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Abstract—Without assuming the symmetry of the connected 

matrix and the boundedness or monotonicity of the nonlinear 
activation functions, some new sufficient criterions are obtained 
for the asymptotic stability in the large for a class of neural 
networks. These criterions are applied easily and widely too. 
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I. INTRODUCTION 

The Hopfield neural network (HNN [1]–[3]) theory and its 
application are extensively discussed in literature, for 
example, [3]–[17], [19], [21]–[29] and the references cited 
therein. M. Ghatee and M. Niksirat [7] dealt with maximum 
cut problem on a graph with fuzzy edges. An adaptive 
Hopfield neural network with modern simulated annealing 
cooling schedule was proposed to solve the problem. Its 
efficiency was tested for some simulated benchmark 
examples. M. Sheikhan and E. Hemmati [13] explored the 
use of Hopfield neural network as a path set selection 
algorithm. The authors used link expiration time between two 
nodes to estimate link reliability. In this method, 
node-disjoint and link-disjoint path sets can be found 
simultaneously with route discovery algorithm. Simulation 
results showed that the proposed protocol can find path sets 
with higher reliability comparing to other recently proposed 
algorithms. In monograph [19] some sufficient conditions 
were obtained for the stability of the HNN. In [29] a new 5 × 
7 optimized FLC-coupled HNN maximum tracking 
technique was designed. A HNN was used to tune the fuzzy 
membership function routinely. Entire components of a PV 
array, a DC–DC buck-boost zeta converter and a designed 
MPP tracking controller were implemented in a 
Matlab–Simulink tool to validate the HNN. The results 
validated the effectiveness and execution of the HNN using 
the optimized fuzzy system. The designed system was 
successfully tested on an experimental prototype. 

As we know, determining the stability of the equilibrium 
points is essential for the HNN and its application [4], [5], 
[12], [17], [19]. It is commonly assumed that the connected 
matrix is symmetrical or the nonlinear activation functions 
are monotonously non-decreasing or bounded ([3]–[16] etc.) 
in the stability criterions for HNN.  

In the paper, we prove some new sufficient criterions of 
asymptotic stability in the large for the HNN by means of 
analysis and calculation method without assuming the 
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symmetry of the connected matrix, and the boundedness [20], 
or the monotonicity of the nonlinear activation functions. 

This paper is arranged as follow. In section 2, we state the 
main results. In section 3, we give the proofs of theorems. In 
section 4, we briefly discuss our conclusion.  

II.  MAIN RESULTS 

Consider the following Hopfield neural network 
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where i j iw V  represents the electrical current input to cell 

i due to the present potential of cell j , and i jw is thus the 

synapse efficacy. Linear summing of inputs is assumed. iI is 

any other (fixed) input current to neuron i. iu is the neural 

voltages. iR  is the resistances. iC  is the capacitance 

[1]–[4]. 
We know that HNN there exists equilibrium point [19]. 

Suppose 1 2( , , , )T
nu u u u     is an equilibrium point of 

system (1). Let 1 2( , , ,x u u x x     ) ,T
nx  then system 

(1) can be rewritten as following equivalent system [19] 

1

( ) , 1, 2, , ,

(0) 0, 1, 2, , ,

n
i i

i i j j j
ji

j

dx x
C w f x i n

dt R

f j n



   

 

 



            (2) 

where ( ) ( ) ( ).j j j j j j jf x g x u g u     

Define ,i i jnsgn x a as follows: 
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The following Theorem 1 through 5 do not need the 
symmetry of the connected matrix or the boundedness and the 
monotonicity of the nonlinear activation functions. 

 
Theorem 1.   If   
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then system (2) is asymptotically stable in the large.  
 

Theorem 2.  If   
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f x R w x x j n

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then system (2) is asymptotically stable in the large. 
  

Theorem 3.  If  | ( ) |j j jf x    ( j  const. 0 )  and 
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then system (2) is asymptotically stable in the large. 
 

Theorem 4.  If  | ( ) | | |j j j jf x K x  ( jK  const. 0 ) and 
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then system (2) is asymptotically stable in the large. 
 
Theorem 5.  If   

| ( ) ( ) | | |j j jf u f v L u v    ( , , ju v R L  const. 0 ) 

 and  
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then system (2) is asymptotically stable in the large . 
 
For the HNN, it is commonly assumed that the connected 

matrix is symmetrical and the hyperbolic tangent function 
tanh cx is taken as activation function ( [7], [16] etc.). We 
have no requirement for the symmetry of the connected 
matrix in the following Theorem 6 and Theorem 7.  

 
Theorem 6.  Suppose  
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1)  If  
1( ) tan , , , 0 1 ,j j j j j j j j jf x b c x b c const b c   

 then system (2) is asymptotically stable in the large. 
 
2)  If ( ) tanh ,j j j j jf x b c x then system (2) is 

asymptotically stable in the large. 
 

3)  If 1( ) sinh ,j j j j jf x b c x  then system (2) is 

asymptotically stable in the large.  
 

Theorem 7.  If 
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then system (2) is asymptotically stable in the large.  

III.  PROOF OF THE THEOREMS 

Proof of the Theorem 1        

We need following Lemma in the proof of Theorem 1.  
Lemma. Suppose that the functions ( )i j jf x  are 

continuous and satisfy the conditions such that the 
uniqueness theorem of solutions holds for the system 
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We also suppose, that there are numbers  
0, 0 (1 )i ia b i n     

such that   
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then the zero solution of (4) is asymptotically stable in the 
large [18].  
 

Proof of the Lemma.  To prove the Lemma we use the 
comparison function 

 1
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which satisfies a Lipschitz condition in nR . We have  

1

1

1
1

| ( ) ( ) | | ( ) ( ) |

                       Max ( , ) | |

                      Max ( , , ) | | .

n

i i i i i i
i

n

i i i i
i

n

n i i
i

V x V x x x x x

a b x x

a b x x







   

 

 






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Specially ( ) | |V x n x √ . In addition,  
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as | |x   . That implies that V is positive-definite and 

“infinitely large”. 
Now we consider an arbitrary (non-trivial) solution of (4) 

( ; , )x t   [ ( ; , ) 0 ]x      . 

Firstly, we prove that the comparison function V , i.e., 
( ) ( ( ; , ))t V x t   is strict decreasing along this solution. It 

is enough to show  
( ) ( ) ( )t V       for t                                 (8) 

 as long as the solution exists.  The existence of solution for 
t    then follows from the estimate. 

By  
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So, for any given positive number 0 , we can assign a 
positive number  ( ) 0     such that for t     , 

the following inequalities hold 
( ( ) )( ) ( ; , ) ( ( ) )( ).i i i i if t x t f t                  

In case of ( ; , ) 0ix t   , we have 

( ) ( ) ( )( ( ) )( )i i i i i i i i ix x x x f t         . 

And in case of ( ; , ) 0ix t   , we have 

( ) ( ) ( )( ( ) )( )i i i i i i i i ix x x x f t         , 

Taking i     in two cases, we obtain 
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Choosing   so that the signs of every non-zero component 

i  and the corresponding component ( ; , )ix t    coincide 

(that is, ( ) ( )i i i ix     for 0i  ),  we obtain  
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for all j with 0j   and   sufficiently small. 

If there is a time 2    such that 

2( ) ( ), ( ) ( )t          for 2t   , 

then the function ( )t  attains its  minimum in 2( , )  , at 1 , 

say. 
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Hence every solution ( ; , )x t    is bounded for ,t   and 

the following limit exists  

0lim ( ( ; , )) 0
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comparison function decreases strictly along every 
non-trivial solution. 
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This establishes the Lemma [18].  

Using this Lemma, we can prove the Theorem 1. In fact, let 
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then the Hopfield neural network (2) is asymptotically stable 
in the large. This ends the proof of the Theorem 1. 
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Therefore, the proof of the theorem 2 is completed.  
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Proof of the Theorem 3        
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The system (2) is asymptotically stable in the large by the 
Theorem 1. This ends the proof of theorem 3. 

Proof of the Theorem 4   
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This establishes the theorem 4 by the theorem 1. 

Proof of the Theorem 5   

If the function ( )j jf x  satisfies the Lipschitz condition, 
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If j jb c  ( 0, 1] , then  

2

2

2

( ) 1
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j j j

j j j j
j

j j

b cd
g x

dx c x

c x b c
x j n

c x

  


 
  




 

and (0) 0.jg   Consequently we have 

( ) 0 for 0, 1, 2, , .j j j jx f x x j n      

Therefore, 

1

1 1 1

( ) | tan | | | | | | |

                   | | for 0, 1, 2, , .

n n n

j j i j j j j i j j i i j
i i i

j j

f x a b c x a x R w

x x j n



  

 

  

  
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By the theorem 1, the system (2) is asymptotically stable in 
the large.  

 
2) Let 

( ) ( ) tanh

for 0, 1, 2, , .

j j j j j j j j j

j

h x x f x x b c x

x j n

   

  
  

We have 

2 2( ) 1 sech 1 sech 0 1 0,j j j j j j j j j j
j

d
h x b c c x b c b c

dx
      

and (0) 0.jh   Therefore,  

tanh 0 for 0, 1, 2, , .j j j j jx b c x x j n      

and 

1 1 1

( ) | tanh | | | = | | | |

                   | | for 0, 1, 2, , .

n n n

j j i j j j j i j j i i j
i i i

j j

f x a b c x a x R w

x x j n
  

 

  

  


 

Hence, the system (2) is asymptotically stable in the large. 
 
3) Let  

1( ) ( ) sinh

for 0, 1, 2, , .
j j j j j j j j j

j

u x x f x x b c x

x j n

   

  
  

then 
2

2 2
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and (0) 0.ju   Consequently we have 

( ) 0 for 0, 1, 2, , .j j j jx f x x j n      

Therefore,  

1 1
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It follows that the system (2) is asymptotically stable in the 
large. The proof of the theorem 6 is completed.  

Proof of the Theorem 7  

The function ( )j jf x =
| 1 | | 1 |

2
j jx x  

 is sketched in 

Figure 1. 

 

If 
1

| | 1,  1, 2, , ,
n

i i j
i

R w j n


    then  

1 1 1

( ) | | | | = | | | |

                  | | for 0, 1, 2, , .

n n n

j j i j j i j j i i j
i i i
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f x a x a x R w
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  


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  


 

By the theorem 1, the system (2) is asymptotically stable in 
the large. The proof of the Theorem 7 is completed. 

IV. CONCLUSION 

 This paper mainly focuses on the stability analysis of 
Hopfield neural network. Seven new sufficient criterions are 

jf  

 
 

 
1  

                                                          1                                   jx  

 
 
 
 
 

Fig. 1.  The sketch of the function ( )j jf x  
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given to guarantee the stability of Hopfield neural network. 
These conditions can be satisfied easily. And these results 
can be applied widely in more areas. The Hopfield model 
based neural network is used frenquently in practical 
applications. 
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