
 

 

 

Abstract—Linkage pattern mining is a data mining technique 

that finds frequent patterns that appear repeatedly across 

multiple sequential data. This technique does not assume 

similarity or correlation between the frequent patterns in a 

linkage pattern; thus, it is expected to be a promising approach 

for discovering causal association among events in multiple 

sensor data, such as physiological signals in different regions 

and crustal movements at different points. However, existing 

methods have focused only on detecting linkage patterns without 

noise/fluctuations in sequential data. This study’s objective is to 

develop a new noise-robust linkage pattern mining method. The 

proposed method excludes pseudo patterns derived from noise 

using closed itemset mining from interval graphs regarding 

frequent patterns such that only noiseless and maximal linkage 

patterns are extracted. The proposed method is applied to 

artificial sequential datasets with embedded linkage patterns. 

Experimental results show that this method can adequately 

detect embedded linkage patterns without noise and previously 

undetectable embedded linkage patterns with noise. 

 
Index Terms—closed itemset, interval graph, linkage pattern, 

sequential pattern mining 

 

I. INTRODUCTION 

equential pattern mining is a promising and effective data 

mining method for finding frequent patterns in large-scale 

sequential data. After Agrawal et al. [1] constructed the 

foundations of sequential pattern mining in 1995, various new 

effective algorithms have been developed [2], [3] and applied 

in a wide range of fields such as web log analysis [4], market 

basket analysis [5], behavior analysis [6], process analysis [7], 

and DNA sequence analysis [8]. Research into sequential 

pattern mining can be broadly classified into two types: 

approaches that target single sequential data and those that 

target multiple sequential data. The former aims to find 

repeating and frequently occurring patterns (frequent patterns 

or episodes) in sequential data [9]–[13]. The latter focuses on 
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detecting same or similar subsequences among sequential 

data [14]–[16]. 

Recently, Miura and Okada [17] proposed a method for 

mining a linkage pattern that is a set of patterns that repeats 

across multiple sequential data. In their method, linkage 

patterns were extracted using an interval graph representation 

of frequent patterns in the sequential data. Note that linkage 

pattern mining does not assume similarity or correlation 

among different sequential data patterns. Fig. 1 shows an 

example of a linkage pattern {A, B, C} that appears across 

three sets of sequential data. As we can see, even if patterns 

that occur frequently in the respective sequential data do not 

show similarity to each other, the set of those patterns is 

extracted as a linkage pattern if it appears continually within 

the same period. Miura’s method demonstrated good 

performance on sequential data without noise/fluctuations 

[17]; however, they suggested that noise/fluctuations within 

the sequential data can significantly affect the accuracy of 

extracting linkage patterns. 

This study develops a noise-robust linkage pattern mining 

method by improving Miura’s method. In our method, closed 

itemset mining is employed to exclude pseudo patterns 

generated by noise/fluctuations and obtain only frequent and 

maximal patterns among different interval graphs. In this 

study, comparative performance results between the proposed 

method and Miura’s method (hereafter referred to as “the 

previous method”) are shown using artificial sequential 

datasets. 

The remainder of this paper is organized as follows. 

Section II defines linkage pattern. Section III defines closed 

itemsets. Section IV discusses problems with the previous 
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method and the procedure of the proposed method. Section V 

explains the experimental methods for performance 

evaluation using artificial sequential datasets. Section VI 

presents the experimental results and discusses some 

observations. Section VII provides an overall summary. 

Note that this paper is an extended and revised version of 

our previous paper presented at IMECS 2014 [18]. 

II. DEFINITION OF LINKAGE PATTERN 

Let S be a single sequential data. freq(S, α) is the number of 

occurrences of a subsequence α in S. For a pre-defined 

constant value θ, α is a frequent pattern in S if freq(S, α) ≥ θ. 

Suppose that multiple sequential data are given as input, 

and that frequent patterns have already been extracted from 

those sequential data. If frequent patterns occurring over 

those sequential data in a certain time frame satisfy the 

following two conditions, the set of those frequent patterns is 

called a linkage pattern. 

1) For all the frequent patterns, there exist one or more 

frequent patterns whose occurring time zones overlap 

partially or entirely with each other.  

2) A set of the frequent patterns that satisfy condition 1) 

occurs x or more times along the sequential data. 

 

III. DEFINITION OF CLOSED ITEMSET 

Let I = {1, 2, …, n} be a set of items. A transaction 

database on I is a set T = {t1, t2,…, tm} such that each ti is 

included in I. Each ti is called a transaction. A set P ⊆ I is 

called an itemset. A transaction including P is called an 

occurrence of P. The set of occurrences of P is expressed as 

T(P). The size of a set of occurrences for P is referred to as the 

frequency of P. 

An itemset P is called a closed itemset if no other itemset Q 

satisfies T(P) = T(Q), P ⊆ Q. For a given minimum support 

constant (hereafter minsup), P is frequent if |T(P)| ≥ minsup. 

A frequent and closed itemset is referred to as a frequent 

closed itemset. 

 

IV. METHOD 

Fig. 2 shows the procedure of the proposed method. Fig. 2a, 

2b, and 2d are the steps implemented in the previous method: 

extracting and labeling frequent patterns from each sequence 

(Fig. 2a), generating interval graphs depending on 

overlapping labels on the time axis (Fig. 2b), and outputting 

the linkage pattern (Fig. 2d). In this method, a new step (Fig. 

2c) is introduced, i.e., closed itemset mining from the 

generated interval graphs. This resolves the problem by which 

linkage patterns are contaminated by noise data, as observed 

in the previous method. These steps are explained in detail 

below. 

A. Frequent pattern extraction and labeling 

First, normalization and discretization are executed on all 

sequential data in a preprocessing. In normalization, 

sequential data are converted to a scale from 0 to 1. In the  

discretization, the range of normalized data (0–1) is divided at 

the D stages, and a discrete value from 0 to D-1 is allocated to 

each data. 

Next, repeatedly occurring frequent patterns are extracted 

from the sequential data using Mannila’s algorithm [13]. This 

algorithm uses a window width w and a minimum number of 

occurrences θ as input parameters, where w and θ are natural 

numbers ≥ 2. Window width w is the length of the slice used to 

scan sequential data. The minimum number of occurrences θ 

is the minimum number of frequent patterns to be extracted. 

Mannila’s algorithm finds frequent patterns that satisfy θ for a 

specified w. 

The labeling process applies the same label to the same 

frequent pattern. This process is performed after excluding 

frequent patterns with length less than w/2. When multiple 

Fig. 2.  Procedure of the proposed method 
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frequent patterns occur within the same periods in the same 

sequential data, labeling is performed for the maximum length 

frequent pattern. 

B. Interval graph generation 

Here, a labeled frequent pattern is referred to as a label. In 

this step, interval graphs are generated from the interval 

representation of each label. An interval graph is obtained by 

associating each label with a node and an overlap of any two 

labels on the time axis between sequential data with an edge 

[19]–[21]. In other words, an interval graph is a set of 

frequent patterns that occur in a linked manner in the same 

period between different sequential data.  

The previous method outputs the interval graph with the 

highest frequency as a linkage pattern. However, frequent 

patterns that are accidentally constructed by noise (pseudo 

patterns) cause the following problems. If different pseudo 

pattern labels are attached to the same interval graphs, these 

interval graphs are considered completely different despite 

having an identical linkage pattern. This reduces the accuracy 

of linkage pattern mining. 

C. Extraction of linkage patterns based on closed itemset 

Pseudo patterns tend to occur randomly on the time axis; 

thus, the probability that the same pseudo pattern will be 

included in multiple equivalent interval graphs is extremely 

low. Therefore, it is expected that pseudo patterns can be 

excluded by extracting label sets that occur commonly in 

multiple interval graphs. The proposed method extracts clear 

linkage pattern without the pseudo patterns by closed itemset 

mining on the obtained interval graphs. 

Fig. 2c shows the process of excluding pseudo patterns 

from interval graphs. Each interval graph is considered a 

transaction, and each node in the interval graph is considered 

an item. By applying closed itemset mining to this transaction 

database, we can extract the maximal node sets (closed 

itemsets) that are shared in minsup or more interval graphs. 

Finally, the closed itemset with the highest frequency is 

output as the linkage pattern. Thus, it is possible to extract 

linkage patterns with greater accuracy as randomly 

constructed pseudo patterns can be excluded. Fig. 2c 

illustrates an example of how pseudo patterns nA, nB, and nC 

are excluded; only the authentic linkage patterns {A, B, C} 

are extracted. 

In this study, we use the fast and exhaustive linear closed 

itemset miner (LCM) algorithm [22]. 

 

V. EXPERIMENTS 

The proposed method was evaluated for extraction 

accuracy and computational time using artificially created 

sequential datasets. 

A. Artificial datasets 

Each artificial dataset comprised three sequential data. The 

sequential data were generated by inserting 10 linkage 

patterns (embedded linkage patterns) into random sequential 

data created using uniform random numbers. For this 

experiment, we created five non-noise artificial datasets 

(Dataset1–Dataset5) that included no noise within the 

embedded linkage patterns. Fig. 3 shows a section of each 

artificial dataset. The formats of linkage patterns embedded in 

each dataset are as follows. Dataset1 is an artificial dataset 

wherein equal length frequent patterns were embedded with 

the same start time across the three sequential data (Fig. 3a). 

Dataset2 is an artificial dataset wherein equal length frequent 

patterns were embedded with different start times across the 

three sequential data (Fig. 3b). Dataset3 is an artificial dataset 

wherein different length frequent patterns for each of the three 

sequential data were embedded at the same time (Fig. 3c). 

Fig. 3.  Artificial datasets 

 

(a)  (b)  (c)  

(d)  (e)  
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Dataset4 is an artificial dataset wherein frequent patterns with 

different lengths for each of the three sequential data were 

embedded at different times (Fig. 3d). Dataset5 is an artificial 

dataset wherein one or two types of frequent patterns were 

embedded with different lengths and different start times for 

each of the three sequential data (Fig. 3e). 

In addition, five artificial datasets 

(Dataset1_noise–Dataset5_noise) that included noise in the 

embedded linkage patterns were created by adding 

fluctuations to each time point in the linkage patterns. The 

fluctuations were generated using normal random numbers 

(SD = 0.01). 

B. Parameter settings 

For frequent pattern extraction, the minimum number of 

occurrences θ was fixed at 5, and the window widths w were 

set to natural numbers ≥3. For closed itemset mining, minsup 

were set to natural numbers ≥2. 

C. Extraction accuracy of linkage patterns  

The extraction accuracies of the embedded linkage patterns 

for the previous and proposed methods were compared using 

the above 10 artificial datasets. Precision, recall, and 

F-measure were used as evaluation indexes. These indexes 

were calculated as follows. 

 

Precision = CDP/DDP 

Recall = CDP/EDP 

F-measure = 2 * Precision * Recall/(Precision + Recall) 

 

Here, CDP is the number of data points in the correctly 

detected areas of the embedded linkage patterns, DDP is the 

number of data points in the areas of the embedded linkage 

patterns detected by the method, and EDP is the number of 

data points in the embedded linkage patterns. 

D. Evaluation of computational time 

This experiment was conducted using the five noisy datasets 

(Dataset1_noise–Dataset5_noise).  

The window width w significantly affected the 

computational time required to find frequent patterns [13]. 

First, we evaluated the computational time for the range of w 

described in Section IV.  

In addition, sequential data length may also largely influence 

the computational time. Therefore, we increased the length by 

linking each dataset together and measured computational 

time when modifying up to 10,000 points in increments of 

1,000.  

 

VI. RESULTS AND DISCUSSION 

A.  Extraction accuracy for non-noise datasets 

 Figs. 4 and 5 are graphs of precision, recall, and F-measure 

in different w when the previous and proposed methods were 

applied to the five non-noise datasets. The minsup was fixed 

at 5. In these graphs, the results in the range 3 ≤ w ≤ 9 are 

shown because no frequent patterns were extracted in w ≥ 10.  

As we can see, the previous method shows unstable scores 

for different w values. This is caused by the pseudo patterns 

randomly formed by noise added to the embedded linkage 

patterns. In contrast, the proposed method demonstrates 

100% extraction accuracy for w > 4. This means that the 

noises included in the interval graphs were suitably excluded 

by closed itemset mining. 

B. Extraction accuracy for noise datasets 

This experiment was conducted using parameters (minsup 

= 5, 3 ≤ w ≤ 9) same as those in the previous section. In the 

previous method, the accuracy of extracting linkage patterns 

was 0% for all datasets because only one interval graph was  

Fig. 5.  Extraction accuracies in different w for the datasets without noise by the proposed method 

Fig. 4.  Extraction accuracies in different w for the datasets without noise by the previous method 
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generated. This is because pseudo patterns exist throughout 

the sequential data. Thus, only the results of the proposed 

method are shown in this section. Fig. 6 shows graphs of 

precision, recall, and F-measure in different w for the five 

datasets with noise (Dataset1_noise–Dataset5_noise). The 

precision values for all datasets are ≥ 80% for all w values. In 

particular, when w ≥ 5, the embedded linkage patterns are 

effectively extracted from all datasets because pseudo 

patterns are suitably excluded by closed itemset mining. Note 

that recall tends to decrease as w increases. In particular, 

when w ≥ 5, recall decreases drastically for all datasets 

because the number of frequent patterns extracted from each 

sequence decreases drastically. Therefore, the obtained 

interval graphs are also reduced drastically. Note that 

F-measure decreases significantly with the drastic decline of 

recall values.  

In addition, we investigated the impact of minsup on the 

extraction accuracy. Fig. 7 shows graphs of precision, recall, 

and F-measure in different minsups. In this experiment, the w 

was fixed at 5. The precision tends to increase with increasing 

minsup in all the datasets. In contrast, the recall decreases 

dramatically with increasing minsup. In particular, a rapid 

decrease in the scores is observed in minsup ≥ 5. The 

F-measure is a similar tendency to the recall and especially 

shows high scores in the range of 2 ≤ minsup ≤ 4. 

From the above results, we can see that w and minsup 

should be fixed at a smaller value to obtain higher extraction 

accuracy.  

C. Impact of window width on computational time 

Fig. 8 shows graphs of computational times when w was 

varied. In this experiment, minsup was set to 5. In addition to 

the total computational time required for all steps in the 

proposed method, these graphs show the computational time 

for Steps (a), (b), and (c). Note that Step (a) is frequent pattern 

extraction and labeling, Step (b) is interval graph generation,  

 

and Step (c) is linkage pattern extraction based on closed 

itemset mining. As we can see, the total computational time is 

strongly affected by the computational time of Step (a) and 

increases drastically with increasing w because Step (a) must 

check labels in a combinatorial manner to find frequent 

patterns. On the other hand, the computational times of Steps 

(b) and (c) are considerably shorter than Step (a) and 

relatively stable against the increased w. This is due to the 

following reasons. First, Step (c) only detects the overlapped 

intervals along the time axis and therefore can be executed in 

linear time for the sequential data length. Furthermore, with 

regard to Step (c), besides the closed itemset enumeration 

algorithm LCM being exceptionally fast, the size of the 

transaction database for interval graphs was small (only tens 

to hundreds of transactions). Thus, computational time is 

highly dependent on the time required to extract frequent 

patterns; however, it is possible to execute within a realistic 

time by reducing the w value. 

D. Impact of sequential data length on computational time 

Fig. 9 shows graphs of computational time for each step, 

including the total time when sequential data length was 

changed. In this experiment, w and minsup were set to 5. As 

we can see, Steps (a) and (b) increase linearly with increased 

sequential data length. However, Step (a) 

 requires more computational time than Step (b) owing to the 

combinatorial search in frequent pattern extraction. For Step 

(c), the computational times are considerably less than Steps 

(a) and (b) although there are major fluctuations related to 

sequential data length. This is because the size of the 

transaction database changed depending on the number of 

extracted interval graphs. From the above, we can see that the 

computational time of the proposed method increases linearly 

with increased sequential data length. However, the 

computational time required to extract frequent patterns 

constitutes a large proportion of the proposed method’s total 

Fig. 6.  Extraction accuracies in different w for the datasets with noise by the proposed method 

Fig. 7. Extraction accuracies in different minsup for the datasets with noise by the proposed method 
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computational time. Increasing the speed of the frequent 

pattern mining algorithm will certainly become an issue when 

applying this method to large-scale real data. 

 

VII. CONCLUSION 

We proposed a new noise-robust linkage pattern mining 

method based on closed itemset mining. In the proposed 

method, closed itemset mining is employed to exclude pseudo 

patterns generated by noise/fluctuations and obtain only 

frequent and maximal patterns among different interval 

graphs. In our first experiment, we compared the performance 

of the previous and proposed methods using artificial datasets. 

As a result, it was shown that the proposed method can 

appropriately detect linkage patterns with noise that were not 

detected by the previous method. Furthermore, we found that 

w and minsup should be fixed at a smaller value to obtain 

higher extraction accuracy. In our second experiment, we 

measured computational time using five datasets with noise 

when the window width w and sequential data length were 

varied. As a result, we observed that computational time 

increases as w and sequential data length increase. 

Furthermore, in the proposed method, the impact of 

introducing closed itemset mining on computational time is 

substantially small. 

In future, we will address increasing the speed of the 

frequent pattern mining algorithm. In addition, we will apply 

the method to large-scale real sequential data that includes 

noise/fluctuations, such as vital data and crustal movement 

data. The practical applicability of the proposed method will 

Fig. 8.  Computational times in different w 

Fig. 9.  Computational times in sequential data of different lengths 
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also be evaluated in terms of extraction accuracy and 

computational time. 
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1) Date of modification 

2016/07/22 

 

2) Brief description of the changes 

    Fig. 7 in the above paper was printed mistakenly. The correct figure is reprinted below. 

By this revision, there is no change in the conclusion of the paper.   

 

 

Before revision 

 

 

After revision 

Fig. 7. Extraction accuracies in different minsup for the datasets with noise by the proposed method 

Fig. 7. Extraction accuracies in different minsup for the datasets with noise by the proposed method 
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