \) is being executed, \(es_1 \) must be checked first. If \(es_1 \) is executable, the flow of control moves to the `catch` section. Once it reaches the `catch` section, it will never return. This means, it starts executing all statements in the `catch`’s section. In another word, all of \(ms_1, ms_2, ..., ms_n \) will be executed when \(es_1 \) is never executable during the execution of \(ms_1, ms_2, ..., ms_n \).

The flow of control of `try – catch` (i.e., implementation of `unless`) is depicted by its program graph shown in Fig. 31.

The semantics of the `try – catch` construct is explained by the following inference rules. If for some \(i \), \(i = 1, 2, ..., n-1, n \), and \(ms_i \) is one-step statement and \(es_1 \) is still not executable, there is an intermediate transition from \(ms_i; ms_{i+1}; ; ; ms_n \) to \(ms_{i+1}; ms_{i+2}; ; ; ms_n \), then:

\[
ms_i = \text{exit} \\
\text{try}\{ms_i; ; ; ms_n\} \quad \xrightarrow{\neg es_1} \quad \text{try}\{ms_{i+1}; ms_{i+2}; ; ; ms_n\}
\]

If for some \(i \), \(ms_i \) is multi-step statement and \(es_1 \) is still not executable, an intermediate transition is from \(ms_i; ms_{i+1}; ; ; ms_n \) to \(ms_{i+1}; ms_{i+2}; ; ; ms_n \), then:

\[
ms_i' \not= \text{exit} \\
\text{try}\{ms_i; ; ; ms_n\} \quad \xrightarrow{\neg es_1} \quad \text{try}\{ms_{i+1}; ms_{i+2}; ; ; ms_n\}
\]

Otherwise, once \(es_1 \) executable, the transition occurs from the location \(ms_i; ms_{i+1}; ; ; ms_n \) to location \(es_1; es_2; ; ; es_m \), and:

\[
\text{try}\{ms_i; ms_{i+1}; ; ; ms_n\} \quad \xrightarrow{es_1} \quad \text{try}\{es_1; es_2; ; ; es_m\}
\]

Fig. 31: A program graph for the `try – catch`’s construct in Java

The last step is proving that \(\text{PG}(\text{unless}) \equiv \text{PG}(\text{try – catch}) \). Based on Fig. 30, and Fig. 31, there must be two bijective functions \(f \), and \(g \) such that \(\text{PG}(\text{unless}) \equiv \text{PG}(\text{try – catch}) \).

IV. THE P2J TRANSLATOR TOOL

The work of proving the association’s correctness is a part of the code translator tool development. This code translator tool translates a model of PROMELA to a Java program. The correctness of the association will guarantee the preserving semantics. The developed translator is named by P2J stand for PROMELA to Java. It is developed based on the association construct CA defined from a subset of constructs of PROMELA and a subset of constructs of Java.

Fig. 32: An example of PROMELA model to be translated

Fig. 32 shows a simple example of model consisting of the declaration of global variables including channel, and two processes (proctype), i.e. `satu` and `init`. The process `satu` is
composed by some elementary constructs, i.e., expression, assignment, atomic, and nondeterministic selection iffi. And the init process consists of two statements run.

The model in Fig. 32 is translated to five Java classes—HeaderInterface (stored in a Library), HeaderImpl (header implementation), ChannelLauncher (to run class channel), satu and init (see Fig. 33).

Fig. 33: The list of classes as the result of translation

These classes correspond to respectively the global declaration variables, channel declaration, and two processes satu and init of the translated PROMELA model. The result of this translation is depicted by their class definitions as shown in Fig. 33, 34, 35, 36 and 37, respectively.

Fig. 34: The class definition of HeaderImpl

Fig. 35: The class definition of ChannelLauncher

Channel is run similarly as header, so that the method main() not only runs header itself but also runs the channels in the global declaration. This will work provided all channels reside in the same machine as header. In case the channels are separated in different machines from header, each machine needs launcher for channel.

V. CONCLUSION

This paper has proved the correctness of association from a subset of PROMELA constructs to a subset of Java constructs. The association’s correctness is proved by showing the equivalence (or similarity) of program graph for every pair of associated constructs in the association. The similarity of two program graphs is determined by the equivalence of corresponding locations between the two program graphs. The number of locations of program graph for any construct corresponds to the number of elements in the substatement of construct (or statement).

Several pairs of associations have exactly the same program graphs, and some do not. For those pairs that have exactly the same program graphs, their equivalence can be shown in a straightforward manner. On the other hand, those that do not have exactly the same program graphs need some additional steps to equalize their number of locations. This is done by coalescing ignorable locations together with the previous closest location into one new location.

The different number of locations in program graph for Java constructs are caused by two reasons: (i) most constructs in PROMELA do not have direct corresponding constructs in Java; hence combining more than one construct is required, and yields additional locations, and (ii)
PROMELA models need verification (or simulation), while Java programs need execution. In verification, all possible options (such as in selection and repetition) will be taken, while in execution only one is taken.

The last section has shown the implementation of the defined construct association in developing a source-to-source code translator from PROMELA models to Java programs, P2J Code Translator that preserves semantics.

REFERENCES

(Advance online publication: 21 November 2015)