

Abstract—Linkage pattern mining is a data mining technique

that finds frequent patterns that appear repeatedly across

multiple sequential data. This technique does not assume

similarity or correlation between the frequent patterns in a

linkage pattern; thus, it is expected to be a promising approach

for discovering causal association among events in multiple

sensor data, such as physiological signals in different regions

and crustal movements at different points. However, existing

methods have focused only on detecting linkage patterns without

noise/fluctuations in sequential data. This study’s objective is to

develop a new noise-robust linkage pattern mining method. The

proposed method excludes pseudo patterns derived from noise

using closed itemset mining from interval graphs regarding

frequent patterns such that only noiseless and maximal linkage

patterns are extracted. The proposed method is applied to

artificial sequential datasets with embedded linkage patterns.

Experimental results show that this method can adequately

detect embedded linkage patterns without noise and previously

undetectable embedded linkage patterns with noise.

Index Terms—closed itemset, interval graph, linkage pattern,

sequential pattern mining

I. INTRODUCTION

equential pattern mining is a promising and effective data

mining method for finding frequent patterns in large-scale

sequential data. After Agrawal et al. [1] constructed the

foundations of sequential pattern mining in 1995, various new

effective algorithms have been developed [2], [3] and applied

in a wide range of fields such as web log analysis [4], market

basket analysis [5], behavior analysis [6], process analysis [7],

and DNA sequence analysis [8]. Research into sequential

pattern mining can be broadly classified into two types:

approaches that target single sequential data and those that

target multiple sequential data. The former aims to find

repeating and frequently occurring patterns (frequent patterns

or episodes) in sequential data [9]–[13]. The latter focuses on

 Manuscript received February 24, 2015. L. Saerom is with the Division of

Production and Information Systems Engineering, Muroran Institute of

Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan

(e-mail: saerom@cbrl.csse.muroran-it.ac.jp). T. Miura is with the IT

Platform Division Group, Information & Telecommunication Systems

Company, Hitachi, Ltd., 292, Yoshida-cho, Totsuka-ku, Yokohama,

Kanagawa 244-0817, Japan (e-mail: takahiro.miura.mw@hitachi.com). Y.

Okubo is with the Division of Information and Electronic Engineering,

Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido

050-8585, Japan (e-mail: ookubo@cbrl.csse.muroran-it.ac.jp). Y. Okada is

with the College of Information and Systems, Muroran Institute of

Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan

(corresponding author to provide phone: +81-143-5408; fax: +81-143-5408;

e-mail: okada@csse.muroran-it.ac.jp)

detecting same or similar subsequences among sequential

data [14]–[16].

Recently, Miura and Okada [17] proposed a method for

mining a linkage pattern that is a set of patterns that repeats

across multiple sequential data. In their method, linkage

patterns were extracted using an interval graph representation

of frequent patterns in the sequential data. Note that linkage

pattern mining does not assume similarity or correlation

among different sequential data patterns. Fig. 1 shows an

example of a linkage pattern {A, B, C} that appears across

three sets of sequential data. As we can see, even if patterns

that occur frequently in the respective sequential data do not

show similarity to each other, the set of those patterns is

extracted as a linkage pattern if it appears continually within

the same period. Miura’s method demonstrated good

performance on sequential data without noise/fluctuations

[17]; however, they suggested that noise/fluctuations within

the sequential data can significantly affect the accuracy of

extracting linkage patterns.

This study develops a noise-robust linkage pattern mining

method by improving Miura’s method. In our method, closed

itemset mining is employed to exclude pseudo patterns

generated by noise/fluctuations and obtain only frequent and

maximal patterns among different interval graphs. In this

study, comparative performance results between the proposed

method and Miura’s method (hereafter referred to as “the

previous method”) are shown using artificial sequential

datasets.

The remainder of this paper is organized as follows.

Section II defines linkage pattern. Section III defines closed

itemsets. Section IV discusses problems with the previous

Linkage Pattern Mining Method for Multiple

Sequential Data with Noise

Saerom Lee, Takahiro Miura, Yusuke Okubo, and Yoshifumi Okada

S

Fig. 1. Linkage pattern repeating across three sequential data

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

method and the procedure of the proposed method. Section V

explains the experimental methods for performance

evaluation using artificial sequential datasets. Section VI

presents the experimental results and discusses some

observations. Section VII provides an overall summary.

Note that this paper is an extended and revised version of

our previous paper presented at IMECS 2014 [18].

II. DEFINITION OF LINKAGE PATTERN

Let S be a single sequential data. freq(S, α) is the number of

occurrences of a subsequence α in S. For a pre-defined

constant value θ, α is a frequent pattern in S if freq(S, α) ≥ θ.

Suppose that multiple sequential data are given as input,

and that frequent patterns have already been extracted from

those sequential data. If frequent patterns occurring over

those sequential data in a certain time frame satisfy the

following two conditions, the set of those frequent patterns is

called a linkage pattern.

1) For all the frequent patterns, there exist one or more

frequent patterns whose occurring time zones overlap

partially or entirely with each other.

2) A set of the frequent patterns that satisfy condition 1)

occurs x or more times along the sequential data.

III. DEFINITION OF CLOSED ITEMSET

Let I = {1, 2, …, n} be a set of items. A transaction

database on I is a set T = {t1, t2,…, tm} such that each ti is

included in I. Each ti is called a transaction. A set P ⊆ I is

called an itemset. A transaction including P is called an

occurrence of P. The set of occurrences of P is expressed as

T(P). The size of a set of occurrences for P is referred to as the

frequency of P.

An itemset P is called a closed itemset if no other itemset Q

satisfies T(P) = T(Q), P ⊆ Q. For a given minimum support

constant (hereafter minsup), P is frequent if |T(P)| ≥ minsup.

A frequent and closed itemset is referred to as a frequent

closed itemset.

IV. METHOD

Fig. 2 shows the procedure of the proposed method. Fig. 2a,

2b, and 2d are the steps implemented in the previous method:

extracting and labeling frequent patterns from each sequence

(Fig. 2a), generating interval graphs depending on

overlapping labels on the time axis (Fig. 2b), and outputting

the linkage pattern (Fig. 2d). In this method, a new step (Fig.

2c) is introduced, i.e., closed itemset mining from the

generated interval graphs. This resolves the problem by which

linkage patterns are contaminated by noise data, as observed

in the previous method. These steps are explained in detail

below.

A. Frequent pattern extraction and labeling

First, normalization and discretization are executed on all

sequential data in a preprocessing. In normalization,

sequential data are converted to a scale from 0 to 1. In the

discretization, the range of normalized data (0–1) is divided at

the D stages, and a discrete value from 0 to D-1 is allocated to

each data.

Next, repeatedly occurring frequent patterns are extracted

from the sequential data using Mannila’s algorithm [13]. This

algorithm uses a window width w and a minimum number of

occurrences θ as input parameters, where w and θ are natural

numbers ≥ 2. Window width w is the length of the slice used to

scan sequential data. The minimum number of occurrences θ

is the minimum number of frequent patterns to be extracted.

Mannila’s algorithm finds frequent patterns that satisfy θ for a

specified w.

The labeling process applies the same label to the same

frequent pattern. This process is performed after excluding

frequent patterns with length less than w/2. When multiple

Fig. 2. Procedure of the proposed method

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

frequent patterns occur within the same periods in the same

sequential data, labeling is performed for the maximum length

frequent pattern.

B. Interval graph generation

Here, a labeled frequent pattern is referred to as a label. In

this step, interval graphs are generated from the interval

representation of each label. An interval graph is obtained by

associating each label with a node and an overlap of any two

labels on the time axis between sequential data with an edge

[19]–[21]. In other words, an interval graph is a set of

frequent patterns that occur in a linked manner in the same

period between different sequential data.

The previous method outputs the interval graph with the

highest frequency as a linkage pattern. However, frequent

patterns that are accidentally constructed by noise (pseudo

patterns) cause the following problems. If different pseudo

pattern labels are attached to the same interval graphs, these

interval graphs are considered completely different despite

having an identical linkage pattern. This reduces the accuracy

of linkage pattern mining.

C. Extraction of linkage patterns based on closed itemset

Pseudo patterns tend to occur randomly on the time axis;

thus, the probability that the same pseudo pattern will be

included in multiple equivalent interval graphs is extremely

low. Therefore, it is expected that pseudo patterns can be

excluded by extracting label sets that occur commonly in

multiple interval graphs. The proposed method extracts clear

linkage pattern without the pseudo patterns by closed itemset

mining on the obtained interval graphs.

Fig. 2c shows the process of excluding pseudo patterns

from interval graphs. Each interval graph is considered a

transaction, and each node in the interval graph is considered

an item. By applying closed itemset mining to this transaction

database, we can extract the maximal node sets (closed

itemsets) that are shared in minsup or more interval graphs.

Finally, the closed itemset with the highest frequency is

output as the linkage pattern. Thus, it is possible to extract

linkage patterns with greater accuracy as randomly

constructed pseudo patterns can be excluded. Fig. 2c

illustrates an example of how pseudo patterns nA, nB, and nC

are excluded; only the authentic linkage patterns {A, B, C}

are extracted.

In this study, we use the fast and exhaustive linear closed

itemset miner (LCM) algorithm [22].

V. EXPERIMENTS

The proposed method was evaluated for extraction

accuracy and computational time using artificially created

sequential datasets.

A. Artificial datasets

Each artificial dataset comprised three sequential data. The

sequential data were generated by inserting 10 linkage

patterns (embedded linkage patterns) into random sequential

data created using uniform random numbers. For this

experiment, we created five non-noise artificial datasets

(Dataset1–Dataset5) that included no noise within the

embedded linkage patterns. Fig. 3 shows a section of each

artificial dataset. The formats of linkage patterns embedded in

each dataset are as follows. Dataset1 is an artificial dataset

wherein equal length frequent patterns were embedded with

the same start time across the three sequential data (Fig. 3a).

Dataset2 is an artificial dataset wherein equal length frequent

patterns were embedded with different start times across the

three sequential data (Fig. 3b). Dataset3 is an artificial dataset

wherein different length frequent patterns for each of the three

sequential data were embedded at the same time (Fig. 3c).

Fig. 3. Artificial datasets

(a) (b) (c)

(d) (e)

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

Dataset4 is an artificial dataset wherein frequent patterns with

different lengths for each of the three sequential data were

embedded at different times (Fig. 3d). Dataset5 is an artificial

dataset wherein one or two types of frequent patterns were

embedded with different lengths and different start times for

each of the three sequential data (Fig. 3e).

In addition, five artificial datasets

(Dataset1_noise–Dataset5_noise) that included noise in the

embedded linkage patterns were created by adding

fluctuations to each time point in the linkage patterns. The

fluctuations were generated using normal random numbers

(SD = 0.01).

B. Parameter settings

For frequent pattern extraction, the minimum number of

occurrences θ was fixed at 5, and the window widths w were

set to natural numbers ≥3. For closed itemset mining, minsup

were set to natural numbers ≥2.

C. Extraction accuracy of linkage patterns

The extraction accuracies of the embedded linkage patterns

for the previous and proposed methods were compared using

the above 10 artificial datasets. Precision, recall, and

F-measure were used as evaluation indexes. These indexes

were calculated as follows.

Precision = CDP/DDP

Recall = CDP/EDP

F-measure = 2 * Precision * Recall/(Precision + Recall)

Here, CDP is the number of data points in the correctly

detected areas of the embedded linkage patterns, DDP is the

number of data points in the areas of the embedded linkage

patterns detected by the method, and EDP is the number of

data points in the embedded linkage patterns.

D. Evaluation of computational time

This experiment was conducted using the five noisy datasets

(Dataset1_noise–Dataset5_noise).

The window width w significantly affected the

computational time required to find frequent patterns [13].

First, we evaluated the computational time for the range of w

described in Section IV.

In addition, sequential data length may also largely influence

the computational time. Therefore, we increased the length by

linking each dataset together and measured computational

time when modifying up to 10,000 points in increments of

1,000.

VI. RESULTS AND DISCUSSION

A. Extraction accuracy for non-noise datasets

 Figs. 4 and 5 are graphs of precision, recall, and F-measure

in different w when the previous and proposed methods were

applied to the five non-noise datasets. The minsup was fixed

at 5. In these graphs, the results in the range 3 ≤ w ≤ 9 are

shown because no frequent patterns were extracted in w ≥ 10.

As we can see, the previous method shows unstable scores

for different w values. This is caused by the pseudo patterns

randomly formed by noise added to the embedded linkage

patterns. In contrast, the proposed method demonstrates

100% extraction accuracy for w > 4. This means that the

noises included in the interval graphs were suitably excluded

by closed itemset mining.

B. Extraction accuracy for noise datasets

This experiment was conducted using parameters (minsup

= 5, 3 ≤ w ≤ 9) same as those in the previous section. In the

previous method, the accuracy of extracting linkage patterns

was 0% for all datasets because only one interval graph was

Fig. 5. Extraction accuracies in different w for the datasets without noise by the proposed method

Fig. 4. Extraction accuracies in different w for the datasets without noise by the previous method

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

generated. This is because pseudo patterns exist throughout

the sequential data. Thus, only the results of the proposed

method are shown in this section. Fig. 6 shows graphs of

precision, recall, and F-measure in different w for the five

datasets with noise (Dataset1_noise–Dataset5_noise). The

precision values for all datasets are ≥ 80% for all w values. In

particular, when w ≥ 5, the embedded linkage patterns are

effectively extracted from all datasets because pseudo

patterns are suitably excluded by closed itemset mining. Note

that recall tends to decrease as w increases. In particular,

when w ≥ 5, recall decreases drastically for all datasets

because the number of frequent patterns extracted from each

sequence decreases drastically. Therefore, the obtained

interval graphs are also reduced drastically. Note that

F-measure decreases significantly with the drastic decline of

recall values.

In addition, we investigated the impact of minsup on the

extraction accuracy. Fig. 7 shows graphs of precision, recall,

and F-measure in different minsups. In this experiment, the w

was fixed at 5. The precision tends to increase with increasing

minsup in all the datasets. In contrast, the recall decreases

dramatically with increasing minsup. In particular, a rapid

decrease in the scores is observed in minsup ≥ 5. The

F-measure is a similar tendency to the recall and especially

shows high scores in the range of 2 ≤ minsup ≤ 4.

From the above results, we can see that w and minsup

should be fixed at a smaller value to obtain higher extraction

accuracy.

C. Impact of window width on computational time

Fig. 8 shows graphs of computational times when w was

varied. In this experiment, minsup was set to 5. In addition to

the total computational time required for all steps in the

proposed method, these graphs show the computational time

for Steps (a), (b), and (c). Note that Step (a) is frequent pattern

extraction and labeling, Step (b) is interval graph generation,

and Step (c) is linkage pattern extraction based on closed

itemset mining. As we can see, the total computational time is

strongly affected by the computational time of Step (a) and

increases drastically with increasing w because Step (a) must

check labels in a combinatorial manner to find frequent

patterns. On the other hand, the computational times of Steps

(b) and (c) are considerably shorter than Step (a) and

relatively stable against the increased w. This is due to the

following reasons. First, Step (c) only detects the overlapped

intervals along the time axis and therefore can be executed in

linear time for the sequential data length. Furthermore, with

regard to Step (c), besides the closed itemset enumeration

algorithm LCM being exceptionally fast, the size of the

transaction database for interval graphs was small (only tens

to hundreds of transactions). Thus, computational time is

highly dependent on the time required to extract frequent

patterns; however, it is possible to execute within a realistic

time by reducing the w value.

D. Impact of sequential data length on computational time

Fig. 9 shows graphs of computational time for each step,

including the total time when sequential data length was

changed. In this experiment, w and minsup were set to 5. As

we can see, Steps (a) and (b) increase linearly with increased

sequential data length. However, Step (a)

 requires more computational time than Step (b) owing to the

combinatorial search in frequent pattern extraction. For Step

(c), the computational times are considerably less than Steps

(a) and (b) although there are major fluctuations related to

sequential data length. This is because the size of the

transaction database changed depending on the number of

extracted interval graphs. From the above, we can see that the

computational time of the proposed method increases linearly

with increased sequential data length. However, the

computational time required to extract frequent patterns

constitutes a large proportion of the proposed method’s total

Fig. 6. Extraction accuracies in different w for the datasets with noise by the proposed method

Fig. 7. Extraction accuracies in different minsup for the datasets with noise by the proposed method

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

computational time. Increasing the speed of the frequent

pattern mining algorithm will certainly become an issue when

applying this method to large-scale real data.

VII. CONCLUSION

We proposed a new noise-robust linkage pattern mining

method based on closed itemset mining. In the proposed

method, closed itemset mining is employed to exclude pseudo

patterns generated by noise/fluctuations and obtain only

frequent and maximal patterns among different interval

graphs. In our first experiment, we compared the performance

of the previous and proposed methods using artificial datasets.

As a result, it was shown that the proposed method can

appropriately detect linkage patterns with noise that were not

detected by the previous method. Furthermore, we found that

w and minsup should be fixed at a smaller value to obtain

higher extraction accuracy. In our second experiment, we

measured computational time using five datasets with noise

when the window width w and sequential data length were

varied. As a result, we observed that computational time

increases as w and sequential data length increase.

Furthermore, in the proposed method, the impact of

introducing closed itemset mining on computational time is

substantially small.

In future, we will address increasing the speed of the

frequent pattern mining algorithm. In addition, we will apply

the method to large-scale real sequential data that includes

noise/fluctuations, such as vital data and crustal movement

data. The practical applicability of the proposed method will

Fig. 8. Computational times in different w

Fig. 9. Computational times in sequential data of different lengths

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

also be evaluated in terms of extraction accuracy and

computational time.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in 1995 Proc.

11th Int. Conf. on Data Engineering, pp. 3–14.

[2] F. Takchungm, “A review on time series data mining,” Engineering

Applications of Artificial Intelligence, vol. 24, no. 1, 2011, pp.

164–181.

[3] Q. Zhao and S. S. Bhowmick, “Sequential pattern mining: A survey.

technical report.” CAIS, Nanyang Technological University, Singapore,

No. 2003118, 2003.

[4] C. I. Ezeife and Y. Lu, “Mining web log sequential patterns with

position coded pre-order linked WAP-tree,” Data Mining and

Knowledge Discovery, vol. 10, pp. 5–38, 2005c Springer Science,

Business Media. Inc. Manufactured in The Netherlands.

[5] X. Wu, Y. Wu, Y. Wang, and Y. Li, “Privacy-aware market basket data

set generation: A feasible approach for inverse frequent set mining,” in

2005 Proc. 5th SLAM Int. Conf. on Data Mining, pp 103–114

[6] A. D. Lattner, A. Miene, U. Visser, and O. Herzog, “Sequential pattern

mining for situation and behavior prediction in simulated robotic

soccer,” RoboCup 2005: Robot Soccer World Cup IX Lecture Notes in

Computer Science, vol. 4020, pp 118–129, 2006.

[7] R. Sarno, R. D. Dewandono, T. Ahmad, M. F. Naufal, and F. Sinaga,

“Hybrid association rule learning and process mining for fraud

detection,” IAENG International Journal of Computer Science, vol.42,

no. 2, pp. 59–72, 2015.

[8] M. Karaca, M. Bilgen, A. N. Onus, A. G. Ince, and S. Y. Elmasulu,

“Exact tandem repeats analyzer (E-TRA): A new program for DNA

sequence mining,” J. Genet., vol. 84, pp. 49–54, 2005.

[9] H. Ohtani, T. Kida, T. Uno, and H. Arimura, “Efficient Serial Episode

Mining with Minimal Occurrences,” in 3rd Int. Conf. on Ubiquitous

Information Management and Communication, 2009.

[10] P. Wen-Chi and L. Zhung-Xun, “Mining sequential patterns across

multiple sequence databases,” Data & Knowledge Engineering, vol.

68, no. 10, pp. 1014–1033, 2009.

[11] C. Gong, W. Xindong, and Z. Xingquan, “Mining sequential patterns

across time sequences,” New Generation Computing, vol. 26, pp.

75–96, 2008.

[12] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-

C. Hsu, “PrefixSpan: Mining sequential patterns efficiently by

prefix-projected pattern growth.” in 2001 Proc. 17th Int. Conf. on

Data Engineering, pp. 215–224.

[13] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent

episodes in event sequences,” Data Mining and Knowledge Discovery,

vol. 1, pp. 259–289, 1997.

[14] Y. Sakurai, C. Faloutsos, and M. Yamamuro, “Stream monitoring

under the time warping distance” in 2007 Proc. ICDE, pp. 1046–1055.

[15] Y. Sakurai, S. Papadimitriou, and C. Faloutsos, “BRAID: Stream

mining through group lag correlations.” in 2005 Proc. ACM SIGMOD

Conf., pp. 599–610.

[16] Y. Zhu and D. Shasha, “StatStream: Statistical monitoring of

thousands of data streams in real time” in 2002 Proc. of VLDB, pp.

358–369.

[17] T. Miura and Y. Okada, “Detection of linkage patterns repeating across

multiple sequential data,” Int. J. Computer Applications, vol. 63, no. 3,

pp. 14–17, 2013.
[18] L. Saerom, T. Miura, and Y. Okada, “A new method for improving the

performance of linkage pattern mining,” in 2014 Proc. of IMECS, pp.

36–40.

[19] N. Miyoshi, T. Shigezumi, R. Uehara, and O. Watanabe, “Scale free

interval graphs,” Theoretical Computer Science, vol. 410, no. 45, pp.

4588–4600, 2009.

[20] N. Korte and R. H. Mohring, “An incremental linear-time algorithm for

recognizing interval graphs,” SIAM J. Computing, vol. 18, pp. 68–81,

1979.

[21] G. S. Lueker and K. S. Booth, “A linear time algorithm for deciding

interval graph isomorphism.” J. ACM, vol. 26, pp. 183–195, 1979.

[22] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.3: Collaboration of

array, bitmap and prefix tree for frequent itemset mining,” in 2005

Proc. of 1st Int. Workshop on Open Source Data Mining, pp. 77–86.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

http://link.springer.com/book/10.1007/11780519
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

1) Date of modification

2016/07/22

2) Brief description of the changes

 Fig. 7 in the above paper was printed mistakenly. The correct figure is reprinted below.

By this revision, there is no change in the conclusion of the paper.

Before revision

After revision

Fig. 7. Extraction accuracies in different minsup for the datasets with noise by the proposed method

Fig. 7. Extraction accuracies in different minsup for the datasets with noise by the proposed method

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_08

(Revised online publication: 22 July 2016)

__

