
Component Dependency Path Coverage Criteria
for C2-Style Architecture Testing

Lijun Lun and Xin Chi

Abstract—A number of coverage approaches have been
proposed for testing software architecture. Previous research-
es mainly focused on the dependency relationships between
component and connector, they rarely involved the dependency
relationships between components. We investigate how interac-
tion information between components can be used to improve
software architecture testing. Given a C2-style architecture
specified using C2 architecture description language (C2-ADL),
we first construct an intermediate representation, named the
component dependency graph (GCD). GCD combines infor-
mation extracted components, connectors, and dependency
relationships between component and connector, and propose
three component dependency path coverage criteria based on
the GCD , direct component dependency path coverage criterion,
indirect component dependency path coverage criterion, and
Length-N component dependency path coverage criterion. Al-
gorithms are presented to compute the component dependency
path coverage rate on three component dependency path
coverage criteria. It reports on typical C2-style architecture
studies whose experimental results show that the direct and
indirect component dependency path coverage rate increases
from 39.41% to 57.14% for top/bottom components. The
component dependency path of length n coverage rate decreases
from 100% to 32% for top/bottom components. However, the
component dependency path of length 2, 3, 4, 5, and 6 coverage
rate increases from 8% to 37.32% for middle levels components.
The assessment of test coverage criteria will provide software
testers with a guide to apply each component dependency path
coverage criteria.

Index Terms—C2-style architecture testing, component de-
pendency graph, component dependency path, coverage crite-
rion, coverage rate.

I. INTRODUCTION

SOFTWARE architecture is set of components, connec-
tors, and constraints and configurations [1], the corre-

sponding development method takes software architecture as
the core artifact of the software design phase, and becomes
an important means to control the complexity of software
systems, to improve software quality and to support software
development and software reuse. The purpose of software ar-
chitecture analysis and evaluation is to identify the potential
risks and help make proper architecture decision. In software
architecture, component path testing is an important part in
software architecture testing [2]. An appropriate component
path for software architecture testing can reduce test cost.
Different component testing path, need different test cost.

Manuscript received April 18, 2015; revised August 6, 2015. This work
was supported in part by the Natural Science Foundation of Heilongjiang
Province of China under Grant F201036 and by the Scientific Research
Foundation of Heilongjiang Provincial Education Department of China
under Grant 12541250.

Lijun Lun is a Professor, College of Computer Science and In-
formation Engineering, Harbin Normal University, Harbin, China. E-
mail:lunlijun@yeah.net.

Xin Chi is with the College of Computer Science and Infor-
mation Engineering, Harbin Normal University, Harbin, China. E-
mail:xinc1990@163.com.

So, to reduce the test cost is important target to determine
the component path testing as soon as possible.

Current software architecture testing research divided into
two categories [3]. One is to improve the traditional software
testing techniques and methods, so that they service for
software architecture testing. The other is to develop new
software architecture testing techniques and methods, so
that it can better solve problems of software architecture
testing. Formalization testing based on software architecture
has improved the quality of the software products. Automatic
test coverage generation [4] is a hotspot and difficulty in the
field of software architecture testing.

Dependency is a use relationship, which represents a thing
specification changes may affect the change used by other
things. In the software architecture, components communi-
cate with each other to share information, and to provide
a system function [5]. Components need to conform a
component model in order to allow them to be independently
deployed and composed as is i.e. achieve the purpose of
their creation [6]. Component dependency is caused by an
interaction of components in software architecture. Software
architecture functions provided by multiple components, thus
modifying a component may affect the function of the whole
system [7].

This paper proposes three path coverage criteria to analyze
component dependencies for C2-style architecture. Depen-
dency represents the relationships between component and
connector that exist in C2-style architecture specification.
Firstly, set of dependency relationships is defined corre-
sponding to the relationship between component and con-
nector. Then the component dependency graph of C2-style
architecture is constructed on the basis of these dependency
relationships. Based on the component dependency graph
introduced, direct component dependency path coverage cri-
terion, indirect component dependency path coverage crite-
rion, and Length-N component dependency path coverage
criterion are proposed. And present algorithms to compute
the component dependency coverage rate on component de-
pendency coverage criteria. And finally, experimental results
and conclusion are given.

II. RELATED WORK

The paths that will to be tested must be generated or de-
termined before path testing. In this section, we review some
kinds of path generating methods and software architecture
coverage methods.

Marré and Bertolino introduced the spanning sets of enti-
ties for a coverage criterion which can help reduce the cost
of testing without impairing testing efficacy [8]. Costa and
Monteiro presented an observability coverage-directed vector
generation method [9]. This method addressed the problem of

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

finding a minimal set of execution paths that achieve a user-
specified level of observability coverage. This method used
Pseudo-Boolean Optimization (PBO) to model the problem
of finding the paths that are most likely to increase code
coverage. Generated paths are then validated to check for
feasibility.

Path coverage criterion requires that all of execution paths
are executed during testing. In large-scale software, the
existing of infeasible paths in program increases assumptions
of software testing and impacts accuracy of testing serious-
ly. Therefore, some simplified path testing techniques are
often used in practical application [10]. Li et al. proposed
a Length N path coverage criterion [11]. The automated
approach for generating test data was proposed by solving
multi-object function. An efficient approach to automated
generation of structural test data is to breed search iteratively
by profiling of program execution.

Practices show that most of the faults are generated in
interaction between components. Brim et al. proposed a
component-interaction automata to component interaction
specification and verification process [12]. The model is
designed to preserve all the interaction properties to provide
a rich base for further verification, and allows the system
behavior to be configurable according to bindings among
components and other specifics. Wu et al. presented a test
model that depicts a generic infrastructure of component-
based systems and suggests key test elements [13]. The test
model is realized using a component interaction graph (CIG)
in which the interactions and the dependence relationships
among components are illustrated. By utilizing the CIG,
they proposed a family of test adequacy criteria which
allow optimization of the balancing among budget, schedule,
and quality requirements typically necessary in software
development.

Li proposed a matrix-based approach to analyzing depen-
dencies in CBSs [14]. To make it possible, this approach
identified four types of dependencies in a CBS, and then
presented a dependency-based representation called the com-
ponent dependency graph (CDG) and the dependency matrix
(DM) to explicitly represent these dependencies in a CBS.
Based on the CDG of a CBS, they proposed eight types
of dependency-based test coverage criteria for the system,
and built a mathematical basis for managing and analyzing
dependencies in a CBS.

Yoon et al. developed RACSET, a process and infras-
tructure for testing component-based systems [15]. At a
high level the process has several parts. First, developers
model the system under test using a formal representation
with two parts: a directed acyclic graph called the Compo-
nent Dependency Graph (CDG) and a set of Annotations.
A CDG specifies the components making up the system
and specifies inter-component dependencies by connecting
components with AND and XOR relationships. Annotations
include version identifiers for components, and constraints
between components or over configurations, written in first-
order logic. They formally model the configuration space
for component-based systems and use the model to generate
test plans covering user-specified portion of the space -
the example is covering all direct dependencies between
components.

Jin and Offutt proposed a technology of generating test

cases [16] in view of architecture description language
Wright, according to Interface Connectivity Graph (ICG)
and Behavior Graph (BG), and developed testing criteria
for generating software architecture level tests from software
architecture descriptions.

Gao et al. focused on component test coverage issues,
and proposed test models (CFAGs and D-CFAGs) [17] to
represent a component’s API-based function access patterns
in static and dynamic views. A set of component API-
based test criteria is defined based on the test models, and a
dynamic test coverage analysis approach is provided.

Hashim et al. presented Connector-based Integration Test-
ing for Component-based Systems (CITECB) with an ar-
chitectural test coverage criteria [18], and describe the test
models used that are based on probabilistic deterministic
finite automata which are used to represent gate usage
profiles at run-time and test execution. It also provides a
measuring mechanism of how well the existing test suite are
covering the component interactions and provides a test suite
coverage monitoring mechanism to reveal the test elements
that are not yet covered by the test suites.

Muccini et al. proposed a specialization and refinement
of your general approach for software architecture based
conformance testing [19], [20], he dealt with the software
architecture to code mapping rules imposed by the C2
framework helps to limit the mapping problem, and allows
a systematic testing approach.

Lun et al. presented a dependency coverage method for
C2-style architecture [5], [21], which included dependency
edge coverage, direct component dependency coverage, and
indirect component dependency coverage, it covered all the
testing component and connector, and reduced scale of
testing coverage set, so that test the C2-style architecture
effectively.

III. DEPENDENCY RELATIONSHIPS FOR C2-STYLE

The C2 architecture style as a kind of classical archi-
tecture style, which supports large-grained software reuse
and flexible system assembly, and demonstrated in numerous
applications across several domains [22]; at the same time,
the rules of the C2-style are broad enough to render it widely
applicable.

A. Representation for C2-style architecture

The C2-style architecture is primarily concerned with
high-level system composition issues [19]. It consists of
components and connectors, which transmit messages be-
tween components. Components maintain states, perform
operations, and exchange messages with other components
via two interfaces (named top and bottom). Each interface
consists of a set of messages that may be sent or received.
Inter-component messages are classified into two types, viz.
requests to a component to perform an operation, and notifi-
cations that a given component has performed an operation or
changed state. In the C2-style architecture, both components
and connectors have a top and a bottom interface. Systems
are composed in a layered style, where a component’s top
interface may be connected to the bottom interface of a
connector, and its bottom interface may be connected to
the top interface of another connector. Each connector’s

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

TABLE I
DEPENDENCY RELATIONSHIPS IN C2-STYLE ARCHITECTURE

Dependency relationship Notation Description

DEPpn(Comp1.Itp o,Conn2.Ibn i) change of Comp1.Itp o affects Conn2.Ibn i

DEPpn(Comp1.Ibp o,Conn2.Itn i) change of Comp1.Ibp o affects Conn2.Itn i

between interface of component DEPnp(Comp1.Ibp i,Conn2.Itn o) change of Conn2.Itn o affects Comp1.Ibp i

and connector DEPnp(Comp1.Itp i,Conn2.Ibn o) change of Conn2.Ibn o affects Comp1.Itp i

DEPnn(Conn1.Itn1
o, Conn2.Ibn2

i) change of Conn1.Itn1
o affects Conn2.Ibn2

i

DEPnn(Conn1.Ibn1
o, Conn2.Itn2

i) change of Conn1.Ibn1
o affects Conn2.Itn2

i

DEPpn(Comp1, Conn2) DEPpn(Comp1.Itp o, Conn2.Ibn i) ∨
DEPpn(Comp1.Ibp o, Conn2.Itn i)

between component and connector DEPnp(Comp1, Conn2) DEPnp(Comp1.Ibp i, Conn2.Itn o) ∨
DEPnp(Comp1.Itp i, Conn2.Ibn o)

DEPnn(Conn1,Conn2) DEPnn(Conn1.Itn1
o, Conn2.Ibn2

i) ∨
DEPnn(Conn2.Ibn2

o,Conn1.Itn1
i)

DEPp(Comp1) a bottom of Comp1 depends on a top of Comp1, or
in component and connector a top of Comp1 depends on a bottom of Comp1

DEPn(Conn2) a bottom of Conn2 depends on a top of Conn2, or
a top of Conn2 depends on a bottom of Conn2

interface may be connected to any number of components
or connectors.

We represent a component as Compi, where Compi ∈
Comp indicates ith component of C2-style architecture and
Comp represents a set of components. Itp is top interface
finite set of Compi, it consists of the set of top output
interfaces Itp o and top input interface Itp i. Ibp is bottom
interface finite set of Compi, it consists of the set of
bottom output interfaces Ibp o and bottom input interface
Ibp i. Compi uses Itp o or Ibp o to send an event request, and
uses Itp i or Ibp i to receive other component or connector
send messages. If Compi doesn’t the top or bottom output
interface, then Compi can’t send messages from it’s top
or bottom output interface. Similarly, if Compi doesn’t the
top or bottom input interface, then Compi can’t receive
messages from it’s top or bottom input interface.

We represent a connector as Connj , where Connj ∈
Conn indicates jth connector of C2-style architecture and
Conn represents a set of connectors. Itn is top interface finite
set of Connj , it consists of the set of top output interfaces
Itn o and top input interface Itn i. Ibn is bottom interface
finite set of Connj , it consists of the set of bottom output
interfaces Ibn o and bottom input interface Ibn i. Connj uses
Itn o or Ibn o to send an event request, and uses Itn i or Ibn i
to receive other component or connector send messages.

We represent a constraint as (Compi.I
t
p o →

Connj .I
b
n i) ∪ (Compi.I

b
p o → Connj .I

t
n i) ∪

(Conni.I
t
n o → Compj .I

b
p i) ∪ (Conni.I

b
n o →

Compj .I
t
p i) ∪ (Conni.I

t
n o → Connj .I

b
n i) ∪

(Conni.I
b
n o → Connj .I

t
n i). It means that there exists a

path from the output interface of component (connector) to
the input interface of connector (component), or the output
interface of connector to the input interface of connector.

B. Dependency relationships in the C2-style

Dependency relationships [5] the architectural level arise
from the connections between component, connector, and
constraint on their interactions. These relationships may
involve some form of control or data flow, but more generally
involve source structure and behavior. Source structure (or

structure, for short) has to do with static source specifica-
tion dependencies, while behavior has to do with dynamic
interaction dependencies.

Table I provides a summary of these dependency relation-
ships in C2-style architecture.

Here are the descriptions of these dependency relationship-
s, where Compi ∈ Comp represents a component of Comp,
Itp and Ibp are the set of top interfaces and the set of bottom
interfaces of Compi, Connj ∈ Conn represents a connector
of Conn, Itn and Ibn are the set of top interfaces and the set
of bottom interfaces of Connj .

DEPpn(Comp1.I
t
p o, Conn2.I

b
n i) and

DEPpn(Comp1.I
b
p o, Conn2.I

t
n i) can be used to

represent dependency relationship between a interface
of component Comp1 and a interface of connector
Conn2 in the description. Similarly, DEPnp(Comp1.I

b
p i,

Conn2.I
t
n o) and DEPnp(Comp1.I

t
p i, Conn2.I

b
n o)

can be used to represent dependency relationship between
a interface of connector Conn2 and a interface of
component Comp1. DEPnn(Conn1.I

t
n1

o, Conn2.I
b
n2

i)
and DEPnn(Conn1.I

b
n1

o, Conn2.I
t
n2

i) can be used to
represent dependency relationship between a interface of
connector Conn1 and a interface of connector Conn2.

DEPpn(Comp1, Conn2) can be used to represent depen-
dency relationship between component Comp1 and connec-
tor Conn2 in the description. Similarly, DEPnp(Comp1,
Conn2) can be used to represent dependency relation-
ship between connector Conn2 and component Comp1.
DEPnn(Conn1, Conn2) can be used to represent depen-
dency relationship between connector Conn1 and connector
Conn2.

DEPp(Comp1) can be used to represent dependency re-
lationship between two interfaces within component Comp1
in the description. Similarly, DEPn(Conn2) can be used
to represent dependency relationship between two interfaces
within connector Conn2.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

IV. GRAPH REPRESENTATION USING DEPENDENCY
RELATIONSHIPS

In order to test dependency relationships between compo-
nents for C2-style architecture. In this section, we present
definition of our representation based on dependency rela-
tionships for C2-style architecture, named Component De-
pendency Graph (GCD), and component dependency path
based on GCD.

A. Component dependency graph

As shown in [5], the component dependency graph is
a digraph whose node represents component or connector,
and edge represents possible information flows between a
component and a connector in the C2-ADL specification.
Definition 1 (Component dependency graph). Given a C2-
style architecture, the component dependency graph is denot-
ed by GCD = (N, E), where N = Comp ∪ Conn is the set of
components and connectors. E is the set of dependency edges
between component and connector. A GCD may contain the
following three types of dependency edges:
• if (Ci, Cj) ∈ DEPpn(Comp,Conn), it represents an

edge called a dependency edge from component to
connector, called DEComp− Conn for short.

• if (Cj , Ci) ∈ DEPnp(Comp,Conn), it represents
an edge called a dependency edge from connector to
component, called DEConn− Comp for short.

• if (Ci, Cj) ∈ DEPnn(Conn,Conn), it represents an
edge called a dependency edge from connector to con-
nector, called DEConn− Conn for short.

The GCD is constructed from a static analysis of C2-
style architecture specification, and outlines the following
five steps.
• For each component and connector of architecture de-

scription, the corresponding node is added to the GCD.
• For each interface of component and connector, the

corresponding node is attached to the component and
connector.

• Add the dependency edge from component to connector
to attach the GCD.

• Add the dependency edge from connector to component
to attach the GCD.

• Add the dependency edge from connector to connector
to attach the GCD.

Obviously, these types of dependency edges belong to the
set of E.

We introduce a video game KLAX system [23] to illustrate
the proposed notions. The design of the system is given in
Fig. 1.

The components of the KLAX game can be divided into
three logical groups. At the top of the architecture are the
components which encapsulate the game’s state. These data
structure components are placed at the top since game state
is vital for the functioning of the other two groups of compo-
nents. These ADT components receive no notifications, but
respond to requests and emit notifications of internal state
changes. ADT notifications are directed to the next level
where they are received by both the game logic components
and the artists components.

The game logic components request changes of ADT
state in accordance with game rules and interpret ADT state

Clock
Logic

Status
ADT

Chute
ADT

Well
ADT

Palette
ADT

Next Tile
Placing Logic

Tile Match
Logic

Relative
Pos Logic

Status
Logic

Status
Artist

Chute
Artist

Well
Artist

Palette
Artist

Tile
Artist

Layout
Manager

Graphics
Binding

LAConn

LLConn

ALAConn

TAConn

LTConn

GLConn

Fig. 1. KLAX Architecture in the C2-Style

change notifications to determine the state of the game in
progress. This notification is detected by the status logic
causing the number of lives to be decremented.

The artist components also receive notifications of ADT
state changes, causing them to update their depictions. Each
artist maintains the state of a set of abstract graphical objects
which, when modified, send state change notifications in
hope that a lower-level graphics component will render them.
The tile artist provides a flexible presentation level for tiles.
Artists maintain information about the placement of abstract
tile objects. The tile artist intercepts any notifications about
tile objects and recasts them to notifications about more
concrete drawable objects. The layout manager component
receives all notifications from the artists and offsets any
coordinates to ensure that the game elements are drawn in
the correct juxtaposition.

The graphics binding component receives all notifications
about the state of the artists’ graphical objects and translates
them into calls to a window system. User events, such
as a key press, are translated into requests to the artist
components.

The component dependency graph of the KLAX system is
shown as Fig. 2. Where GraphicsBinding and StatusADT etc.
are components which are represented circles, LAConn and
TAConn etc. are connectors which are represented rectan-
gles, small solid rectangles represent interface of component
and connector, thick solid edges represent dependency edge
from component (connector) to connector (component) that
connect an interface of a component (connector) to an
interface of a corresponding connector (component). Thick
dotted edges represent dependency edge from connector to
connector that it connects an interface of a connector and
an interface of a corresponding connector. Thin dotted edges
represent additional dependency edge that it connects two
interfaces or interface within a component or connector.

B. Component dependency path

Software architecture has many new characteristics, such
as component, connector and so on. All of these charac-
teristics have an impact on interactions among component,
connector and component dependency path generation.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

GLConn

LTConn

TAConn

ALAConn

LAConn

SADT

GB

LM

TA

SA CA WA PA

CADT CL PADT WADT

NTPL TML RPL

LLConn

SL

Fig. 2. GCD of KLAX System

Definition 2 (Component dependency path). Let GCD =
(N, E) be a component dependency graph for C2-style
architecture, a component dependency path is a sequence
nodes C1 → C2 → . . . → Cm such that (Ci, Cj) ∈ E ∧
C1 ∈ Comp ∧ Cm ∈ Comp for all i, 1≤i≤j≤m, called CDP
for short. The number of dependency edges in CDP is the
length of CDP.

Note, the CDP has two forms according to the type of
dependency edges, one is all of dependency edges from the
beginning of top interface of component and connector to
the end of bottom interface of component and connector,
the other is all of dependency edges from the beginning of
bottom interface of component and connector to the end of
top interface of component and connector.

For example in Fig. 2, because (LayoutManager, GLConn)
∈ E, (GLConn, GraphicsBinding) ∈ E, thus, LayoutMan-
ager → GLConn → GraphicsBinding is a CDP of length
is 2. Similarly, LayoutManager → GLConn → TileArtist
→ TAConn → StatusArtist → ALAConn → LAConn →

ClockLogic is a CDP of length is 7.
The CDP of length n is similar to the Length N path

coverage defined by Li [11] for conventional software, which
requires coverage of all subpaths in the program’s flow-graph
of length less than or equal to n. However, GCD has many
start nodes and terminal nodes, and a fixed length of CDP
is not necessarily between any two nodes. As the length
of the CDP increases, the number of possible contexts also
increases.

V. COMPONENT DEPENDENCY PATH COVERAGE
CRITERIA

Having created representations for GCD among compo-
nents and connectors, we are ready to define the compo-
nent dependency path coverage criteria. We will first define
coverage criteria between components, i.e., direct compo-
nent dependency coverage criterion and indirect component
dependency coverage criterion, and then for lengths among
components, i.e., Length-N component dependency coverage
criterion.

A. Direct component dependency path coverage criterion

Intuitively, direct component dependency path coverage
requires each component dependency path between com-
ponents does not contain other components in GCD to be
analyzed at least once. Such a requirement is necessary
to check whether each direct component dependency path
executes as expected.
Definition 3 (Direct component dependency path coverage
criterion). We call a set of component dependency paths
CDPs to satisfy the direct component dependency path
coverage criterion, denoted as DCDPCC, for the CDP C1

→ C2 → . . . → Cm in GCD of the C2-style architecture, if
and only if each (Ci, Cj) ∈ DEConn-Conn for i = 2, 3, . . .,
m-2, j = i+1, i+2, . . ., m-1.

Intuitively, the DCDPCC requires that all CDPs of length
2 will be covered. For example in Fig. 2, for CDP Lay-
outManager→ GLConn→ GraphicsBinding, its length is 2.
According to DCDPCC, this CDP will be covered. Similarly,
LayoutManager → LTConn → TAConn → StatusArtist also
will be covered.

Let DCDP ′ represents the set of direct componen-
t dependency paths that covered by test suites set TS,
||DCDP ′|| represents the number of elements in DCDP ′,
||EP (DCDP (GCD))|| represents the number of direct com-
ponent dependency paths in GCD, then direct component
dependency path coverage rate is calculated as follows:

RDCDP =
||DCDP ′||

||EP (DCDP (GCD))||
× 100% (1)

B. Indirect component dependency path coverage criterion

Indirect component dependency path coverage criterion
requires that after a component dependency path between
components has been analyzed, all the indirect component
dependency paths between components should be analyzed
at least once.
Definition 4 (Indirect component dependency path coverage
criterion). We call a set of component dependency paths
CDPs to satisfy the indirect component dependency path

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

coverage criterion, denoted as ICDPCC, for the CDP C1 →
C2 → . . .→ Cm in GCD of the C2-style architecture, if and
only if each (Ci, Cj) ∈ DEConn-Comp ∨ DEConn-Conn ∨
DEComp-Conn for i = 2, 3, . . ., m-2, j = i+1, i+2, . . ., m-1.

Note that the ICDPCC requires that all CDPs of length
greater than or equal to 2 will be covered. For example in
Fig. 2, for CDP LayoutManager → LLConn → TileArtist
→ TAConn → StatusArtist → ALAConn → LAConn →
ClockLogic, its length is 7. According to ICDPCC, this CDP
will be covered.

Let ICDP ′ represents the set of indirect componen-
t dependency paths that covered by test suites set TS,
||ICDP ′|| represents the number of elements in ICDP ′,
||EP (ICDP (GCD))|| represents the number of indirect
component dependency paths in GCD, indirect component
dependency path coverage rate is calculated as follows:

RICDP =
||ICDP ′||

||EP (ICDP (GCD))||
× 100% (2)

C. Length-N component dependency path coverage criterion

When there are a number of connections between connec-
tor and component in GCD, direct and indirect component
dependency path coverage criteria are often impractical. For
nodes Ci and Cj , if the number of dependency edges such
that (Ci, Cj) ∈ E is L, the number of CDPs is greater than
2L, when L>10, the test will become more difficult. In order
to enhance the feasibility of CDP coverage, we present the
Length-N component dependency path coverage criterion.
Definition 5 (Length-N component dependency path cover-
age criterion). We call a set of component dependency paths
CDPs to satisfy the Length-N component dependency path
coverage criterion, denoted as LNCDPCC, for the CDP C1

→ C2 → . . . → Cm in GCD of the C2-style architecture,
if and only if the length of CDP is less than or equal to
N and each (Ci, Cj) ∈ DEConn-Comp ∨ DEConn-Conn ∨
DEComp-Conn for i = 2, 3, . . ., m-2, j = i+1, i+2, . . ., m-1.

Note, the LNCDPCC requires that all CDPs of length
greater than or equal to 2 will be tested. For example in
Fig. 2, for CDP LayoutManager → LLConn → TileArtist,
its length is 2, LayoutManager → LLConn → TileArtist →
TAConn → StatusArtist, its length is 4, and LayoutMan-
ager → LLConn → TileArtist → TAConn → StatusArtist
→ ALAConn → LAConn → ClockLogic, its length is 7.
According to L7CDPCC, these CDPs will be covered.

Let LCDP ′N represents the set of CDPs of length n that
covered by test suites set TS, ||LCDP ′N || represents the
number of elements in LCDP ′N , ||EP (LCDPN (GCD))||
represents the number of CDPs of length n in GCD, then
component dependency path of length n coverage rate is
calculated as follows:

RLNCDP =
||LCDP ′N ||

||EP (LCDPN (GCD))||
× 100% (3)

Our component dependency coverage criteria have a clear
subsumption relationships when k ≥ 2. The LNCDPCC
subsumes the ICDPCC, while the ICDPCC subsumes the
DCDPCC.

VI. ALGORITHMS OF COMPONENT DEPENDENCY PATH
COVERAGE RATE

Having formally presented DCDPCC, ICDPCC, and
LNCDPCC, we now present algorithms to evaluate the
coverage of a test suite using these CDPCC.

A. Algorithm to determine RDCDP

Algorithm RDCDPA can be used to calculate the direct
component dependency path coverage rate. The main idea of
direct component dependency path coverage rate algorithm
can be briefly stated as follows: Let set DCDP’ to save the
test suites TS covering the direct component dependency
path. The start of the algorithm, the DCDP’ is empty.

Algorithm 1 RDCDPA
Require: GCD

Ensure: Direct component dependency path coverage rate
Begin
1 DCDP’ = ∅.
2 If the test suite ts in TS have been visited, goto Step 4,
otherwise, remove the 1 unvisited test suite ts from TS, and
its mark as visit.
3 If the direct component dependency path in ts have visited,
goto Step 1, otherwise, according to the order from the ts
remove 1 has not visited to the direct component dependency
path dcdp, and marks it as has visit.
4 Let DCDP’ = DCDP’ ∪ dcdp, goto Step 2.
5 Output ||DCDP’||/||DCDP|| × 100%.
End RDCDPA

We employ the GCD shown in Fig. 2 to demonstrate
algorithm RDCDPA. Let us consider examples showing
the computation of the direct component dependency path
coverage rate for component TA.

First, DCDP’ = ∅. According to steps 2-3, we get dcdp =
{TA → LTConn → LM}, so, DCDP’ = {TA → LTConn →
LM}.

Repeat the steps 3-4, we get DCDP’ = {TA → LTConn
→ LM, TA → TAConn → SA, TA → TAConn → CA, TA
→ TAConn → WA, TA → TAConn → PA}. Therefore, the
number of direct component dependency paths for compo-
nent TA is 5.

While the all of number of direct component dependency
paths is 104. Hence, by step 4, the RDCDP = 5 / 104 ×
100% = 4.81% for component TA.

B. Algorithm to determine RICDP

Algorithm RICDPA can be used to calculate the indirect
component dependency path coverage rate. The main idea of
indirect component dependency path coverage rate algorithm
can be briefly stated as follows: Let set ICDP’ to save the
test suites TS covering the indirect component dependency
path. The start of the algorithm, the ICDP’ is empty.

We again employ the GCD shown in Fig. 2 to demonstrate
algorithm RICDPA. Let us consider examples showing the
computation of the indirect component dependency path
coverage rate for component TA.

First, ICDP’ = ∅. According to steps 2-3, we get icdp =
{TA → LTConn → LM}, so, ICDP’ = {TA → LTConn →
LM}.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

Algorithm 2 RICDPA
Require: GCD

Ensure: Indirect component dependency path coverage rate
Begin
1 ICDP’ = ∅.
2 If the test suite ts in TS have been visited, goto Step 4,
otherwise, remove the 1 unvisited test suite ts from TS, and
its mark as visit.
3 If the indirect component dependency path in ts have
visited, goto Step 1, otherwise, according to the order from
the ts remove 1 has not visited to the indirect component
dependency path icdp, and marks it as has visit.
4 Let ICDP’ = ICDP’ ∪ icdp, obtain dependency edge DEt

from icdp in GCD, let ICDP’ = ICDP’ ∪ DEt, goto Step 2.
5 Output ||ICDP’||/||ICDP|| × 100%.
End RICDPA

Repeat the steps 3-4, we get ICDP’ = {TA → LTConn
→ LM, TA → LTConn → LM → GLConn → GB, TA →
TAConn → SA, TA → TAConn → CA, TA → TAConn
→ WA, TA → TAConn → PA, TA → TAConn → SA →
ALAConn→ LAConn→ CL, . . ., TA→ TAConn→ SA→
ALAConn → LAConn → PADT, TA → TAConn → CA →
ALAConn→ LAConn→ CL, . . ., TA→ TAConn→ CA→
ALAConn → LAConn → PADT, TA → TAConn → WA →
ALAConn → LAConn → CL, . . ., TA → TAConn → WA
→ ALAConn → LAConn → PADT, TA → TAConn → PA
→ ALAConn→ LAConn→ CL, . . ., TA→ TAConn→ PA
→ ALAConn→ LAConn→ PADT}. Therefore, the number
of indirect component dependency paths for component TA
is 26.

While the all of number of indirect component dependency
paths is 350. Hence, by step 4, the RICDP = 26 / 350 ×
100% = 7.43% for component TA.

C. Algorithm to determine RLNCDP

In order to calculate the component dependency path of
length n coverage rate, we must calculate two values:
• ||CDPN ||: The number of component dependency paths

of length n contained test cases set TS.
• ||CDP||: The number of component dependency paths

of length n contained in GCD.
So, ||CDPN ||/||CDP|| × 100% is the component depen-

dency path of length n coverage rate.

Algorithm 3 RLCDPA
Require: GCD

Ensure: Component dependency path of length n coverage
rate
Begin
1 CDPN = ∅.
2 If the test suite ts in TS have been visited, goto Step 3,
otherwise, remove the 1 unvisited test suite ts from TS, and
its mark as visit.
3 Obtain component dependency path of length less than
or equal to N, let CDPN = CDPN ∪ CDP ′N , goto Step
1.
4 Output ||CDPN ||.
End RLCDPA

Algorithm RLCDPA can be used to calculate the compo-
nent dependency path of length n coverage rate. The main
idea of component dependency path of length n coverage rate
algorithm can be briefly stated as follows: Let set CDPN to
save the test suites TS covering the component dependency
path of length n. The start of the algorithm, the CDPN is
empty.

In order to calculate the ||CDP||, we define recursive pro-
cess CDPath(Ci, N), the process returns the set of component
dependency paths from component node Ci and length equal
to N. The main steps of the process are shown as algorithm
Compute the ||CDPN ||.

Algorithm 4 Compute the ||CDPN ||
Require: GCD

Ensure: The number of component dependency paths of
length n contained test cases set TS
Begin
11 Obtain Ci for tail node of the component dependency
path P = {p1, p2, . . ., pm}, if P = ∅, returns empty set,
otherwise, if N = 2, returns P.
12 if N > 2, defines and initialize the set K is empty, save
component dependency path of length equal to N for start
node Ci to K.
13 If the component dependency path in P have visited,
goto Step 17, otherwise, remove 1 has not visited to the
component dependency path pk (1≤k≤m), and marks it as
has visit.
14 Obtain target node C ′i of pk.
15 Obtain set of component dependency paths K’ =
CDPath(C ′i, N-1) from start node C ′i and length is equal
to N-1.
16 If K’ 6= ∅, add component dependency path pk before
each element in K’, let K = K ∪ K’, goto Step 13, otherwise
goto Step 13.
17 Return K.
End

The ||CDP|| can be calculated by recursive process CD-
Path, the start of algorithm, the CDP is empty. The main
steps of the process are shown as algorithm Compute the
||CDP||.

Algorithm 5 Compute the ||CDP||
Require: GCD

Ensure: The number of component dependency paths of
length n contained in GCD

Begin
21 CDP = ∅.
22 If the components in GCD have visited, goto Step 24,
otherwise, remove 1 has not visited to the component Cj ,
and marks it as has visit.
23 Obtain all of the component dependency path from Cj ,
for each N’ ∈ [1..N], compute CDP’ = CDPath(Cj , N’), let
CDP = CDP ∪ CDP’, goto Step 22.
24 Return ||CDP||.
End

We again employ the GCD shown in Fig. 2 to demonstrate
algorithm RLCDPA. Let us consider examples showing the

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

TABLE II
TOTAL NUMBER OF COMPONENT DEPENDENCY PATH IN KLAX SYSTEM

Component DCDPCC ICDPCC LNCDPCC
name N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

GraphicsBinding 1 50 1 - 6 - 30 - - 50

LayoutManager 6 50 6 - 30 - - 50 - -

TileArtist 5 26 5 - 6 26 - - - -

StatusArtist 7 10 1 7 8 9 10 - - -

ChuteArtist 7 10 1 7 8 9 10 - - -

WellArtist 7 10 1 7 8 9 10 - - -

PaletteArtist 7 10 1 7 8 9 10 - - -

StatusLogic 7 17 2 7 17 - - - - -

NextTilePlacingLogic 5 5 5 - - - - - - -

TileMatchLogic 6 6 6 - - - - - - -

RelativePosLogic 6 6 6 - - - - - - -

ClockLogic 8 30 3 8 10 14 18 22 26 30

StatusADT 8 30 3 8 10 14 18 22 26 30

ChuteADT 8 30 3 8 10 14 18 22 26 30

WellADT 8 30 3 8 10 14 18 22 26 30

PaletteADT 8 30 3 8 10 14 18 22 26 30

computation of the component dependency path of length 5
coverage rate for component TA.

First, CDP5 = ∅. According to step 2-3, we get CDP of
length 2, CDP5 = {TA → LTConn → LM}, so, CDP5 =
{TA→ LTConn→ LM}. Repeat the step 1-2, we get CDP of
length 2, CDP5 = {TA → LTConn → LM, TA → TAConn
→ SA, TA → TAConn → CA, TA → TAConn → WA, TA
→ TAConn → PA}.

Similarly, we get CDP of length 4, CDP5 = {TA →
LTConn → LM → GLConn → GB} and CDP of length
5, CDP5 = {TA → TAConn → PA, TA → TAConn → SA
→ ALAConn→ LAConn→ CL, . . ., TA→ TAConn→ SA
→ ALAConn → LAConn → PADT, TA → TAConn → CA
→ ALAConn→ LAConn→ CL, . . ., TA→ TAConn→ CA
→ ALAConn → LAConn → PADT, TA → TAConn → WA
→ ALAConn→ LAConn→ CL, . . ., TA→ TAConn→WA
→ ALAConn → LAConn → PADT, TA → TAConn → PA
→ ALAConn→ LAConn→ CL, . . ., TA→ TAConn→ PA
→ ALAConn→ LAConn→ PADT}. Therefore, the number
of component dependency paths of length 5 for component
TA is 26.

The following is a calculation process of CDP of length
smaller than or equal to 5.

First, we get set of CDPs of length equal to 5 by step 4, P
= {BG → GLConn → LM → LTConn → TAConn → SA,
BG → GLConn → LM → LTConn → TAConn → CA, BG
→ GLConn → LM → LTConn → TAConn → WA, BG →
GLConn → LM → LTConn → TAConn → PA}. By step
5, CDP = ∅. By steps 6-9, recursive call CDPath(C ′i, N-1)
on BG → GLConn → LM → LTConn → TAConn → SA.
We get CDP’ = {BG → GLConn → LM}, so CDP = {BG
→ GLConn → LM}. Continue steps 6-9, Similarly, CDP =
{BG → GLConn → LM → LTConn → TAConn → SA,
BG → GLConn → LM → LTConn → TAConn → CA, BG
→ GLConn → LM → LTConn → TAConn → WA, BG
→ GLConn → LM → LTConn → TAConn → PA, BG →
GLConn → LM}. Similarly, we get other CDPs of length
smaller than or equal to 5.

While the all of number of component dependency paths
of length smaller than or equal to 5 is 132. Hence, the
RL5CDP = 26 / 132 × 100% = 19.70% for component TA.

VII. EXPERIMENTAL RESULTS

In order to test the effectiveness and performance of the
proposed component dependency path coverage method, we
implemented the dependency-based in C2-style architecture
path testing system (DC2PTS) platform, and carried out lots
of experiments. We choose KLAX system as the application
under test, extract 16 components and the 6 connectors in
KLAX system, and determine the total number of component
dependency paths. The total number of component dependen-
cy paths is shown in Table II. The first column represents
the component name of KLAX system, the second column
represents the number of direct component dependency path
from component of the first column on DCDPCC, the
third column represents the number of indirect component
dependency path from component of the first column on
ICDPCC, and the fourth column represents the number of
component dependency path from component of the first
column on LNCDPCC, the symbol “-” means that there isn’t
exist component dependency path of length n for component
of the first column.

From the Table II, we obtain the two conclusions as
follows:
• The total number of indirect component dependency

paths is greater than direct component dependency paths
for component. Note that indirect component dependen-
cy paths subsume direct component dependency paths,
if all indirect component dependency paths are tested,
then so are all direct component dependency paths.

• The total number of component dependency paths of
length n grows with increasing length. If all component
dependency paths of length n are tested, then so are all
component dependency paths of length i (i≤N-1).

Table III gives the component dependency path coverage
rate for each of the component in KLAX system. The symbol

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

TABLE III
COMPONENT DEPENDENCY PATH COVERAGE RATE IN KLAX SYSTEM

Component RDCDP RICDP RLNCDP (%)
name (%) (%) N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9

GraphicsBinding 0.96 14.29 2.00 - 4.26 - 18.75 - - 25.00

LayoutManager 5.77 14.29 12.00 - 21.28 - - 31.25 - -

TileArtist 4.81 7.43 10.00 - 4.26 19.70 - - - -

StatusArtist 6.73 2.86 2.00 9.33 5.67 6.82 6.25 - - -

ChuteArtist 6.73 2.86 2.00 9.33 5.67 6.82 6.25 - - -

WellArtist 6.73 2.86 2.00 9.33 5.67 6.82 6.25 - - -

PaletteArtist 6.73 2.86 2.00 9.33 5.67 6.82 6.25 - - -

StatusLogic 6.73 4.86 4.00 9.33 12.06 - - - - -

NextTilePlacingLogic 4.81 1.43 10.00 - - - - - - -

TileMatchLogic 5.77 1.71 12.00 - - - - - - -

RelativePosLogic 5.77 1.71 12.00 - - - - - - -

ClockLogic 7.69 8.57 6.00 10.67 7.09 10.61 11.25 13.75 20.00 15.00

StatusADT 7.69 8.57 6.00 10.67 7.09 10.61 11.25 13.75 20.00 15.00

ChuteADT 7.69 8.57 6.00 10.67 7.09 10.61 11.25 13.75 20.00 15.00

WellADT 7.69 8.57 6.00 10.67 7.09 10.61 11.25 13.75 20.00 15.00

PaletteADT 7.69 8.57 6.00 10.67 7.09 10.61 11.25 13.75 20.00 15.00

“-” means that there isn’t exist component dependency path
of length n coverage rate for component. For some applica-
tions such as component GraphicsBinding, ClockLogic, Sta-
tusADT, ChuteADT, WellADT, and PaletteADT, direct and
indirect component dependency path coverage rate increases
from 39.41% to 57.14%. The component dependency path
from length 9 to length 2 coverage rate decreases from 100%
to 32%. However, for component StatusArtist, ChuteArtist,
WellArtist, and PaletteArtist, the component dependency path
of length 2, 3, 4, 5, and 6 coverage rate increases from 8%
to 37.32%. The reason is, component at the top/bottom of
software architecture due to large number of components
interact with other levels, the number of length of component
dependency path also increases relatively, its the component
dependence path coverage rate is relatively high. But the
component at the middle level, its number of component
dependency paths less than top/bottom component, that is the
number of component dependency paths will be a decrease
in the middle level, making the component dependency path
coverage rate is relatively low.

VIII. CONCLUSION

Component-based software is an important pattern in
software developing. Effective testing can ensure the soft-
ware quality. This paper presents a component dependency
path coverage technology based on C2-style architecture.
First, it describes software architecture through C2-style,
then represents software architecture through component
dependency graph GCD, and abstracted the behavior of
interactive between components and connectors. Formalized
the component dependency path, generated the component
dependency path coverage set that covered the C2-style
architecture according to the component dependency path
coverage criteria and algorithms. The assessment of results
for the tester can help to understand each properties of
component dependency path coverage criteria. The differ-
ence between using different component dependency path
coverage criteria provide reference in practice, at the same

time, so that we will do further research on the adequacy
criteria.

REFERENCES

[1] H. Mei and J. R. Shen, “Progress of research on software architecture,”
Journal of Software, vol. 17, no. 6. pp. 1257-1275, 2006.

[2] J. F. Chen, Y. S. Lu and H. H. Wang, “Component security testing
approach based on extended chemical abstract machine,” International
Journal of Software Engineering and Knowledge Engineering, vol.22,
no. 1, pp.59-83, 2012.

[3] A. Bertolino, P. Inverardi and H. Muccini, “An explorative journey
from architectural tests definition downto code test execution,” in
Proceedings of the International Conference on Software Engineering,
May 2001, pp. 211-220.

[4] H. Muccini, A. Bertolino and P. Inverardi, “Using software architecture
for code testing,” IEEE Trans. Softw. Engi., vol. 30, no. 3, pp. 160-171,
2004.

[5] L. J. Lun and X. Chi, “Dependency coverage for C2-style architecture,”
Journal of Computational Information System, vol. 10, no. 7, pp. 3039-
3048, 2014.

[6] L. G. Yu and S. Ramaswamy, “Component dependency in object-
oriented software,”, Journal of Computer Science and Technology, vol.
22, no. 3, pp. 379-386, 2007.

[7] J. A. Stafford, A. L. Wolf and M. Caporuscio, “The application of
dependence analysis to software architecture descriptions,” Lecture
Notes in Computer Science, vol. 2804, pp. 52-52, 2003.

[8] M. Marré and A. Bertolino, “Using spanning sets for coverage testing,”
IEEE Trans. Softw. Engi., vol. 29, no. 11, pp. 974-984, 2003.

[9] J. Costa and J. Monteiro, “Observability-based coverage-directed path
search using PBO for automatic test vector generation,” in Proceedings
of the IFIP/IEEE International Conference on Very Large Scale
Integration, October 2009, pp. 153-158.

[10] Y. Z. Gong, W. Zhang and Q. L. Lu, “Making software testing system
oriented faults,” in Proceedings of the 6th International Conference on
Computer Aided Industial Design & Conceptual Design, May 2005,
pp. 840-844.

[11] B. L. Li, Z. S. Li and J. C. Ni, “Research for test case generation based
on Length N criterion,” Journal of Sichuan University: Engineering
Science Edition, vol. 40, no. 3, pp. 132-137, 2008.

[12] L. Brim, I. Černá, P. Vařeková and B. Zimmerova, “Component-
interaction automata as a verification-oriented component-based sys-
tem specification,” in Proceedings of the 2005 Conference on Specifi-
cation and Verification of Component-based Systems, September 2005,
pp. 31-38.

[13] Y. Wu, D. Pan and M. H. Chen, “Techniques for testing component-
based software,” in Proceedings of the Seventh IEEE International
Conference on Engineering of Complex Computer Systems, June 2001,
pp. 222-232.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

[14] B. X. Li, “Managing dependencies in component-based systems based
on matrix model,” in Proceedings of Net.Object.Days, September
2003, pp. 22-25.

[15] I. -C Yoon, A. Sussman, A. M. Memon and A. Porter, “Direct-
dependency-based software compatibility testing,” in Proceedings of
the 22nd IEEE International Conference on Automated Software
Engineering, November 2007, pp. 409-412.

[16] Z. L. Jin and J. Offutt, “Deriving tests from software architectures,”
in Proceedings of International Symposium on Software Reliability
Engineering, November 2001, pp. 308-313.

[17] J. Gao, R. Espinoza and J. He, “Testing coverage analysis for software
component validation,” in Proceedings of Annual International Com-
puter Software and Applications Conference, July 2005, pp. 463-470.

[18] N. L. Hashim, S. Ramakrishnan and H. W. Schmidt, “Architectural test
coverage for component-based integration testing,” in Proceedings of
International Conference on Quality Software, October 2007, pp. 262-
267.

[19] M. Muccini, M. Dias and D. J. Richardson, “Systematic testing of
software architectures in the C2 style,” in Fundamental Approaches to
Software Engineering, LNCS 2984, 2004, pp. 295-309.

[20] H. Muccini, M. D. Dias and D. J. Richardson, “Towards software
architecture-based regression testing,” ACM SIGSOFT Software Engi-
neering Notes, vol. 30, no. 4, pp. 1-7, 2005.

[21] L. J. Lun, X. Chi and X. M. Ding, “Edge coverage analysis for
software architecture testing,” Journal of Software, vol. 7, no. 5, pp.
1121-1128, 2012.

[22] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles and J. E. Robbins,
“Modeling software architectures in the unified modeling language,”
ACM Transactions on Software Engineering and Methodology, vol.
11, no. 1, pp. 2-57, 2002.

[23] X. F. Zhang, J. Fiskio-lasseter and M. Young, “Flow analyses for
abstraction of architectural structure and behavior,” in Technical Report
CIS-TR-03-01, 2003.

IAENG International Journal of Computer Science, 42:4, IJCS_42_4_09

(Advance online publication: 21 November 2015)

__

